Home | History | Annotate | Download | only in ia32
      1 // Copyright 2011 the V8 project authors. All rights reserved.
      2 // Redistribution and use in source and binary forms, with or without
      3 // modification, are permitted provided that the following conditions are
      4 // met:
      5 //
      6 //     * Redistributions of source code must retain the above copyright
      7 //       notice, this list of conditions and the following disclaimer.
      8 //     * Redistributions in binary form must reproduce the above
      9 //       copyright notice, this list of conditions and the following
     10 //       disclaimer in the documentation and/or other materials provided
     11 //       with the distribution.
     12 //     * Neither the name of Google Inc. nor the names of its
     13 //       contributors may be used to endorse or promote products derived
     14 //       from this software without specific prior written permission.
     15 //
     16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27 
     28 #include "v8.h"
     29 
     30 #if defined(V8_TARGET_ARCH_IA32)
     31 
     32 #include "codegen.h"
     33 #include "deoptimizer.h"
     34 #include "full-codegen.h"
     35 
     36 namespace v8 {
     37 namespace internal {
     38 
     39 
     40 #define __ ACCESS_MASM(masm)
     41 
     42 
     43 void Builtins::Generate_Adaptor(MacroAssembler* masm,
     44                                 CFunctionId id,
     45                                 BuiltinExtraArguments extra_args) {
     46   // ----------- S t a t e -------------
     47   //  -- eax                : number of arguments excluding receiver
     48   //  -- edi                : called function (only guaranteed when
     49   //                          extra_args requires it)
     50   //  -- esi                : context
     51   //  -- esp[0]             : return address
     52   //  -- esp[4]             : last argument
     53   //  -- ...
     54   //  -- esp[4 * argc]      : first argument (argc == eax)
     55   //  -- esp[4 * (argc +1)] : receiver
     56   // -----------------------------------
     57 
     58   // Insert extra arguments.
     59   int num_extra_args = 0;
     60   if (extra_args == NEEDS_CALLED_FUNCTION) {
     61     num_extra_args = 1;
     62     Register scratch = ebx;
     63     __ pop(scratch);  // Save return address.
     64     __ push(edi);
     65     __ push(scratch);  // Restore return address.
     66   } else {
     67     ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
     68   }
     69 
     70   // JumpToExternalReference expects eax to contain the number of arguments
     71   // including the receiver and the extra arguments.
     72   __ add(Operand(eax), Immediate(num_extra_args + 1));
     73   __ JumpToExternalReference(ExternalReference(id, masm->isolate()));
     74 }
     75 
     76 
     77 void Builtins::Generate_JSConstructCall(MacroAssembler* masm) {
     78   // ----------- S t a t e -------------
     79   //  -- eax: number of arguments
     80   //  -- edi: constructor function
     81   // -----------------------------------
     82 
     83   Label non_function_call;
     84   // Check that function is not a smi.
     85   __ test(edi, Immediate(kSmiTagMask));
     86   __ j(zero, &non_function_call);
     87   // Check that function is a JSFunction.
     88   __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
     89   __ j(not_equal, &non_function_call);
     90 
     91   // Jump to the function-specific construct stub.
     92   __ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
     93   __ mov(ebx, FieldOperand(ebx, SharedFunctionInfo::kConstructStubOffset));
     94   __ lea(ebx, FieldOperand(ebx, Code::kHeaderSize));
     95   __ jmp(Operand(ebx));
     96 
     97   // edi: called object
     98   // eax: number of arguments
     99   __ bind(&non_function_call);
    100   // Set expected number of arguments to zero (not changing eax).
    101   __ Set(ebx, Immediate(0));
    102   __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
    103   Handle<Code> arguments_adaptor =
    104       masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
    105   __ jmp(arguments_adaptor, RelocInfo::CODE_TARGET);
    106 }
    107 
    108 
    109 static void Generate_JSConstructStubHelper(MacroAssembler* masm,
    110                                            bool is_api_function,
    111                                            bool count_constructions) {
    112   // Should never count constructions for api objects.
    113   ASSERT(!is_api_function || !count_constructions);
    114 
    115   // Enter a construct frame.
    116   __ EnterConstructFrame();
    117 
    118   // Store a smi-tagged arguments count on the stack.
    119   __ SmiTag(eax);
    120   __ push(eax);
    121 
    122   // Push the function to invoke on the stack.
    123   __ push(edi);
    124 
    125   // Try to allocate the object without transitioning into C code. If any of the
    126   // preconditions is not met, the code bails out to the runtime call.
    127   Label rt_call, allocated;
    128   if (FLAG_inline_new) {
    129     Label undo_allocation;
    130 #ifdef ENABLE_DEBUGGER_SUPPORT
    131     ExternalReference debug_step_in_fp =
    132         ExternalReference::debug_step_in_fp_address(masm->isolate());
    133     __ cmp(Operand::StaticVariable(debug_step_in_fp), Immediate(0));
    134     __ j(not_equal, &rt_call);
    135 #endif
    136 
    137     // Verified that the constructor is a JSFunction.
    138     // Load the initial map and verify that it is in fact a map.
    139     // edi: constructor
    140     __ mov(eax, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
    141     // Will both indicate a NULL and a Smi
    142     __ test(eax, Immediate(kSmiTagMask));
    143     __ j(zero, &rt_call);
    144     // edi: constructor
    145     // eax: initial map (if proven valid below)
    146     __ CmpObjectType(eax, MAP_TYPE, ebx);
    147     __ j(not_equal, &rt_call);
    148 
    149     // Check that the constructor is not constructing a JSFunction (see comments
    150     // in Runtime_NewObject in runtime.cc). In which case the initial map's
    151     // instance type would be JS_FUNCTION_TYPE.
    152     // edi: constructor
    153     // eax: initial map
    154     __ CmpInstanceType(eax, JS_FUNCTION_TYPE);
    155     __ j(equal, &rt_call);
    156 
    157     if (count_constructions) {
    158       Label allocate;
    159       // Decrease generous allocation count.
    160       __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
    161       __ dec_b(FieldOperand(ecx, SharedFunctionInfo::kConstructionCountOffset));
    162       __ j(not_zero, &allocate);
    163 
    164       __ push(eax);
    165       __ push(edi);
    166 
    167       __ push(edi);  // constructor
    168       // The call will replace the stub, so the countdown is only done once.
    169       __ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
    170 
    171       __ pop(edi);
    172       __ pop(eax);
    173 
    174       __ bind(&allocate);
    175     }
    176 
    177     // Now allocate the JSObject on the heap.
    178     // edi: constructor
    179     // eax: initial map
    180     __ movzx_b(edi, FieldOperand(eax, Map::kInstanceSizeOffset));
    181     __ shl(edi, kPointerSizeLog2);
    182     __ AllocateInNewSpace(edi, ebx, edi, no_reg, &rt_call, NO_ALLOCATION_FLAGS);
    183     // Allocated the JSObject, now initialize the fields.
    184     // eax: initial map
    185     // ebx: JSObject
    186     // edi: start of next object
    187     __ mov(Operand(ebx, JSObject::kMapOffset), eax);
    188     Factory* factory = masm->isolate()->factory();
    189     __ mov(ecx, factory->empty_fixed_array());
    190     __ mov(Operand(ebx, JSObject::kPropertiesOffset), ecx);
    191     __ mov(Operand(ebx, JSObject::kElementsOffset), ecx);
    192     // Set extra fields in the newly allocated object.
    193     // eax: initial map
    194     // ebx: JSObject
    195     // edi: start of next object
    196     { Label loop, entry;
    197       // To allow for truncation.
    198       if (count_constructions) {
    199         __ mov(edx, factory->one_pointer_filler_map());
    200       } else {
    201         __ mov(edx, factory->undefined_value());
    202       }
    203       __ lea(ecx, Operand(ebx, JSObject::kHeaderSize));
    204       __ jmp(&entry);
    205       __ bind(&loop);
    206       __ mov(Operand(ecx, 0), edx);
    207       __ add(Operand(ecx), Immediate(kPointerSize));
    208       __ bind(&entry);
    209       __ cmp(ecx, Operand(edi));
    210       __ j(less, &loop);
    211     }
    212 
    213     // Add the object tag to make the JSObject real, so that we can continue and
    214     // jump into the continuation code at any time from now on. Any failures
    215     // need to undo the allocation, so that the heap is in a consistent state
    216     // and verifiable.
    217     // eax: initial map
    218     // ebx: JSObject
    219     // edi: start of next object
    220     __ or_(Operand(ebx), Immediate(kHeapObjectTag));
    221 
    222     // Check if a non-empty properties array is needed.
    223     // Allocate and initialize a FixedArray if it is.
    224     // eax: initial map
    225     // ebx: JSObject
    226     // edi: start of next object
    227     // Calculate the total number of properties described by the map.
    228     __ movzx_b(edx, FieldOperand(eax, Map::kUnusedPropertyFieldsOffset));
    229     __ movzx_b(ecx, FieldOperand(eax, Map::kPreAllocatedPropertyFieldsOffset));
    230     __ add(edx, Operand(ecx));
    231     // Calculate unused properties past the end of the in-object properties.
    232     __ movzx_b(ecx, FieldOperand(eax, Map::kInObjectPropertiesOffset));
    233     __ sub(edx, Operand(ecx));
    234     // Done if no extra properties are to be allocated.
    235     __ j(zero, &allocated);
    236     __ Assert(positive, "Property allocation count failed.");
    237 
    238     // Scale the number of elements by pointer size and add the header for
    239     // FixedArrays to the start of the next object calculation from above.
    240     // ebx: JSObject
    241     // edi: start of next object (will be start of FixedArray)
    242     // edx: number of elements in properties array
    243     __ AllocateInNewSpace(FixedArray::kHeaderSize,
    244                           times_pointer_size,
    245                           edx,
    246                           edi,
    247                           ecx,
    248                           no_reg,
    249                           &undo_allocation,
    250                           RESULT_CONTAINS_TOP);
    251 
    252     // Initialize the FixedArray.
    253     // ebx: JSObject
    254     // edi: FixedArray
    255     // edx: number of elements
    256     // ecx: start of next object
    257     __ mov(eax, factory->fixed_array_map());
    258     __ mov(Operand(edi, FixedArray::kMapOffset), eax);  // setup the map
    259     __ SmiTag(edx);
    260     __ mov(Operand(edi, FixedArray::kLengthOffset), edx);  // and length
    261 
    262     // Initialize the fields to undefined.
    263     // ebx: JSObject
    264     // edi: FixedArray
    265     // ecx: start of next object
    266     { Label loop, entry;
    267       __ mov(edx, factory->undefined_value());
    268       __ lea(eax, Operand(edi, FixedArray::kHeaderSize));
    269       __ jmp(&entry);
    270       __ bind(&loop);
    271       __ mov(Operand(eax, 0), edx);
    272       __ add(Operand(eax), Immediate(kPointerSize));
    273       __ bind(&entry);
    274       __ cmp(eax, Operand(ecx));
    275       __ j(below, &loop);
    276     }
    277 
    278     // Store the initialized FixedArray into the properties field of
    279     // the JSObject
    280     // ebx: JSObject
    281     // edi: FixedArray
    282     __ or_(Operand(edi), Immediate(kHeapObjectTag));  // add the heap tag
    283     __ mov(FieldOperand(ebx, JSObject::kPropertiesOffset), edi);
    284 
    285 
    286     // Continue with JSObject being successfully allocated
    287     // ebx: JSObject
    288     __ jmp(&allocated);
    289 
    290     // Undo the setting of the new top so that the heap is verifiable. For
    291     // example, the map's unused properties potentially do not match the
    292     // allocated objects unused properties.
    293     // ebx: JSObject (previous new top)
    294     __ bind(&undo_allocation);
    295     __ UndoAllocationInNewSpace(ebx);
    296   }
    297 
    298   // Allocate the new receiver object using the runtime call.
    299   __ bind(&rt_call);
    300   // Must restore edi (constructor) before calling runtime.
    301   __ mov(edi, Operand(esp, 0));
    302   // edi: function (constructor)
    303   __ push(edi);
    304   __ CallRuntime(Runtime::kNewObject, 1);
    305   __ mov(ebx, Operand(eax));  // store result in ebx
    306 
    307   // New object allocated.
    308   // ebx: newly allocated object
    309   __ bind(&allocated);
    310   // Retrieve the function from the stack.
    311   __ pop(edi);
    312 
    313   // Retrieve smi-tagged arguments count from the stack.
    314   __ mov(eax, Operand(esp, 0));
    315   __ SmiUntag(eax);
    316 
    317   // Push the allocated receiver to the stack. We need two copies
    318   // because we may have to return the original one and the calling
    319   // conventions dictate that the called function pops the receiver.
    320   __ push(ebx);
    321   __ push(ebx);
    322 
    323   // Setup pointer to last argument.
    324   __ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset));
    325 
    326   // Copy arguments and receiver to the expression stack.
    327   Label loop, entry;
    328   __ mov(ecx, Operand(eax));
    329   __ jmp(&entry);
    330   __ bind(&loop);
    331   __ push(Operand(ebx, ecx, times_4, 0));
    332   __ bind(&entry);
    333   __ dec(ecx);
    334   __ j(greater_equal, &loop);
    335 
    336   // Call the function.
    337   if (is_api_function) {
    338     __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
    339     Handle<Code> code =
    340         masm->isolate()->builtins()->HandleApiCallConstruct();
    341     ParameterCount expected(0);
    342     __ InvokeCode(code, expected, expected,
    343                   RelocInfo::CODE_TARGET, CALL_FUNCTION);
    344   } else {
    345     ParameterCount actual(eax);
    346     __ InvokeFunction(edi, actual, CALL_FUNCTION);
    347   }
    348 
    349   // Restore context from the frame.
    350   __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
    351 
    352   // If the result is an object (in the ECMA sense), we should get rid
    353   // of the receiver and use the result; see ECMA-262 section 13.2.2-7
    354   // on page 74.
    355   Label use_receiver, exit;
    356 
    357   // If the result is a smi, it is *not* an object in the ECMA sense.
    358   __ test(eax, Immediate(kSmiTagMask));
    359   __ j(zero, &use_receiver, not_taken);
    360 
    361   // If the type of the result (stored in its map) is less than
    362   // FIRST_JS_OBJECT_TYPE, it is not an object in the ECMA sense.
    363   __ CmpObjectType(eax, FIRST_JS_OBJECT_TYPE, ecx);
    364   __ j(above_equal, &exit, not_taken);
    365 
    366   // Throw away the result of the constructor invocation and use the
    367   // on-stack receiver as the result.
    368   __ bind(&use_receiver);
    369   __ mov(eax, Operand(esp, 0));
    370 
    371   // Restore the arguments count and leave the construct frame.
    372   __ bind(&exit);
    373   __ mov(ebx, Operand(esp, kPointerSize));  // get arguments count
    374   __ LeaveConstructFrame();
    375 
    376   // Remove caller arguments from the stack and return.
    377   ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
    378   __ pop(ecx);
    379   __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize));  // 1 ~ receiver
    380   __ push(ecx);
    381   __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1);
    382   __ ret(0);
    383 }
    384 
    385 
    386 void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) {
    387   Generate_JSConstructStubHelper(masm, false, true);
    388 }
    389 
    390 
    391 void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
    392   Generate_JSConstructStubHelper(masm, false, false);
    393 }
    394 
    395 
    396 void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
    397   Generate_JSConstructStubHelper(masm, true, false);
    398 }
    399 
    400 
    401 static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
    402                                              bool is_construct) {
    403   // Clear the context before we push it when entering the JS frame.
    404   __ Set(esi, Immediate(0));
    405 
    406   // Enter an internal frame.
    407   __ EnterInternalFrame();
    408 
    409   // Load the previous frame pointer (ebx) to access C arguments
    410   __ mov(ebx, Operand(ebp, 0));
    411 
    412   // Get the function from the frame and setup the context.
    413   __ mov(ecx, Operand(ebx, EntryFrameConstants::kFunctionArgOffset));
    414   __ mov(esi, FieldOperand(ecx, JSFunction::kContextOffset));
    415 
    416   // Push the function and the receiver onto the stack.
    417   __ push(ecx);
    418   __ push(Operand(ebx, EntryFrameConstants::kReceiverArgOffset));
    419 
    420   // Load the number of arguments and setup pointer to the arguments.
    421   __ mov(eax, Operand(ebx, EntryFrameConstants::kArgcOffset));
    422   __ mov(ebx, Operand(ebx, EntryFrameConstants::kArgvOffset));
    423 
    424   // Copy arguments to the stack in a loop.
    425   Label loop, entry;
    426   __ Set(ecx, Immediate(0));
    427   __ jmp(&entry);
    428   __ bind(&loop);
    429   __ mov(edx, Operand(ebx, ecx, times_4, 0));  // push parameter from argv
    430   __ push(Operand(edx, 0));  // dereference handle
    431   __ inc(Operand(ecx));
    432   __ bind(&entry);
    433   __ cmp(ecx, Operand(eax));
    434   __ j(not_equal, &loop);
    435 
    436   // Get the function from the stack and call it.
    437   __ mov(edi, Operand(esp, eax, times_4, +1 * kPointerSize));  // +1 ~ receiver
    438 
    439   // Invoke the code.
    440   if (is_construct) {
    441     __ call(masm->isolate()->builtins()->JSConstructCall(),
    442             RelocInfo::CODE_TARGET);
    443   } else {
    444     ParameterCount actual(eax);
    445     __ InvokeFunction(edi, actual, CALL_FUNCTION);
    446   }
    447 
    448   // Exit the JS frame. Notice that this also removes the empty
    449   // context and the function left on the stack by the code
    450   // invocation.
    451   __ LeaveInternalFrame();
    452   __ ret(1 * kPointerSize);  // remove receiver
    453 }
    454 
    455 
    456 void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
    457   Generate_JSEntryTrampolineHelper(masm, false);
    458 }
    459 
    460 
    461 void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
    462   Generate_JSEntryTrampolineHelper(masm, true);
    463 }
    464 
    465 
    466 void Builtins::Generate_LazyCompile(MacroAssembler* masm) {
    467   // Enter an internal frame.
    468   __ EnterInternalFrame();
    469 
    470   // Push a copy of the function onto the stack.
    471   __ push(edi);
    472 
    473   __ push(edi);  // Function is also the parameter to the runtime call.
    474   __ CallRuntime(Runtime::kLazyCompile, 1);
    475   __ pop(edi);
    476 
    477   // Tear down temporary frame.
    478   __ LeaveInternalFrame();
    479 
    480   // Do a tail-call of the compiled function.
    481   __ lea(ecx, FieldOperand(eax, Code::kHeaderSize));
    482   __ jmp(Operand(ecx));
    483 }
    484 
    485 
    486 void Builtins::Generate_LazyRecompile(MacroAssembler* masm) {
    487   // Enter an internal frame.
    488   __ EnterInternalFrame();
    489 
    490   // Push a copy of the function onto the stack.
    491   __ push(edi);
    492 
    493   __ push(edi);  // Function is also the parameter to the runtime call.
    494   __ CallRuntime(Runtime::kLazyRecompile, 1);
    495 
    496   // Restore function and tear down temporary frame.
    497   __ pop(edi);
    498   __ LeaveInternalFrame();
    499 
    500   // Do a tail-call of the compiled function.
    501   __ lea(ecx, FieldOperand(eax, Code::kHeaderSize));
    502   __ jmp(Operand(ecx));
    503 }
    504 
    505 
    506 static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
    507                                              Deoptimizer::BailoutType type) {
    508   // Enter an internal frame.
    509   __ EnterInternalFrame();
    510 
    511   // Pass the function and deoptimization type to the runtime system.
    512   __ push(Immediate(Smi::FromInt(static_cast<int>(type))));
    513   __ CallRuntime(Runtime::kNotifyDeoptimized, 1);
    514 
    515   // Tear down temporary frame.
    516   __ LeaveInternalFrame();
    517 
    518   // Get the full codegen state from the stack and untag it.
    519   __ mov(ecx, Operand(esp, 1 * kPointerSize));
    520   __ SmiUntag(ecx);
    521 
    522   // Switch on the state.
    523   NearLabel not_no_registers, not_tos_eax;
    524   __ cmp(ecx, FullCodeGenerator::NO_REGISTERS);
    525   __ j(not_equal, &not_no_registers);
    526   __ ret(1 * kPointerSize);  // Remove state.
    527 
    528   __ bind(&not_no_registers);
    529   __ mov(eax, Operand(esp, 2 * kPointerSize));
    530   __ cmp(ecx, FullCodeGenerator::TOS_REG);
    531   __ j(not_equal, &not_tos_eax);
    532   __ ret(2 * kPointerSize);  // Remove state, eax.
    533 
    534   __ bind(&not_tos_eax);
    535   __ Abort("no cases left");
    536 }
    537 
    538 
    539 void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
    540   Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
    541 }
    542 
    543 
    544 void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
    545   Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
    546 }
    547 
    548 
    549 void Builtins::Generate_NotifyOSR(MacroAssembler* masm) {
    550   // TODO(kasperl): Do we need to save/restore the XMM registers too?
    551 
    552   // For now, we are relying on the fact that Runtime::NotifyOSR
    553   // doesn't do any garbage collection which allows us to save/restore
    554   // the registers without worrying about which of them contain
    555   // pointers. This seems a bit fragile.
    556   __ pushad();
    557   __ EnterInternalFrame();
    558   __ CallRuntime(Runtime::kNotifyOSR, 0);
    559   __ LeaveInternalFrame();
    560   __ popad();
    561   __ ret(0);
    562 }
    563 
    564 
    565 void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
    566   Factory* factory = masm->isolate()->factory();
    567 
    568   // 1. Make sure we have at least one argument.
    569   { Label done;
    570     __ test(eax, Operand(eax));
    571     __ j(not_zero, &done, taken);
    572     __ pop(ebx);
    573     __ push(Immediate(factory->undefined_value()));
    574     __ push(ebx);
    575     __ inc(eax);
    576     __ bind(&done);
    577   }
    578 
    579   // 2. Get the function to call (passed as receiver) from the stack, check
    580   //    if it is a function.
    581   Label non_function;
    582   // 1 ~ return address.
    583   __ mov(edi, Operand(esp, eax, times_4, 1 * kPointerSize));
    584   __ test(edi, Immediate(kSmiTagMask));
    585   __ j(zero, &non_function, not_taken);
    586   __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
    587   __ j(not_equal, &non_function, not_taken);
    588 
    589 
    590   // 3a. Patch the first argument if necessary when calling a function.
    591   Label shift_arguments;
    592   { Label convert_to_object, use_global_receiver, patch_receiver;
    593     // Change context eagerly in case we need the global receiver.
    594     __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
    595 
    596     // Do not transform the receiver for strict mode functions.
    597     __ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
    598     __ test_b(FieldOperand(ebx, SharedFunctionInfo::kStrictModeByteOffset),
    599               1 << SharedFunctionInfo::kStrictModeBitWithinByte);
    600     __ j(not_equal, &shift_arguments);
    601 
    602     // Compute the receiver in non-strict mode.
    603     __ mov(ebx, Operand(esp, eax, times_4, 0));  // First argument.
    604     __ test(ebx, Immediate(kSmiTagMask));
    605     __ j(zero, &convert_to_object);
    606 
    607     __ cmp(ebx, factory->null_value());
    608     __ j(equal, &use_global_receiver);
    609     __ cmp(ebx, factory->undefined_value());
    610     __ j(equal, &use_global_receiver);
    611 
    612     // We don't use IsObjectJSObjectType here because we jump on success.
    613     __ mov(ecx, FieldOperand(ebx, HeapObject::kMapOffset));
    614     __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
    615     __ sub(Operand(ecx), Immediate(FIRST_JS_OBJECT_TYPE));
    616     __ cmp(ecx, LAST_JS_OBJECT_TYPE - FIRST_JS_OBJECT_TYPE);
    617     __ j(below_equal, &shift_arguments);
    618 
    619     __ bind(&convert_to_object);
    620     __ EnterInternalFrame();  // In order to preserve argument count.
    621     __ SmiTag(eax);
    622     __ push(eax);
    623 
    624     __ push(ebx);
    625     __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
    626     __ mov(ebx, eax);
    627 
    628     __ pop(eax);
    629     __ SmiUntag(eax);
    630     __ LeaveInternalFrame();
    631     // Restore the function to edi.
    632     __ mov(edi, Operand(esp, eax, times_4, 1 * kPointerSize));
    633     __ jmp(&patch_receiver);
    634 
    635     // Use the global receiver object from the called function as the
    636     // receiver.
    637     __ bind(&use_global_receiver);
    638     const int kGlobalIndex =
    639         Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
    640     __ mov(ebx, FieldOperand(esi, kGlobalIndex));
    641     __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalContextOffset));
    642     __ mov(ebx, FieldOperand(ebx, kGlobalIndex));
    643     __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset));
    644 
    645     __ bind(&patch_receiver);
    646     __ mov(Operand(esp, eax, times_4, 0), ebx);
    647 
    648     __ jmp(&shift_arguments);
    649   }
    650 
    651   // 3b. Patch the first argument when calling a non-function.  The
    652   //     CALL_NON_FUNCTION builtin expects the non-function callee as
    653   //     receiver, so overwrite the first argument which will ultimately
    654   //     become the receiver.
    655   __ bind(&non_function);
    656   __ mov(Operand(esp, eax, times_4, 0), edi);
    657   // Clear edi to indicate a non-function being called.
    658   __ Set(edi, Immediate(0));
    659 
    660   // 4. Shift arguments and return address one slot down on the stack
    661   //    (overwriting the original receiver).  Adjust argument count to make
    662   //    the original first argument the new receiver.
    663   __ bind(&shift_arguments);
    664   { Label loop;
    665     __ mov(ecx, eax);
    666     __ bind(&loop);
    667     __ mov(ebx, Operand(esp, ecx, times_4, 0));
    668     __ mov(Operand(esp, ecx, times_4, kPointerSize), ebx);
    669     __ dec(ecx);
    670     __ j(not_sign, &loop);  // While non-negative (to copy return address).
    671     __ pop(ebx);  // Discard copy of return address.
    672     __ dec(eax);  // One fewer argument (first argument is new receiver).
    673   }
    674 
    675   // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin.
    676   { Label function;
    677     __ test(edi, Operand(edi));
    678     __ j(not_zero, &function, taken);
    679     __ Set(ebx, Immediate(0));
    680     __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
    681     __ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
    682            RelocInfo::CODE_TARGET);
    683     __ bind(&function);
    684   }
    685 
    686   // 5b. Get the code to call from the function and check that the number of
    687   //     expected arguments matches what we're providing.  If so, jump
    688   //     (tail-call) to the code in register edx without checking arguments.
    689   __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
    690   __ mov(ebx,
    691          FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
    692   __ mov(edx, FieldOperand(edi, JSFunction::kCodeEntryOffset));
    693   __ SmiUntag(ebx);
    694   __ cmp(eax, Operand(ebx));
    695   __ j(not_equal,
    696        masm->isolate()->builtins()->ArgumentsAdaptorTrampoline());
    697 
    698   ParameterCount expected(0);
    699   __ InvokeCode(Operand(edx), expected, expected, JUMP_FUNCTION);
    700 }
    701 
    702 
    703 void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
    704   __ EnterInternalFrame();
    705 
    706   __ push(Operand(ebp, 4 * kPointerSize));  // push this
    707   __ push(Operand(ebp, 2 * kPointerSize));  // push arguments
    708   __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
    709 
    710   // Check the stack for overflow. We are not trying need to catch
    711   // interruptions (e.g. debug break and preemption) here, so the "real stack
    712   // limit" is checked.
    713   Label okay;
    714   ExternalReference real_stack_limit =
    715       ExternalReference::address_of_real_stack_limit(masm->isolate());
    716   __ mov(edi, Operand::StaticVariable(real_stack_limit));
    717   // Make ecx the space we have left. The stack might already be overflowed
    718   // here which will cause ecx to become negative.
    719   __ mov(ecx, Operand(esp));
    720   __ sub(ecx, Operand(edi));
    721   // Make edx the space we need for the array when it is unrolled onto the
    722   // stack.
    723   __ mov(edx, Operand(eax));
    724   __ shl(edx, kPointerSizeLog2 - kSmiTagSize);
    725   // Check if the arguments will overflow the stack.
    726   __ cmp(ecx, Operand(edx));
    727   __ j(greater, &okay, taken);  // Signed comparison.
    728 
    729   // Out of stack space.
    730   __ push(Operand(ebp, 4 * kPointerSize));  // push this
    731   __ push(eax);
    732   __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION);
    733   __ bind(&okay);
    734   // End of stack check.
    735 
    736   // Push current index and limit.
    737   const int kLimitOffset =
    738       StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize;
    739   const int kIndexOffset = kLimitOffset - 1 * kPointerSize;
    740   __ push(eax);  // limit
    741   __ push(Immediate(0));  // index
    742 
    743   // Change context eagerly to get the right global object if
    744   // necessary.
    745   __ mov(edi, Operand(ebp, 4 * kPointerSize));
    746   __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
    747 
    748   // Compute the receiver.
    749   Label call_to_object, use_global_receiver, push_receiver;
    750   __ mov(ebx, Operand(ebp, 3 * kPointerSize));
    751 
    752   // Do not transform the receiver for strict mode functions.
    753   __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
    754   __ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrictModeByteOffset),
    755             1 << SharedFunctionInfo::kStrictModeBitWithinByte);
    756   __ j(not_equal, &push_receiver);
    757 
    758   // Compute the receiver in non-strict mode.
    759   __ test(ebx, Immediate(kSmiTagMask));
    760   __ j(zero, &call_to_object);
    761   Factory* factory = masm->isolate()->factory();
    762   __ cmp(ebx, factory->null_value());
    763   __ j(equal, &use_global_receiver);
    764   __ cmp(ebx, factory->undefined_value());
    765   __ j(equal, &use_global_receiver);
    766 
    767   // If given receiver is already a JavaScript object then there's no
    768   // reason for converting it.
    769   // We don't use IsObjectJSObjectType here because we jump on success.
    770   __ mov(ecx, FieldOperand(ebx, HeapObject::kMapOffset));
    771   __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
    772   __ sub(Operand(ecx), Immediate(FIRST_JS_OBJECT_TYPE));
    773   __ cmp(ecx, LAST_JS_OBJECT_TYPE - FIRST_JS_OBJECT_TYPE);
    774   __ j(below_equal, &push_receiver);
    775 
    776   // Convert the receiver to an object.
    777   __ bind(&call_to_object);
    778   __ push(ebx);
    779   __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
    780   __ mov(ebx, Operand(eax));
    781   __ jmp(&push_receiver);
    782 
    783   // Use the current global receiver object as the receiver.
    784   __ bind(&use_global_receiver);
    785   const int kGlobalOffset =
    786       Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
    787   __ mov(ebx, FieldOperand(esi, kGlobalOffset));
    788   __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalContextOffset));
    789   __ mov(ebx, FieldOperand(ebx, kGlobalOffset));
    790   __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset));
    791 
    792   // Push the receiver.
    793   __ bind(&push_receiver);
    794   __ push(ebx);
    795 
    796   // Copy all arguments from the array to the stack.
    797   Label entry, loop;
    798   __ mov(eax, Operand(ebp, kIndexOffset));
    799   __ jmp(&entry);
    800   __ bind(&loop);
    801   __ mov(edx, Operand(ebp, 2 * kPointerSize));  // load arguments
    802 
    803   // Use inline caching to speed up access to arguments.
    804   Handle<Code> ic = masm->isolate()->builtins()->KeyedLoadIC_Initialize();
    805   __ call(ic, RelocInfo::CODE_TARGET);
    806   // It is important that we do not have a test instruction after the
    807   // call.  A test instruction after the call is used to indicate that
    808   // we have generated an inline version of the keyed load.  In this
    809   // case, we know that we are not generating a test instruction next.
    810 
    811   // Push the nth argument.
    812   __ push(eax);
    813 
    814   // Update the index on the stack and in register eax.
    815   __ mov(eax, Operand(ebp, kIndexOffset));
    816   __ add(Operand(eax), Immediate(1 << kSmiTagSize));
    817   __ mov(Operand(ebp, kIndexOffset), eax);
    818 
    819   __ bind(&entry);
    820   __ cmp(eax, Operand(ebp, kLimitOffset));
    821   __ j(not_equal, &loop);
    822 
    823   // Invoke the function.
    824   ParameterCount actual(eax);
    825   __ SmiUntag(eax);
    826   __ mov(edi, Operand(ebp, 4 * kPointerSize));
    827   __ InvokeFunction(edi, actual, CALL_FUNCTION);
    828 
    829   __ LeaveInternalFrame();
    830   __ ret(3 * kPointerSize);  // remove this, receiver, and arguments
    831 }
    832 
    833 
    834 // Number of empty elements to allocate for an empty array.
    835 static const int kPreallocatedArrayElements = 4;
    836 
    837 
    838 // Allocate an empty JSArray. The allocated array is put into the result
    839 // register. If the parameter initial_capacity is larger than zero an elements
    840 // backing store is allocated with this size and filled with the hole values.
    841 // Otherwise the elements backing store is set to the empty FixedArray.
    842 static void AllocateEmptyJSArray(MacroAssembler* masm,
    843                                  Register array_function,
    844                                  Register result,
    845                                  Register scratch1,
    846                                  Register scratch2,
    847                                  Register scratch3,
    848                                  int initial_capacity,
    849                                  Label* gc_required) {
    850   ASSERT(initial_capacity >= 0);
    851 
    852   // Load the initial map from the array function.
    853   __ mov(scratch1, FieldOperand(array_function,
    854                                 JSFunction::kPrototypeOrInitialMapOffset));
    855 
    856   // Allocate the JSArray object together with space for a fixed array with the
    857   // requested elements.
    858   int size = JSArray::kSize;
    859   if (initial_capacity > 0) {
    860     size += FixedArray::SizeFor(initial_capacity);
    861   }
    862   __ AllocateInNewSpace(size,
    863                         result,
    864                         scratch2,
    865                         scratch3,
    866                         gc_required,
    867                         TAG_OBJECT);
    868 
    869   // Allocated the JSArray. Now initialize the fields except for the elements
    870   // array.
    871   // result: JSObject
    872   // scratch1: initial map
    873   // scratch2: start of next object
    874   __ mov(FieldOperand(result, JSObject::kMapOffset), scratch1);
    875   Factory* factory = masm->isolate()->factory();
    876   __ mov(FieldOperand(result, JSArray::kPropertiesOffset),
    877          factory->empty_fixed_array());
    878   // Field JSArray::kElementsOffset is initialized later.
    879   __ mov(FieldOperand(result, JSArray::kLengthOffset), Immediate(0));
    880 
    881   // If no storage is requested for the elements array just set the empty
    882   // fixed array.
    883   if (initial_capacity == 0) {
    884     __ mov(FieldOperand(result, JSArray::kElementsOffset),
    885            factory->empty_fixed_array());
    886     return;
    887   }
    888 
    889   // Calculate the location of the elements array and set elements array member
    890   // of the JSArray.
    891   // result: JSObject
    892   // scratch2: start of next object
    893   __ lea(scratch1, Operand(result, JSArray::kSize));
    894   __ mov(FieldOperand(result, JSArray::kElementsOffset), scratch1);
    895 
    896   // Initialize the FixedArray and fill it with holes. FixedArray length is
    897   // stored as a smi.
    898   // result: JSObject
    899   // scratch1: elements array
    900   // scratch2: start of next object
    901   __ mov(FieldOperand(scratch1, FixedArray::kMapOffset),
    902          factory->fixed_array_map());
    903   __ mov(FieldOperand(scratch1, FixedArray::kLengthOffset),
    904          Immediate(Smi::FromInt(initial_capacity)));
    905 
    906   // Fill the FixedArray with the hole value. Inline the code if short.
    907   // Reconsider loop unfolding if kPreallocatedArrayElements gets changed.
    908   static const int kLoopUnfoldLimit = 4;
    909   ASSERT(kPreallocatedArrayElements <= kLoopUnfoldLimit);
    910   if (initial_capacity <= kLoopUnfoldLimit) {
    911     // Use a scratch register here to have only one reloc info when unfolding
    912     // the loop.
    913     __ mov(scratch3, factory->the_hole_value());
    914     for (int i = 0; i < initial_capacity; i++) {
    915       __ mov(FieldOperand(scratch1,
    916                           FixedArray::kHeaderSize + i * kPointerSize),
    917              scratch3);
    918     }
    919   } else {
    920     Label loop, entry;
    921     __ jmp(&entry);
    922     __ bind(&loop);
    923     __ mov(Operand(scratch1, 0), factory->the_hole_value());
    924     __ add(Operand(scratch1), Immediate(kPointerSize));
    925     __ bind(&entry);
    926     __ cmp(scratch1, Operand(scratch2));
    927     __ j(below, &loop);
    928   }
    929 }
    930 
    931 
    932 // Allocate a JSArray with the number of elements stored in a register. The
    933 // register array_function holds the built-in Array function and the register
    934 // array_size holds the size of the array as a smi. The allocated array is put
    935 // into the result register and beginning and end of the FixedArray elements
    936 // storage is put into registers elements_array and elements_array_end  (see
    937 // below for when that is not the case). If the parameter fill_with_holes is
    938 // true the allocated elements backing store is filled with the hole values
    939 // otherwise it is left uninitialized. When the backing store is filled the
    940 // register elements_array is scratched.
    941 static void AllocateJSArray(MacroAssembler* masm,
    942                             Register array_function,  // Array function.
    943                             Register array_size,  // As a smi, cannot be 0.
    944                             Register result,
    945                             Register elements_array,
    946                             Register elements_array_end,
    947                             Register scratch,
    948                             bool fill_with_hole,
    949                             Label* gc_required) {
    950   ASSERT(scratch.is(edi));  // rep stos destination
    951   ASSERT(!fill_with_hole || array_size.is(ecx));  // rep stos count
    952   ASSERT(!fill_with_hole || !result.is(eax));  // result is never eax
    953 
    954   // Load the initial map from the array function.
    955   __ mov(elements_array,
    956          FieldOperand(array_function,
    957                       JSFunction::kPrototypeOrInitialMapOffset));
    958 
    959   // Allocate the JSArray object together with space for a FixedArray with the
    960   // requested elements.
    961   ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
    962   __ AllocateInNewSpace(JSArray::kSize + FixedArray::kHeaderSize,
    963                         times_half_pointer_size,  // array_size is a smi.
    964                         array_size,
    965                         result,
    966                         elements_array_end,
    967                         scratch,
    968                         gc_required,
    969                         TAG_OBJECT);
    970 
    971   // Allocated the JSArray. Now initialize the fields except for the elements
    972   // array.
    973   // result: JSObject
    974   // elements_array: initial map
    975   // elements_array_end: start of next object
    976   // array_size: size of array (smi)
    977   __ mov(FieldOperand(result, JSObject::kMapOffset), elements_array);
    978   Factory* factory = masm->isolate()->factory();
    979   __ mov(elements_array, factory->empty_fixed_array());
    980   __ mov(FieldOperand(result, JSArray::kPropertiesOffset), elements_array);
    981   // Field JSArray::kElementsOffset is initialized later.
    982   __ mov(FieldOperand(result, JSArray::kLengthOffset), array_size);
    983 
    984   // Calculate the location of the elements array and set elements array member
    985   // of the JSArray.
    986   // result: JSObject
    987   // elements_array_end: start of next object
    988   // array_size: size of array (smi)
    989   __ lea(elements_array, Operand(result, JSArray::kSize));
    990   __ mov(FieldOperand(result, JSArray::kElementsOffset), elements_array);
    991 
    992   // Initialize the fixed array. FixedArray length is stored as a smi.
    993   // result: JSObject
    994   // elements_array: elements array
    995   // elements_array_end: start of next object
    996   // array_size: size of array (smi)
    997   __ mov(FieldOperand(elements_array, FixedArray::kMapOffset),
    998          factory->fixed_array_map());
    999   // For non-empty JSArrays the length of the FixedArray and the JSArray is the
   1000   // same.
   1001   __ mov(FieldOperand(elements_array, FixedArray::kLengthOffset), array_size);
   1002 
   1003   // Fill the allocated FixedArray with the hole value if requested.
   1004   // result: JSObject
   1005   // elements_array: elements array
   1006   if (fill_with_hole) {
   1007     __ SmiUntag(array_size);
   1008     __ lea(edi, Operand(elements_array,
   1009                         FixedArray::kHeaderSize - kHeapObjectTag));
   1010     __ mov(eax, factory->the_hole_value());
   1011     __ cld();
   1012     // Do not use rep stos when filling less than kRepStosThreshold
   1013     // words.
   1014     const int kRepStosThreshold = 16;
   1015     Label loop, entry, done;
   1016     __ cmp(ecx, kRepStosThreshold);
   1017     __ j(below, &loop);  // Note: ecx > 0.
   1018     __ rep_stos();
   1019     __ jmp(&done);
   1020     __ bind(&loop);
   1021     __ stos();
   1022     __ bind(&entry);
   1023     __ cmp(edi, Operand(elements_array_end));
   1024     __ j(below, &loop);
   1025     __ bind(&done);
   1026   }
   1027 }
   1028 
   1029 
   1030 // Create a new array for the built-in Array function. This function allocates
   1031 // the JSArray object and the FixedArray elements array and initializes these.
   1032 // If the Array cannot be constructed in native code the runtime is called. This
   1033 // function assumes the following state:
   1034 //   edi: constructor (built-in Array function)
   1035 //   eax: argc
   1036 //   esp[0]: return address
   1037 //   esp[4]: last argument
   1038 // This function is used for both construct and normal calls of Array. Whether
   1039 // it is a construct call or not is indicated by the construct_call parameter.
   1040 // The only difference between handling a construct call and a normal call is
   1041 // that for a construct call the constructor function in edi needs to be
   1042 // preserved for entering the generic code. In both cases argc in eax needs to
   1043 // be preserved.
   1044 static void ArrayNativeCode(MacroAssembler* masm,
   1045                             bool construct_call,
   1046                             Label* call_generic_code) {
   1047   Label argc_one_or_more, argc_two_or_more, prepare_generic_code_call,
   1048         empty_array, not_empty_array;
   1049 
   1050   // Push the constructor and argc. No need to tag argc as a smi, as there will
   1051   // be no garbage collection with this on the stack.
   1052   int push_count = 0;
   1053   if (construct_call) {
   1054     push_count++;
   1055     __ push(edi);
   1056   }
   1057   push_count++;
   1058   __ push(eax);
   1059 
   1060   // Check for array construction with zero arguments.
   1061   __ test(eax, Operand(eax));
   1062   __ j(not_zero, &argc_one_or_more);
   1063 
   1064   __ bind(&empty_array);
   1065   // Handle construction of an empty array.
   1066   AllocateEmptyJSArray(masm,
   1067                        edi,
   1068                        eax,
   1069                        ebx,
   1070                        ecx,
   1071                        edi,
   1072                        kPreallocatedArrayElements,
   1073                        &prepare_generic_code_call);
   1074   __ IncrementCounter(masm->isolate()->counters()->array_function_native(), 1);
   1075   __ pop(ebx);
   1076   if (construct_call) {
   1077     __ pop(edi);
   1078   }
   1079   __ ret(kPointerSize);
   1080 
   1081   // Check for one argument. Bail out if argument is not smi or if it is
   1082   // negative.
   1083   __ bind(&argc_one_or_more);
   1084   __ cmp(eax, 1);
   1085   __ j(not_equal, &argc_two_or_more);
   1086   ASSERT(kSmiTag == 0);
   1087   __ mov(ecx, Operand(esp, (push_count + 1) * kPointerSize));
   1088   __ test(ecx, Operand(ecx));
   1089   __ j(not_zero, &not_empty_array);
   1090 
   1091   // The single argument passed is zero, so we jump to the code above used to
   1092   // handle the case of no arguments passed. To adapt the stack for that we move
   1093   // the return address and the pushed constructor (if pushed) one stack slot up
   1094   // thereby removing the passed argument. Argc is also on the stack - at the
   1095   // bottom - and it needs to be changed from 1 to 0 to have the call into the
   1096   // runtime system work in case a GC is required.
   1097   for (int i = push_count; i > 0; i--) {
   1098     __ mov(eax, Operand(esp, i * kPointerSize));
   1099     __ mov(Operand(esp, (i + 1) * kPointerSize), eax);
   1100   }
   1101   __ add(Operand(esp), Immediate(2 * kPointerSize));  // Drop two stack slots.
   1102   __ push(Immediate(0));  // Treat this as a call with argc of zero.
   1103   __ jmp(&empty_array);
   1104 
   1105   __ bind(&not_empty_array);
   1106   __ test(ecx, Immediate(kIntptrSignBit | kSmiTagMask));
   1107   __ j(not_zero, &prepare_generic_code_call);
   1108 
   1109   // Handle construction of an empty array of a certain size. Get the size from
   1110   // the stack and bail out if size is to large to actually allocate an elements
   1111   // array.
   1112   __ cmp(ecx, JSObject::kInitialMaxFastElementArray << kSmiTagSize);
   1113   __ j(greater_equal, &prepare_generic_code_call);
   1114 
   1115   // edx: array_size (smi)
   1116   // edi: constructor
   1117   // esp[0]: argc (cannot be 0 here)
   1118   // esp[4]: constructor (only if construct_call)
   1119   // esp[8]: return address
   1120   // esp[C]: argument
   1121   AllocateJSArray(masm,
   1122                   edi,
   1123                   ecx,
   1124                   ebx,
   1125                   eax,
   1126                   edx,
   1127                   edi,
   1128                   true,
   1129                   &prepare_generic_code_call);
   1130   Counters* counters = masm->isolate()->counters();
   1131   __ IncrementCounter(counters->array_function_native(), 1);
   1132   __ mov(eax, ebx);
   1133   __ pop(ebx);
   1134   if (construct_call) {
   1135     __ pop(edi);
   1136   }
   1137   __ ret(2 * kPointerSize);
   1138 
   1139   // Handle construction of an array from a list of arguments.
   1140   __ bind(&argc_two_or_more);
   1141   ASSERT(kSmiTag == 0);
   1142   __ SmiTag(eax);  // Convet argc to a smi.
   1143   // eax: array_size (smi)
   1144   // edi: constructor
   1145   // esp[0] : argc
   1146   // esp[4]: constructor (only if construct_call)
   1147   // esp[8] : return address
   1148   // esp[C] : last argument
   1149   AllocateJSArray(masm,
   1150                   edi,
   1151                   eax,
   1152                   ebx,
   1153                   ecx,
   1154                   edx,
   1155                   edi,
   1156                   false,
   1157                   &prepare_generic_code_call);
   1158   __ IncrementCounter(counters->array_function_native(), 1);
   1159   __ mov(eax, ebx);
   1160   __ pop(ebx);
   1161   if (construct_call) {
   1162     __ pop(edi);
   1163   }
   1164   __ push(eax);
   1165   // eax: JSArray
   1166   // ebx: argc
   1167   // edx: elements_array_end (untagged)
   1168   // esp[0]: JSArray
   1169   // esp[4]: return address
   1170   // esp[8]: last argument
   1171 
   1172   // Location of the last argument
   1173   __ lea(edi, Operand(esp, 2 * kPointerSize));
   1174 
   1175   // Location of the first array element (Parameter fill_with_holes to
   1176   // AllocateJSArrayis false, so the FixedArray is returned in ecx).
   1177   __ lea(edx, Operand(ecx, FixedArray::kHeaderSize - kHeapObjectTag));
   1178 
   1179   // ebx: argc
   1180   // edx: location of the first array element
   1181   // edi: location of the last argument
   1182   // esp[0]: JSArray
   1183   // esp[4]: return address
   1184   // esp[8]: last argument
   1185   Label loop, entry;
   1186   __ mov(ecx, ebx);
   1187   __ jmp(&entry);
   1188   __ bind(&loop);
   1189   __ mov(eax, Operand(edi, ecx, times_pointer_size, 0));
   1190   __ mov(Operand(edx, 0), eax);
   1191   __ add(Operand(edx), Immediate(kPointerSize));
   1192   __ bind(&entry);
   1193   __ dec(ecx);
   1194   __ j(greater_equal, &loop);
   1195 
   1196   // Remove caller arguments from the stack and return.
   1197   // ebx: argc
   1198   // esp[0]: JSArray
   1199   // esp[4]: return address
   1200   // esp[8]: last argument
   1201   __ pop(eax);
   1202   __ pop(ecx);
   1203   __ lea(esp, Operand(esp, ebx, times_pointer_size, 1 * kPointerSize));
   1204   __ push(ecx);
   1205   __ ret(0);
   1206 
   1207   // Restore argc and constructor before running the generic code.
   1208   __ bind(&prepare_generic_code_call);
   1209   __ pop(eax);
   1210   if (construct_call) {
   1211     __ pop(edi);
   1212   }
   1213   __ jmp(call_generic_code);
   1214 }
   1215 
   1216 
   1217 void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
   1218   // ----------- S t a t e -------------
   1219   //  -- eax : argc
   1220   //  -- esp[0] : return address
   1221   //  -- esp[4] : last argument
   1222   // -----------------------------------
   1223   Label generic_array_code;
   1224 
   1225   // Get the Array function.
   1226   __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, edi);
   1227 
   1228   if (FLAG_debug_code) {
   1229     // Initial map for the builtin Array function shoud be a map.
   1230     __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
   1231     // Will both indicate a NULL and a Smi.
   1232     __ test(ebx, Immediate(kSmiTagMask));
   1233     __ Assert(not_zero, "Unexpected initial map for Array function");
   1234     __ CmpObjectType(ebx, MAP_TYPE, ecx);
   1235     __ Assert(equal, "Unexpected initial map for Array function");
   1236   }
   1237 
   1238   // Run the native code for the Array function called as a normal function.
   1239   ArrayNativeCode(masm, false, &generic_array_code);
   1240 
   1241   // Jump to the generic array code in case the specialized code cannot handle
   1242   // the construction.
   1243   __ bind(&generic_array_code);
   1244   Handle<Code> array_code =
   1245       masm->isolate()->builtins()->ArrayCodeGeneric();
   1246   __ jmp(array_code, RelocInfo::CODE_TARGET);
   1247 }
   1248 
   1249 
   1250 void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) {
   1251   // ----------- S t a t e -------------
   1252   //  -- eax : argc
   1253   //  -- edi : constructor
   1254   //  -- esp[0] : return address
   1255   //  -- esp[4] : last argument
   1256   // -----------------------------------
   1257   Label generic_constructor;
   1258 
   1259   if (FLAG_debug_code) {
   1260     // The array construct code is only set for the global and natives
   1261     // builtin Array functions which always have maps.
   1262 
   1263     // Initial map for the builtin Array function should be a map.
   1264     __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
   1265     // Will both indicate a NULL and a Smi.
   1266     __ test(ebx, Immediate(kSmiTagMask));
   1267     __ Assert(not_zero, "Unexpected initial map for Array function");
   1268     __ CmpObjectType(ebx, MAP_TYPE, ecx);
   1269     __ Assert(equal, "Unexpected initial map for Array function");
   1270   }
   1271 
   1272   // Run the native code for the Array function called as constructor.
   1273   ArrayNativeCode(masm, true, &generic_constructor);
   1274 
   1275   // Jump to the generic construct code in case the specialized code cannot
   1276   // handle the construction.
   1277   __ bind(&generic_constructor);
   1278   Handle<Code> generic_construct_stub =
   1279       masm->isolate()->builtins()->JSConstructStubGeneric();
   1280   __ jmp(generic_construct_stub, RelocInfo::CODE_TARGET);
   1281 }
   1282 
   1283 
   1284 void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
   1285   // ----------- S t a t e -------------
   1286   //  -- eax                 : number of arguments
   1287   //  -- edi                 : constructor function
   1288   //  -- esp[0]              : return address
   1289   //  -- esp[(argc - n) * 4] : arg[n] (zero-based)
   1290   //  -- esp[(argc + 1) * 4] : receiver
   1291   // -----------------------------------
   1292   Counters* counters = masm->isolate()->counters();
   1293   __ IncrementCounter(counters->string_ctor_calls(), 1);
   1294 
   1295   if (FLAG_debug_code) {
   1296     __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, ecx);
   1297     __ cmp(edi, Operand(ecx));
   1298     __ Assert(equal, "Unexpected String function");
   1299   }
   1300 
   1301   // Load the first argument into eax and get rid of the rest
   1302   // (including the receiver).
   1303   Label no_arguments;
   1304   __ test(eax, Operand(eax));
   1305   __ j(zero, &no_arguments);
   1306   __ mov(ebx, Operand(esp, eax, times_pointer_size, 0));
   1307   __ pop(ecx);
   1308   __ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize));
   1309   __ push(ecx);
   1310   __ mov(eax, ebx);
   1311 
   1312   // Lookup the argument in the number to string cache.
   1313   Label not_cached, argument_is_string;
   1314   NumberToStringStub::GenerateLookupNumberStringCache(
   1315       masm,
   1316       eax,  // Input.
   1317       ebx,  // Result.
   1318       ecx,  // Scratch 1.
   1319       edx,  // Scratch 2.
   1320       false,  // Input is known to be smi?
   1321       &not_cached);
   1322   __ IncrementCounter(counters->string_ctor_cached_number(), 1);
   1323   __ bind(&argument_is_string);
   1324   // ----------- S t a t e -------------
   1325   //  -- ebx    : argument converted to string
   1326   //  -- edi    : constructor function
   1327   //  -- esp[0] : return address
   1328   // -----------------------------------
   1329 
   1330   // Allocate a JSValue and put the tagged pointer into eax.
   1331   Label gc_required;
   1332   __ AllocateInNewSpace(JSValue::kSize,
   1333                         eax,  // Result.
   1334                         ecx,  // New allocation top (we ignore it).
   1335                         no_reg,
   1336                         &gc_required,
   1337                         TAG_OBJECT);
   1338 
   1339   // Set the map.
   1340   __ LoadGlobalFunctionInitialMap(edi, ecx);
   1341   if (FLAG_debug_code) {
   1342     __ cmpb(FieldOperand(ecx, Map::kInstanceSizeOffset),
   1343             JSValue::kSize >> kPointerSizeLog2);
   1344     __ Assert(equal, "Unexpected string wrapper instance size");
   1345     __ cmpb(FieldOperand(ecx, Map::kUnusedPropertyFieldsOffset), 0);
   1346     __ Assert(equal, "Unexpected unused properties of string wrapper");
   1347   }
   1348   __ mov(FieldOperand(eax, HeapObject::kMapOffset), ecx);
   1349 
   1350   // Set properties and elements.
   1351   Factory* factory = masm->isolate()->factory();
   1352   __ Set(ecx, Immediate(factory->empty_fixed_array()));
   1353   __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ecx);
   1354   __ mov(FieldOperand(eax, JSObject::kElementsOffset), ecx);
   1355 
   1356   // Set the value.
   1357   __ mov(FieldOperand(eax, JSValue::kValueOffset), ebx);
   1358 
   1359   // Ensure the object is fully initialized.
   1360   STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
   1361 
   1362   // We're done. Return.
   1363   __ ret(0);
   1364 
   1365   // The argument was not found in the number to string cache. Check
   1366   // if it's a string already before calling the conversion builtin.
   1367   Label convert_argument;
   1368   __ bind(&not_cached);
   1369   STATIC_ASSERT(kSmiTag == 0);
   1370   __ test(eax, Immediate(kSmiTagMask));
   1371   __ j(zero, &convert_argument);
   1372   Condition is_string = masm->IsObjectStringType(eax, ebx, ecx);
   1373   __ j(NegateCondition(is_string), &convert_argument);
   1374   __ mov(ebx, eax);
   1375   __ IncrementCounter(counters->string_ctor_string_value(), 1);
   1376   __ jmp(&argument_is_string);
   1377 
   1378   // Invoke the conversion builtin and put the result into ebx.
   1379   __ bind(&convert_argument);
   1380   __ IncrementCounter(counters->string_ctor_conversions(), 1);
   1381   __ EnterInternalFrame();
   1382   __ push(edi);  // Preserve the function.
   1383   __ push(eax);
   1384   __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
   1385   __ pop(edi);
   1386   __ LeaveInternalFrame();
   1387   __ mov(ebx, eax);
   1388   __ jmp(&argument_is_string);
   1389 
   1390   // Load the empty string into ebx, remove the receiver from the
   1391   // stack, and jump back to the case where the argument is a string.
   1392   __ bind(&no_arguments);
   1393   __ Set(ebx, Immediate(factory->empty_string()));
   1394   __ pop(ecx);
   1395   __ lea(esp, Operand(esp, kPointerSize));
   1396   __ push(ecx);
   1397   __ jmp(&argument_is_string);
   1398 
   1399   // At this point the argument is already a string. Call runtime to
   1400   // create a string wrapper.
   1401   __ bind(&gc_required);
   1402   __ IncrementCounter(counters->string_ctor_gc_required(), 1);
   1403   __ EnterInternalFrame();
   1404   __ push(ebx);
   1405   __ CallRuntime(Runtime::kNewStringWrapper, 1);
   1406   __ LeaveInternalFrame();
   1407   __ ret(0);
   1408 }
   1409 
   1410 
   1411 static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
   1412   __ push(ebp);
   1413   __ mov(ebp, Operand(esp));
   1414 
   1415   // Store the arguments adaptor context sentinel.
   1416   __ push(Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
   1417 
   1418   // Push the function on the stack.
   1419   __ push(edi);
   1420 
   1421   // Preserve the number of arguments on the stack. Must preserve both
   1422   // eax and ebx because these registers are used when copying the
   1423   // arguments and the receiver.
   1424   ASSERT(kSmiTagSize == 1);
   1425   __ lea(ecx, Operand(eax, eax, times_1, kSmiTag));
   1426   __ push(ecx);
   1427 }
   1428 
   1429 
   1430 static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
   1431   // Retrieve the number of arguments from the stack.
   1432   __ mov(ebx, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset));
   1433 
   1434   // Leave the frame.
   1435   __ leave();
   1436 
   1437   // Remove caller arguments from the stack.
   1438   ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
   1439   __ pop(ecx);
   1440   __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize));  // 1 ~ receiver
   1441   __ push(ecx);
   1442 }
   1443 
   1444 
   1445 void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
   1446   // ----------- S t a t e -------------
   1447   //  -- eax : actual number of arguments
   1448   //  -- ebx : expected number of arguments
   1449   //  -- edx : code entry to call
   1450   // -----------------------------------
   1451 
   1452   Label invoke, dont_adapt_arguments;
   1453   __ IncrementCounter(masm->isolate()->counters()->arguments_adaptors(), 1);
   1454 
   1455   Label enough, too_few;
   1456   __ cmp(eax, Operand(ebx));
   1457   __ j(less, &too_few);
   1458   __ cmp(ebx, SharedFunctionInfo::kDontAdaptArgumentsSentinel);
   1459   __ j(equal, &dont_adapt_arguments);
   1460 
   1461   {  // Enough parameters: Actual >= expected.
   1462     __ bind(&enough);
   1463     EnterArgumentsAdaptorFrame(masm);
   1464 
   1465     // Copy receiver and all expected arguments.
   1466     const int offset = StandardFrameConstants::kCallerSPOffset;
   1467     __ lea(eax, Operand(ebp, eax, times_4, offset));
   1468     __ mov(ecx, -1);  // account for receiver
   1469 
   1470     Label copy;
   1471     __ bind(&copy);
   1472     __ inc(ecx);
   1473     __ push(Operand(eax, 0));
   1474     __ sub(Operand(eax), Immediate(kPointerSize));
   1475     __ cmp(ecx, Operand(ebx));
   1476     __ j(less, &copy);
   1477     __ jmp(&invoke);
   1478   }
   1479 
   1480   {  // Too few parameters: Actual < expected.
   1481     __ bind(&too_few);
   1482     EnterArgumentsAdaptorFrame(masm);
   1483 
   1484     // Copy receiver and all actual arguments.
   1485     const int offset = StandardFrameConstants::kCallerSPOffset;
   1486     __ lea(edi, Operand(ebp, eax, times_4, offset));
   1487     __ mov(ecx, -1);  // account for receiver
   1488 
   1489     Label copy;
   1490     __ bind(&copy);
   1491     __ inc(ecx);
   1492     __ push(Operand(edi, 0));
   1493     __ sub(Operand(edi), Immediate(kPointerSize));
   1494     __ cmp(ecx, Operand(eax));
   1495     __ j(less, &copy);
   1496 
   1497     // Fill remaining expected arguments with undefined values.
   1498     Label fill;
   1499     __ bind(&fill);
   1500     __ inc(ecx);
   1501     __ push(Immediate(masm->isolate()->factory()->undefined_value()));
   1502     __ cmp(ecx, Operand(ebx));
   1503     __ j(less, &fill);
   1504 
   1505     // Restore function pointer.
   1506     __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
   1507   }
   1508 
   1509   // Call the entry point.
   1510   __ bind(&invoke);
   1511   __ call(Operand(edx));
   1512 
   1513   // Leave frame and return.
   1514   LeaveArgumentsAdaptorFrame(masm);
   1515   __ ret(0);
   1516 
   1517   // -------------------------------------------
   1518   // Dont adapt arguments.
   1519   // -------------------------------------------
   1520   __ bind(&dont_adapt_arguments);
   1521   __ jmp(Operand(edx));
   1522 }
   1523 
   1524 
   1525 void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
   1526   CpuFeatures::TryForceFeatureScope scope(SSE2);
   1527   if (!CpuFeatures::IsSupported(SSE2)) {
   1528     __ Abort("Unreachable code: Cannot optimize without SSE2 support.");
   1529     return;
   1530   }
   1531 
   1532   // Get the loop depth of the stack guard check. This is recorded in
   1533   // a test(eax, depth) instruction right after the call.
   1534   Label stack_check;
   1535   __ mov(ebx, Operand(esp, 0));  // return address
   1536   if (FLAG_debug_code) {
   1537     __ cmpb(Operand(ebx, 0), Assembler::kTestAlByte);
   1538     __ Assert(equal, "test eax instruction not found after loop stack check");
   1539   }
   1540   __ movzx_b(ebx, Operand(ebx, 1));  // depth
   1541 
   1542   // Get the loop nesting level at which we allow OSR from the
   1543   // unoptimized code and check if we want to do OSR yet. If not we
   1544   // should perform a stack guard check so we can get interrupts while
   1545   // waiting for on-stack replacement.
   1546   __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
   1547   __ mov(ecx, FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset));
   1548   __ mov(ecx, FieldOperand(ecx, SharedFunctionInfo::kCodeOffset));
   1549   __ cmpb(ebx, FieldOperand(ecx, Code::kAllowOSRAtLoopNestingLevelOffset));
   1550   __ j(greater, &stack_check);
   1551 
   1552   // Pass the function to optimize as the argument to the on-stack
   1553   // replacement runtime function.
   1554   __ EnterInternalFrame();
   1555   __ push(eax);
   1556   __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1);
   1557   __ LeaveInternalFrame();
   1558 
   1559   // If the result was -1 it means that we couldn't optimize the
   1560   // function. Just return and continue in the unoptimized version.
   1561   NearLabel skip;
   1562   __ cmp(Operand(eax), Immediate(Smi::FromInt(-1)));
   1563   __ j(not_equal, &skip);
   1564   __ ret(0);
   1565 
   1566   // If we decide not to perform on-stack replacement we perform a
   1567   // stack guard check to enable interrupts.
   1568   __ bind(&stack_check);
   1569   NearLabel ok;
   1570   ExternalReference stack_limit =
   1571       ExternalReference::address_of_stack_limit(masm->isolate());
   1572   __ cmp(esp, Operand::StaticVariable(stack_limit));
   1573   __ j(above_equal, &ok, taken);
   1574   StackCheckStub stub;
   1575   __ TailCallStub(&stub);
   1576   __ Abort("Unreachable code: returned from tail call.");
   1577   __ bind(&ok);
   1578   __ ret(0);
   1579 
   1580   __ bind(&skip);
   1581   // Untag the AST id and push it on the stack.
   1582   __ SmiUntag(eax);
   1583   __ push(eax);
   1584 
   1585   // Generate the code for doing the frame-to-frame translation using
   1586   // the deoptimizer infrastructure.
   1587   Deoptimizer::EntryGenerator generator(masm, Deoptimizer::OSR);
   1588   generator.Generate();
   1589 }
   1590 
   1591 
   1592 #undef __
   1593 }
   1594 }  // namespace v8::internal
   1595 
   1596 #endif  // V8_TARGET_ARCH_IA32
   1597