Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the SelectionDAGISel class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "isel"
     15 #include "ScheduleDAGSDNodes.h"
     16 #include "SelectionDAGBuilder.h"
     17 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     18 #include "llvm/CodeGen/SelectionDAGISel.h"
     19 #include "llvm/Analysis/AliasAnalysis.h"
     20 #include "llvm/Analysis/BranchProbabilityInfo.h"
     21 #include "llvm/Analysis/DebugInfo.h"
     22 #include "llvm/Constants.h"
     23 #include "llvm/Function.h"
     24 #include "llvm/InlineAsm.h"
     25 #include "llvm/Instructions.h"
     26 #include "llvm/Intrinsics.h"
     27 #include "llvm/IntrinsicInst.h"
     28 #include "llvm/LLVMContext.h"
     29 #include "llvm/Module.h"
     30 #include "llvm/CodeGen/FastISel.h"
     31 #include "llvm/CodeGen/GCStrategy.h"
     32 #include "llvm/CodeGen/GCMetadata.h"
     33 #include "llvm/CodeGen/MachineFrameInfo.h"
     34 #include "llvm/CodeGen/MachineFunction.h"
     35 #include "llvm/CodeGen/MachineInstrBuilder.h"
     36 #include "llvm/CodeGen/MachineModuleInfo.h"
     37 #include "llvm/CodeGen/MachineRegisterInfo.h"
     38 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
     39 #include "llvm/CodeGen/SchedulerRegistry.h"
     40 #include "llvm/CodeGen/SelectionDAG.h"
     41 #include "llvm/Target/TargetRegisterInfo.h"
     42 #include "llvm/Target/TargetIntrinsicInfo.h"
     43 #include "llvm/Target/TargetInstrInfo.h"
     44 #include "llvm/Target/TargetLibraryInfo.h"
     45 #include "llvm/Target/TargetLowering.h"
     46 #include "llvm/Target/TargetMachine.h"
     47 #include "llvm/Target/TargetOptions.h"
     48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     49 #include "llvm/Support/Compiler.h"
     50 #include "llvm/Support/Debug.h"
     51 #include "llvm/Support/ErrorHandling.h"
     52 #include "llvm/Support/Timer.h"
     53 #include "llvm/Support/raw_ostream.h"
     54 #include "llvm/ADT/PostOrderIterator.h"
     55 #include "llvm/ADT/Statistic.h"
     56 #include <algorithm>
     57 using namespace llvm;
     58 
     59 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
     60 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
     61 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
     62 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
     63 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
     64 
     65 #ifndef NDEBUG
     66 static cl::opt<bool>
     67 EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
     68           cl::desc("Enable extra verbose messages in the \"fast\" "
     69                    "instruction selector"));
     70   // Terminators
     71 STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
     72 STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
     73 STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
     74 STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
     75 STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
     76 STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
     77 STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
     78 
     79   // Standard binary operators...
     80 STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
     81 STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
     82 STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
     83 STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
     84 STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
     85 STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
     86 STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
     87 STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
     88 STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
     89 STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
     90 STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
     91 STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
     92 
     93   // Logical operators...
     94 STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
     95 STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
     96 STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
     97 
     98   // Memory instructions...
     99 STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
    100 STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
    101 STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
    102 STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
    103 STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
    104 STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
    105 STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
    106 
    107   // Convert instructions...
    108 STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
    109 STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
    110 STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
    111 STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
    112 STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
    113 STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
    114 STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
    115 STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
    116 STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
    117 STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
    118 STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
    119 STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
    120 
    121   // Other instructions...
    122 STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
    123 STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
    124 STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
    125 STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
    126 STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
    127 STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
    128 STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
    129 STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
    130 STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
    131 STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
    132 STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
    133 STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
    134 STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
    135 STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
    136 STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
    137 #endif
    138 
    139 static cl::opt<bool>
    140 EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
    141           cl::desc("Enable verbose messages in the \"fast\" "
    142                    "instruction selector"));
    143 static cl::opt<bool>
    144 EnableFastISelAbort("fast-isel-abort", cl::Hidden,
    145           cl::desc("Enable abort calls when \"fast\" instruction fails"));
    146 
    147 static cl::opt<bool>
    148 UseMBPI("use-mbpi",
    149         cl::desc("use Machine Branch Probability Info"),
    150         cl::init(true), cl::Hidden);
    151 
    152 #ifndef NDEBUG
    153 static cl::opt<bool>
    154 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
    155           cl::desc("Pop up a window to show dags before the first "
    156                    "dag combine pass"));
    157 static cl::opt<bool>
    158 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
    159           cl::desc("Pop up a window to show dags before legalize types"));
    160 static cl::opt<bool>
    161 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
    162           cl::desc("Pop up a window to show dags before legalize"));
    163 static cl::opt<bool>
    164 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
    165           cl::desc("Pop up a window to show dags before the second "
    166                    "dag combine pass"));
    167 static cl::opt<bool>
    168 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
    169           cl::desc("Pop up a window to show dags before the post legalize types"
    170                    " dag combine pass"));
    171 static cl::opt<bool>
    172 ViewISelDAGs("view-isel-dags", cl::Hidden,
    173           cl::desc("Pop up a window to show isel dags as they are selected"));
    174 static cl::opt<bool>
    175 ViewSchedDAGs("view-sched-dags", cl::Hidden,
    176           cl::desc("Pop up a window to show sched dags as they are processed"));
    177 static cl::opt<bool>
    178 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
    179       cl::desc("Pop up a window to show SUnit dags after they are processed"));
    180 #else
    181 static const bool ViewDAGCombine1 = false,
    182                   ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
    183                   ViewDAGCombine2 = false,
    184                   ViewDAGCombineLT = false,
    185                   ViewISelDAGs = false, ViewSchedDAGs = false,
    186                   ViewSUnitDAGs = false;
    187 #endif
    188 
    189 //===---------------------------------------------------------------------===//
    190 ///
    191 /// RegisterScheduler class - Track the registration of instruction schedulers.
    192 ///
    193 //===---------------------------------------------------------------------===//
    194 MachinePassRegistry RegisterScheduler::Registry;
    195 
    196 //===---------------------------------------------------------------------===//
    197 ///
    198 /// ISHeuristic command line option for instruction schedulers.
    199 ///
    200 //===---------------------------------------------------------------------===//
    201 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
    202                RegisterPassParser<RegisterScheduler> >
    203 ISHeuristic("pre-RA-sched",
    204             cl::init(&createDefaultScheduler),
    205             cl::desc("Instruction schedulers available (before register"
    206                      " allocation):"));
    207 
    208 static RegisterScheduler
    209 defaultListDAGScheduler("default", "Best scheduler for the target",
    210                         createDefaultScheduler);
    211 
    212 namespace llvm {
    213   //===--------------------------------------------------------------------===//
    214   /// createDefaultScheduler - This creates an instruction scheduler appropriate
    215   /// for the target.
    216   ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
    217                                              CodeGenOpt::Level OptLevel) {
    218     const TargetLowering &TLI = IS->getTargetLowering();
    219 
    220     if (OptLevel == CodeGenOpt::None ||
    221         TLI.getSchedulingPreference() == Sched::Source)
    222       return createSourceListDAGScheduler(IS, OptLevel);
    223     if (TLI.getSchedulingPreference() == Sched::RegPressure)
    224       return createBURRListDAGScheduler(IS, OptLevel);
    225     if (TLI.getSchedulingPreference() == Sched::Hybrid)
    226       return createHybridListDAGScheduler(IS, OptLevel);
    227     if (TLI.getSchedulingPreference() == Sched::VLIW)
    228       return createVLIWDAGScheduler(IS, OptLevel);
    229     assert(TLI.getSchedulingPreference() == Sched::ILP &&
    230            "Unknown sched type!");
    231     return createILPListDAGScheduler(IS, OptLevel);
    232   }
    233 }
    234 
    235 // EmitInstrWithCustomInserter - This method should be implemented by targets
    236 // that mark instructions with the 'usesCustomInserter' flag.  These
    237 // instructions are special in various ways, which require special support to
    238 // insert.  The specified MachineInstr is created but not inserted into any
    239 // basic blocks, and this method is called to expand it into a sequence of
    240 // instructions, potentially also creating new basic blocks and control flow.
    241 // When new basic blocks are inserted and the edges from MBB to its successors
    242 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
    243 // DenseMap.
    244 MachineBasicBlock *
    245 TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
    246                                             MachineBasicBlock *MBB) const {
    247 #ifndef NDEBUG
    248   dbgs() << "If a target marks an instruction with "
    249           "'usesCustomInserter', it must implement "
    250           "TargetLowering::EmitInstrWithCustomInserter!";
    251 #endif
    252   llvm_unreachable(0);
    253 }
    254 
    255 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
    256                                                    SDNode *Node) const {
    257   assert(!MI->hasPostISelHook() &&
    258          "If a target marks an instruction with 'hasPostISelHook', "
    259          "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
    260 }
    261 
    262 //===----------------------------------------------------------------------===//
    263 // SelectionDAGISel code
    264 //===----------------------------------------------------------------------===//
    265 
    266 void SelectionDAGISel::ISelUpdater::anchor() { }
    267 
    268 SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
    269                                    CodeGenOpt::Level OL) :
    270   MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
    271   FuncInfo(new FunctionLoweringInfo(TLI)),
    272   CurDAG(new SelectionDAG(tm, OL)),
    273   SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
    274   GFI(),
    275   OptLevel(OL),
    276   DAGSize(0) {
    277     initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
    278     initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
    279     initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
    280     initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
    281   }
    282 
    283 SelectionDAGISel::~SelectionDAGISel() {
    284   delete SDB;
    285   delete CurDAG;
    286   delete FuncInfo;
    287 }
    288 
    289 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
    290   AU.addRequired<AliasAnalysis>();
    291   AU.addPreserved<AliasAnalysis>();
    292   AU.addRequired<GCModuleInfo>();
    293   AU.addPreserved<GCModuleInfo>();
    294   AU.addRequired<TargetLibraryInfo>();
    295   if (UseMBPI && OptLevel != CodeGenOpt::None)
    296     AU.addRequired<BranchProbabilityInfo>();
    297   MachineFunctionPass::getAnalysisUsage(AU);
    298 }
    299 
    300 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
    301 /// may trap on it.  In this case we have to split the edge so that the path
    302 /// through the predecessor block that doesn't go to the phi block doesn't
    303 /// execute the possibly trapping instruction.
    304 ///
    305 /// This is required for correctness, so it must be done at -O0.
    306 ///
    307 static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
    308   // Loop for blocks with phi nodes.
    309   for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
    310     PHINode *PN = dyn_cast<PHINode>(BB->begin());
    311     if (PN == 0) continue;
    312 
    313   ReprocessBlock:
    314     // For each block with a PHI node, check to see if any of the input values
    315     // are potentially trapping constant expressions.  Constant expressions are
    316     // the only potentially trapping value that can occur as the argument to a
    317     // PHI.
    318     for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
    319       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    320         ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
    321         if (CE == 0 || !CE->canTrap()) continue;
    322 
    323         // The only case we have to worry about is when the edge is critical.
    324         // Since this block has a PHI Node, we assume it has multiple input
    325         // edges: check to see if the pred has multiple successors.
    326         BasicBlock *Pred = PN->getIncomingBlock(i);
    327         if (Pred->getTerminator()->getNumSuccessors() == 1)
    328           continue;
    329 
    330         // Okay, we have to split this edge.
    331         SplitCriticalEdge(Pred->getTerminator(),
    332                           GetSuccessorNumber(Pred, BB), SDISel, true);
    333         goto ReprocessBlock;
    334       }
    335   }
    336 }
    337 
    338 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
    339   // Do some sanity-checking on the command-line options.
    340   assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
    341          "-fast-isel-verbose requires -fast-isel");
    342   assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
    343          "-fast-isel-abort requires -fast-isel");
    344 
    345   const Function &Fn = *mf.getFunction();
    346   const TargetInstrInfo &TII = *TM.getInstrInfo();
    347   const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
    348 
    349   MF = &mf;
    350   RegInfo = &MF->getRegInfo();
    351   AA = &getAnalysis<AliasAnalysis>();
    352   LibInfo = &getAnalysis<TargetLibraryInfo>();
    353   GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
    354 
    355   DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
    356 
    357   SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
    358 
    359   CurDAG->init(*MF);
    360   FuncInfo->set(Fn, *MF);
    361 
    362   if (UseMBPI && OptLevel != CodeGenOpt::None)
    363     FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
    364   else
    365     FuncInfo->BPI = 0;
    366 
    367   SDB->init(GFI, *AA, LibInfo);
    368 
    369   SelectAllBasicBlocks(Fn);
    370 
    371   // If the first basic block in the function has live ins that need to be
    372   // copied into vregs, emit the copies into the top of the block before
    373   // emitting the code for the block.
    374   MachineBasicBlock *EntryMBB = MF->begin();
    375   RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
    376 
    377   DenseMap<unsigned, unsigned> LiveInMap;
    378   if (!FuncInfo->ArgDbgValues.empty())
    379     for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
    380            E = RegInfo->livein_end(); LI != E; ++LI)
    381       if (LI->second)
    382         LiveInMap.insert(std::make_pair(LI->first, LI->second));
    383 
    384   // Insert DBG_VALUE instructions for function arguments to the entry block.
    385   for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
    386     MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
    387     unsigned Reg = MI->getOperand(0).getReg();
    388     if (TargetRegisterInfo::isPhysicalRegister(Reg))
    389       EntryMBB->insert(EntryMBB->begin(), MI);
    390     else {
    391       MachineInstr *Def = RegInfo->getVRegDef(Reg);
    392       MachineBasicBlock::iterator InsertPos = Def;
    393       // FIXME: VR def may not be in entry block.
    394       Def->getParent()->insert(llvm::next(InsertPos), MI);
    395     }
    396 
    397     // If Reg is live-in then update debug info to track its copy in a vreg.
    398     DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
    399     if (LDI != LiveInMap.end()) {
    400       MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
    401       MachineBasicBlock::iterator InsertPos = Def;
    402       const MDNode *Variable =
    403         MI->getOperand(MI->getNumOperands()-1).getMetadata();
    404       unsigned Offset = MI->getOperand(1).getImm();
    405       // Def is never a terminator here, so it is ok to increment InsertPos.
    406       BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
    407               TII.get(TargetOpcode::DBG_VALUE))
    408         .addReg(LDI->second, RegState::Debug)
    409         .addImm(Offset).addMetadata(Variable);
    410 
    411       // If this vreg is directly copied into an exported register then
    412       // that COPY instructions also need DBG_VALUE, if it is the only
    413       // user of LDI->second.
    414       MachineInstr *CopyUseMI = NULL;
    415       for (MachineRegisterInfo::use_iterator
    416              UI = RegInfo->use_begin(LDI->second);
    417            MachineInstr *UseMI = UI.skipInstruction();) {
    418         if (UseMI->isDebugValue()) continue;
    419         if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
    420           CopyUseMI = UseMI; continue;
    421         }
    422         // Otherwise this is another use or second copy use.
    423         CopyUseMI = NULL; break;
    424       }
    425       if (CopyUseMI) {
    426         MachineInstr *NewMI =
    427           BuildMI(*MF, CopyUseMI->getDebugLoc(),
    428                   TII.get(TargetOpcode::DBG_VALUE))
    429           .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
    430           .addImm(Offset).addMetadata(Variable);
    431         MachineBasicBlock::iterator Pos = CopyUseMI;
    432         EntryMBB->insertAfter(Pos, NewMI);
    433       }
    434     }
    435   }
    436 
    437   // Determine if there are any calls in this machine function.
    438   MachineFrameInfo *MFI = MF->getFrameInfo();
    439   if (!MFI->hasCalls()) {
    440     for (MachineFunction::const_iterator
    441            I = MF->begin(), E = MF->end(); I != E; ++I) {
    442       const MachineBasicBlock *MBB = I;
    443       for (MachineBasicBlock::const_iterator
    444              II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
    445         const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
    446 
    447         if ((MCID.isCall() && !MCID.isReturn()) ||
    448             II->isStackAligningInlineAsm()) {
    449           MFI->setHasCalls(true);
    450           goto done;
    451         }
    452       }
    453     }
    454   done:;
    455   }
    456 
    457   // Determine if there is a call to setjmp in the machine function.
    458   MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
    459 
    460   // Replace forward-declared registers with the registers containing
    461   // the desired value.
    462   MachineRegisterInfo &MRI = MF->getRegInfo();
    463   for (DenseMap<unsigned, unsigned>::iterator
    464        I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
    465        I != E; ++I) {
    466     unsigned From = I->first;
    467     unsigned To = I->second;
    468     // If To is also scheduled to be replaced, find what its ultimate
    469     // replacement is.
    470     for (;;) {
    471       DenseMap<unsigned, unsigned>::iterator J =
    472         FuncInfo->RegFixups.find(To);
    473       if (J == E) break;
    474       To = J->second;
    475     }
    476     // Replace it.
    477     MRI.replaceRegWith(From, To);
    478   }
    479 
    480   // Release function-specific state. SDB and CurDAG are already cleared
    481   // at this point.
    482   FuncInfo->clear();
    483 
    484   return true;
    485 }
    486 
    487 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
    488                                         BasicBlock::const_iterator End,
    489                                         bool &HadTailCall) {
    490   // Lower all of the non-terminator instructions. If a call is emitted
    491   // as a tail call, cease emitting nodes for this block. Terminators
    492   // are handled below.
    493   for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
    494     SDB->visit(*I);
    495 
    496   // Make sure the root of the DAG is up-to-date.
    497   CurDAG->setRoot(SDB->getControlRoot());
    498   HadTailCall = SDB->HasTailCall;
    499   SDB->clear();
    500 
    501   // Final step, emit the lowered DAG as machine code.
    502   CodeGenAndEmitDAG();
    503 }
    504 
    505 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
    506   SmallPtrSet<SDNode*, 128> VisitedNodes;
    507   SmallVector<SDNode*, 128> Worklist;
    508 
    509   Worklist.push_back(CurDAG->getRoot().getNode());
    510 
    511   APInt KnownZero;
    512   APInt KnownOne;
    513 
    514   do {
    515     SDNode *N = Worklist.pop_back_val();
    516 
    517     // If we've already seen this node, ignore it.
    518     if (!VisitedNodes.insert(N))
    519       continue;
    520 
    521     // Otherwise, add all chain operands to the worklist.
    522     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
    523       if (N->getOperand(i).getValueType() == MVT::Other)
    524         Worklist.push_back(N->getOperand(i).getNode());
    525 
    526     // If this is a CopyToReg with a vreg dest, process it.
    527     if (N->getOpcode() != ISD::CopyToReg)
    528       continue;
    529 
    530     unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
    531     if (!TargetRegisterInfo::isVirtualRegister(DestReg))
    532       continue;
    533 
    534     // Ignore non-scalar or non-integer values.
    535     SDValue Src = N->getOperand(2);
    536     EVT SrcVT = Src.getValueType();
    537     if (!SrcVT.isInteger() || SrcVT.isVector())
    538       continue;
    539 
    540     unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
    541     CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne);
    542     FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
    543   } while (!Worklist.empty());
    544 }
    545 
    546 void SelectionDAGISel::CodeGenAndEmitDAG() {
    547   std::string GroupName;
    548   if (TimePassesIsEnabled)
    549     GroupName = "Instruction Selection and Scheduling";
    550   std::string BlockName;
    551   int BlockNumber = -1;
    552   (void)BlockNumber;
    553 #ifdef NDEBUG
    554   if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
    555       ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
    556       ViewSUnitDAGs)
    557 #endif
    558   {
    559     BlockNumber = FuncInfo->MBB->getNumber();
    560     BlockName = MF->getFunction()->getName().str() + ":" +
    561                 FuncInfo->MBB->getBasicBlock()->getName().str();
    562   }
    563   DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
    564         << " '" << BlockName << "'\n"; CurDAG->dump());
    565 
    566   if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
    567 
    568   // Run the DAG combiner in pre-legalize mode.
    569   {
    570     NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
    571     CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
    572   }
    573 
    574   DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
    575         << " '" << BlockName << "'\n"; CurDAG->dump());
    576 
    577   // Second step, hack on the DAG until it only uses operations and types that
    578   // the target supports.
    579   if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
    580                                                BlockName);
    581 
    582   bool Changed;
    583   {
    584     NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
    585     Changed = CurDAG->LegalizeTypes();
    586   }
    587 
    588   DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
    589         << " '" << BlockName << "'\n"; CurDAG->dump());
    590 
    591   if (Changed) {
    592     if (ViewDAGCombineLT)
    593       CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
    594 
    595     // Run the DAG combiner in post-type-legalize mode.
    596     {
    597       NamedRegionTimer T("DAG Combining after legalize types", GroupName,
    598                          TimePassesIsEnabled);
    599       CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
    600     }
    601 
    602     DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
    603           << " '" << BlockName << "'\n"; CurDAG->dump());
    604   }
    605 
    606   {
    607     NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
    608     Changed = CurDAG->LegalizeVectors();
    609   }
    610 
    611   if (Changed) {
    612     {
    613       NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
    614       CurDAG->LegalizeTypes();
    615     }
    616 
    617     if (ViewDAGCombineLT)
    618       CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
    619 
    620     // Run the DAG combiner in post-type-legalize mode.
    621     {
    622       NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
    623                          TimePassesIsEnabled);
    624       CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
    625     }
    626 
    627     DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
    628           << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
    629   }
    630 
    631   if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
    632 
    633   {
    634     NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
    635     CurDAG->Legalize();
    636   }
    637 
    638   DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
    639         << " '" << BlockName << "'\n"; CurDAG->dump());
    640 
    641   if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
    642 
    643   // Run the DAG combiner in post-legalize mode.
    644   {
    645     NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
    646     CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
    647   }
    648 
    649   DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
    650         << " '" << BlockName << "'\n"; CurDAG->dump());
    651 
    652   if (OptLevel != CodeGenOpt::None)
    653     ComputeLiveOutVRegInfo();
    654 
    655   if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
    656 
    657   // Third, instruction select all of the operations to machine code, adding the
    658   // code to the MachineBasicBlock.
    659   {
    660     NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
    661     DoInstructionSelection();
    662   }
    663 
    664   DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
    665         << " '" << BlockName << "'\n"; CurDAG->dump());
    666 
    667   if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
    668 
    669   // Schedule machine code.
    670   ScheduleDAGSDNodes *Scheduler = CreateScheduler();
    671   {
    672     NamedRegionTimer T("Instruction Scheduling", GroupName,
    673                        TimePassesIsEnabled);
    674     Scheduler->Run(CurDAG, FuncInfo->MBB);
    675   }
    676 
    677   if (ViewSUnitDAGs) Scheduler->viewGraph();
    678 
    679   // Emit machine code to BB.  This can change 'BB' to the last block being
    680   // inserted into.
    681   MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
    682   {
    683     NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
    684 
    685     // FuncInfo->InsertPt is passed by reference and set to the end of the
    686     // scheduled instructions.
    687     LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
    688   }
    689 
    690   // If the block was split, make sure we update any references that are used to
    691   // update PHI nodes later on.
    692   if (FirstMBB != LastMBB)
    693     SDB->UpdateSplitBlock(FirstMBB, LastMBB);
    694 
    695   // Free the scheduler state.
    696   {
    697     NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
    698                        TimePassesIsEnabled);
    699     delete Scheduler;
    700   }
    701 
    702   // Free the SelectionDAG state, now that we're finished with it.
    703   CurDAG->clear();
    704 }
    705 
    706 void SelectionDAGISel::DoInstructionSelection() {
    707   DEBUG(errs() << "===== Instruction selection begins: BB#"
    708         << FuncInfo->MBB->getNumber()
    709         << " '" << FuncInfo->MBB->getName() << "'\n");
    710 
    711   PreprocessISelDAG();
    712 
    713   // Select target instructions for the DAG.
    714   {
    715     // Number all nodes with a topological order and set DAGSize.
    716     DAGSize = CurDAG->AssignTopologicalOrder();
    717 
    718     // Create a dummy node (which is not added to allnodes), that adds
    719     // a reference to the root node, preventing it from being deleted,
    720     // and tracking any changes of the root.
    721     HandleSDNode Dummy(CurDAG->getRoot());
    722     ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
    723     ++ISelPosition;
    724 
    725     // The AllNodes list is now topological-sorted. Visit the
    726     // nodes by starting at the end of the list (the root of the
    727     // graph) and preceding back toward the beginning (the entry
    728     // node).
    729     while (ISelPosition != CurDAG->allnodes_begin()) {
    730       SDNode *Node = --ISelPosition;
    731       // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
    732       // but there are currently some corner cases that it misses. Also, this
    733       // makes it theoretically possible to disable the DAGCombiner.
    734       if (Node->use_empty())
    735         continue;
    736 
    737       SDNode *ResNode = Select(Node);
    738 
    739       // FIXME: This is pretty gross.  'Select' should be changed to not return
    740       // anything at all and this code should be nuked with a tactical strike.
    741 
    742       // If node should not be replaced, continue with the next one.
    743       if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
    744         continue;
    745       // Replace node.
    746       if (ResNode)
    747         ReplaceUses(Node, ResNode);
    748 
    749       // If after the replacement this node is not used any more,
    750       // remove this dead node.
    751       if (Node->use_empty()) { // Don't delete EntryToken, etc.
    752         ISelUpdater ISU(ISelPosition);
    753         CurDAG->RemoveDeadNode(Node, &ISU);
    754       }
    755     }
    756 
    757     CurDAG->setRoot(Dummy.getValue());
    758   }
    759 
    760   DEBUG(errs() << "===== Instruction selection ends:\n");
    761 
    762   PostprocessISelDAG();
    763 }
    764 
    765 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
    766 /// do other setup for EH landing-pad blocks.
    767 void SelectionDAGISel::PrepareEHLandingPad() {
    768   MachineBasicBlock *MBB = FuncInfo->MBB;
    769 
    770   // Add a label to mark the beginning of the landing pad.  Deletion of the
    771   // landing pad can thus be detected via the MachineModuleInfo.
    772   MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
    773 
    774   // Assign the call site to the landing pad's begin label.
    775   MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
    776 
    777   const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
    778   BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
    779     .addSym(Label);
    780 
    781   // Mark exception register as live in.
    782   unsigned Reg = TLI.getExceptionPointerRegister();
    783   if (Reg) MBB->addLiveIn(Reg);
    784 
    785   // Mark exception selector register as live in.
    786   Reg = TLI.getExceptionSelectorRegister();
    787   if (Reg) MBB->addLiveIn(Reg);
    788 }
    789 
    790 /// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
    791 /// load into the specified FoldInst.  Note that we could have a sequence where
    792 /// multiple LLVM IR instructions are folded into the same machineinstr.  For
    793 /// example we could have:
    794 ///   A: x = load i32 *P
    795 ///   B: y = icmp A, 42
    796 ///   C: br y, ...
    797 ///
    798 /// In this scenario, LI is "A", and FoldInst is "C".  We know about "B" (and
    799 /// any other folded instructions) because it is between A and C.
    800 ///
    801 /// If we succeed in folding the load into the operation, return true.
    802 ///
    803 bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
    804                                              const Instruction *FoldInst,
    805                                              FastISel *FastIS) {
    806   // We know that the load has a single use, but don't know what it is.  If it
    807   // isn't one of the folded instructions, then we can't succeed here.  Handle
    808   // this by scanning the single-use users of the load until we get to FoldInst.
    809   unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs.
    810 
    811   const Instruction *TheUser = LI->use_back();
    812   while (TheUser != FoldInst &&   // Scan up until we find FoldInst.
    813          // Stay in the right block.
    814          TheUser->getParent() == FoldInst->getParent() &&
    815          --MaxUsers) {  // Don't scan too far.
    816     // If there are multiple or no uses of this instruction, then bail out.
    817     if (!TheUser->hasOneUse())
    818       return false;
    819 
    820     TheUser = TheUser->use_back();
    821   }
    822 
    823   // If we didn't find the fold instruction, then we failed to collapse the
    824   // sequence.
    825   if (TheUser != FoldInst)
    826     return false;
    827 
    828   // Don't try to fold volatile loads.  Target has to deal with alignment
    829   // constraints.
    830   if (LI->isVolatile()) return false;
    831 
    832   // Figure out which vreg this is going into.  If there is no assigned vreg yet
    833   // then there actually was no reference to it.  Perhaps the load is referenced
    834   // by a dead instruction.
    835   unsigned LoadReg = FastIS->getRegForValue(LI);
    836   if (LoadReg == 0)
    837     return false;
    838 
    839   // Check to see what the uses of this vreg are.  If it has no uses, or more
    840   // than one use (at the machine instr level) then we can't fold it.
    841   MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
    842   if (RI == RegInfo->reg_end())
    843     return false;
    844 
    845   // See if there is exactly one use of the vreg.  If there are multiple uses,
    846   // then the instruction got lowered to multiple machine instructions or the
    847   // use of the loaded value ended up being multiple operands of the result, in
    848   // either case, we can't fold this.
    849   MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
    850   if (PostRI != RegInfo->reg_end())
    851     return false;
    852 
    853   assert(RI.getOperand().isUse() &&
    854          "The only use of the vreg must be a use, we haven't emitted the def!");
    855 
    856   MachineInstr *User = &*RI;
    857 
    858   // Set the insertion point properly.  Folding the load can cause generation of
    859   // other random instructions (like sign extends) for addressing modes, make
    860   // sure they get inserted in a logical place before the new instruction.
    861   FuncInfo->InsertPt = User;
    862   FuncInfo->MBB = User->getParent();
    863 
    864   // Ask the target to try folding the load.
    865   return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
    866 }
    867 
    868 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
    869 /// side-effect free and is either dead or folded into a generated instruction.
    870 /// Return false if it needs to be emitted.
    871 static bool isFoldedOrDeadInstruction(const Instruction *I,
    872                                       FunctionLoweringInfo *FuncInfo) {
    873   return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
    874          !isa<TerminatorInst>(I) && // Terminators aren't folded.
    875          !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
    876          !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
    877          !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
    878 }
    879 
    880 #ifndef NDEBUG
    881 // Collect per Instruction statistics for fast-isel misses.  Only those
    882 // instructions that cause the bail are accounted for.  It does not account for
    883 // instructions higher in the block.  Thus, summing the per instructions stats
    884 // will not add up to what is reported by NumFastIselFailures.
    885 static void collectFailStats(const Instruction *I) {
    886   switch (I->getOpcode()) {
    887   default: assert (0 && "<Invalid operator> ");
    888 
    889   // Terminators
    890   case Instruction::Ret:         NumFastIselFailRet++; return;
    891   case Instruction::Br:          NumFastIselFailBr++; return;
    892   case Instruction::Switch:      NumFastIselFailSwitch++; return;
    893   case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
    894   case Instruction::Invoke:      NumFastIselFailInvoke++; return;
    895   case Instruction::Resume:      NumFastIselFailResume++; return;
    896   case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
    897 
    898   // Standard binary operators...
    899   case Instruction::Add:  NumFastIselFailAdd++; return;
    900   case Instruction::FAdd: NumFastIselFailFAdd++; return;
    901   case Instruction::Sub:  NumFastIselFailSub++; return;
    902   case Instruction::FSub: NumFastIselFailFSub++; return;
    903   case Instruction::Mul:  NumFastIselFailMul++; return;
    904   case Instruction::FMul: NumFastIselFailFMul++; return;
    905   case Instruction::UDiv: NumFastIselFailUDiv++; return;
    906   case Instruction::SDiv: NumFastIselFailSDiv++; return;
    907   case Instruction::FDiv: NumFastIselFailFDiv++; return;
    908   case Instruction::URem: NumFastIselFailURem++; return;
    909   case Instruction::SRem: NumFastIselFailSRem++; return;
    910   case Instruction::FRem: NumFastIselFailFRem++; return;
    911 
    912   // Logical operators...
    913   case Instruction::And: NumFastIselFailAnd++; return;
    914   case Instruction::Or:  NumFastIselFailOr++; return;
    915   case Instruction::Xor: NumFastIselFailXor++; return;
    916 
    917   // Memory instructions...
    918   case Instruction::Alloca:        NumFastIselFailAlloca++; return;
    919   case Instruction::Load:          NumFastIselFailLoad++; return;
    920   case Instruction::Store:         NumFastIselFailStore++; return;
    921   case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
    922   case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
    923   case Instruction::Fence:         NumFastIselFailFence++; return;
    924   case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
    925 
    926   // Convert instructions...
    927   case Instruction::Trunc:    NumFastIselFailTrunc++; return;
    928   case Instruction::ZExt:     NumFastIselFailZExt++; return;
    929   case Instruction::SExt:     NumFastIselFailSExt++; return;
    930   case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
    931   case Instruction::FPExt:    NumFastIselFailFPExt++; return;
    932   case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
    933   case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
    934   case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
    935   case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
    936   case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
    937   case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
    938   case Instruction::BitCast:  NumFastIselFailBitCast++; return;
    939 
    940   // Other instructions...
    941   case Instruction::ICmp:           NumFastIselFailICmp++; return;
    942   case Instruction::FCmp:           NumFastIselFailFCmp++; return;
    943   case Instruction::PHI:            NumFastIselFailPHI++; return;
    944   case Instruction::Select:         NumFastIselFailSelect++; return;
    945   case Instruction::Call:           NumFastIselFailCall++; return;
    946   case Instruction::Shl:            NumFastIselFailShl++; return;
    947   case Instruction::LShr:           NumFastIselFailLShr++; return;
    948   case Instruction::AShr:           NumFastIselFailAShr++; return;
    949   case Instruction::VAArg:          NumFastIselFailVAArg++; return;
    950   case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
    951   case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
    952   case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
    953   case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
    954   case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
    955   case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
    956   }
    957 }
    958 #endif
    959 
    960 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
    961   // Initialize the Fast-ISel state, if needed.
    962   FastISel *FastIS = 0;
    963   if (TM.Options.EnableFastISel)
    964     FastIS = TLI.createFastISel(*FuncInfo);
    965 
    966   // Iterate over all basic blocks in the function.
    967   ReversePostOrderTraversal<const Function*> RPOT(&Fn);
    968   for (ReversePostOrderTraversal<const Function*>::rpo_iterator
    969        I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
    970     const BasicBlock *LLVMBB = *I;
    971 
    972     if (OptLevel != CodeGenOpt::None) {
    973       bool AllPredsVisited = true;
    974       for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
    975            PI != PE; ++PI) {
    976         if (!FuncInfo->VisitedBBs.count(*PI)) {
    977           AllPredsVisited = false;
    978           break;
    979         }
    980       }
    981 
    982       if (AllPredsVisited) {
    983         for (BasicBlock::const_iterator I = LLVMBB->begin();
    984              isa<PHINode>(I); ++I)
    985           FuncInfo->ComputePHILiveOutRegInfo(cast<PHINode>(I));
    986       } else {
    987         for (BasicBlock::const_iterator I = LLVMBB->begin();
    988              isa<PHINode>(I); ++I)
    989           FuncInfo->InvalidatePHILiveOutRegInfo(cast<PHINode>(I));
    990       }
    991 
    992       FuncInfo->VisitedBBs.insert(LLVMBB);
    993     }
    994 
    995     FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
    996     FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
    997 
    998     BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
    999     BasicBlock::const_iterator const End = LLVMBB->end();
   1000     BasicBlock::const_iterator BI = End;
   1001 
   1002     FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
   1003 
   1004     // Setup an EH landing-pad block.
   1005     if (FuncInfo->MBB->isLandingPad())
   1006       PrepareEHLandingPad();
   1007 
   1008     // Lower any arguments needed in this block if this is the entry block.
   1009     if (LLVMBB == &Fn.getEntryBlock())
   1010       LowerArguments(LLVMBB);
   1011 
   1012     // Before doing SelectionDAG ISel, see if FastISel has been requested.
   1013     if (FastIS) {
   1014       FastIS->startNewBlock();
   1015 
   1016       // Emit code for any incoming arguments. This must happen before
   1017       // beginning FastISel on the entry block.
   1018       if (LLVMBB == &Fn.getEntryBlock()) {
   1019         CurDAG->setRoot(SDB->getControlRoot());
   1020         SDB->clear();
   1021         CodeGenAndEmitDAG();
   1022 
   1023         // If we inserted any instructions at the beginning, make a note of
   1024         // where they are, so we can be sure to emit subsequent instructions
   1025         // after them.
   1026         if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
   1027           FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
   1028         else
   1029           FastIS->setLastLocalValue(0);
   1030       }
   1031 
   1032       unsigned NumFastIselRemaining = std::distance(Begin, End);
   1033       // Do FastISel on as many instructions as possible.
   1034       for (; BI != Begin; --BI) {
   1035         const Instruction *Inst = llvm::prior(BI);
   1036 
   1037         // If we no longer require this instruction, skip it.
   1038         if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
   1039           --NumFastIselRemaining;
   1040           continue;
   1041         }
   1042 
   1043         // Bottom-up: reset the insert pos at the top, after any local-value
   1044         // instructions.
   1045         FastIS->recomputeInsertPt();
   1046 
   1047         // Try to select the instruction with FastISel.
   1048         if (FastIS->SelectInstruction(Inst)) {
   1049           --NumFastIselRemaining;
   1050           ++NumFastIselSuccess;
   1051           // If fast isel succeeded, skip over all the folded instructions, and
   1052           // then see if there is a load right before the selected instructions.
   1053           // Try to fold the load if so.
   1054           const Instruction *BeforeInst = Inst;
   1055           while (BeforeInst != Begin) {
   1056             BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
   1057             if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
   1058               break;
   1059           }
   1060           if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
   1061               BeforeInst->hasOneUse() &&
   1062               TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS)) {
   1063             // If we succeeded, don't re-select the load.
   1064             BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
   1065             --NumFastIselRemaining;
   1066             ++NumFastIselSuccess;
   1067           }
   1068           continue;
   1069         }
   1070 
   1071 #ifndef NDEBUG
   1072         if (EnableFastISelVerbose2)
   1073           collectFailStats(Inst);
   1074 #endif
   1075 
   1076         // Then handle certain instructions as single-LLVM-Instruction blocks.
   1077         if (isa<CallInst>(Inst)) {
   1078 
   1079           if (EnableFastISelVerbose || EnableFastISelAbort) {
   1080             dbgs() << "FastISel missed call: ";
   1081             Inst->dump();
   1082           }
   1083 
   1084           if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
   1085             unsigned &R = FuncInfo->ValueMap[Inst];
   1086             if (!R)
   1087               R = FuncInfo->CreateRegs(Inst->getType());
   1088           }
   1089 
   1090           bool HadTailCall = false;
   1091           SelectBasicBlock(Inst, BI, HadTailCall);
   1092 
   1093           // Recompute NumFastIselRemaining as Selection DAG instruction
   1094           // selection may have handled the call, input args, etc.
   1095           unsigned RemainingNow = std::distance(Begin, BI);
   1096           NumFastIselFailures += NumFastIselRemaining - RemainingNow;
   1097 
   1098           // If the call was emitted as a tail call, we're done with the block.
   1099           if (HadTailCall) {
   1100             --BI;
   1101             break;
   1102           }
   1103 
   1104           NumFastIselRemaining = RemainingNow;
   1105           continue;
   1106         }
   1107 
   1108         if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
   1109           // Don't abort, and use a different message for terminator misses.
   1110           NumFastIselFailures += NumFastIselRemaining;
   1111           if (EnableFastISelVerbose || EnableFastISelAbort) {
   1112             dbgs() << "FastISel missed terminator: ";
   1113             Inst->dump();
   1114           }
   1115         } else {
   1116           NumFastIselFailures += NumFastIselRemaining;
   1117           if (EnableFastISelVerbose || EnableFastISelAbort) {
   1118             dbgs() << "FastISel miss: ";
   1119             Inst->dump();
   1120           }
   1121           if (EnableFastISelAbort)
   1122             // The "fast" selector couldn't handle something and bailed.
   1123             // For the purpose of debugging, just abort.
   1124             llvm_unreachable("FastISel didn't select the entire block");
   1125         }
   1126         break;
   1127       }
   1128 
   1129       FastIS->recomputeInsertPt();
   1130     }
   1131 
   1132     if (Begin != BI)
   1133       ++NumDAGBlocks;
   1134     else
   1135       ++NumFastIselBlocks;
   1136 
   1137     if (Begin != BI) {
   1138       // Run SelectionDAG instruction selection on the remainder of the block
   1139       // not handled by FastISel. If FastISel is not run, this is the entire
   1140       // block.
   1141       bool HadTailCall;
   1142       SelectBasicBlock(Begin, BI, HadTailCall);
   1143     }
   1144 
   1145     FinishBasicBlock();
   1146     FuncInfo->PHINodesToUpdate.clear();
   1147   }
   1148 
   1149   delete FastIS;
   1150   SDB->clearDanglingDebugInfo();
   1151 }
   1152 
   1153 void
   1154 SelectionDAGISel::FinishBasicBlock() {
   1155 
   1156   DEBUG(dbgs() << "Total amount of phi nodes to update: "
   1157                << FuncInfo->PHINodesToUpdate.size() << "\n";
   1158         for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
   1159           dbgs() << "Node " << i << " : ("
   1160                  << FuncInfo->PHINodesToUpdate[i].first
   1161                  << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
   1162 
   1163   // Next, now that we know what the last MBB the LLVM BB expanded is, update
   1164   // PHI nodes in successors.
   1165   if (SDB->SwitchCases.empty() &&
   1166       SDB->JTCases.empty() &&
   1167       SDB->BitTestCases.empty()) {
   1168     for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
   1169       MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
   1170       assert(PHI->isPHI() &&
   1171              "This is not a machine PHI node that we are updating!");
   1172       if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
   1173         continue;
   1174       PHI->addOperand(
   1175         MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
   1176       PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
   1177     }
   1178     return;
   1179   }
   1180 
   1181   for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
   1182     // Lower header first, if it wasn't already lowered
   1183     if (!SDB->BitTestCases[i].Emitted) {
   1184       // Set the current basic block to the mbb we wish to insert the code into
   1185       FuncInfo->MBB = SDB->BitTestCases[i].Parent;
   1186       FuncInfo->InsertPt = FuncInfo->MBB->end();
   1187       // Emit the code
   1188       SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
   1189       CurDAG->setRoot(SDB->getRoot());
   1190       SDB->clear();
   1191       CodeGenAndEmitDAG();
   1192     }
   1193 
   1194     for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
   1195       // Set the current basic block to the mbb we wish to insert the code into
   1196       FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
   1197       FuncInfo->InsertPt = FuncInfo->MBB->end();
   1198       // Emit the code
   1199       if (j+1 != ej)
   1200         SDB->visitBitTestCase(SDB->BitTestCases[i],
   1201                               SDB->BitTestCases[i].Cases[j+1].ThisBB,
   1202                               SDB->BitTestCases[i].Reg,
   1203                               SDB->BitTestCases[i].Cases[j],
   1204                               FuncInfo->MBB);
   1205       else
   1206         SDB->visitBitTestCase(SDB->BitTestCases[i],
   1207                               SDB->BitTestCases[i].Default,
   1208                               SDB->BitTestCases[i].Reg,
   1209                               SDB->BitTestCases[i].Cases[j],
   1210                               FuncInfo->MBB);
   1211 
   1212 
   1213       CurDAG->setRoot(SDB->getRoot());
   1214       SDB->clear();
   1215       CodeGenAndEmitDAG();
   1216     }
   1217 
   1218     // Update PHI Nodes
   1219     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
   1220          pi != pe; ++pi) {
   1221       MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
   1222       MachineBasicBlock *PHIBB = PHI->getParent();
   1223       assert(PHI->isPHI() &&
   1224              "This is not a machine PHI node that we are updating!");
   1225       // This is "default" BB. We have two jumps to it. From "header" BB and
   1226       // from last "case" BB.
   1227       if (PHIBB == SDB->BitTestCases[i].Default) {
   1228         PHI->addOperand(MachineOperand::
   1229                         CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
   1230                                   false));
   1231         PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
   1232         PHI->addOperand(MachineOperand::
   1233                         CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
   1234                                   false));
   1235         PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
   1236                                                   back().ThisBB));
   1237       }
   1238       // One of "cases" BB.
   1239       for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
   1240            j != ej; ++j) {
   1241         MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
   1242         if (cBB->isSuccessor(PHIBB)) {
   1243           PHI->addOperand(MachineOperand::
   1244                           CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
   1245                                     false));
   1246           PHI->addOperand(MachineOperand::CreateMBB(cBB));
   1247         }
   1248       }
   1249     }
   1250   }
   1251   SDB->BitTestCases.clear();
   1252 
   1253   // If the JumpTable record is filled in, then we need to emit a jump table.
   1254   // Updating the PHI nodes is tricky in this case, since we need to determine
   1255   // whether the PHI is a successor of the range check MBB or the jump table MBB
   1256   for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
   1257     // Lower header first, if it wasn't already lowered
   1258     if (!SDB->JTCases[i].first.Emitted) {
   1259       // Set the current basic block to the mbb we wish to insert the code into
   1260       FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
   1261       FuncInfo->InsertPt = FuncInfo->MBB->end();
   1262       // Emit the code
   1263       SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
   1264                                 FuncInfo->MBB);
   1265       CurDAG->setRoot(SDB->getRoot());
   1266       SDB->clear();
   1267       CodeGenAndEmitDAG();
   1268     }
   1269 
   1270     // Set the current basic block to the mbb we wish to insert the code into
   1271     FuncInfo->MBB = SDB->JTCases[i].second.MBB;
   1272     FuncInfo->InsertPt = FuncInfo->MBB->end();
   1273     // Emit the code
   1274     SDB->visitJumpTable(SDB->JTCases[i].second);
   1275     CurDAG->setRoot(SDB->getRoot());
   1276     SDB->clear();
   1277     CodeGenAndEmitDAG();
   1278 
   1279     // Update PHI Nodes
   1280     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
   1281          pi != pe; ++pi) {
   1282       MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
   1283       MachineBasicBlock *PHIBB = PHI->getParent();
   1284       assert(PHI->isPHI() &&
   1285              "This is not a machine PHI node that we are updating!");
   1286       // "default" BB. We can go there only from header BB.
   1287       if (PHIBB == SDB->JTCases[i].second.Default) {
   1288         PHI->addOperand
   1289           (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
   1290                                      false));
   1291         PHI->addOperand
   1292           (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
   1293       }
   1294       // JT BB. Just iterate over successors here
   1295       if (FuncInfo->MBB->isSuccessor(PHIBB)) {
   1296         PHI->addOperand
   1297           (MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
   1298                                      false));
   1299         PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
   1300       }
   1301     }
   1302   }
   1303   SDB->JTCases.clear();
   1304 
   1305   // If the switch block involved a branch to one of the actual successors, we
   1306   // need to update PHI nodes in that block.
   1307   for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
   1308     MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
   1309     assert(PHI->isPHI() &&
   1310            "This is not a machine PHI node that we are updating!");
   1311     if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
   1312       PHI->addOperand(
   1313         MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
   1314       PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
   1315     }
   1316   }
   1317 
   1318   // If we generated any switch lowering information, build and codegen any
   1319   // additional DAGs necessary.
   1320   for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
   1321     // Set the current basic block to the mbb we wish to insert the code into
   1322     FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
   1323     FuncInfo->InsertPt = FuncInfo->MBB->end();
   1324 
   1325     // Determine the unique successors.
   1326     SmallVector<MachineBasicBlock *, 2> Succs;
   1327     Succs.push_back(SDB->SwitchCases[i].TrueBB);
   1328     if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
   1329       Succs.push_back(SDB->SwitchCases[i].FalseBB);
   1330 
   1331     // Emit the code. Note that this could result in FuncInfo->MBB being split.
   1332     SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
   1333     CurDAG->setRoot(SDB->getRoot());
   1334     SDB->clear();
   1335     CodeGenAndEmitDAG();
   1336 
   1337     // Remember the last block, now that any splitting is done, for use in
   1338     // populating PHI nodes in successors.
   1339     MachineBasicBlock *ThisBB = FuncInfo->MBB;
   1340 
   1341     // Handle any PHI nodes in successors of this chunk, as if we were coming
   1342     // from the original BB before switch expansion.  Note that PHI nodes can
   1343     // occur multiple times in PHINodesToUpdate.  We have to be very careful to
   1344     // handle them the right number of times.
   1345     for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
   1346       FuncInfo->MBB = Succs[i];
   1347       FuncInfo->InsertPt = FuncInfo->MBB->end();
   1348       // FuncInfo->MBB may have been removed from the CFG if a branch was
   1349       // constant folded.
   1350       if (ThisBB->isSuccessor(FuncInfo->MBB)) {
   1351         for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
   1352              Phi != FuncInfo->MBB->end() && Phi->isPHI();
   1353              ++Phi) {
   1354           // This value for this PHI node is recorded in PHINodesToUpdate.
   1355           for (unsigned pn = 0; ; ++pn) {
   1356             assert(pn != FuncInfo->PHINodesToUpdate.size() &&
   1357                    "Didn't find PHI entry!");
   1358             if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
   1359               Phi->addOperand(MachineOperand::
   1360                               CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
   1361                                         false));
   1362               Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
   1363               break;
   1364             }
   1365           }
   1366         }
   1367       }
   1368     }
   1369   }
   1370   SDB->SwitchCases.clear();
   1371 }
   1372 
   1373 
   1374 /// Create the scheduler. If a specific scheduler was specified
   1375 /// via the SchedulerRegistry, use it, otherwise select the
   1376 /// one preferred by the target.
   1377 ///
   1378 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
   1379   RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
   1380 
   1381   if (!Ctor) {
   1382     Ctor = ISHeuristic;
   1383     RegisterScheduler::setDefault(Ctor);
   1384   }
   1385 
   1386   return Ctor(this, OptLevel);
   1387 }
   1388 
   1389 //===----------------------------------------------------------------------===//
   1390 // Helper functions used by the generated instruction selector.
   1391 //===----------------------------------------------------------------------===//
   1392 // Calls to these methods are generated by tblgen.
   1393 
   1394 /// CheckAndMask - The isel is trying to match something like (and X, 255).  If
   1395 /// the dag combiner simplified the 255, we still want to match.  RHS is the
   1396 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
   1397 /// specified in the .td file (e.g. 255).
   1398 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
   1399                                     int64_t DesiredMaskS) const {
   1400   const APInt &ActualMask = RHS->getAPIntValue();
   1401   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
   1402 
   1403   // If the actual mask exactly matches, success!
   1404   if (ActualMask == DesiredMask)
   1405     return true;
   1406 
   1407   // If the actual AND mask is allowing unallowed bits, this doesn't match.
   1408   if (ActualMask.intersects(~DesiredMask))
   1409     return false;
   1410 
   1411   // Otherwise, the DAG Combiner may have proven that the value coming in is
   1412   // either already zero or is not demanded.  Check for known zero input bits.
   1413   APInt NeededMask = DesiredMask & ~ActualMask;
   1414   if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
   1415     return true;
   1416 
   1417   // TODO: check to see if missing bits are just not demanded.
   1418 
   1419   // Otherwise, this pattern doesn't match.
   1420   return false;
   1421 }
   1422 
   1423 /// CheckOrMask - The isel is trying to match something like (or X, 255).  If
   1424 /// the dag combiner simplified the 255, we still want to match.  RHS is the
   1425 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
   1426 /// specified in the .td file (e.g. 255).
   1427 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
   1428                                    int64_t DesiredMaskS) const {
   1429   const APInt &ActualMask = RHS->getAPIntValue();
   1430   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
   1431 
   1432   // If the actual mask exactly matches, success!
   1433   if (ActualMask == DesiredMask)
   1434     return true;
   1435 
   1436   // If the actual AND mask is allowing unallowed bits, this doesn't match.
   1437   if (ActualMask.intersects(~DesiredMask))
   1438     return false;
   1439 
   1440   // Otherwise, the DAG Combiner may have proven that the value coming in is
   1441   // either already zero or is not demanded.  Check for known zero input bits.
   1442   APInt NeededMask = DesiredMask & ~ActualMask;
   1443 
   1444   APInt KnownZero, KnownOne;
   1445   CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne);
   1446 
   1447   // If all the missing bits in the or are already known to be set, match!
   1448   if ((NeededMask & KnownOne) == NeededMask)
   1449     return true;
   1450 
   1451   // TODO: check to see if missing bits are just not demanded.
   1452 
   1453   // Otherwise, this pattern doesn't match.
   1454   return false;
   1455 }
   1456 
   1457 
   1458 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
   1459 /// by tblgen.  Others should not call it.
   1460 void SelectionDAGISel::
   1461 SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
   1462   std::vector<SDValue> InOps;
   1463   std::swap(InOps, Ops);
   1464 
   1465   Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
   1466   Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
   1467   Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
   1468   Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
   1469 
   1470   unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
   1471   if (InOps[e-1].getValueType() == MVT::Glue)
   1472     --e;  // Don't process a glue operand if it is here.
   1473 
   1474   while (i != e) {
   1475     unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
   1476     if (!InlineAsm::isMemKind(Flags)) {
   1477       // Just skip over this operand, copying the operands verbatim.
   1478       Ops.insert(Ops.end(), InOps.begin()+i,
   1479                  InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
   1480       i += InlineAsm::getNumOperandRegisters(Flags) + 1;
   1481     } else {
   1482       assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
   1483              "Memory operand with multiple values?");
   1484       // Otherwise, this is a memory operand.  Ask the target to select it.
   1485       std::vector<SDValue> SelOps;
   1486       if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
   1487         report_fatal_error("Could not match memory address.  Inline asm"
   1488                            " failure!");
   1489 
   1490       // Add this to the output node.
   1491       unsigned NewFlags =
   1492         InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
   1493       Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
   1494       Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
   1495       i += 2;
   1496     }
   1497   }
   1498 
   1499   // Add the glue input back if present.
   1500   if (e != InOps.size())
   1501     Ops.push_back(InOps.back());
   1502 }
   1503 
   1504 /// findGlueUse - Return use of MVT::Glue value produced by the specified
   1505 /// SDNode.
   1506 ///
   1507 static SDNode *findGlueUse(SDNode *N) {
   1508   unsigned FlagResNo = N->getNumValues()-1;
   1509   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
   1510     SDUse &Use = I.getUse();
   1511     if (Use.getResNo() == FlagResNo)
   1512       return Use.getUser();
   1513   }
   1514   return NULL;
   1515 }
   1516 
   1517 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
   1518 /// This function recursively traverses up the operand chain, ignoring
   1519 /// certain nodes.
   1520 static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
   1521                           SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
   1522                           bool IgnoreChains) {
   1523   // The NodeID's are given uniques ID's where a node ID is guaranteed to be
   1524   // greater than all of its (recursive) operands.  If we scan to a point where
   1525   // 'use' is smaller than the node we're scanning for, then we know we will
   1526   // never find it.
   1527   //
   1528   // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
   1529   // happen because we scan down to newly selected nodes in the case of glue
   1530   // uses.
   1531   if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
   1532     return false;
   1533 
   1534   // Don't revisit nodes if we already scanned it and didn't fail, we know we
   1535   // won't fail if we scan it again.
   1536   if (!Visited.insert(Use))
   1537     return false;
   1538 
   1539   for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
   1540     // Ignore chain uses, they are validated by HandleMergeInputChains.
   1541     if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
   1542       continue;
   1543 
   1544     SDNode *N = Use->getOperand(i).getNode();
   1545     if (N == Def) {
   1546       if (Use == ImmedUse || Use == Root)
   1547         continue;  // We are not looking for immediate use.
   1548       assert(N != Root);
   1549       return true;
   1550     }
   1551 
   1552     // Traverse up the operand chain.
   1553     if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
   1554       return true;
   1555   }
   1556   return false;
   1557 }
   1558 
   1559 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
   1560 /// operand node N of U during instruction selection that starts at Root.
   1561 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
   1562                                           SDNode *Root) const {
   1563   if (OptLevel == CodeGenOpt::None) return false;
   1564   return N.hasOneUse();
   1565 }
   1566 
   1567 /// IsLegalToFold - Returns true if the specific operand node N of
   1568 /// U can be folded during instruction selection that starts at Root.
   1569 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
   1570                                      CodeGenOpt::Level OptLevel,
   1571                                      bool IgnoreChains) {
   1572   if (OptLevel == CodeGenOpt::None) return false;
   1573 
   1574   // If Root use can somehow reach N through a path that that doesn't contain
   1575   // U then folding N would create a cycle. e.g. In the following
   1576   // diagram, Root can reach N through X. If N is folded into into Root, then
   1577   // X is both a predecessor and a successor of U.
   1578   //
   1579   //          [N*]           //
   1580   //         ^   ^           //
   1581   //        /     \          //
   1582   //      [U*]    [X]?       //
   1583   //        ^     ^          //
   1584   //         \   /           //
   1585   //          \ /            //
   1586   //         [Root*]         //
   1587   //
   1588   // * indicates nodes to be folded together.
   1589   //
   1590   // If Root produces glue, then it gets (even more) interesting. Since it
   1591   // will be "glued" together with its glue use in the scheduler, we need to
   1592   // check if it might reach N.
   1593   //
   1594   //          [N*]           //
   1595   //         ^   ^           //
   1596   //        /     \          //
   1597   //      [U*]    [X]?       //
   1598   //        ^       ^        //
   1599   //         \       \       //
   1600   //          \      |       //
   1601   //         [Root*] |       //
   1602   //          ^      |       //
   1603   //          f      |       //
   1604   //          |      /       //
   1605   //         [Y]    /        //
   1606   //           ^   /         //
   1607   //           f  /          //
   1608   //           | /           //
   1609   //          [GU]           //
   1610   //
   1611   // If GU (glue use) indirectly reaches N (the load), and Root folds N
   1612   // (call it Fold), then X is a predecessor of GU and a successor of
   1613   // Fold. But since Fold and GU are glued together, this will create
   1614   // a cycle in the scheduling graph.
   1615 
   1616   // If the node has glue, walk down the graph to the "lowest" node in the
   1617   // glueged set.
   1618   EVT VT = Root->getValueType(Root->getNumValues()-1);
   1619   while (VT == MVT::Glue) {
   1620     SDNode *GU = findGlueUse(Root);
   1621     if (GU == NULL)
   1622       break;
   1623     Root = GU;
   1624     VT = Root->getValueType(Root->getNumValues()-1);
   1625 
   1626     // If our query node has a glue result with a use, we've walked up it.  If
   1627     // the user (which has already been selected) has a chain or indirectly uses
   1628     // the chain, our WalkChainUsers predicate will not consider it.  Because of
   1629     // this, we cannot ignore chains in this predicate.
   1630     IgnoreChains = false;
   1631   }
   1632 
   1633 
   1634   SmallPtrSet<SDNode*, 16> Visited;
   1635   return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
   1636 }
   1637 
   1638 SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
   1639   std::vector<SDValue> Ops(N->op_begin(), N->op_end());
   1640   SelectInlineAsmMemoryOperands(Ops);
   1641 
   1642   std::vector<EVT> VTs;
   1643   VTs.push_back(MVT::Other);
   1644   VTs.push_back(MVT::Glue);
   1645   SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
   1646                                 VTs, &Ops[0], Ops.size());
   1647   New->setNodeId(-1);
   1648   return New.getNode();
   1649 }
   1650 
   1651 SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
   1652   return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
   1653 }
   1654 
   1655 /// GetVBR - decode a vbr encoding whose top bit is set.
   1656 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
   1657 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
   1658   assert(Val >= 128 && "Not a VBR");
   1659   Val &= 127;  // Remove first vbr bit.
   1660 
   1661   unsigned Shift = 7;
   1662   uint64_t NextBits;
   1663   do {
   1664     NextBits = MatcherTable[Idx++];
   1665     Val |= (NextBits&127) << Shift;
   1666     Shift += 7;
   1667   } while (NextBits & 128);
   1668 
   1669   return Val;
   1670 }
   1671 
   1672 
   1673 /// UpdateChainsAndGlue - When a match is complete, this method updates uses of
   1674 /// interior glue and chain results to use the new glue and chain results.
   1675 void SelectionDAGISel::
   1676 UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
   1677                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
   1678                     SDValue InputGlue,
   1679                     const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
   1680                     bool isMorphNodeTo) {
   1681   SmallVector<SDNode*, 4> NowDeadNodes;
   1682 
   1683   ISelUpdater ISU(ISelPosition);
   1684 
   1685   // Now that all the normal results are replaced, we replace the chain and
   1686   // glue results if present.
   1687   if (!ChainNodesMatched.empty()) {
   1688     assert(InputChain.getNode() != 0 &&
   1689            "Matched input chains but didn't produce a chain");
   1690     // Loop over all of the nodes we matched that produced a chain result.
   1691     // Replace all the chain results with the final chain we ended up with.
   1692     for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
   1693       SDNode *ChainNode = ChainNodesMatched[i];
   1694 
   1695       // If this node was already deleted, don't look at it.
   1696       if (ChainNode->getOpcode() == ISD::DELETED_NODE)
   1697         continue;
   1698 
   1699       // Don't replace the results of the root node if we're doing a
   1700       // MorphNodeTo.
   1701       if (ChainNode == NodeToMatch && isMorphNodeTo)
   1702         continue;
   1703 
   1704       SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
   1705       if (ChainVal.getValueType() == MVT::Glue)
   1706         ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
   1707       assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
   1708       CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
   1709 
   1710       // If the node became dead and we haven't already seen it, delete it.
   1711       if (ChainNode->use_empty() &&
   1712           !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
   1713         NowDeadNodes.push_back(ChainNode);
   1714     }
   1715   }
   1716 
   1717   // If the result produces glue, update any glue results in the matched
   1718   // pattern with the glue result.
   1719   if (InputGlue.getNode() != 0) {
   1720     // Handle any interior nodes explicitly marked.
   1721     for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
   1722       SDNode *FRN = GlueResultNodesMatched[i];
   1723 
   1724       // If this node was already deleted, don't look at it.
   1725       if (FRN->getOpcode() == ISD::DELETED_NODE)
   1726         continue;
   1727 
   1728       assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
   1729              "Doesn't have a glue result");
   1730       CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
   1731                                         InputGlue, &ISU);
   1732 
   1733       // If the node became dead and we haven't already seen it, delete it.
   1734       if (FRN->use_empty() &&
   1735           !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
   1736         NowDeadNodes.push_back(FRN);
   1737     }
   1738   }
   1739 
   1740   if (!NowDeadNodes.empty())
   1741     CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
   1742 
   1743   DEBUG(errs() << "ISEL: Match complete!\n");
   1744 }
   1745 
   1746 enum ChainResult {
   1747   CR_Simple,
   1748   CR_InducesCycle,
   1749   CR_LeadsToInteriorNode
   1750 };
   1751 
   1752 /// WalkChainUsers - Walk down the users of the specified chained node that is
   1753 /// part of the pattern we're matching, looking at all of the users we find.
   1754 /// This determines whether something is an interior node, whether we have a
   1755 /// non-pattern node in between two pattern nodes (which prevent folding because
   1756 /// it would induce a cycle) and whether we have a TokenFactor node sandwiched
   1757 /// between pattern nodes (in which case the TF becomes part of the pattern).
   1758 ///
   1759 /// The walk we do here is guaranteed to be small because we quickly get down to
   1760 /// already selected nodes "below" us.
   1761 static ChainResult
   1762 WalkChainUsers(SDNode *ChainedNode,
   1763                SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
   1764                SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
   1765   ChainResult Result = CR_Simple;
   1766 
   1767   for (SDNode::use_iterator UI = ChainedNode->use_begin(),
   1768          E = ChainedNode->use_end(); UI != E; ++UI) {
   1769     // Make sure the use is of the chain, not some other value we produce.
   1770     if (UI.getUse().getValueType() != MVT::Other) continue;
   1771 
   1772     SDNode *User = *UI;
   1773 
   1774     // If we see an already-selected machine node, then we've gone beyond the
   1775     // pattern that we're selecting down into the already selected chunk of the
   1776     // DAG.
   1777     if (User->isMachineOpcode() ||
   1778         User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
   1779       continue;
   1780 
   1781     if (User->getOpcode() == ISD::CopyToReg ||
   1782         User->getOpcode() == ISD::CopyFromReg ||
   1783         User->getOpcode() == ISD::INLINEASM ||
   1784         User->getOpcode() == ISD::EH_LABEL) {
   1785       // If their node ID got reset to -1 then they've already been selected.
   1786       // Treat them like a MachineOpcode.
   1787       if (User->getNodeId() == -1)
   1788         continue;
   1789     }
   1790 
   1791     // If we have a TokenFactor, we handle it specially.
   1792     if (User->getOpcode() != ISD::TokenFactor) {
   1793       // If the node isn't a token factor and isn't part of our pattern, then it
   1794       // must be a random chained node in between two nodes we're selecting.
   1795       // This happens when we have something like:
   1796       //   x = load ptr
   1797       //   call
   1798       //   y = x+4
   1799       //   store y -> ptr
   1800       // Because we structurally match the load/store as a read/modify/write,
   1801       // but the call is chained between them.  We cannot fold in this case
   1802       // because it would induce a cycle in the graph.
   1803       if (!std::count(ChainedNodesInPattern.begin(),
   1804                       ChainedNodesInPattern.end(), User))
   1805         return CR_InducesCycle;
   1806 
   1807       // Otherwise we found a node that is part of our pattern.  For example in:
   1808       //   x = load ptr
   1809       //   y = x+4
   1810       //   store y -> ptr
   1811       // This would happen when we're scanning down from the load and see the
   1812       // store as a user.  Record that there is a use of ChainedNode that is
   1813       // part of the pattern and keep scanning uses.
   1814       Result = CR_LeadsToInteriorNode;
   1815       InteriorChainedNodes.push_back(User);
   1816       continue;
   1817     }
   1818 
   1819     // If we found a TokenFactor, there are two cases to consider: first if the
   1820     // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
   1821     // uses of the TF are in our pattern) we just want to ignore it.  Second,
   1822     // the TokenFactor can be sandwiched in between two chained nodes, like so:
   1823     //     [Load chain]
   1824     //         ^
   1825     //         |
   1826     //       [Load]
   1827     //       ^    ^
   1828     //       |    \                    DAG's like cheese
   1829     //      /       \                       do you?
   1830     //     /         |
   1831     // [TokenFactor] [Op]
   1832     //     ^          ^
   1833     //     |          |
   1834     //      \        /
   1835     //       \      /
   1836     //       [Store]
   1837     //
   1838     // In this case, the TokenFactor becomes part of our match and we rewrite it
   1839     // as a new TokenFactor.
   1840     //
   1841     // To distinguish these two cases, do a recursive walk down the uses.
   1842     switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
   1843     case CR_Simple:
   1844       // If the uses of the TokenFactor are just already-selected nodes, ignore
   1845       // it, it is "below" our pattern.
   1846       continue;
   1847     case CR_InducesCycle:
   1848       // If the uses of the TokenFactor lead to nodes that are not part of our
   1849       // pattern that are not selected, folding would turn this into a cycle,
   1850       // bail out now.
   1851       return CR_InducesCycle;
   1852     case CR_LeadsToInteriorNode:
   1853       break;  // Otherwise, keep processing.
   1854     }
   1855 
   1856     // Okay, we know we're in the interesting interior case.  The TokenFactor
   1857     // is now going to be considered part of the pattern so that we rewrite its
   1858     // uses (it may have uses that are not part of the pattern) with the
   1859     // ultimate chain result of the generated code.  We will also add its chain
   1860     // inputs as inputs to the ultimate TokenFactor we create.
   1861     Result = CR_LeadsToInteriorNode;
   1862     ChainedNodesInPattern.push_back(User);
   1863     InteriorChainedNodes.push_back(User);
   1864     continue;
   1865   }
   1866 
   1867   return Result;
   1868 }
   1869 
   1870 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
   1871 /// operation for when the pattern matched at least one node with a chains.  The
   1872 /// input vector contains a list of all of the chained nodes that we match.  We
   1873 /// must determine if this is a valid thing to cover (i.e. matching it won't
   1874 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
   1875 /// be used as the input node chain for the generated nodes.
   1876 static SDValue
   1877 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
   1878                        SelectionDAG *CurDAG) {
   1879   // Walk all of the chained nodes we've matched, recursively scanning down the
   1880   // users of the chain result. This adds any TokenFactor nodes that are caught
   1881   // in between chained nodes to the chained and interior nodes list.
   1882   SmallVector<SDNode*, 3> InteriorChainedNodes;
   1883   for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
   1884     if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
   1885                        InteriorChainedNodes) == CR_InducesCycle)
   1886       return SDValue(); // Would induce a cycle.
   1887   }
   1888 
   1889   // Okay, we have walked all the matched nodes and collected TokenFactor nodes
   1890   // that we are interested in.  Form our input TokenFactor node.
   1891   SmallVector<SDValue, 3> InputChains;
   1892   for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
   1893     // Add the input chain of this node to the InputChains list (which will be
   1894     // the operands of the generated TokenFactor) if it's not an interior node.
   1895     SDNode *N = ChainNodesMatched[i];
   1896     if (N->getOpcode() != ISD::TokenFactor) {
   1897       if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
   1898         continue;
   1899 
   1900       // Otherwise, add the input chain.
   1901       SDValue InChain = ChainNodesMatched[i]->getOperand(0);
   1902       assert(InChain.getValueType() == MVT::Other && "Not a chain");
   1903       InputChains.push_back(InChain);
   1904       continue;
   1905     }
   1906 
   1907     // If we have a token factor, we want to add all inputs of the token factor
   1908     // that are not part of the pattern we're matching.
   1909     for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
   1910       if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
   1911                       N->getOperand(op).getNode()))
   1912         InputChains.push_back(N->getOperand(op));
   1913     }
   1914   }
   1915 
   1916   SDValue Res;
   1917   if (InputChains.size() == 1)
   1918     return InputChains[0];
   1919   return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
   1920                          MVT::Other, &InputChains[0], InputChains.size());
   1921 }
   1922 
   1923 /// MorphNode - Handle morphing a node in place for the selector.
   1924 SDNode *SelectionDAGISel::
   1925 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
   1926           const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
   1927   // It is possible we're using MorphNodeTo to replace a node with no
   1928   // normal results with one that has a normal result (or we could be
   1929   // adding a chain) and the input could have glue and chains as well.
   1930   // In this case we need to shift the operands down.
   1931   // FIXME: This is a horrible hack and broken in obscure cases, no worse
   1932   // than the old isel though.
   1933   int OldGlueResultNo = -1, OldChainResultNo = -1;
   1934 
   1935   unsigned NTMNumResults = Node->getNumValues();
   1936   if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
   1937     OldGlueResultNo = NTMNumResults-1;
   1938     if (NTMNumResults != 1 &&
   1939         Node->getValueType(NTMNumResults-2) == MVT::Other)
   1940       OldChainResultNo = NTMNumResults-2;
   1941   } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
   1942     OldChainResultNo = NTMNumResults-1;
   1943 
   1944   // Call the underlying SelectionDAG routine to do the transmogrification. Note
   1945   // that this deletes operands of the old node that become dead.
   1946   SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
   1947 
   1948   // MorphNodeTo can operate in two ways: if an existing node with the
   1949   // specified operands exists, it can just return it.  Otherwise, it
   1950   // updates the node in place to have the requested operands.
   1951   if (Res == Node) {
   1952     // If we updated the node in place, reset the node ID.  To the isel,
   1953     // this should be just like a newly allocated machine node.
   1954     Res->setNodeId(-1);
   1955   }
   1956 
   1957   unsigned ResNumResults = Res->getNumValues();
   1958   // Move the glue if needed.
   1959   if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
   1960       (unsigned)OldGlueResultNo != ResNumResults-1)
   1961     CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
   1962                                       SDValue(Res, ResNumResults-1));
   1963 
   1964   if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
   1965     --ResNumResults;
   1966 
   1967   // Move the chain reference if needed.
   1968   if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
   1969       (unsigned)OldChainResultNo != ResNumResults-1)
   1970     CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
   1971                                       SDValue(Res, ResNumResults-1));
   1972 
   1973   // Otherwise, no replacement happened because the node already exists. Replace
   1974   // Uses of the old node with the new one.
   1975   if (Res != Node)
   1976     CurDAG->ReplaceAllUsesWith(Node, Res);
   1977 
   1978   return Res;
   1979 }
   1980 
   1981 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
   1982 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1983 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1984           SDValue N,
   1985           const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
   1986   // Accept if it is exactly the same as a previously recorded node.
   1987   unsigned RecNo = MatcherTable[MatcherIndex++];
   1988   assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   1989   return N == RecordedNodes[RecNo].first;
   1990 }
   1991 
   1992 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
   1993 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   1994 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   1995                       SelectionDAGISel &SDISel) {
   1996   return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
   1997 }
   1998 
   1999 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
   2000 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   2001 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2002                    SelectionDAGISel &SDISel, SDNode *N) {
   2003   return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
   2004 }
   2005 
   2006 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   2007 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2008             SDNode *N) {
   2009   uint16_t Opc = MatcherTable[MatcherIndex++];
   2010   Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
   2011   return N->getOpcode() == Opc;
   2012 }
   2013 
   2014 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   2015 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2016           SDValue N, const TargetLowering &TLI) {
   2017   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2018   if (N.getValueType() == VT) return true;
   2019 
   2020   // Handle the case when VT is iPTR.
   2021   return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
   2022 }
   2023 
   2024 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   2025 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2026                SDValue N, const TargetLowering &TLI,
   2027                unsigned ChildNo) {
   2028   if (ChildNo >= N.getNumOperands())
   2029     return false;  // Match fails if out of range child #.
   2030   return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
   2031 }
   2032 
   2033 
   2034 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   2035 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2036               SDValue N) {
   2037   return cast<CondCodeSDNode>(N)->get() ==
   2038       (ISD::CondCode)MatcherTable[MatcherIndex++];
   2039 }
   2040 
   2041 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   2042 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2043                SDValue N, const TargetLowering &TLI) {
   2044   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2045   if (cast<VTSDNode>(N)->getVT() == VT)
   2046     return true;
   2047 
   2048   // Handle the case when VT is iPTR.
   2049   return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
   2050 }
   2051 
   2052 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   2053 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2054              SDValue N) {
   2055   int64_t Val = MatcherTable[MatcherIndex++];
   2056   if (Val & 128)
   2057     Val = GetVBR(Val, MatcherTable, MatcherIndex);
   2058 
   2059   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
   2060   return C != 0 && C->getSExtValue() == Val;
   2061 }
   2062 
   2063 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   2064 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2065             SDValue N, SelectionDAGISel &SDISel) {
   2066   int64_t Val = MatcherTable[MatcherIndex++];
   2067   if (Val & 128)
   2068     Val = GetVBR(Val, MatcherTable, MatcherIndex);
   2069 
   2070   if (N->getOpcode() != ISD::AND) return false;
   2071 
   2072   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   2073   return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
   2074 }
   2075 
   2076 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   2077 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2078            SDValue N, SelectionDAGISel &SDISel) {
   2079   int64_t Val = MatcherTable[MatcherIndex++];
   2080   if (Val & 128)
   2081     Val = GetVBR(Val, MatcherTable, MatcherIndex);
   2082 
   2083   if (N->getOpcode() != ISD::OR) return false;
   2084 
   2085   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   2086   return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
   2087 }
   2088 
   2089 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
   2090 /// scope, evaluate the current node.  If the current predicate is known to
   2091 /// fail, set Result=true and return anything.  If the current predicate is
   2092 /// known to pass, set Result=false and return the MatcherIndex to continue
   2093 /// with.  If the current predicate is unknown, set Result=false and return the
   2094 /// MatcherIndex to continue with.
   2095 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
   2096                                        unsigned Index, SDValue N,
   2097                                        bool &Result, SelectionDAGISel &SDISel,
   2098                  SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
   2099   switch (Table[Index++]) {
   2100   default:
   2101     Result = false;
   2102     return Index-1;  // Could not evaluate this predicate.
   2103   case SelectionDAGISel::OPC_CheckSame:
   2104     Result = !::CheckSame(Table, Index, N, RecordedNodes);
   2105     return Index;
   2106   case SelectionDAGISel::OPC_CheckPatternPredicate:
   2107     Result = !::CheckPatternPredicate(Table, Index, SDISel);
   2108     return Index;
   2109   case SelectionDAGISel::OPC_CheckPredicate:
   2110     Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
   2111     return Index;
   2112   case SelectionDAGISel::OPC_CheckOpcode:
   2113     Result = !::CheckOpcode(Table, Index, N.getNode());
   2114     return Index;
   2115   case SelectionDAGISel::OPC_CheckType:
   2116     Result = !::CheckType(Table, Index, N, SDISel.TLI);
   2117     return Index;
   2118   case SelectionDAGISel::OPC_CheckChild0Type:
   2119   case SelectionDAGISel::OPC_CheckChild1Type:
   2120   case SelectionDAGISel::OPC_CheckChild2Type:
   2121   case SelectionDAGISel::OPC_CheckChild3Type:
   2122   case SelectionDAGISel::OPC_CheckChild4Type:
   2123   case SelectionDAGISel::OPC_CheckChild5Type:
   2124   case SelectionDAGISel::OPC_CheckChild6Type:
   2125   case SelectionDAGISel::OPC_CheckChild7Type:
   2126     Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
   2127                         Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
   2128     return Index;
   2129   case SelectionDAGISel::OPC_CheckCondCode:
   2130     Result = !::CheckCondCode(Table, Index, N);
   2131     return Index;
   2132   case SelectionDAGISel::OPC_CheckValueType:
   2133     Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
   2134     return Index;
   2135   case SelectionDAGISel::OPC_CheckInteger:
   2136     Result = !::CheckInteger(Table, Index, N);
   2137     return Index;
   2138   case SelectionDAGISel::OPC_CheckAndImm:
   2139     Result = !::CheckAndImm(Table, Index, N, SDISel);
   2140     return Index;
   2141   case SelectionDAGISel::OPC_CheckOrImm:
   2142     Result = !::CheckOrImm(Table, Index, N, SDISel);
   2143     return Index;
   2144   }
   2145 }
   2146 
   2147 namespace {
   2148 
   2149 struct MatchScope {
   2150   /// FailIndex - If this match fails, this is the index to continue with.
   2151   unsigned FailIndex;
   2152 
   2153   /// NodeStack - The node stack when the scope was formed.
   2154   SmallVector<SDValue, 4> NodeStack;
   2155 
   2156   /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
   2157   unsigned NumRecordedNodes;
   2158 
   2159   /// NumMatchedMemRefs - The number of matched memref entries.
   2160   unsigned NumMatchedMemRefs;
   2161 
   2162   /// InputChain/InputGlue - The current chain/glue
   2163   SDValue InputChain, InputGlue;
   2164 
   2165   /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
   2166   bool HasChainNodesMatched, HasGlueResultNodesMatched;
   2167 };
   2168 
   2169 }
   2170 
   2171 SDNode *SelectionDAGISel::
   2172 SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
   2173                  unsigned TableSize) {
   2174   // FIXME: Should these even be selected?  Handle these cases in the caller?
   2175   switch (NodeToMatch->getOpcode()) {
   2176   default:
   2177     break;
   2178   case ISD::EntryToken:       // These nodes remain the same.
   2179   case ISD::BasicBlock:
   2180   case ISD::Register:
   2181   case ISD::RegisterMask:
   2182   //case ISD::VALUETYPE:
   2183   //case ISD::CONDCODE:
   2184   case ISD::HANDLENODE:
   2185   case ISD::MDNODE_SDNODE:
   2186   case ISD::TargetConstant:
   2187   case ISD::TargetConstantFP:
   2188   case ISD::TargetConstantPool:
   2189   case ISD::TargetFrameIndex:
   2190   case ISD::TargetExternalSymbol:
   2191   case ISD::TargetBlockAddress:
   2192   case ISD::TargetJumpTable:
   2193   case ISD::TargetGlobalTLSAddress:
   2194   case ISD::TargetGlobalAddress:
   2195   case ISD::TokenFactor:
   2196   case ISD::CopyFromReg:
   2197   case ISD::CopyToReg:
   2198   case ISD::EH_LABEL:
   2199     NodeToMatch->setNodeId(-1); // Mark selected.
   2200     return 0;
   2201   case ISD::AssertSext:
   2202   case ISD::AssertZext:
   2203     CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
   2204                                       NodeToMatch->getOperand(0));
   2205     return 0;
   2206   case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
   2207   case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
   2208   }
   2209 
   2210   assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
   2211 
   2212   // Set up the node stack with NodeToMatch as the only node on the stack.
   2213   SmallVector<SDValue, 8> NodeStack;
   2214   SDValue N = SDValue(NodeToMatch, 0);
   2215   NodeStack.push_back(N);
   2216 
   2217   // MatchScopes - Scopes used when matching, if a match failure happens, this
   2218   // indicates where to continue checking.
   2219   SmallVector<MatchScope, 8> MatchScopes;
   2220 
   2221   // RecordedNodes - This is the set of nodes that have been recorded by the
   2222   // state machine.  The second value is the parent of the node, or null if the
   2223   // root is recorded.
   2224   SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
   2225 
   2226   // MatchedMemRefs - This is the set of MemRef's we've seen in the input
   2227   // pattern.
   2228   SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
   2229 
   2230   // These are the current input chain and glue for use when generating nodes.
   2231   // Various Emit operations change these.  For example, emitting a copytoreg
   2232   // uses and updates these.
   2233   SDValue InputChain, InputGlue;
   2234 
   2235   // ChainNodesMatched - If a pattern matches nodes that have input/output
   2236   // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
   2237   // which ones they are.  The result is captured into this list so that we can
   2238   // update the chain results when the pattern is complete.
   2239   SmallVector<SDNode*, 3> ChainNodesMatched;
   2240   SmallVector<SDNode*, 3> GlueResultNodesMatched;
   2241 
   2242   DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
   2243         NodeToMatch->dump(CurDAG);
   2244         errs() << '\n');
   2245 
   2246   // Determine where to start the interpreter.  Normally we start at opcode #0,
   2247   // but if the state machine starts with an OPC_SwitchOpcode, then we
   2248   // accelerate the first lookup (which is guaranteed to be hot) with the
   2249   // OpcodeOffset table.
   2250   unsigned MatcherIndex = 0;
   2251 
   2252   if (!OpcodeOffset.empty()) {
   2253     // Already computed the OpcodeOffset table, just index into it.
   2254     if (N.getOpcode() < OpcodeOffset.size())
   2255       MatcherIndex = OpcodeOffset[N.getOpcode()];
   2256     DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
   2257 
   2258   } else if (MatcherTable[0] == OPC_SwitchOpcode) {
   2259     // Otherwise, the table isn't computed, but the state machine does start
   2260     // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
   2261     // is the first time we're selecting an instruction.
   2262     unsigned Idx = 1;
   2263     while (1) {
   2264       // Get the size of this case.
   2265       unsigned CaseSize = MatcherTable[Idx++];
   2266       if (CaseSize & 128)
   2267         CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
   2268       if (CaseSize == 0) break;
   2269 
   2270       // Get the opcode, add the index to the table.
   2271       uint16_t Opc = MatcherTable[Idx++];
   2272       Opc |= (unsigned short)MatcherTable[Idx++] << 8;
   2273       if (Opc >= OpcodeOffset.size())
   2274         OpcodeOffset.resize((Opc+1)*2);
   2275       OpcodeOffset[Opc] = Idx;
   2276       Idx += CaseSize;
   2277     }
   2278 
   2279     // Okay, do the lookup for the first opcode.
   2280     if (N.getOpcode() < OpcodeOffset.size())
   2281       MatcherIndex = OpcodeOffset[N.getOpcode()];
   2282   }
   2283 
   2284   while (1) {
   2285     assert(MatcherIndex < TableSize && "Invalid index");
   2286 #ifndef NDEBUG
   2287     unsigned CurrentOpcodeIndex = MatcherIndex;
   2288 #endif
   2289     BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
   2290     switch (Opcode) {
   2291     case OPC_Scope: {
   2292       // Okay, the semantics of this operation are that we should push a scope
   2293       // then evaluate the first child.  However, pushing a scope only to have
   2294       // the first check fail (which then pops it) is inefficient.  If we can
   2295       // determine immediately that the first check (or first several) will
   2296       // immediately fail, don't even bother pushing a scope for them.
   2297       unsigned FailIndex;
   2298 
   2299       while (1) {
   2300         unsigned NumToSkip = MatcherTable[MatcherIndex++];
   2301         if (NumToSkip & 128)
   2302           NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
   2303         // Found the end of the scope with no match.
   2304         if (NumToSkip == 0) {
   2305           FailIndex = 0;
   2306           break;
   2307         }
   2308 
   2309         FailIndex = MatcherIndex+NumToSkip;
   2310 
   2311         unsigned MatcherIndexOfPredicate = MatcherIndex;
   2312         (void)MatcherIndexOfPredicate; // silence warning.
   2313 
   2314         // If we can't evaluate this predicate without pushing a scope (e.g. if
   2315         // it is a 'MoveParent') or if the predicate succeeds on this node, we
   2316         // push the scope and evaluate the full predicate chain.
   2317         bool Result;
   2318         MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
   2319                                               Result, *this, RecordedNodes);
   2320         if (!Result)
   2321           break;
   2322 
   2323         DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
   2324                      << "index " << MatcherIndexOfPredicate
   2325                      << ", continuing at " << FailIndex << "\n");
   2326         ++NumDAGIselRetries;
   2327 
   2328         // Otherwise, we know that this case of the Scope is guaranteed to fail,
   2329         // move to the next case.
   2330         MatcherIndex = FailIndex;
   2331       }
   2332 
   2333       // If the whole scope failed to match, bail.
   2334       if (FailIndex == 0) break;
   2335 
   2336       // Push a MatchScope which indicates where to go if the first child fails
   2337       // to match.
   2338       MatchScope NewEntry;
   2339       NewEntry.FailIndex = FailIndex;
   2340       NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
   2341       NewEntry.NumRecordedNodes = RecordedNodes.size();
   2342       NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
   2343       NewEntry.InputChain = InputChain;
   2344       NewEntry.InputGlue = InputGlue;
   2345       NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
   2346       NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
   2347       MatchScopes.push_back(NewEntry);
   2348       continue;
   2349     }
   2350     case OPC_RecordNode: {
   2351       // Remember this node, it may end up being an operand in the pattern.
   2352       SDNode *Parent = 0;
   2353       if (NodeStack.size() > 1)
   2354         Parent = NodeStack[NodeStack.size()-2].getNode();
   2355       RecordedNodes.push_back(std::make_pair(N, Parent));
   2356       continue;
   2357     }
   2358 
   2359     case OPC_RecordChild0: case OPC_RecordChild1:
   2360     case OPC_RecordChild2: case OPC_RecordChild3:
   2361     case OPC_RecordChild4: case OPC_RecordChild5:
   2362     case OPC_RecordChild6: case OPC_RecordChild7: {
   2363       unsigned ChildNo = Opcode-OPC_RecordChild0;
   2364       if (ChildNo >= N.getNumOperands())
   2365         break;  // Match fails if out of range child #.
   2366 
   2367       RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
   2368                                              N.getNode()));
   2369       continue;
   2370     }
   2371     case OPC_RecordMemRef:
   2372       MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
   2373       continue;
   2374 
   2375     case OPC_CaptureGlueInput:
   2376       // If the current node has an input glue, capture it in InputGlue.
   2377       if (N->getNumOperands() != 0 &&
   2378           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
   2379         InputGlue = N->getOperand(N->getNumOperands()-1);
   2380       continue;
   2381 
   2382     case OPC_MoveChild: {
   2383       unsigned ChildNo = MatcherTable[MatcherIndex++];
   2384       if (ChildNo >= N.getNumOperands())
   2385         break;  // Match fails if out of range child #.
   2386       N = N.getOperand(ChildNo);
   2387       NodeStack.push_back(N);
   2388       continue;
   2389     }
   2390 
   2391     case OPC_MoveParent:
   2392       // Pop the current node off the NodeStack.
   2393       NodeStack.pop_back();
   2394       assert(!NodeStack.empty() && "Node stack imbalance!");
   2395       N = NodeStack.back();
   2396       continue;
   2397 
   2398     case OPC_CheckSame:
   2399       if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
   2400       continue;
   2401     case OPC_CheckPatternPredicate:
   2402       if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
   2403       continue;
   2404     case OPC_CheckPredicate:
   2405       if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
   2406                                 N.getNode()))
   2407         break;
   2408       continue;
   2409     case OPC_CheckComplexPat: {
   2410       unsigned CPNum = MatcherTable[MatcherIndex++];
   2411       unsigned RecNo = MatcherTable[MatcherIndex++];
   2412       assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
   2413       if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
   2414                                RecordedNodes[RecNo].first, CPNum,
   2415                                RecordedNodes))
   2416         break;
   2417       continue;
   2418     }
   2419     case OPC_CheckOpcode:
   2420       if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
   2421       continue;
   2422 
   2423     case OPC_CheckType:
   2424       if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
   2425       continue;
   2426 
   2427     case OPC_SwitchOpcode: {
   2428       unsigned CurNodeOpcode = N.getOpcode();
   2429       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
   2430       unsigned CaseSize;
   2431       while (1) {
   2432         // Get the size of this case.
   2433         CaseSize = MatcherTable[MatcherIndex++];
   2434         if (CaseSize & 128)
   2435           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
   2436         if (CaseSize == 0) break;
   2437 
   2438         uint16_t Opc = MatcherTable[MatcherIndex++];
   2439         Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
   2440 
   2441         // If the opcode matches, then we will execute this case.
   2442         if (CurNodeOpcode == Opc)
   2443           break;
   2444 
   2445         // Otherwise, skip over this case.
   2446         MatcherIndex += CaseSize;
   2447       }
   2448 
   2449       // If no cases matched, bail out.
   2450       if (CaseSize == 0) break;
   2451 
   2452       // Otherwise, execute the case we found.
   2453       DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
   2454                    << " to " << MatcherIndex << "\n");
   2455       continue;
   2456     }
   2457 
   2458     case OPC_SwitchType: {
   2459       MVT CurNodeVT = N.getValueType().getSimpleVT();
   2460       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
   2461       unsigned CaseSize;
   2462       while (1) {
   2463         // Get the size of this case.
   2464         CaseSize = MatcherTable[MatcherIndex++];
   2465         if (CaseSize & 128)
   2466           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
   2467         if (CaseSize == 0) break;
   2468 
   2469         MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2470         if (CaseVT == MVT::iPTR)
   2471           CaseVT = TLI.getPointerTy();
   2472 
   2473         // If the VT matches, then we will execute this case.
   2474         if (CurNodeVT == CaseVT)
   2475           break;
   2476 
   2477         // Otherwise, skip over this case.
   2478         MatcherIndex += CaseSize;
   2479       }
   2480 
   2481       // If no cases matched, bail out.
   2482       if (CaseSize == 0) break;
   2483 
   2484       // Otherwise, execute the case we found.
   2485       DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
   2486                    << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
   2487       continue;
   2488     }
   2489     case OPC_CheckChild0Type: case OPC_CheckChild1Type:
   2490     case OPC_CheckChild2Type: case OPC_CheckChild3Type:
   2491     case OPC_CheckChild4Type: case OPC_CheckChild5Type:
   2492     case OPC_CheckChild6Type: case OPC_CheckChild7Type:
   2493       if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
   2494                             Opcode-OPC_CheckChild0Type))
   2495         break;
   2496       continue;
   2497     case OPC_CheckCondCode:
   2498       if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
   2499       continue;
   2500     case OPC_CheckValueType:
   2501       if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
   2502       continue;
   2503     case OPC_CheckInteger:
   2504       if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
   2505       continue;
   2506     case OPC_CheckAndImm:
   2507       if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
   2508       continue;
   2509     case OPC_CheckOrImm:
   2510       if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
   2511       continue;
   2512 
   2513     case OPC_CheckFoldableChainNode: {
   2514       assert(NodeStack.size() != 1 && "No parent node");
   2515       // Verify that all intermediate nodes between the root and this one have
   2516       // a single use.
   2517       bool HasMultipleUses = false;
   2518       for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
   2519         if (!NodeStack[i].hasOneUse()) {
   2520           HasMultipleUses = true;
   2521           break;
   2522         }
   2523       if (HasMultipleUses) break;
   2524 
   2525       // Check to see that the target thinks this is profitable to fold and that
   2526       // we can fold it without inducing cycles in the graph.
   2527       if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
   2528                               NodeToMatch) ||
   2529           !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
   2530                          NodeToMatch, OptLevel,
   2531                          true/*We validate our own chains*/))
   2532         break;
   2533 
   2534       continue;
   2535     }
   2536     case OPC_EmitInteger: {
   2537       MVT::SimpleValueType VT =
   2538         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2539       int64_t Val = MatcherTable[MatcherIndex++];
   2540       if (Val & 128)
   2541         Val = GetVBR(Val, MatcherTable, MatcherIndex);
   2542       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
   2543                               CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
   2544       continue;
   2545     }
   2546     case OPC_EmitRegister: {
   2547       MVT::SimpleValueType VT =
   2548         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2549       unsigned RegNo = MatcherTable[MatcherIndex++];
   2550       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
   2551                               CurDAG->getRegister(RegNo, VT), (SDNode*)0));
   2552       continue;
   2553     }
   2554     case OPC_EmitRegister2: {
   2555       // For targets w/ more than 256 register names, the register enum
   2556       // values are stored in two bytes in the matcher table (just like
   2557       // opcodes).
   2558       MVT::SimpleValueType VT =
   2559         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2560       unsigned RegNo = MatcherTable[MatcherIndex++];
   2561       RegNo |= MatcherTable[MatcherIndex++] << 8;
   2562       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
   2563                               CurDAG->getRegister(RegNo, VT), (SDNode*)0));
   2564       continue;
   2565     }
   2566 
   2567     case OPC_EmitConvertToTarget:  {
   2568       // Convert from IMM/FPIMM to target version.
   2569       unsigned RecNo = MatcherTable[MatcherIndex++];
   2570       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2571       SDValue Imm = RecordedNodes[RecNo].first;
   2572 
   2573       if (Imm->getOpcode() == ISD::Constant) {
   2574         int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
   2575         Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
   2576       } else if (Imm->getOpcode() == ISD::ConstantFP) {
   2577         const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
   2578         Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
   2579       }
   2580 
   2581       RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
   2582       continue;
   2583     }
   2584 
   2585     case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
   2586     case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
   2587       // These are space-optimized forms of OPC_EmitMergeInputChains.
   2588       assert(InputChain.getNode() == 0 &&
   2589              "EmitMergeInputChains should be the first chain producing node");
   2590       assert(ChainNodesMatched.empty() &&
   2591              "Should only have one EmitMergeInputChains per match");
   2592 
   2593       // Read all of the chained nodes.
   2594       unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
   2595       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2596       ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
   2597 
   2598       // FIXME: What if other value results of the node have uses not matched
   2599       // by this pattern?
   2600       if (ChainNodesMatched.back() != NodeToMatch &&
   2601           !RecordedNodes[RecNo].first.hasOneUse()) {
   2602         ChainNodesMatched.clear();
   2603         break;
   2604       }
   2605 
   2606       // Merge the input chains if they are not intra-pattern references.
   2607       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
   2608 
   2609       if (InputChain.getNode() == 0)
   2610         break;  // Failed to merge.
   2611       continue;
   2612     }
   2613 
   2614     case OPC_EmitMergeInputChains: {
   2615       assert(InputChain.getNode() == 0 &&
   2616              "EmitMergeInputChains should be the first chain producing node");
   2617       // This node gets a list of nodes we matched in the input that have
   2618       // chains.  We want to token factor all of the input chains to these nodes
   2619       // together.  However, if any of the input chains is actually one of the
   2620       // nodes matched in this pattern, then we have an intra-match reference.
   2621       // Ignore these because the newly token factored chain should not refer to
   2622       // the old nodes.
   2623       unsigned NumChains = MatcherTable[MatcherIndex++];
   2624       assert(NumChains != 0 && "Can't TF zero chains");
   2625 
   2626       assert(ChainNodesMatched.empty() &&
   2627              "Should only have one EmitMergeInputChains per match");
   2628 
   2629       // Read all of the chained nodes.
   2630       for (unsigned i = 0; i != NumChains; ++i) {
   2631         unsigned RecNo = MatcherTable[MatcherIndex++];
   2632         assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2633         ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
   2634 
   2635         // FIXME: What if other value results of the node have uses not matched
   2636         // by this pattern?
   2637         if (ChainNodesMatched.back() != NodeToMatch &&
   2638             !RecordedNodes[RecNo].first.hasOneUse()) {
   2639           ChainNodesMatched.clear();
   2640           break;
   2641         }
   2642       }
   2643 
   2644       // If the inner loop broke out, the match fails.
   2645       if (ChainNodesMatched.empty())
   2646         break;
   2647 
   2648       // Merge the input chains if they are not intra-pattern references.
   2649       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
   2650 
   2651       if (InputChain.getNode() == 0)
   2652         break;  // Failed to merge.
   2653 
   2654       continue;
   2655     }
   2656 
   2657     case OPC_EmitCopyToReg: {
   2658       unsigned RecNo = MatcherTable[MatcherIndex++];
   2659       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2660       unsigned DestPhysReg = MatcherTable[MatcherIndex++];
   2661 
   2662       if (InputChain.getNode() == 0)
   2663         InputChain = CurDAG->getEntryNode();
   2664 
   2665       InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
   2666                                         DestPhysReg, RecordedNodes[RecNo].first,
   2667                                         InputGlue);
   2668 
   2669       InputGlue = InputChain.getValue(1);
   2670       continue;
   2671     }
   2672 
   2673     case OPC_EmitNodeXForm: {
   2674       unsigned XFormNo = MatcherTable[MatcherIndex++];
   2675       unsigned RecNo = MatcherTable[MatcherIndex++];
   2676       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2677       SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
   2678       RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
   2679       continue;
   2680     }
   2681 
   2682     case OPC_EmitNode:
   2683     case OPC_MorphNodeTo: {
   2684       uint16_t TargetOpc = MatcherTable[MatcherIndex++];
   2685       TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
   2686       unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
   2687       // Get the result VT list.
   2688       unsigned NumVTs = MatcherTable[MatcherIndex++];
   2689       SmallVector<EVT, 4> VTs;
   2690       for (unsigned i = 0; i != NumVTs; ++i) {
   2691         MVT::SimpleValueType VT =
   2692           (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2693         if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
   2694         VTs.push_back(VT);
   2695       }
   2696 
   2697       if (EmitNodeInfo & OPFL_Chain)
   2698         VTs.push_back(MVT::Other);
   2699       if (EmitNodeInfo & OPFL_GlueOutput)
   2700         VTs.push_back(MVT::Glue);
   2701 
   2702       // This is hot code, so optimize the two most common cases of 1 and 2
   2703       // results.
   2704       SDVTList VTList;
   2705       if (VTs.size() == 1)
   2706         VTList = CurDAG->getVTList(VTs[0]);
   2707       else if (VTs.size() == 2)
   2708         VTList = CurDAG->getVTList(VTs[0], VTs[1]);
   2709       else
   2710         VTList = CurDAG->getVTList(VTs.data(), VTs.size());
   2711 
   2712       // Get the operand list.
   2713       unsigned NumOps = MatcherTable[MatcherIndex++];
   2714       SmallVector<SDValue, 8> Ops;
   2715       for (unsigned i = 0; i != NumOps; ++i) {
   2716         unsigned RecNo = MatcherTable[MatcherIndex++];
   2717         if (RecNo & 128)
   2718           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
   2719 
   2720         assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
   2721         Ops.push_back(RecordedNodes[RecNo].first);
   2722       }
   2723 
   2724       // If there are variadic operands to add, handle them now.
   2725       if (EmitNodeInfo & OPFL_VariadicInfo) {
   2726         // Determine the start index to copy from.
   2727         unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
   2728         FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
   2729         assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
   2730                "Invalid variadic node");
   2731         // Copy all of the variadic operands, not including a potential glue
   2732         // input.
   2733         for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
   2734              i != e; ++i) {
   2735           SDValue V = NodeToMatch->getOperand(i);
   2736           if (V.getValueType() == MVT::Glue) break;
   2737           Ops.push_back(V);
   2738         }
   2739       }
   2740 
   2741       // If this has chain/glue inputs, add them.
   2742       if (EmitNodeInfo & OPFL_Chain)
   2743         Ops.push_back(InputChain);
   2744       if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
   2745         Ops.push_back(InputGlue);
   2746 
   2747       // Create the node.
   2748       SDNode *Res = 0;
   2749       if (Opcode != OPC_MorphNodeTo) {
   2750         // If this is a normal EmitNode command, just create the new node and
   2751         // add the results to the RecordedNodes list.
   2752         Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
   2753                                      VTList, Ops.data(), Ops.size());
   2754 
   2755         // Add all the non-glue/non-chain results to the RecordedNodes list.
   2756         for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
   2757           if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
   2758           RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
   2759                                                              (SDNode*) 0));
   2760         }
   2761 
   2762       } else {
   2763         Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
   2764                         EmitNodeInfo);
   2765       }
   2766 
   2767       // If the node had chain/glue results, update our notion of the current
   2768       // chain and glue.
   2769       if (EmitNodeInfo & OPFL_GlueOutput) {
   2770         InputGlue = SDValue(Res, VTs.size()-1);
   2771         if (EmitNodeInfo & OPFL_Chain)
   2772           InputChain = SDValue(Res, VTs.size()-2);
   2773       } else if (EmitNodeInfo & OPFL_Chain)
   2774         InputChain = SDValue(Res, VTs.size()-1);
   2775 
   2776       // If the OPFL_MemRefs glue is set on this node, slap all of the
   2777       // accumulated memrefs onto it.
   2778       //
   2779       // FIXME: This is vastly incorrect for patterns with multiple outputs
   2780       // instructions that access memory and for ComplexPatterns that match
   2781       // loads.
   2782       if (EmitNodeInfo & OPFL_MemRefs) {
   2783         // Only attach load or store memory operands if the generated
   2784         // instruction may load or store.
   2785         const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
   2786         bool mayLoad = MCID.mayLoad();
   2787         bool mayStore = MCID.mayStore();
   2788 
   2789         unsigned NumMemRefs = 0;
   2790         for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
   2791              MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
   2792           if ((*I)->isLoad()) {
   2793             if (mayLoad)
   2794               ++NumMemRefs;
   2795           } else if ((*I)->isStore()) {
   2796             if (mayStore)
   2797               ++NumMemRefs;
   2798           } else {
   2799             ++NumMemRefs;
   2800           }
   2801         }
   2802 
   2803         MachineSDNode::mmo_iterator MemRefs =
   2804           MF->allocateMemRefsArray(NumMemRefs);
   2805 
   2806         MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
   2807         for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
   2808              MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
   2809           if ((*I)->isLoad()) {
   2810             if (mayLoad)
   2811               *MemRefsPos++ = *I;
   2812           } else if ((*I)->isStore()) {
   2813             if (mayStore)
   2814               *MemRefsPos++ = *I;
   2815           } else {
   2816             *MemRefsPos++ = *I;
   2817           }
   2818         }
   2819 
   2820         cast<MachineSDNode>(Res)
   2821           ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
   2822       }
   2823 
   2824       DEBUG(errs() << "  "
   2825                    << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
   2826                    << " node: "; Res->dump(CurDAG); errs() << "\n");
   2827 
   2828       // If this was a MorphNodeTo then we're completely done!
   2829       if (Opcode == OPC_MorphNodeTo) {
   2830         // Update chain and glue uses.
   2831         UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
   2832                             InputGlue, GlueResultNodesMatched, true);
   2833         return Res;
   2834       }
   2835 
   2836       continue;
   2837     }
   2838 
   2839     case OPC_MarkGlueResults: {
   2840       unsigned NumNodes = MatcherTable[MatcherIndex++];
   2841 
   2842       // Read and remember all the glue-result nodes.
   2843       for (unsigned i = 0; i != NumNodes; ++i) {
   2844         unsigned RecNo = MatcherTable[MatcherIndex++];
   2845         if (RecNo & 128)
   2846           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
   2847 
   2848         assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2849         GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
   2850       }
   2851       continue;
   2852     }
   2853 
   2854     case OPC_CompleteMatch: {
   2855       // The match has been completed, and any new nodes (if any) have been
   2856       // created.  Patch up references to the matched dag to use the newly
   2857       // created nodes.
   2858       unsigned NumResults = MatcherTable[MatcherIndex++];
   2859 
   2860       for (unsigned i = 0; i != NumResults; ++i) {
   2861         unsigned ResSlot = MatcherTable[MatcherIndex++];
   2862         if (ResSlot & 128)
   2863           ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
   2864 
   2865         assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
   2866         SDValue Res = RecordedNodes[ResSlot].first;
   2867 
   2868         assert(i < NodeToMatch->getNumValues() &&
   2869                NodeToMatch->getValueType(i) != MVT::Other &&
   2870                NodeToMatch->getValueType(i) != MVT::Glue &&
   2871                "Invalid number of results to complete!");
   2872         assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
   2873                 NodeToMatch->getValueType(i) == MVT::iPTR ||
   2874                 Res.getValueType() == MVT::iPTR ||
   2875                 NodeToMatch->getValueType(i).getSizeInBits() ==
   2876                     Res.getValueType().getSizeInBits()) &&
   2877                "invalid replacement");
   2878         CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
   2879       }
   2880 
   2881       // If the root node defines glue, add it to the glue nodes to update list.
   2882       if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
   2883         GlueResultNodesMatched.push_back(NodeToMatch);
   2884 
   2885       // Update chain and glue uses.
   2886       UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
   2887                           InputGlue, GlueResultNodesMatched, false);
   2888 
   2889       assert(NodeToMatch->use_empty() &&
   2890              "Didn't replace all uses of the node?");
   2891 
   2892       // FIXME: We just return here, which interacts correctly with SelectRoot
   2893       // above.  We should fix this to not return an SDNode* anymore.
   2894       return 0;
   2895     }
   2896     }
   2897 
   2898     // If the code reached this point, then the match failed.  See if there is
   2899     // another child to try in the current 'Scope', otherwise pop it until we
   2900     // find a case to check.
   2901     DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
   2902     ++NumDAGIselRetries;
   2903     while (1) {
   2904       if (MatchScopes.empty()) {
   2905         CannotYetSelect(NodeToMatch);
   2906         return 0;
   2907       }
   2908 
   2909       // Restore the interpreter state back to the point where the scope was
   2910       // formed.
   2911       MatchScope &LastScope = MatchScopes.back();
   2912       RecordedNodes.resize(LastScope.NumRecordedNodes);
   2913       NodeStack.clear();
   2914       NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
   2915       N = NodeStack.back();
   2916 
   2917       if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
   2918         MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
   2919       MatcherIndex = LastScope.FailIndex;
   2920 
   2921       DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
   2922 
   2923       InputChain = LastScope.InputChain;
   2924       InputGlue = LastScope.InputGlue;
   2925       if (!LastScope.HasChainNodesMatched)
   2926         ChainNodesMatched.clear();
   2927       if (!LastScope.HasGlueResultNodesMatched)
   2928         GlueResultNodesMatched.clear();
   2929 
   2930       // Check to see what the offset is at the new MatcherIndex.  If it is zero
   2931       // we have reached the end of this scope, otherwise we have another child
   2932       // in the current scope to try.
   2933       unsigned NumToSkip = MatcherTable[MatcherIndex++];
   2934       if (NumToSkip & 128)
   2935         NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
   2936 
   2937       // If we have another child in this scope to match, update FailIndex and
   2938       // try it.
   2939       if (NumToSkip != 0) {
   2940         LastScope.FailIndex = MatcherIndex+NumToSkip;
   2941         break;
   2942       }
   2943 
   2944       // End of this scope, pop it and try the next child in the containing
   2945       // scope.
   2946       MatchScopes.pop_back();
   2947     }
   2948   }
   2949 }
   2950 
   2951 
   2952 
   2953 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
   2954   std::string msg;
   2955   raw_string_ostream Msg(msg);
   2956   Msg << "Cannot select: ";
   2957 
   2958   if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
   2959       N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
   2960       N->getOpcode() != ISD::INTRINSIC_VOID) {
   2961     N->printrFull(Msg, CurDAG);
   2962   } else {
   2963     bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
   2964     unsigned iid =
   2965       cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
   2966     if (iid < Intrinsic::num_intrinsics)
   2967       Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
   2968     else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
   2969       Msg << "target intrinsic %" << TII->getName(iid);
   2970     else
   2971       Msg << "unknown intrinsic #" << iid;
   2972   }
   2973   report_fatal_error(Msg.str());
   2974 }
   2975 
   2976 char SelectionDAGISel::ID = 0;
   2977