Home | History | Annotate | Download | only in CodeGen
      1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass eliminates machine instruction PHI nodes by inserting copy
     11 // instructions.  This destroys SSA information, but is the desired input for
     12 // some register allocators.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "phielim"
     17 #include "PHIEliminationUtils.h"
     18 #include "llvm/CodeGen/LiveVariables.h"
     19 #include "llvm/CodeGen/Passes.h"
     20 #include "llvm/CodeGen/MachineDominators.h"
     21 #include "llvm/CodeGen/MachineInstr.h"
     22 #include "llvm/CodeGen/MachineInstrBuilder.h"
     23 #include "llvm/CodeGen/MachineLoopInfo.h"
     24 #include "llvm/CodeGen/MachineRegisterInfo.h"
     25 #include "llvm/Target/TargetInstrInfo.h"
     26 #include "llvm/Function.h"
     27 #include "llvm/Target/TargetMachine.h"
     28 #include "llvm/ADT/SmallPtrSet.h"
     29 #include "llvm/ADT/STLExtras.h"
     30 #include "llvm/ADT/Statistic.h"
     31 #include "llvm/Support/CommandLine.h"
     32 #include "llvm/Support/Compiler.h"
     33 #include "llvm/Support/Debug.h"
     34 #include <algorithm>
     35 using namespace llvm;
     36 
     37 static cl::opt<bool>
     38 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
     39                      cl::Hidden, cl::desc("Disable critical edge splitting "
     40                                           "during PHI elimination"));
     41 
     42 namespace {
     43   class PHIElimination : public MachineFunctionPass {
     44     MachineRegisterInfo *MRI; // Machine register information
     45 
     46   public:
     47     static char ID; // Pass identification, replacement for typeid
     48     PHIElimination() : MachineFunctionPass(ID) {
     49       initializePHIEliminationPass(*PassRegistry::getPassRegistry());
     50     }
     51 
     52     virtual bool runOnMachineFunction(MachineFunction &Fn);
     53     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
     54 
     55   private:
     56     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
     57     /// in predecessor basic blocks.
     58     ///
     59     bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
     60     void LowerAtomicPHINode(MachineBasicBlock &MBB,
     61                             MachineBasicBlock::iterator AfterPHIsIt);
     62 
     63     /// analyzePHINodes - Gather information about the PHI nodes in
     64     /// here. In particular, we want to map the number of uses of a virtual
     65     /// register which is used in a PHI node. We map that to the BB the
     66     /// vreg is coming from. This is used later to determine when the vreg
     67     /// is killed in the BB.
     68     ///
     69     void analyzePHINodes(const MachineFunction& Fn);
     70 
     71     /// Split critical edges where necessary for good coalescer performance.
     72     bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
     73                        LiveVariables &LV, MachineLoopInfo *MLI);
     74 
     75     typedef std::pair<unsigned, unsigned> BBVRegPair;
     76     typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
     77 
     78     VRegPHIUse VRegPHIUseCount;
     79 
     80     // Defs of PHI sources which are implicit_def.
     81     SmallPtrSet<MachineInstr*, 4> ImpDefs;
     82 
     83     // Map reusable lowered PHI node -> incoming join register.
     84     typedef DenseMap<MachineInstr*, unsigned,
     85                      MachineInstrExpressionTrait> LoweredPHIMap;
     86     LoweredPHIMap LoweredPHIs;
     87   };
     88 }
     89 
     90 STATISTIC(NumAtomic, "Number of atomic phis lowered");
     91 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
     92 STATISTIC(NumReused, "Number of reused lowered phis");
     93 
     94 char PHIElimination::ID = 0;
     95 char& llvm::PHIEliminationID = PHIElimination::ID;
     96 
     97 INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
     98                       "Eliminate PHI nodes for register allocation",
     99                       false, false)
    100 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
    101 INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
    102                     "Eliminate PHI nodes for register allocation", false, false)
    103 
    104 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
    105   AU.addPreserved<LiveVariables>();
    106   AU.addPreserved<MachineDominatorTree>();
    107   AU.addPreserved<MachineLoopInfo>();
    108   MachineFunctionPass::getAnalysisUsage(AU);
    109 }
    110 
    111 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
    112   MRI = &MF.getRegInfo();
    113 
    114   bool Changed = false;
    115 
    116   // This pass takes the function out of SSA form.
    117   MRI->leaveSSA();
    118 
    119   // Split critical edges to help the coalescer
    120   if (!DisableEdgeSplitting) {
    121     if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>()) {
    122       MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
    123       for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
    124         Changed |= SplitPHIEdges(MF, *I, *LV, MLI);
    125     }
    126   }
    127 
    128   // Populate VRegPHIUseCount
    129   analyzePHINodes(MF);
    130 
    131   // Eliminate PHI instructions by inserting copies into predecessor blocks.
    132   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
    133     Changed |= EliminatePHINodes(MF, *I);
    134 
    135   // Remove dead IMPLICIT_DEF instructions.
    136   for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
    137          E = ImpDefs.end(); I != E; ++I) {
    138     MachineInstr *DefMI = *I;
    139     unsigned DefReg = DefMI->getOperand(0).getReg();
    140     if (MRI->use_nodbg_empty(DefReg))
    141       DefMI->eraseFromParent();
    142   }
    143 
    144   // Clean up the lowered PHI instructions.
    145   for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
    146        I != E; ++I)
    147     MF.DeleteMachineInstr(I->first);
    148 
    149   LoweredPHIs.clear();
    150   ImpDefs.clear();
    151   VRegPHIUseCount.clear();
    152 
    153   return Changed;
    154 }
    155 
    156 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
    157 /// predecessor basic blocks.
    158 ///
    159 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
    160                                              MachineBasicBlock &MBB) {
    161   if (MBB.empty() || !MBB.front().isPHI())
    162     return false;   // Quick exit for basic blocks without PHIs.
    163 
    164   // Get an iterator to the first instruction after the last PHI node (this may
    165   // also be the end of the basic block).
    166   MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin());
    167 
    168   while (MBB.front().isPHI())
    169     LowerAtomicPHINode(MBB, AfterPHIsIt);
    170 
    171   return true;
    172 }
    173 
    174 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
    175 /// are implicit_def's.
    176 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
    177                                          const MachineRegisterInfo *MRI) {
    178   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
    179     unsigned SrcReg = MPhi->getOperand(i).getReg();
    180     const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
    181     if (!DefMI || !DefMI->isImplicitDef())
    182       return false;
    183   }
    184   return true;
    185 }
    186 
    187 
    188 
    189 /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
    190 /// under the assuption that it needs to be lowered in a way that supports
    191 /// atomic execution of PHIs.  This lowering method is always correct all of the
    192 /// time.
    193 ///
    194 void PHIElimination::LowerAtomicPHINode(
    195                                       MachineBasicBlock &MBB,
    196                                       MachineBasicBlock::iterator AfterPHIsIt) {
    197   ++NumAtomic;
    198   // Unlink the PHI node from the basic block, but don't delete the PHI yet.
    199   MachineInstr *MPhi = MBB.remove(MBB.begin());
    200 
    201   unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
    202   unsigned DestReg = MPhi->getOperand(0).getReg();
    203   assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
    204   bool isDead = MPhi->getOperand(0).isDead();
    205 
    206   // Create a new register for the incoming PHI arguments.
    207   MachineFunction &MF = *MBB.getParent();
    208   unsigned IncomingReg = 0;
    209   bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
    210 
    211   // Insert a register to register copy at the top of the current block (but
    212   // after any remaining phi nodes) which copies the new incoming register
    213   // into the phi node destination.
    214   const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
    215   if (isSourceDefinedByImplicitDef(MPhi, MRI))
    216     // If all sources of a PHI node are implicit_def, just emit an
    217     // implicit_def instead of a copy.
    218     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
    219             TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
    220   else {
    221     // Can we reuse an earlier PHI node? This only happens for critical edges,
    222     // typically those created by tail duplication.
    223     unsigned &entry = LoweredPHIs[MPhi];
    224     if (entry) {
    225       // An identical PHI node was already lowered. Reuse the incoming register.
    226       IncomingReg = entry;
    227       reusedIncoming = true;
    228       ++NumReused;
    229       DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
    230     } else {
    231       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
    232       entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
    233     }
    234     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
    235             TII->get(TargetOpcode::COPY), DestReg)
    236       .addReg(IncomingReg);
    237   }
    238 
    239   // Update live variable information if there is any.
    240   LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
    241   if (LV) {
    242     MachineInstr *PHICopy = prior(AfterPHIsIt);
    243 
    244     if (IncomingReg) {
    245       LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
    246 
    247       // Increment use count of the newly created virtual register.
    248       LV->setPHIJoin(IncomingReg);
    249 
    250       // When we are reusing the incoming register, it may already have been
    251       // killed in this block. The old kill will also have been inserted at
    252       // AfterPHIsIt, so it appears before the current PHICopy.
    253       if (reusedIncoming)
    254         if (MachineInstr *OldKill = VI.findKill(&MBB)) {
    255           DEBUG(dbgs() << "Remove old kill from " << *OldKill);
    256           LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
    257           DEBUG(MBB.dump());
    258         }
    259 
    260       // Add information to LiveVariables to know that the incoming value is
    261       // killed.  Note that because the value is defined in several places (once
    262       // each for each incoming block), the "def" block and instruction fields
    263       // for the VarInfo is not filled in.
    264       LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
    265     }
    266 
    267     // Since we are going to be deleting the PHI node, if it is the last use of
    268     // any registers, or if the value itself is dead, we need to move this
    269     // information over to the new copy we just inserted.
    270     LV->removeVirtualRegistersKilled(MPhi);
    271 
    272     // If the result is dead, update LV.
    273     if (isDead) {
    274       LV->addVirtualRegisterDead(DestReg, PHICopy);
    275       LV->removeVirtualRegisterDead(DestReg, MPhi);
    276     }
    277   }
    278 
    279   // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
    280   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
    281     --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
    282                                  MPhi->getOperand(i).getReg())];
    283 
    284   // Now loop over all of the incoming arguments, changing them to copy into the
    285   // IncomingReg register in the corresponding predecessor basic block.
    286   SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
    287   for (int i = NumSrcs - 1; i >= 0; --i) {
    288     unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
    289     unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
    290 
    291     assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
    292            "Machine PHI Operands must all be virtual registers!");
    293 
    294     // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
    295     // path the PHI.
    296     MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
    297 
    298     // If source is defined by an implicit def, there is no need to insert a
    299     // copy.
    300     MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
    301     if (DefMI->isImplicitDef()) {
    302       ImpDefs.insert(DefMI);
    303       continue;
    304     }
    305 
    306     // Check to make sure we haven't already emitted the copy for this block.
    307     // This can happen because PHI nodes may have multiple entries for the same
    308     // basic block.
    309     if (!MBBsInsertedInto.insert(&opBlock))
    310       continue;  // If the copy has already been emitted, we're done.
    311 
    312     // Find a safe location to insert the copy, this may be the first terminator
    313     // in the block (or end()).
    314     MachineBasicBlock::iterator InsertPos =
    315       findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
    316 
    317     // Insert the copy.
    318     if (!reusedIncoming && IncomingReg)
    319       BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
    320               TII->get(TargetOpcode::COPY), IncomingReg).addReg(SrcReg, 0, SrcSubReg);
    321 
    322     // Now update live variable information if we have it.  Otherwise we're done
    323     if (!LV) continue;
    324 
    325     // We want to be able to insert a kill of the register if this PHI (aka, the
    326     // copy we just inserted) is the last use of the source value.  Live
    327     // variable analysis conservatively handles this by saying that the value is
    328     // live until the end of the block the PHI entry lives in.  If the value
    329     // really is dead at the PHI copy, there will be no successor blocks which
    330     // have the value live-in.
    331 
    332     // Also check to see if this register is in use by another PHI node which
    333     // has not yet been eliminated.  If so, it will be killed at an appropriate
    334     // point later.
    335 
    336     // Is it used by any PHI instructions in this block?
    337     bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
    338 
    339     // Okay, if we now know that the value is not live out of the block, we can
    340     // add a kill marker in this block saying that it kills the incoming value!
    341     if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
    342       // In our final twist, we have to decide which instruction kills the
    343       // register.  In most cases this is the copy, however, the first
    344       // terminator instruction at the end of the block may also use the value.
    345       // In this case, we should mark *it* as being the killing block, not the
    346       // copy.
    347       MachineBasicBlock::iterator KillInst;
    348       MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
    349       if (Term != opBlock.end() && Term->readsRegister(SrcReg)) {
    350         KillInst = Term;
    351 
    352         // Check that no other terminators use values.
    353 #ifndef NDEBUG
    354         for (MachineBasicBlock::iterator TI = llvm::next(Term);
    355              TI != opBlock.end(); ++TI) {
    356           if (TI->isDebugValue())
    357             continue;
    358           assert(!TI->readsRegister(SrcReg) &&
    359                  "Terminator instructions cannot use virtual registers unless"
    360                  "they are the first terminator in a block!");
    361         }
    362 #endif
    363       } else if (reusedIncoming || !IncomingReg) {
    364         // We may have to rewind a bit if we didn't insert a copy this time.
    365         KillInst = Term;
    366         while (KillInst != opBlock.begin()) {
    367           --KillInst;
    368           if (KillInst->isDebugValue())
    369             continue;
    370           if (KillInst->readsRegister(SrcReg))
    371             break;
    372         }
    373       } else {
    374         // We just inserted this copy.
    375         KillInst = prior(InsertPos);
    376       }
    377       assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
    378 
    379       // Finally, mark it killed.
    380       LV->addVirtualRegisterKilled(SrcReg, KillInst);
    381 
    382       // This vreg no longer lives all of the way through opBlock.
    383       unsigned opBlockNum = opBlock.getNumber();
    384       LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
    385     }
    386   }
    387 
    388   // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
    389   if (reusedIncoming || !IncomingReg)
    390     MF.DeleteMachineInstr(MPhi);
    391 }
    392 
    393 /// analyzePHINodes - Gather information about the PHI nodes in here. In
    394 /// particular, we want to map the number of uses of a virtual register which is
    395 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
    396 /// used later to determine when the vreg is killed in the BB.
    397 ///
    398 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
    399   for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
    400        I != E; ++I)
    401     for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
    402          BBI != BBE && BBI->isPHI(); ++BBI)
    403       for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
    404         ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
    405                                      BBI->getOperand(i).getReg())];
    406 }
    407 
    408 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
    409                                    MachineBasicBlock &MBB,
    410                                    LiveVariables &LV,
    411                                    MachineLoopInfo *MLI) {
    412   if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
    413     return false;   // Quick exit for basic blocks without PHIs.
    414 
    415   bool Changed = false;
    416   for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
    417        BBI != BBE && BBI->isPHI(); ++BBI) {
    418     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
    419       unsigned Reg = BBI->getOperand(i).getReg();
    420       MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
    421       // We break edges when registers are live out from the predecessor block
    422       // (not considering PHI nodes). If the register is live in to this block
    423       // anyway, we would gain nothing from splitting.
    424       // Avoid splitting backedges of loops. It would introduce small
    425       // out-of-line blocks into the loop which is very bad for code placement.
    426       if (PreMBB != &MBB &&
    427           !LV.isLiveIn(Reg, MBB) && LV.isLiveOut(Reg, *PreMBB)) {
    428         if (!MLI ||
    429             !(MLI->getLoopFor(PreMBB) == MLI->getLoopFor(&MBB) &&
    430               MLI->isLoopHeader(&MBB))) {
    431           if (PreMBB->SplitCriticalEdge(&MBB, this)) {
    432             Changed = true;
    433             ++NumCriticalEdgesSplit;
    434           }
    435         }
    436       }
    437     }
    438   }
    439   return Changed;
    440 }
    441