Home | History | Annotate | Download | only in Scalar
      1 //===- LoopRotation.cpp - Loop Rotation Pass ------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements Loop Rotation Pass.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "loop-rotate"
     15 #include "llvm/Transforms/Scalar.h"
     16 #include "llvm/Function.h"
     17 #include "llvm/IntrinsicInst.h"
     18 #include "llvm/Analysis/CodeMetrics.h"
     19 #include "llvm/Analysis/LoopPass.h"
     20 #include "llvm/Analysis/InstructionSimplify.h"
     21 #include "llvm/Analysis/ScalarEvolution.h"
     22 #include "llvm/Analysis/ValueTracking.h"
     23 #include "llvm/Transforms/Utils/Local.h"
     24 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     25 #include "llvm/Transforms/Utils/SSAUpdater.h"
     26 #include "llvm/Transforms/Utils/ValueMapper.h"
     27 #include "llvm/Support/Debug.h"
     28 #include "llvm/ADT/Statistic.h"
     29 using namespace llvm;
     30 
     31 #define MAX_HEADER_SIZE 16
     32 
     33 STATISTIC(NumRotated, "Number of loops rotated");
     34 namespace {
     35 
     36   class LoopRotate : public LoopPass {
     37   public:
     38     static char ID; // Pass ID, replacement for typeid
     39     LoopRotate() : LoopPass(ID) {
     40       initializeLoopRotatePass(*PassRegistry::getPassRegistry());
     41     }
     42 
     43     // LCSSA form makes instruction renaming easier.
     44     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     45       AU.addPreserved<DominatorTree>();
     46       AU.addRequired<LoopInfo>();
     47       AU.addPreserved<LoopInfo>();
     48       AU.addRequiredID(LoopSimplifyID);
     49       AU.addPreservedID(LoopSimplifyID);
     50       AU.addRequiredID(LCSSAID);
     51       AU.addPreservedID(LCSSAID);
     52       AU.addPreserved<ScalarEvolution>();
     53     }
     54 
     55     bool runOnLoop(Loop *L, LPPassManager &LPM);
     56     void simplifyLoopLatch(Loop *L);
     57     bool rotateLoop(Loop *L);
     58 
     59   private:
     60     LoopInfo *LI;
     61   };
     62 }
     63 
     64 char LoopRotate::ID = 0;
     65 INITIALIZE_PASS_BEGIN(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
     66 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
     67 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
     68 INITIALIZE_PASS_DEPENDENCY(LCSSA)
     69 INITIALIZE_PASS_END(LoopRotate, "loop-rotate", "Rotate Loops", false, false)
     70 
     71 Pass *llvm::createLoopRotatePass() { return new LoopRotate(); }
     72 
     73 /// Rotate Loop L as many times as possible. Return true if
     74 /// the loop is rotated at least once.
     75 bool LoopRotate::runOnLoop(Loop *L, LPPassManager &LPM) {
     76   LI = &getAnalysis<LoopInfo>();
     77 
     78   // Simplify the loop latch before attempting to rotate the header
     79   // upward. Rotation may not be needed if the loop tail can be folded into the
     80   // loop exit.
     81   simplifyLoopLatch(L);
     82 
     83   // One loop can be rotated multiple times.
     84   bool MadeChange = false;
     85   while (rotateLoop(L))
     86     MadeChange = true;
     87 
     88   return MadeChange;
     89 }
     90 
     91 /// RewriteUsesOfClonedInstructions - We just cloned the instructions from the
     92 /// old header into the preheader.  If there were uses of the values produced by
     93 /// these instruction that were outside of the loop, we have to insert PHI nodes
     94 /// to merge the two values.  Do this now.
     95 static void RewriteUsesOfClonedInstructions(BasicBlock *OrigHeader,
     96                                             BasicBlock *OrigPreheader,
     97                                             ValueToValueMapTy &ValueMap) {
     98   // Remove PHI node entries that are no longer live.
     99   BasicBlock::iterator I, E = OrigHeader->end();
    100   for (I = OrigHeader->begin(); PHINode *PN = dyn_cast<PHINode>(I); ++I)
    101     PN->removeIncomingValue(PN->getBasicBlockIndex(OrigPreheader));
    102 
    103   // Now fix up users of the instructions in OrigHeader, inserting PHI nodes
    104   // as necessary.
    105   SSAUpdater SSA;
    106   for (I = OrigHeader->begin(); I != E; ++I) {
    107     Value *OrigHeaderVal = I;
    108 
    109     // If there are no uses of the value (e.g. because it returns void), there
    110     // is nothing to rewrite.
    111     if (OrigHeaderVal->use_empty())
    112       continue;
    113 
    114     Value *OrigPreHeaderVal = ValueMap[OrigHeaderVal];
    115 
    116     // The value now exits in two versions: the initial value in the preheader
    117     // and the loop "next" value in the original header.
    118     SSA.Initialize(OrigHeaderVal->getType(), OrigHeaderVal->getName());
    119     SSA.AddAvailableValue(OrigHeader, OrigHeaderVal);
    120     SSA.AddAvailableValue(OrigPreheader, OrigPreHeaderVal);
    121 
    122     // Visit each use of the OrigHeader instruction.
    123     for (Value::use_iterator UI = OrigHeaderVal->use_begin(),
    124          UE = OrigHeaderVal->use_end(); UI != UE; ) {
    125       // Grab the use before incrementing the iterator.
    126       Use &U = UI.getUse();
    127 
    128       // Increment the iterator before removing the use from the list.
    129       ++UI;
    130 
    131       // SSAUpdater can't handle a non-PHI use in the same block as an
    132       // earlier def. We can easily handle those cases manually.
    133       Instruction *UserInst = cast<Instruction>(U.getUser());
    134       if (!isa<PHINode>(UserInst)) {
    135         BasicBlock *UserBB = UserInst->getParent();
    136 
    137         // The original users in the OrigHeader are already using the
    138         // original definitions.
    139         if (UserBB == OrigHeader)
    140           continue;
    141 
    142         // Users in the OrigPreHeader need to use the value to which the
    143         // original definitions are mapped.
    144         if (UserBB == OrigPreheader) {
    145           U = OrigPreHeaderVal;
    146           continue;
    147         }
    148       }
    149 
    150       // Anything else can be handled by SSAUpdater.
    151       SSA.RewriteUse(U);
    152     }
    153   }
    154 }
    155 
    156 /// Determine whether the instructions in this range my be safely and cheaply
    157 /// speculated. This is not an important enough situation to develop complex
    158 /// heuristics. We handle a single arithmetic instruction along with any type
    159 /// conversions.
    160 static bool shouldSpeculateInstrs(BasicBlock::iterator Begin,
    161                                   BasicBlock::iterator End) {
    162   bool seenIncrement = false;
    163   for (BasicBlock::iterator I = Begin; I != End; ++I) {
    164 
    165     if (!isSafeToSpeculativelyExecute(I))
    166       return false;
    167 
    168     if (isa<DbgInfoIntrinsic>(I))
    169       continue;
    170 
    171     switch (I->getOpcode()) {
    172     default:
    173       return false;
    174     case Instruction::GetElementPtr:
    175       // GEPs are cheap if all indices are constant.
    176       if (!cast<GEPOperator>(I)->hasAllConstantIndices())
    177         return false;
    178       // fall-thru to increment case
    179     case Instruction::Add:
    180     case Instruction::Sub:
    181     case Instruction::And:
    182     case Instruction::Or:
    183     case Instruction::Xor:
    184     case Instruction::Shl:
    185     case Instruction::LShr:
    186     case Instruction::AShr:
    187       if (seenIncrement)
    188         return false;
    189       seenIncrement = true;
    190       break;
    191     case Instruction::Trunc:
    192     case Instruction::ZExt:
    193     case Instruction::SExt:
    194       // ignore type conversions
    195       break;
    196     }
    197   }
    198   return true;
    199 }
    200 
    201 /// Fold the loop tail into the loop exit by speculating the loop tail
    202 /// instructions. Typically, this is a single post-increment. In the case of a
    203 /// simple 2-block loop, hoisting the increment can be much better than
    204 /// duplicating the entire loop header. In the cast of loops with early exits,
    205 /// rotation will not work anyway, but simplifyLoopLatch will put the loop in
    206 /// canonical form so downstream passes can handle it.
    207 ///
    208 /// I don't believe this invalidates SCEV.
    209 void LoopRotate::simplifyLoopLatch(Loop *L) {
    210   BasicBlock *Latch = L->getLoopLatch();
    211   if (!Latch || Latch->hasAddressTaken())
    212     return;
    213 
    214   BranchInst *Jmp = dyn_cast<BranchInst>(Latch->getTerminator());
    215   if (!Jmp || !Jmp->isUnconditional())
    216     return;
    217 
    218   BasicBlock *LastExit = Latch->getSinglePredecessor();
    219   if (!LastExit || !L->isLoopExiting(LastExit))
    220     return;
    221 
    222   BranchInst *BI = dyn_cast<BranchInst>(LastExit->getTerminator());
    223   if (!BI)
    224     return;
    225 
    226   if (!shouldSpeculateInstrs(Latch->begin(), Jmp))
    227     return;
    228 
    229   DEBUG(dbgs() << "Folding loop latch " << Latch->getName() << " into "
    230         << LastExit->getName() << "\n");
    231 
    232   // Hoist the instructions from Latch into LastExit.
    233   LastExit->getInstList().splice(BI, Latch->getInstList(), Latch->begin(), Jmp);
    234 
    235   unsigned FallThruPath = BI->getSuccessor(0) == Latch ? 0 : 1;
    236   BasicBlock *Header = Jmp->getSuccessor(0);
    237   assert(Header == L->getHeader() && "expected a backward branch");
    238 
    239   // Remove Latch from the CFG so that LastExit becomes the new Latch.
    240   BI->setSuccessor(FallThruPath, Header);
    241   Latch->replaceSuccessorsPhiUsesWith(LastExit);
    242   Jmp->eraseFromParent();
    243 
    244   // Nuke the Latch block.
    245   assert(Latch->empty() && "unable to evacuate Latch");
    246   LI->removeBlock(Latch);
    247   if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>())
    248     DT->eraseNode(Latch);
    249   Latch->eraseFromParent();
    250 }
    251 
    252 /// Rotate loop LP. Return true if the loop is rotated.
    253 bool LoopRotate::rotateLoop(Loop *L) {
    254   // If the loop has only one block then there is not much to rotate.
    255   if (L->getBlocks().size() == 1)
    256     return false;
    257 
    258   BasicBlock *OrigHeader = L->getHeader();
    259 
    260   BranchInst *BI = dyn_cast<BranchInst>(OrigHeader->getTerminator());
    261   if (BI == 0 || BI->isUnconditional())
    262     return false;
    263 
    264   // If the loop header is not one of the loop exiting blocks then
    265   // either this loop is already rotated or it is not
    266   // suitable for loop rotation transformations.
    267   if (!L->isLoopExiting(OrigHeader))
    268     return false;
    269 
    270   // Updating PHInodes in loops with multiple exits adds complexity.
    271   // Keep it simple, and restrict loop rotation to loops with one exit only.
    272   // In future, lift this restriction and support for multiple exits if
    273   // required.
    274   SmallVector<BasicBlock*, 8> ExitBlocks;
    275   L->getExitBlocks(ExitBlocks);
    276   if (ExitBlocks.size() > 1)
    277     return false;
    278 
    279   // Check size of original header and reject loop if it is very big.
    280   {
    281     CodeMetrics Metrics;
    282     Metrics.analyzeBasicBlock(OrigHeader);
    283     if (Metrics.NumInsts > MAX_HEADER_SIZE)
    284       return false;
    285   }
    286 
    287   // Now, this loop is suitable for rotation.
    288   BasicBlock *OrigPreheader = L->getLoopPreheader();
    289   BasicBlock *OrigLatch = L->getLoopLatch();
    290 
    291   // If the loop could not be converted to canonical form, it must have an
    292   // indirectbr in it, just give up.
    293   if (OrigPreheader == 0 || OrigLatch == 0)
    294     return false;
    295 
    296   // Anything ScalarEvolution may know about this loop or the PHI nodes
    297   // in its header will soon be invalidated.
    298   if (ScalarEvolution *SE = getAnalysisIfAvailable<ScalarEvolution>())
    299     SE->forgetLoop(L);
    300 
    301   // Find new Loop header. NewHeader is a Header's one and only successor
    302   // that is inside loop.  Header's other successor is outside the
    303   // loop.  Otherwise loop is not suitable for rotation.
    304   BasicBlock *Exit = BI->getSuccessor(0);
    305   BasicBlock *NewHeader = BI->getSuccessor(1);
    306   if (L->contains(Exit))
    307     std::swap(Exit, NewHeader);
    308   assert(NewHeader && "Unable to determine new loop header");
    309   assert(L->contains(NewHeader) && !L->contains(Exit) &&
    310          "Unable to determine loop header and exit blocks");
    311 
    312   // This code assumes that the new header has exactly one predecessor.
    313   // Remove any single-entry PHI nodes in it.
    314   assert(NewHeader->getSinglePredecessor() &&
    315          "New header doesn't have one pred!");
    316   FoldSingleEntryPHINodes(NewHeader);
    317 
    318   // Begin by walking OrigHeader and populating ValueMap with an entry for
    319   // each Instruction.
    320   BasicBlock::iterator I = OrigHeader->begin(), E = OrigHeader->end();
    321   ValueToValueMapTy ValueMap;
    322 
    323   // For PHI nodes, the value available in OldPreHeader is just the
    324   // incoming value from OldPreHeader.
    325   for (; PHINode *PN = dyn_cast<PHINode>(I); ++I)
    326     ValueMap[PN] = PN->getIncomingValueForBlock(OrigPreheader);
    327 
    328   // For the rest of the instructions, either hoist to the OrigPreheader if
    329   // possible or create a clone in the OldPreHeader if not.
    330   TerminatorInst *LoopEntryBranch = OrigPreheader->getTerminator();
    331   while (I != E) {
    332     Instruction *Inst = I++;
    333 
    334     // If the instruction's operands are invariant and it doesn't read or write
    335     // memory, then it is safe to hoist.  Doing this doesn't change the order of
    336     // execution in the preheader, but does prevent the instruction from
    337     // executing in each iteration of the loop.  This means it is safe to hoist
    338     // something that might trap, but isn't safe to hoist something that reads
    339     // memory (without proving that the loop doesn't write).
    340     if (L->hasLoopInvariantOperands(Inst) &&
    341         !Inst->mayReadFromMemory() && !Inst->mayWriteToMemory() &&
    342         !isa<TerminatorInst>(Inst) && !isa<DbgInfoIntrinsic>(Inst) &&
    343         !isa<AllocaInst>(Inst)) {
    344       Inst->moveBefore(LoopEntryBranch);
    345       continue;
    346     }
    347 
    348     // Otherwise, create a duplicate of the instruction.
    349     Instruction *C = Inst->clone();
    350 
    351     // Eagerly remap the operands of the instruction.
    352     RemapInstruction(C, ValueMap,
    353                      RF_NoModuleLevelChanges|RF_IgnoreMissingEntries);
    354 
    355     // With the operands remapped, see if the instruction constant folds or is
    356     // otherwise simplifyable.  This commonly occurs because the entry from PHI
    357     // nodes allows icmps and other instructions to fold.
    358     Value *V = SimplifyInstruction(C);
    359     if (V && LI->replacementPreservesLCSSAForm(C, V)) {
    360       // If so, then delete the temporary instruction and stick the folded value
    361       // in the map.
    362       delete C;
    363       ValueMap[Inst] = V;
    364     } else {
    365       // Otherwise, stick the new instruction into the new block!
    366       C->setName(Inst->getName());
    367       C->insertBefore(LoopEntryBranch);
    368       ValueMap[Inst] = C;
    369     }
    370   }
    371 
    372   // Along with all the other instructions, we just cloned OrigHeader's
    373   // terminator into OrigPreHeader. Fix up the PHI nodes in each of OrigHeader's
    374   // successors by duplicating their incoming values for OrigHeader.
    375   TerminatorInst *TI = OrigHeader->getTerminator();
    376   for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    377     for (BasicBlock::iterator BI = TI->getSuccessor(i)->begin();
    378          PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
    379       PN->addIncoming(PN->getIncomingValueForBlock(OrigHeader), OrigPreheader);
    380 
    381   // Now that OrigPreHeader has a clone of OrigHeader's terminator, remove
    382   // OrigPreHeader's old terminator (the original branch into the loop), and
    383   // remove the corresponding incoming values from the PHI nodes in OrigHeader.
    384   LoopEntryBranch->eraseFromParent();
    385 
    386   // If there were any uses of instructions in the duplicated block outside the
    387   // loop, update them, inserting PHI nodes as required
    388   RewriteUsesOfClonedInstructions(OrigHeader, OrigPreheader, ValueMap);
    389 
    390   // NewHeader is now the header of the loop.
    391   L->moveToHeader(NewHeader);
    392   assert(L->getHeader() == NewHeader && "Latch block is our new header");
    393 
    394 
    395   // At this point, we've finished our major CFG changes.  As part of cloning
    396   // the loop into the preheader we've simplified instructions and the
    397   // duplicated conditional branch may now be branching on a constant.  If it is
    398   // branching on a constant and if that constant means that we enter the loop,
    399   // then we fold away the cond branch to an uncond branch.  This simplifies the
    400   // loop in cases important for nested loops, and it also means we don't have
    401   // to split as many edges.
    402   BranchInst *PHBI = cast<BranchInst>(OrigPreheader->getTerminator());
    403   assert(PHBI->isConditional() && "Should be clone of BI condbr!");
    404   if (!isa<ConstantInt>(PHBI->getCondition()) ||
    405       PHBI->getSuccessor(cast<ConstantInt>(PHBI->getCondition())->isZero())
    406           != NewHeader) {
    407     // The conditional branch can't be folded, handle the general case.
    408     // Update DominatorTree to reflect the CFG change we just made.  Then split
    409     // edges as necessary to preserve LoopSimplify form.
    410     if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
    411       // Since OrigPreheader now has the conditional branch to Exit block, it is
    412       // the dominator of Exit.
    413       DT->changeImmediateDominator(Exit, OrigPreheader);
    414       DT->changeImmediateDominator(NewHeader, OrigPreheader);
    415 
    416       // Update OrigHeader to be dominated by the new header block.
    417       DT->changeImmediateDominator(OrigHeader, OrigLatch);
    418     }
    419 
    420     // Right now OrigPreHeader has two successors, NewHeader and ExitBlock, and
    421     // thus is not a preheader anymore.  Split the edge to form a real preheader.
    422     BasicBlock *NewPH = SplitCriticalEdge(OrigPreheader, NewHeader, this);
    423     NewPH->setName(NewHeader->getName() + ".lr.ph");
    424 
    425     // Preserve canonical loop form, which means that 'Exit' should have only one
    426     // predecessor.
    427     BasicBlock *ExitSplit = SplitCriticalEdge(L->getLoopLatch(), Exit, this);
    428     ExitSplit->moveBefore(Exit);
    429   } else {
    430     // We can fold the conditional branch in the preheader, this makes things
    431     // simpler. The first step is to remove the extra edge to the Exit block.
    432     Exit->removePredecessor(OrigPreheader, true /*preserve LCSSA*/);
    433     BranchInst *NewBI = BranchInst::Create(NewHeader, PHBI);
    434     NewBI->setDebugLoc(PHBI->getDebugLoc());
    435     PHBI->eraseFromParent();
    436 
    437     // With our CFG finalized, update DomTree if it is available.
    438     if (DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>()) {
    439       // Update OrigHeader to be dominated by the new header block.
    440       DT->changeImmediateDominator(NewHeader, OrigPreheader);
    441       DT->changeImmediateDominator(OrigHeader, OrigLatch);
    442     }
    443   }
    444 
    445   assert(L->getLoopPreheader() && "Invalid loop preheader after loop rotation");
    446   assert(L->getLoopLatch() && "Invalid loop latch after loop rotation");
    447 
    448   // Now that the CFG and DomTree are in a consistent state again, try to merge
    449   // the OrigHeader block into OrigLatch.  This will succeed if they are
    450   // connected by an unconditional branch.  This is just a cleanup so the
    451   // emitted code isn't too gross in this common case.
    452   MergeBlockIntoPredecessor(OrigHeader, this);
    453 
    454   ++NumRotated;
    455   return true;
    456 }
    457 
    458