Home | History | Annotate | Download | only in TableGen
      1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the CodeGenDAGPatterns class, which is used to read and
     11 // represent the patterns present in a .td file for instructions.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "CodeGenDAGPatterns.h"
     16 #include "llvm/TableGen/Error.h"
     17 #include "llvm/TableGen/Record.h"
     18 #include "llvm/ADT/StringExtras.h"
     19 #include "llvm/ADT/STLExtras.h"
     20 #include "llvm/ADT/Twine.h"
     21 #include "llvm/Support/Debug.h"
     22 #include "llvm/Support/ErrorHandling.h"
     23 #include <algorithm>
     24 #include <cstdio>
     25 #include <set>
     26 using namespace llvm;
     27 
     28 //===----------------------------------------------------------------------===//
     29 //  EEVT::TypeSet Implementation
     30 //===----------------------------------------------------------------------===//
     31 
     32 static inline bool isInteger(MVT::SimpleValueType VT) {
     33   return EVT(VT).isInteger();
     34 }
     35 static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
     36   return EVT(VT).isFloatingPoint();
     37 }
     38 static inline bool isVector(MVT::SimpleValueType VT) {
     39   return EVT(VT).isVector();
     40 }
     41 static inline bool isScalar(MVT::SimpleValueType VT) {
     42   return !EVT(VT).isVector();
     43 }
     44 
     45 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
     46   if (VT == MVT::iAny)
     47     EnforceInteger(TP);
     48   else if (VT == MVT::fAny)
     49     EnforceFloatingPoint(TP);
     50   else if (VT == MVT::vAny)
     51     EnforceVector(TP);
     52   else {
     53     assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
     54             VT == MVT::iPTRAny) && "Not a concrete type!");
     55     TypeVec.push_back(VT);
     56   }
     57 }
     58 
     59 
     60 EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) {
     61   assert(!VTList.empty() && "empty list?");
     62   TypeVec.append(VTList.begin(), VTList.end());
     63 
     64   if (!VTList.empty())
     65     assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
     66            VTList[0] != MVT::fAny);
     67 
     68   // Verify no duplicates.
     69   array_pod_sort(TypeVec.begin(), TypeVec.end());
     70   assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
     71 }
     72 
     73 /// FillWithPossibleTypes - Set to all legal types and return true, only valid
     74 /// on completely unknown type sets.
     75 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
     76                                           bool (*Pred)(MVT::SimpleValueType),
     77                                           const char *PredicateName) {
     78   assert(isCompletelyUnknown());
     79   const std::vector<MVT::SimpleValueType> &LegalTypes =
     80     TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
     81 
     82   for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i)
     83     if (Pred == 0 || Pred(LegalTypes[i]))
     84       TypeVec.push_back(LegalTypes[i]);
     85 
     86   // If we have nothing that matches the predicate, bail out.
     87   if (TypeVec.empty())
     88     TP.error("Type inference contradiction found, no " +
     89              std::string(PredicateName) + " types found");
     90   // No need to sort with one element.
     91   if (TypeVec.size() == 1) return true;
     92 
     93   // Remove duplicates.
     94   array_pod_sort(TypeVec.begin(), TypeVec.end());
     95   TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
     96 
     97   return true;
     98 }
     99 
    100 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an
    101 /// integer value type.
    102 bool EEVT::TypeSet::hasIntegerTypes() const {
    103   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
    104     if (isInteger(TypeVec[i]))
    105       return true;
    106   return false;
    107 }
    108 
    109 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
    110 /// a floating point value type.
    111 bool EEVT::TypeSet::hasFloatingPointTypes() const {
    112   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
    113     if (isFloatingPoint(TypeVec[i]))
    114       return true;
    115   return false;
    116 }
    117 
    118 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
    119 /// value type.
    120 bool EEVT::TypeSet::hasVectorTypes() const {
    121   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
    122     if (isVector(TypeVec[i]))
    123       return true;
    124   return false;
    125 }
    126 
    127 
    128 std::string EEVT::TypeSet::getName() const {
    129   if (TypeVec.empty()) return "<empty>";
    130 
    131   std::string Result;
    132 
    133   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
    134     std::string VTName = llvm::getEnumName(TypeVec[i]);
    135     // Strip off MVT:: prefix if present.
    136     if (VTName.substr(0,5) == "MVT::")
    137       VTName = VTName.substr(5);
    138     if (i) Result += ':';
    139     Result += VTName;
    140   }
    141 
    142   if (TypeVec.size() == 1)
    143     return Result;
    144   return "{" + Result + "}";
    145 }
    146 
    147 /// MergeInTypeInfo - This merges in type information from the specified
    148 /// argument.  If 'this' changes, it returns true.  If the two types are
    149 /// contradictory (e.g. merge f32 into i32) then this throws an exception.
    150 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
    151   if (InVT.isCompletelyUnknown() || *this == InVT)
    152     return false;
    153 
    154   if (isCompletelyUnknown()) {
    155     *this = InVT;
    156     return true;
    157   }
    158 
    159   assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns");
    160 
    161   // Handle the abstract cases, seeing if we can resolve them better.
    162   switch (TypeVec[0]) {
    163   default: break;
    164   case MVT::iPTR:
    165   case MVT::iPTRAny:
    166     if (InVT.hasIntegerTypes()) {
    167       EEVT::TypeSet InCopy(InVT);
    168       InCopy.EnforceInteger(TP);
    169       InCopy.EnforceScalar(TP);
    170 
    171       if (InCopy.isConcrete()) {
    172         // If the RHS has one integer type, upgrade iPTR to i32.
    173         TypeVec[0] = InVT.TypeVec[0];
    174         return true;
    175       }
    176 
    177       // If the input has multiple scalar integers, this doesn't add any info.
    178       if (!InCopy.isCompletelyUnknown())
    179         return false;
    180     }
    181     break;
    182   }
    183 
    184   // If the input constraint is iAny/iPTR and this is an integer type list,
    185   // remove non-integer types from the list.
    186   if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
    187       hasIntegerTypes()) {
    188     bool MadeChange = EnforceInteger(TP);
    189 
    190     // If we're merging in iPTR/iPTRAny and the node currently has a list of
    191     // multiple different integer types, replace them with a single iPTR.
    192     if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
    193         TypeVec.size() != 1) {
    194       TypeVec.resize(1);
    195       TypeVec[0] = InVT.TypeVec[0];
    196       MadeChange = true;
    197     }
    198 
    199     return MadeChange;
    200   }
    201 
    202   // If this is a type list and the RHS is a typelist as well, eliminate entries
    203   // from this list that aren't in the other one.
    204   bool MadeChange = false;
    205   TypeSet InputSet(*this);
    206 
    207   for (unsigned i = 0; i != TypeVec.size(); ++i) {
    208     bool InInVT = false;
    209     for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j)
    210       if (TypeVec[i] == InVT.TypeVec[j]) {
    211         InInVT = true;
    212         break;
    213       }
    214 
    215     if (InInVT) continue;
    216     TypeVec.erase(TypeVec.begin()+i--);
    217     MadeChange = true;
    218   }
    219 
    220   // If we removed all of our types, we have a type contradiction.
    221   if (!TypeVec.empty())
    222     return MadeChange;
    223 
    224   // FIXME: Really want an SMLoc here!
    225   TP.error("Type inference contradiction found, merging '" +
    226            InVT.getName() + "' into '" + InputSet.getName() + "'");
    227   return true; // unreachable
    228 }
    229 
    230 /// EnforceInteger - Remove all non-integer types from this set.
    231 bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
    232   // If we know nothing, then get the full set.
    233   if (TypeVec.empty())
    234     return FillWithPossibleTypes(TP, isInteger, "integer");
    235   if (!hasFloatingPointTypes())
    236     return false;
    237 
    238   TypeSet InputSet(*this);
    239 
    240   // Filter out all the fp types.
    241   for (unsigned i = 0; i != TypeVec.size(); ++i)
    242     if (!isInteger(TypeVec[i]))
    243       TypeVec.erase(TypeVec.begin()+i--);
    244 
    245   if (TypeVec.empty())
    246     TP.error("Type inference contradiction found, '" +
    247              InputSet.getName() + "' needs to be integer");
    248   return true;
    249 }
    250 
    251 /// EnforceFloatingPoint - Remove all integer types from this set.
    252 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
    253   // If we know nothing, then get the full set.
    254   if (TypeVec.empty())
    255     return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
    256 
    257   if (!hasIntegerTypes())
    258     return false;
    259 
    260   TypeSet InputSet(*this);
    261 
    262   // Filter out all the fp types.
    263   for (unsigned i = 0; i != TypeVec.size(); ++i)
    264     if (!isFloatingPoint(TypeVec[i]))
    265       TypeVec.erase(TypeVec.begin()+i--);
    266 
    267   if (TypeVec.empty())
    268     TP.error("Type inference contradiction found, '" +
    269              InputSet.getName() + "' needs to be floating point");
    270   return true;
    271 }
    272 
    273 /// EnforceScalar - Remove all vector types from this.
    274 bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
    275   // If we know nothing, then get the full set.
    276   if (TypeVec.empty())
    277     return FillWithPossibleTypes(TP, isScalar, "scalar");
    278 
    279   if (!hasVectorTypes())
    280     return false;
    281 
    282   TypeSet InputSet(*this);
    283 
    284   // Filter out all the vector types.
    285   for (unsigned i = 0; i != TypeVec.size(); ++i)
    286     if (!isScalar(TypeVec[i]))
    287       TypeVec.erase(TypeVec.begin()+i--);
    288 
    289   if (TypeVec.empty())
    290     TP.error("Type inference contradiction found, '" +
    291              InputSet.getName() + "' needs to be scalar");
    292   return true;
    293 }
    294 
    295 /// EnforceVector - Remove all vector types from this.
    296 bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
    297   // If we know nothing, then get the full set.
    298   if (TypeVec.empty())
    299     return FillWithPossibleTypes(TP, isVector, "vector");
    300 
    301   TypeSet InputSet(*this);
    302   bool MadeChange = false;
    303 
    304   // Filter out all the scalar types.
    305   for (unsigned i = 0; i != TypeVec.size(); ++i)
    306     if (!isVector(TypeVec[i])) {
    307       TypeVec.erase(TypeVec.begin()+i--);
    308       MadeChange = true;
    309     }
    310 
    311   if (TypeVec.empty())
    312     TP.error("Type inference contradiction found, '" +
    313              InputSet.getName() + "' needs to be a vector");
    314   return MadeChange;
    315 }
    316 
    317 
    318 
    319 /// EnforceSmallerThan - 'this' must be a smaller VT than Other.  Update
    320 /// this an other based on this information.
    321 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
    322   // Both operands must be integer or FP, but we don't care which.
    323   bool MadeChange = false;
    324 
    325   if (isCompletelyUnknown())
    326     MadeChange = FillWithPossibleTypes(TP);
    327 
    328   if (Other.isCompletelyUnknown())
    329     MadeChange = Other.FillWithPossibleTypes(TP);
    330 
    331   // If one side is known to be integer or known to be FP but the other side has
    332   // no information, get at least the type integrality info in there.
    333   if (!hasFloatingPointTypes())
    334     MadeChange |= Other.EnforceInteger(TP);
    335   else if (!hasIntegerTypes())
    336     MadeChange |= Other.EnforceFloatingPoint(TP);
    337   if (!Other.hasFloatingPointTypes())
    338     MadeChange |= EnforceInteger(TP);
    339   else if (!Other.hasIntegerTypes())
    340     MadeChange |= EnforceFloatingPoint(TP);
    341 
    342   assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
    343          "Should have a type list now");
    344 
    345   // If one contains vectors but the other doesn't pull vectors out.
    346   if (!hasVectorTypes())
    347     MadeChange |= Other.EnforceScalar(TP);
    348   if (!hasVectorTypes())
    349     MadeChange |= EnforceScalar(TP);
    350 
    351   if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) {
    352     // If we are down to concrete types, this code does not currently
    353     // handle nodes which have multiple types, where some types are
    354     // integer, and some are fp.  Assert that this is not the case.
    355     assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
    356            !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
    357            "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
    358 
    359     // Otherwise, if these are both vector types, either this vector
    360     // must have a larger bitsize than the other, or this element type
    361     // must be larger than the other.
    362     EVT Type(TypeVec[0]);
    363     EVT OtherType(Other.TypeVec[0]);
    364 
    365     if (hasVectorTypes() && Other.hasVectorTypes()) {
    366       if (Type.getSizeInBits() >= OtherType.getSizeInBits())
    367         if (Type.getVectorElementType().getSizeInBits()
    368             >= OtherType.getVectorElementType().getSizeInBits())
    369           TP.error("Type inference contradiction found, '" +
    370                    getName() + "' element type not smaller than '" +
    371                    Other.getName() +"'!");
    372     }
    373     else
    374       // For scalar types, the bitsize of this type must be larger
    375       // than that of the other.
    376       if (Type.getSizeInBits() >= OtherType.getSizeInBits())
    377         TP.error("Type inference contradiction found, '" +
    378                  getName() + "' is not smaller than '" +
    379                  Other.getName() +"'!");
    380 
    381   }
    382 
    383 
    384   // Handle int and fp as disjoint sets.  This won't work for patterns
    385   // that have mixed fp/int types but those are likely rare and would
    386   // not have been accepted by this code previously.
    387 
    388   // Okay, find the smallest type from the current set and remove it from the
    389   // largest set.
    390   MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE;
    391   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
    392     if (isInteger(TypeVec[i])) {
    393       SmallestInt = TypeVec[i];
    394       break;
    395     }
    396   for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
    397     if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt)
    398       SmallestInt = TypeVec[i];
    399 
    400   MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE;
    401   for (unsigned i = 0, e = TypeVec.size(); i != e; ++i)
    402     if (isFloatingPoint(TypeVec[i])) {
    403       SmallestFP = TypeVec[i];
    404       break;
    405     }
    406   for (unsigned i = 1, e = TypeVec.size(); i != e; ++i)
    407     if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP)
    408       SmallestFP = TypeVec[i];
    409 
    410   int OtherIntSize = 0;
    411   int OtherFPSize = 0;
    412   for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
    413          Other.TypeVec.begin();
    414        TVI != Other.TypeVec.end();
    415        /* NULL */) {
    416     if (isInteger(*TVI)) {
    417       ++OtherIntSize;
    418       if (*TVI == SmallestInt) {
    419         TVI = Other.TypeVec.erase(TVI);
    420         --OtherIntSize;
    421         MadeChange = true;
    422         continue;
    423       }
    424     }
    425     else if (isFloatingPoint(*TVI)) {
    426       ++OtherFPSize;
    427       if (*TVI == SmallestFP) {
    428         TVI = Other.TypeVec.erase(TVI);
    429         --OtherFPSize;
    430         MadeChange = true;
    431         continue;
    432       }
    433     }
    434     ++TVI;
    435   }
    436 
    437   // If this is the only type in the large set, the constraint can never be
    438   // satisfied.
    439   if ((Other.hasIntegerTypes() && OtherIntSize == 0)
    440       || (Other.hasFloatingPointTypes() && OtherFPSize == 0))
    441     TP.error("Type inference contradiction found, '" +
    442              Other.getName() + "' has nothing larger than '" + getName() +"'!");
    443 
    444   // Okay, find the largest type in the Other set and remove it from the
    445   // current set.
    446   MVT::SimpleValueType LargestInt = MVT::Other;
    447   for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
    448     if (isInteger(Other.TypeVec[i])) {
    449       LargestInt = Other.TypeVec[i];
    450       break;
    451     }
    452   for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
    453     if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt)
    454       LargestInt = Other.TypeVec[i];
    455 
    456   MVT::SimpleValueType LargestFP = MVT::Other;
    457   for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i)
    458     if (isFloatingPoint(Other.TypeVec[i])) {
    459       LargestFP = Other.TypeVec[i];
    460       break;
    461     }
    462   for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i)
    463     if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP)
    464       LargestFP = Other.TypeVec[i];
    465 
    466   int IntSize = 0;
    467   int FPSize = 0;
    468   for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI =
    469          TypeVec.begin();
    470        TVI != TypeVec.end();
    471        /* NULL */) {
    472     if (isInteger(*TVI)) {
    473       ++IntSize;
    474       if (*TVI == LargestInt) {
    475         TVI = TypeVec.erase(TVI);
    476         --IntSize;
    477         MadeChange = true;
    478         continue;
    479       }
    480     }
    481     else if (isFloatingPoint(*TVI)) {
    482       ++FPSize;
    483       if (*TVI == LargestFP) {
    484         TVI = TypeVec.erase(TVI);
    485         --FPSize;
    486         MadeChange = true;
    487         continue;
    488       }
    489     }
    490     ++TVI;
    491   }
    492 
    493   // If this is the only type in the small set, the constraint can never be
    494   // satisfied.
    495   if ((hasIntegerTypes() && IntSize == 0)
    496       || (hasFloatingPointTypes() && FPSize == 0))
    497     TP.error("Type inference contradiction found, '" +
    498              getName() + "' has nothing smaller than '" + Other.getName()+"'!");
    499 
    500   return MadeChange;
    501 }
    502 
    503 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type
    504 /// whose element is specified by VTOperand.
    505 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
    506                                            TreePattern &TP) {
    507   // "This" must be a vector and "VTOperand" must be a scalar.
    508   bool MadeChange = false;
    509   MadeChange |= EnforceVector(TP);
    510   MadeChange |= VTOperand.EnforceScalar(TP);
    511 
    512   // If we know the vector type, it forces the scalar to agree.
    513   if (isConcrete()) {
    514     EVT IVT = getConcrete();
    515     IVT = IVT.getVectorElementType();
    516     return MadeChange |
    517       VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP);
    518   }
    519 
    520   // If the scalar type is known, filter out vector types whose element types
    521   // disagree.
    522   if (!VTOperand.isConcrete())
    523     return MadeChange;
    524 
    525   MVT::SimpleValueType VT = VTOperand.getConcrete();
    526 
    527   TypeSet InputSet(*this);
    528 
    529   // Filter out all the types which don't have the right element type.
    530   for (unsigned i = 0; i != TypeVec.size(); ++i) {
    531     assert(isVector(TypeVec[i]) && "EnforceVector didn't work");
    532     if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) {
    533       TypeVec.erase(TypeVec.begin()+i--);
    534       MadeChange = true;
    535     }
    536   }
    537 
    538   if (TypeVec.empty())  // FIXME: Really want an SMLoc here!
    539     TP.error("Type inference contradiction found, forcing '" +
    540              InputSet.getName() + "' to have a vector element");
    541   return MadeChange;
    542 }
    543 
    544 /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a
    545 /// vector type specified by VTOperand.
    546 bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
    547                                                  TreePattern &TP) {
    548   // "This" must be a vector and "VTOperand" must be a vector.
    549   bool MadeChange = false;
    550   MadeChange |= EnforceVector(TP);
    551   MadeChange |= VTOperand.EnforceVector(TP);
    552 
    553   // "This" must be larger than "VTOperand."
    554   MadeChange |= VTOperand.EnforceSmallerThan(*this, TP);
    555 
    556   // If we know the vector type, it forces the scalar types to agree.
    557   if (isConcrete()) {
    558     EVT IVT = getConcrete();
    559     IVT = IVT.getVectorElementType();
    560 
    561     EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
    562     MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
    563   } else if (VTOperand.isConcrete()) {
    564     EVT IVT = VTOperand.getConcrete();
    565     IVT = IVT.getVectorElementType();
    566 
    567     EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP);
    568     MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
    569   }
    570 
    571   return MadeChange;
    572 }
    573 
    574 //===----------------------------------------------------------------------===//
    575 // Helpers for working with extended types.
    576 
    577 bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const {
    578   return LHS->getID() < RHS->getID();
    579 }
    580 
    581 /// Dependent variable map for CodeGenDAGPattern variant generation
    582 typedef std::map<std::string, int> DepVarMap;
    583 
    584 /// Const iterator shorthand for DepVarMap
    585 typedef DepVarMap::const_iterator DepVarMap_citer;
    586 
    587 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
    588   if (N->isLeaf()) {
    589     if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL)
    590       DepMap[N->getName()]++;
    591   } else {
    592     for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
    593       FindDepVarsOf(N->getChild(i), DepMap);
    594   }
    595 }
    596 
    597 /// Find dependent variables within child patterns
    598 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
    599   DepVarMap depcounts;
    600   FindDepVarsOf(N, depcounts);
    601   for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) {
    602     if (i->second > 1)            // std::pair<std::string, int>
    603       DepVars.insert(i->first);
    604   }
    605 }
    606 
    607 #ifndef NDEBUG
    608 /// Dump the dependent variable set:
    609 static void DumpDepVars(MultipleUseVarSet &DepVars) {
    610   if (DepVars.empty()) {
    611     DEBUG(errs() << "<empty set>");
    612   } else {
    613     DEBUG(errs() << "[ ");
    614     for (MultipleUseVarSet::const_iterator i = DepVars.begin(),
    615          e = DepVars.end(); i != e; ++i) {
    616       DEBUG(errs() << (*i) << " ");
    617     }
    618     DEBUG(errs() << "]");
    619   }
    620 }
    621 #endif
    622 
    623 
    624 //===----------------------------------------------------------------------===//
    625 // TreePredicateFn Implementation
    626 //===----------------------------------------------------------------------===//
    627 
    628 /// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
    629 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
    630   assert((getPredCode().empty() || getImmCode().empty()) &&
    631         ".td file corrupt: can't have a node predicate *and* an imm predicate");
    632 }
    633 
    634 std::string TreePredicateFn::getPredCode() const {
    635   return PatFragRec->getRecord()->getValueAsString("PredicateCode");
    636 }
    637 
    638 std::string TreePredicateFn::getImmCode() const {
    639   return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
    640 }
    641 
    642 
    643 /// isAlwaysTrue - Return true if this is a noop predicate.
    644 bool TreePredicateFn::isAlwaysTrue() const {
    645   return getPredCode().empty() && getImmCode().empty();
    646 }
    647 
    648 /// Return the name to use in the generated code to reference this, this is
    649 /// "Predicate_foo" if from a pattern fragment "foo".
    650 std::string TreePredicateFn::getFnName() const {
    651   return "Predicate_" + PatFragRec->getRecord()->getName();
    652 }
    653 
    654 /// getCodeToRunOnSDNode - Return the code for the function body that
    655 /// evaluates this predicate.  The argument is expected to be in "Node",
    656 /// not N.  This handles casting and conversion to a concrete node type as
    657 /// appropriate.
    658 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
    659   // Handle immediate predicates first.
    660   std::string ImmCode = getImmCode();
    661   if (!ImmCode.empty()) {
    662     std::string Result =
    663       "    int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
    664     return Result + ImmCode;
    665   }
    666 
    667   // Handle arbitrary node predicates.
    668   assert(!getPredCode().empty() && "Don't have any predicate code!");
    669   std::string ClassName;
    670   if (PatFragRec->getOnlyTree()->isLeaf())
    671     ClassName = "SDNode";
    672   else {
    673     Record *Op = PatFragRec->getOnlyTree()->getOperator();
    674     ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
    675   }
    676   std::string Result;
    677   if (ClassName == "SDNode")
    678     Result = "    SDNode *N = Node;\n";
    679   else
    680     Result = "    " + ClassName + "*N = cast<" + ClassName + ">(Node);\n";
    681 
    682   return Result + getPredCode();
    683 }
    684 
    685 //===----------------------------------------------------------------------===//
    686 // PatternToMatch implementation
    687 //
    688 
    689 
    690 /// getPatternSize - Return the 'size' of this pattern.  We want to match large
    691 /// patterns before small ones.  This is used to determine the size of a
    692 /// pattern.
    693 static unsigned getPatternSize(const TreePatternNode *P,
    694                                const CodeGenDAGPatterns &CGP) {
    695   unsigned Size = 3;  // The node itself.
    696   // If the root node is a ConstantSDNode, increases its size.
    697   // e.g. (set R32:$dst, 0).
    698   if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
    699     Size += 2;
    700 
    701   // FIXME: This is a hack to statically increase the priority of patterns
    702   // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
    703   // Later we can allow complexity / cost for each pattern to be (optionally)
    704   // specified. To get best possible pattern match we'll need to dynamically
    705   // calculate the complexity of all patterns a dag can potentially map to.
    706   const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
    707   if (AM)
    708     Size += AM->getNumOperands() * 3;
    709 
    710   // If this node has some predicate function that must match, it adds to the
    711   // complexity of this node.
    712   if (!P->getPredicateFns().empty())
    713     ++Size;
    714 
    715   // Count children in the count if they are also nodes.
    716   for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
    717     TreePatternNode *Child = P->getChild(i);
    718     if (!Child->isLeaf() && Child->getNumTypes() &&
    719         Child->getType(0) != MVT::Other)
    720       Size += getPatternSize(Child, CGP);
    721     else if (Child->isLeaf()) {
    722       if (dynamic_cast<IntInit*>(Child->getLeafValue()))
    723         Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
    724       else if (Child->getComplexPatternInfo(CGP))
    725         Size += getPatternSize(Child, CGP);
    726       else if (!Child->getPredicateFns().empty())
    727         ++Size;
    728     }
    729   }
    730 
    731   return Size;
    732 }
    733 
    734 /// Compute the complexity metric for the input pattern.  This roughly
    735 /// corresponds to the number of nodes that are covered.
    736 unsigned PatternToMatch::
    737 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
    738   return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
    739 }
    740 
    741 
    742 /// getPredicateCheck - Return a single string containing all of this
    743 /// pattern's predicates concatenated with "&&" operators.
    744 ///
    745 std::string PatternToMatch::getPredicateCheck() const {
    746   std::string PredicateCheck;
    747   for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
    748     if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
    749       Record *Def = Pred->getDef();
    750       if (!Def->isSubClassOf("Predicate")) {
    751 #ifndef NDEBUG
    752         Def->dump();
    753 #endif
    754         llvm_unreachable("Unknown predicate type!");
    755       }
    756       if (!PredicateCheck.empty())
    757         PredicateCheck += " && ";
    758       PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
    759     }
    760   }
    761 
    762   return PredicateCheck;
    763 }
    764 
    765 //===----------------------------------------------------------------------===//
    766 // SDTypeConstraint implementation
    767 //
    768 
    769 SDTypeConstraint::SDTypeConstraint(Record *R) {
    770   OperandNo = R->getValueAsInt("OperandNum");
    771 
    772   if (R->isSubClassOf("SDTCisVT")) {
    773     ConstraintType = SDTCisVT;
    774     x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
    775     if (x.SDTCisVT_Info.VT == MVT::isVoid)
    776       throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
    777 
    778   } else if (R->isSubClassOf("SDTCisPtrTy")) {
    779     ConstraintType = SDTCisPtrTy;
    780   } else if (R->isSubClassOf("SDTCisInt")) {
    781     ConstraintType = SDTCisInt;
    782   } else if (R->isSubClassOf("SDTCisFP")) {
    783     ConstraintType = SDTCisFP;
    784   } else if (R->isSubClassOf("SDTCisVec")) {
    785     ConstraintType = SDTCisVec;
    786   } else if (R->isSubClassOf("SDTCisSameAs")) {
    787     ConstraintType = SDTCisSameAs;
    788     x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
    789   } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
    790     ConstraintType = SDTCisVTSmallerThanOp;
    791     x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
    792       R->getValueAsInt("OtherOperandNum");
    793   } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
    794     ConstraintType = SDTCisOpSmallerThanOp;
    795     x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
    796       R->getValueAsInt("BigOperandNum");
    797   } else if (R->isSubClassOf("SDTCisEltOfVec")) {
    798     ConstraintType = SDTCisEltOfVec;
    799     x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
    800   } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
    801     ConstraintType = SDTCisSubVecOfVec;
    802     x.SDTCisSubVecOfVec_Info.OtherOperandNum =
    803       R->getValueAsInt("OtherOpNum");
    804   } else {
    805     errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
    806     exit(1);
    807   }
    808 }
    809 
    810 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
    811 /// N, and the result number in ResNo.
    812 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
    813                                       const SDNodeInfo &NodeInfo,
    814                                       unsigned &ResNo) {
    815   unsigned NumResults = NodeInfo.getNumResults();
    816   if (OpNo < NumResults) {
    817     ResNo = OpNo;
    818     return N;
    819   }
    820 
    821   OpNo -= NumResults;
    822 
    823   if (OpNo >= N->getNumChildren()) {
    824     errs() << "Invalid operand number in type constraint "
    825            << (OpNo+NumResults) << " ";
    826     N->dump();
    827     errs() << '\n';
    828     exit(1);
    829   }
    830 
    831   return N->getChild(OpNo);
    832 }
    833 
    834 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
    835 /// constraint to the nodes operands.  This returns true if it makes a
    836 /// change, false otherwise.  If a type contradiction is found, throw an
    837 /// exception.
    838 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
    839                                            const SDNodeInfo &NodeInfo,
    840                                            TreePattern &TP) const {
    841   unsigned ResNo = 0; // The result number being referenced.
    842   TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
    843 
    844   switch (ConstraintType) {
    845   case SDTCisVT:
    846     // Operand must be a particular type.
    847     return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
    848   case SDTCisPtrTy:
    849     // Operand must be same as target pointer type.
    850     return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
    851   case SDTCisInt:
    852     // Require it to be one of the legal integer VTs.
    853     return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
    854   case SDTCisFP:
    855     // Require it to be one of the legal fp VTs.
    856     return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
    857   case SDTCisVec:
    858     // Require it to be one of the legal vector VTs.
    859     return NodeToApply->getExtType(ResNo).EnforceVector(TP);
    860   case SDTCisSameAs: {
    861     unsigned OResNo = 0;
    862     TreePatternNode *OtherNode =
    863       getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
    864     return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)|
    865            OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP);
    866   }
    867   case SDTCisVTSmallerThanOp: {
    868     // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
    869     // have an integer type that is smaller than the VT.
    870     if (!NodeToApply->isLeaf() ||
    871         !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
    872         !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
    873                ->isSubClassOf("ValueType"))
    874       TP.error(N->getOperator()->getName() + " expects a VT operand!");
    875     MVT::SimpleValueType VT =
    876      getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
    877 
    878     EEVT::TypeSet TypeListTmp(VT, TP);
    879 
    880     unsigned OResNo = 0;
    881     TreePatternNode *OtherNode =
    882       getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
    883                     OResNo);
    884 
    885     return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
    886   }
    887   case SDTCisOpSmallerThanOp: {
    888     unsigned BResNo = 0;
    889     TreePatternNode *BigOperand =
    890       getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
    891                     BResNo);
    892     return NodeToApply->getExtType(ResNo).
    893                   EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
    894   }
    895   case SDTCisEltOfVec: {
    896     unsigned VResNo = 0;
    897     TreePatternNode *VecOperand =
    898       getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
    899                     VResNo);
    900 
    901     // Filter vector types out of VecOperand that don't have the right element
    902     // type.
    903     return VecOperand->getExtType(VResNo).
    904       EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
    905   }
    906   case SDTCisSubVecOfVec: {
    907     unsigned VResNo = 0;
    908     TreePatternNode *BigVecOperand =
    909       getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
    910                     VResNo);
    911 
    912     // Filter vector types out of BigVecOperand that don't have the
    913     // right subvector type.
    914     return BigVecOperand->getExtType(VResNo).
    915       EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
    916   }
    917   }
    918   llvm_unreachable("Invalid ConstraintType!");
    919 }
    920 
    921 //===----------------------------------------------------------------------===//
    922 // SDNodeInfo implementation
    923 //
    924 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
    925   EnumName    = R->getValueAsString("Opcode");
    926   SDClassName = R->getValueAsString("SDClass");
    927   Record *TypeProfile = R->getValueAsDef("TypeProfile");
    928   NumResults = TypeProfile->getValueAsInt("NumResults");
    929   NumOperands = TypeProfile->getValueAsInt("NumOperands");
    930 
    931   // Parse the properties.
    932   Properties = 0;
    933   std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
    934   for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
    935     if (PropList[i]->getName() == "SDNPCommutative") {
    936       Properties |= 1 << SDNPCommutative;
    937     } else if (PropList[i]->getName() == "SDNPAssociative") {
    938       Properties |= 1 << SDNPAssociative;
    939     } else if (PropList[i]->getName() == "SDNPHasChain") {
    940       Properties |= 1 << SDNPHasChain;
    941     } else if (PropList[i]->getName() == "SDNPOutGlue") {
    942       Properties |= 1 << SDNPOutGlue;
    943     } else if (PropList[i]->getName() == "SDNPInGlue") {
    944       Properties |= 1 << SDNPInGlue;
    945     } else if (PropList[i]->getName() == "SDNPOptInGlue") {
    946       Properties |= 1 << SDNPOptInGlue;
    947     } else if (PropList[i]->getName() == "SDNPMayStore") {
    948       Properties |= 1 << SDNPMayStore;
    949     } else if (PropList[i]->getName() == "SDNPMayLoad") {
    950       Properties |= 1 << SDNPMayLoad;
    951     } else if (PropList[i]->getName() == "SDNPSideEffect") {
    952       Properties |= 1 << SDNPSideEffect;
    953     } else if (PropList[i]->getName() == "SDNPMemOperand") {
    954       Properties |= 1 << SDNPMemOperand;
    955     } else if (PropList[i]->getName() == "SDNPVariadic") {
    956       Properties |= 1 << SDNPVariadic;
    957     } else {
    958       errs() << "Unknown SD Node property '" << PropList[i]->getName()
    959              << "' on node '" << R->getName() << "'!\n";
    960       exit(1);
    961     }
    962   }
    963 
    964 
    965   // Parse the type constraints.
    966   std::vector<Record*> ConstraintList =
    967     TypeProfile->getValueAsListOfDefs("Constraints");
    968   TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
    969 }
    970 
    971 /// getKnownType - If the type constraints on this node imply a fixed type
    972 /// (e.g. all stores return void, etc), then return it as an
    973 /// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
    974 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
    975   unsigned NumResults = getNumResults();
    976   assert(NumResults <= 1 &&
    977          "We only work with nodes with zero or one result so far!");
    978   assert(ResNo == 0 && "Only handles single result nodes so far");
    979 
    980   for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) {
    981     // Make sure that this applies to the correct node result.
    982     if (TypeConstraints[i].OperandNo >= NumResults)  // FIXME: need value #
    983       continue;
    984 
    985     switch (TypeConstraints[i].ConstraintType) {
    986     default: break;
    987     case SDTypeConstraint::SDTCisVT:
    988       return TypeConstraints[i].x.SDTCisVT_Info.VT;
    989     case SDTypeConstraint::SDTCisPtrTy:
    990       return MVT::iPTR;
    991     }
    992   }
    993   return MVT::Other;
    994 }
    995 
    996 //===----------------------------------------------------------------------===//
    997 // TreePatternNode implementation
    998 //
    999 
   1000 TreePatternNode::~TreePatternNode() {
   1001 #if 0 // FIXME: implement refcounted tree nodes!
   1002   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
   1003     delete getChild(i);
   1004 #endif
   1005 }
   1006 
   1007 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
   1008   if (Operator->getName() == "set" ||
   1009       Operator->getName() == "implicit")
   1010     return 0;  // All return nothing.
   1011 
   1012   if (Operator->isSubClassOf("Intrinsic"))
   1013     return CDP.getIntrinsic(Operator).IS.RetVTs.size();
   1014 
   1015   if (Operator->isSubClassOf("SDNode"))
   1016     return CDP.getSDNodeInfo(Operator).getNumResults();
   1017 
   1018   if (Operator->isSubClassOf("PatFrag")) {
   1019     // If we've already parsed this pattern fragment, get it.  Otherwise, handle
   1020     // the forward reference case where one pattern fragment references another
   1021     // before it is processed.
   1022     if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
   1023       return PFRec->getOnlyTree()->getNumTypes();
   1024 
   1025     // Get the result tree.
   1026     DagInit *Tree = Operator->getValueAsDag("Fragment");
   1027     Record *Op = 0;
   1028     if (Tree && dynamic_cast<DefInit*>(Tree->getOperator()))
   1029       Op = dynamic_cast<DefInit*>(Tree->getOperator())->getDef();
   1030     assert(Op && "Invalid Fragment");
   1031     return GetNumNodeResults(Op, CDP);
   1032   }
   1033 
   1034   if (Operator->isSubClassOf("Instruction")) {
   1035     CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
   1036 
   1037     // FIXME: Should allow access to all the results here.
   1038     unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
   1039 
   1040     // Add on one implicit def if it has a resolvable type.
   1041     if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
   1042       ++NumDefsToAdd;
   1043     return NumDefsToAdd;
   1044   }
   1045 
   1046   if (Operator->isSubClassOf("SDNodeXForm"))
   1047     return 1;  // FIXME: Generalize SDNodeXForm
   1048 
   1049   Operator->dump();
   1050   errs() << "Unhandled node in GetNumNodeResults\n";
   1051   exit(1);
   1052 }
   1053 
   1054 void TreePatternNode::print(raw_ostream &OS) const {
   1055   if (isLeaf())
   1056     OS << *getLeafValue();
   1057   else
   1058     OS << '(' << getOperator()->getName();
   1059 
   1060   for (unsigned i = 0, e = Types.size(); i != e; ++i)
   1061     OS << ':' << getExtType(i).getName();
   1062 
   1063   if (!isLeaf()) {
   1064     if (getNumChildren() != 0) {
   1065       OS << " ";
   1066       getChild(0)->print(OS);
   1067       for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
   1068         OS << ", ";
   1069         getChild(i)->print(OS);
   1070       }
   1071     }
   1072     OS << ")";
   1073   }
   1074 
   1075   for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i)
   1076     OS << "<<P:" << PredicateFns[i].getFnName() << ">>";
   1077   if (TransformFn)
   1078     OS << "<<X:" << TransformFn->getName() << ">>";
   1079   if (!getName().empty())
   1080     OS << ":$" << getName();
   1081 
   1082 }
   1083 void TreePatternNode::dump() const {
   1084   print(errs());
   1085 }
   1086 
   1087 /// isIsomorphicTo - Return true if this node is recursively
   1088 /// isomorphic to the specified node.  For this comparison, the node's
   1089 /// entire state is considered. The assigned name is ignored, since
   1090 /// nodes with differing names are considered isomorphic. However, if
   1091 /// the assigned name is present in the dependent variable set, then
   1092 /// the assigned name is considered significant and the node is
   1093 /// isomorphic if the names match.
   1094 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
   1095                                      const MultipleUseVarSet &DepVars) const {
   1096   if (N == this) return true;
   1097   if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
   1098       getPredicateFns() != N->getPredicateFns() ||
   1099       getTransformFn() != N->getTransformFn())
   1100     return false;
   1101 
   1102   if (isLeaf()) {
   1103     if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
   1104       if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) {
   1105         return ((DI->getDef() == NDI->getDef())
   1106                 && (DepVars.find(getName()) == DepVars.end()
   1107                     || getName() == N->getName()));
   1108       }
   1109     }
   1110     return getLeafValue() == N->getLeafValue();
   1111   }
   1112 
   1113   if (N->getOperator() != getOperator() ||
   1114       N->getNumChildren() != getNumChildren()) return false;
   1115   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
   1116     if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
   1117       return false;
   1118   return true;
   1119 }
   1120 
   1121 /// clone - Make a copy of this tree and all of its children.
   1122 ///
   1123 TreePatternNode *TreePatternNode::clone() const {
   1124   TreePatternNode *New;
   1125   if (isLeaf()) {
   1126     New = new TreePatternNode(getLeafValue(), getNumTypes());
   1127   } else {
   1128     std::vector<TreePatternNode*> CChildren;
   1129     CChildren.reserve(Children.size());
   1130     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
   1131       CChildren.push_back(getChild(i)->clone());
   1132     New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
   1133   }
   1134   New->setName(getName());
   1135   New->Types = Types;
   1136   New->setPredicateFns(getPredicateFns());
   1137   New->setTransformFn(getTransformFn());
   1138   return New;
   1139 }
   1140 
   1141 /// RemoveAllTypes - Recursively strip all the types of this tree.
   1142 void TreePatternNode::RemoveAllTypes() {
   1143   for (unsigned i = 0, e = Types.size(); i != e; ++i)
   1144     Types[i] = EEVT::TypeSet();  // Reset to unknown type.
   1145   if (isLeaf()) return;
   1146   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
   1147     getChild(i)->RemoveAllTypes();
   1148 }
   1149 
   1150 
   1151 /// SubstituteFormalArguments - Replace the formal arguments in this tree
   1152 /// with actual values specified by ArgMap.
   1153 void TreePatternNode::
   1154 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
   1155   if (isLeaf()) return;
   1156 
   1157   for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
   1158     TreePatternNode *Child = getChild(i);
   1159     if (Child->isLeaf()) {
   1160       Init *Val = Child->getLeafValue();
   1161       if (dynamic_cast<DefInit*>(Val) &&
   1162           static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
   1163         // We found a use of a formal argument, replace it with its value.
   1164         TreePatternNode *NewChild = ArgMap[Child->getName()];
   1165         assert(NewChild && "Couldn't find formal argument!");
   1166         assert((Child->getPredicateFns().empty() ||
   1167                 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
   1168                "Non-empty child predicate clobbered!");
   1169         setChild(i, NewChild);
   1170       }
   1171     } else {
   1172       getChild(i)->SubstituteFormalArguments(ArgMap);
   1173     }
   1174   }
   1175 }
   1176 
   1177 
   1178 /// InlinePatternFragments - If this pattern refers to any pattern
   1179 /// fragments, inline them into place, giving us a pattern without any
   1180 /// PatFrag references.
   1181 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
   1182   if (isLeaf()) return this;  // nothing to do.
   1183   Record *Op = getOperator();
   1184 
   1185   if (!Op->isSubClassOf("PatFrag")) {
   1186     // Just recursively inline children nodes.
   1187     for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
   1188       TreePatternNode *Child = getChild(i);
   1189       TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
   1190 
   1191       assert((Child->getPredicateFns().empty() ||
   1192               NewChild->getPredicateFns() == Child->getPredicateFns()) &&
   1193              "Non-empty child predicate clobbered!");
   1194 
   1195       setChild(i, NewChild);
   1196     }
   1197     return this;
   1198   }
   1199 
   1200   // Otherwise, we found a reference to a fragment.  First, look up its
   1201   // TreePattern record.
   1202   TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
   1203 
   1204   // Verify that we are passing the right number of operands.
   1205   if (Frag->getNumArgs() != Children.size())
   1206     TP.error("'" + Op->getName() + "' fragment requires " +
   1207              utostr(Frag->getNumArgs()) + " operands!");
   1208 
   1209   TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
   1210 
   1211   TreePredicateFn PredFn(Frag);
   1212   if (!PredFn.isAlwaysTrue())
   1213     FragTree->addPredicateFn(PredFn);
   1214 
   1215   // Resolve formal arguments to their actual value.
   1216   if (Frag->getNumArgs()) {
   1217     // Compute the map of formal to actual arguments.
   1218     std::map<std::string, TreePatternNode*> ArgMap;
   1219     for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
   1220       ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
   1221 
   1222     FragTree->SubstituteFormalArguments(ArgMap);
   1223   }
   1224 
   1225   FragTree->setName(getName());
   1226   for (unsigned i = 0, e = Types.size(); i != e; ++i)
   1227     FragTree->UpdateNodeType(i, getExtType(i), TP);
   1228 
   1229   // Transfer in the old predicates.
   1230   for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i)
   1231     FragTree->addPredicateFn(getPredicateFns()[i]);
   1232 
   1233   // Get a new copy of this fragment to stitch into here.
   1234   //delete this;    // FIXME: implement refcounting!
   1235 
   1236   // The fragment we inlined could have recursive inlining that is needed.  See
   1237   // if there are any pattern fragments in it and inline them as needed.
   1238   return FragTree->InlinePatternFragments(TP);
   1239 }
   1240 
   1241 /// getImplicitType - Check to see if the specified record has an implicit
   1242 /// type which should be applied to it.  This will infer the type of register
   1243 /// references from the register file information, for example.
   1244 ///
   1245 static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
   1246                                      bool NotRegisters, TreePattern &TP) {
   1247   // Check to see if this is a register operand.
   1248   if (R->isSubClassOf("RegisterOperand")) {
   1249     assert(ResNo == 0 && "Regoperand ref only has one result!");
   1250     if (NotRegisters)
   1251       return EEVT::TypeSet(); // Unknown.
   1252     Record *RegClass = R->getValueAsDef("RegClass");
   1253     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
   1254     return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes());
   1255   }
   1256 
   1257   // Check to see if this is a register or a register class.
   1258   if (R->isSubClassOf("RegisterClass")) {
   1259     assert(ResNo == 0 && "Regclass ref only has one result!");
   1260     if (NotRegisters)
   1261       return EEVT::TypeSet(); // Unknown.
   1262     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
   1263     return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
   1264   }
   1265 
   1266   if (R->isSubClassOf("PatFrag")) {
   1267     assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
   1268     // Pattern fragment types will be resolved when they are inlined.
   1269     return EEVT::TypeSet(); // Unknown.
   1270   }
   1271 
   1272   if (R->isSubClassOf("Register")) {
   1273     assert(ResNo == 0 && "Registers only produce one result!");
   1274     if (NotRegisters)
   1275       return EEVT::TypeSet(); // Unknown.
   1276     const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
   1277     return EEVT::TypeSet(T.getRegisterVTs(R));
   1278   }
   1279 
   1280   if (R->isSubClassOf("SubRegIndex")) {
   1281     assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
   1282     return EEVT::TypeSet();
   1283   }
   1284 
   1285   if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
   1286     assert(ResNo == 0 && "This node only has one result!");
   1287     // Using a VTSDNode or CondCodeSDNode.
   1288     return EEVT::TypeSet(MVT::Other, TP);
   1289   }
   1290 
   1291   if (R->isSubClassOf("ComplexPattern")) {
   1292     assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
   1293     if (NotRegisters)
   1294       return EEVT::TypeSet(); // Unknown.
   1295    return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
   1296                          TP);
   1297   }
   1298   if (R->isSubClassOf("PointerLikeRegClass")) {
   1299     assert(ResNo == 0 && "Regclass can only have one result!");
   1300     return EEVT::TypeSet(MVT::iPTR, TP);
   1301   }
   1302 
   1303   if (R->getName() == "node" || R->getName() == "srcvalue" ||
   1304       R->getName() == "zero_reg") {
   1305     // Placeholder.
   1306     return EEVT::TypeSet(); // Unknown.
   1307   }
   1308 
   1309   TP.error("Unknown node flavor used in pattern: " + R->getName());
   1310   return EEVT::TypeSet(MVT::Other, TP);
   1311 }
   1312 
   1313 
   1314 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
   1315 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
   1316 const CodeGenIntrinsic *TreePatternNode::
   1317 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
   1318   if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
   1319       getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
   1320       getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
   1321     return 0;
   1322 
   1323   unsigned IID =
   1324     dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
   1325   return &CDP.getIntrinsicInfo(IID);
   1326 }
   1327 
   1328 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
   1329 /// return the ComplexPattern information, otherwise return null.
   1330 const ComplexPattern *
   1331 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
   1332   if (!isLeaf()) return 0;
   1333 
   1334   DefInit *DI = dynamic_cast<DefInit*>(getLeafValue());
   1335   if (DI && DI->getDef()->isSubClassOf("ComplexPattern"))
   1336     return &CGP.getComplexPattern(DI->getDef());
   1337   return 0;
   1338 }
   1339 
   1340 /// NodeHasProperty - Return true if this node has the specified property.
   1341 bool TreePatternNode::NodeHasProperty(SDNP Property,
   1342                                       const CodeGenDAGPatterns &CGP) const {
   1343   if (isLeaf()) {
   1344     if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
   1345       return CP->hasProperty(Property);
   1346     return false;
   1347   }
   1348 
   1349   Record *Operator = getOperator();
   1350   if (!Operator->isSubClassOf("SDNode")) return false;
   1351 
   1352   return CGP.getSDNodeInfo(Operator).hasProperty(Property);
   1353 }
   1354 
   1355 
   1356 
   1357 
   1358 /// TreeHasProperty - Return true if any node in this tree has the specified
   1359 /// property.
   1360 bool TreePatternNode::TreeHasProperty(SDNP Property,
   1361                                       const CodeGenDAGPatterns &CGP) const {
   1362   if (NodeHasProperty(Property, CGP))
   1363     return true;
   1364   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
   1365     if (getChild(i)->TreeHasProperty(Property, CGP))
   1366       return true;
   1367   return false;
   1368 }
   1369 
   1370 /// isCommutativeIntrinsic - Return true if the node corresponds to a
   1371 /// commutative intrinsic.
   1372 bool
   1373 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
   1374   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
   1375     return Int->isCommutative;
   1376   return false;
   1377 }
   1378 
   1379 
   1380 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
   1381 /// this node and its children in the tree.  This returns true if it makes a
   1382 /// change, false otherwise.  If a type contradiction is found, throw an
   1383 /// exception.
   1384 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
   1385   CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
   1386   if (isLeaf()) {
   1387     if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
   1388       // If it's a regclass or something else known, include the type.
   1389       bool MadeChange = false;
   1390       for (unsigned i = 0, e = Types.size(); i != e; ++i)
   1391         MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
   1392                                                         NotRegisters, TP), TP);
   1393       return MadeChange;
   1394     }
   1395 
   1396     if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
   1397       assert(Types.size() == 1 && "Invalid IntInit");
   1398 
   1399       // Int inits are always integers. :)
   1400       bool MadeChange = Types[0].EnforceInteger(TP);
   1401 
   1402       if (!Types[0].isConcrete())
   1403         return MadeChange;
   1404 
   1405       MVT::SimpleValueType VT = getType(0);
   1406       if (VT == MVT::iPTR || VT == MVT::iPTRAny)
   1407         return MadeChange;
   1408 
   1409       unsigned Size = EVT(VT).getSizeInBits();
   1410       // Make sure that the value is representable for this type.
   1411       if (Size >= 32) return MadeChange;
   1412 
   1413       // Check that the value doesn't use more bits than we have. It must either
   1414       // be a sign- or zero-extended equivalent of the original.
   1415       int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
   1416       if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1)
   1417         return MadeChange;
   1418 
   1419       TP.error("Integer value '" + itostr(II->getValue()) +
   1420                "' is out of range for type '" + getEnumName(getType(0)) + "'!");
   1421       return MadeChange;
   1422     }
   1423     return false;
   1424   }
   1425 
   1426   // special handling for set, which isn't really an SDNode.
   1427   if (getOperator()->getName() == "set") {
   1428     assert(getNumTypes() == 0 && "Set doesn't produce a value");
   1429     assert(getNumChildren() >= 2 && "Missing RHS of a set?");
   1430     unsigned NC = getNumChildren();
   1431 
   1432     TreePatternNode *SetVal = getChild(NC-1);
   1433     bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
   1434 
   1435     for (unsigned i = 0; i < NC-1; ++i) {
   1436       TreePatternNode *Child = getChild(i);
   1437       MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
   1438 
   1439       // Types of operands must match.
   1440       MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
   1441       MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
   1442     }
   1443     return MadeChange;
   1444   }
   1445 
   1446   if (getOperator()->getName() == "implicit") {
   1447     assert(getNumTypes() == 0 && "Node doesn't produce a value");
   1448 
   1449     bool MadeChange = false;
   1450     for (unsigned i = 0; i < getNumChildren(); ++i)
   1451       MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
   1452     return MadeChange;
   1453   }
   1454 
   1455   if (getOperator()->getName() == "COPY_TO_REGCLASS") {
   1456     bool MadeChange = false;
   1457     MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
   1458     MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
   1459 
   1460     assert(getChild(0)->getNumTypes() == 1 &&
   1461            getChild(1)->getNumTypes() == 1 && "Unhandled case");
   1462 
   1463     // child #1 of COPY_TO_REGCLASS should be a register class.  We don't care
   1464     // what type it gets, so if it didn't get a concrete type just give it the
   1465     // first viable type from the reg class.
   1466     if (!getChild(1)->hasTypeSet(0) &&
   1467         !getChild(1)->getExtType(0).isCompletelyUnknown()) {
   1468       MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0];
   1469       MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP);
   1470     }
   1471     return MadeChange;
   1472   }
   1473 
   1474   if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
   1475     bool MadeChange = false;
   1476 
   1477     // Apply the result type to the node.
   1478     unsigned NumRetVTs = Int->IS.RetVTs.size();
   1479     unsigned NumParamVTs = Int->IS.ParamVTs.size();
   1480 
   1481     for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
   1482       MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
   1483 
   1484     if (getNumChildren() != NumParamVTs + 1)
   1485       TP.error("Intrinsic '" + Int->Name + "' expects " +
   1486                utostr(NumParamVTs) + " operands, not " +
   1487                utostr(getNumChildren() - 1) + " operands!");
   1488 
   1489     // Apply type info to the intrinsic ID.
   1490     MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
   1491 
   1492     for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
   1493       MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
   1494 
   1495       MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
   1496       assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
   1497       MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
   1498     }
   1499     return MadeChange;
   1500   }
   1501 
   1502   if (getOperator()->isSubClassOf("SDNode")) {
   1503     const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
   1504 
   1505     // Check that the number of operands is sane.  Negative operands -> varargs.
   1506     if (NI.getNumOperands() >= 0 &&
   1507         getNumChildren() != (unsigned)NI.getNumOperands())
   1508       TP.error(getOperator()->getName() + " node requires exactly " +
   1509                itostr(NI.getNumOperands()) + " operands!");
   1510 
   1511     bool MadeChange = NI.ApplyTypeConstraints(this, TP);
   1512     for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
   1513       MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
   1514     return MadeChange;
   1515   }
   1516 
   1517   if (getOperator()->isSubClassOf("Instruction")) {
   1518     const DAGInstruction &Inst = CDP.getInstruction(getOperator());
   1519     CodeGenInstruction &InstInfo =
   1520       CDP.getTargetInfo().getInstruction(getOperator());
   1521 
   1522     bool MadeChange = false;
   1523 
   1524     // Apply the result types to the node, these come from the things in the
   1525     // (outs) list of the instruction.
   1526     // FIXME: Cap at one result so far.
   1527     unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0;
   1528     for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) {
   1529       Record *ResultNode = Inst.getResult(ResNo);
   1530 
   1531       if (ResultNode->isSubClassOf("PointerLikeRegClass")) {
   1532         MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP);
   1533       } else if (ResultNode->isSubClassOf("RegisterOperand")) {
   1534         Record *RegClass = ResultNode->getValueAsDef("RegClass");
   1535         const CodeGenRegisterClass &RC =
   1536           CDP.getTargetInfo().getRegisterClass(RegClass);
   1537         MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP);
   1538       } else if (ResultNode->getName() == "unknown") {
   1539         // Nothing to do.
   1540       } else {
   1541         assert(ResultNode->isSubClassOf("RegisterClass") &&
   1542                "Operands should be register classes!");
   1543         const CodeGenRegisterClass &RC =
   1544           CDP.getTargetInfo().getRegisterClass(ResultNode);
   1545         MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP);
   1546       }
   1547     }
   1548 
   1549     // If the instruction has implicit defs, we apply the first one as a result.
   1550     // FIXME: This sucks, it should apply all implicit defs.
   1551     if (!InstInfo.ImplicitDefs.empty()) {
   1552       unsigned ResNo = NumResultsToAdd;
   1553 
   1554       // FIXME: Generalize to multiple possible types and multiple possible
   1555       // ImplicitDefs.
   1556       MVT::SimpleValueType VT =
   1557         InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
   1558 
   1559       if (VT != MVT::Other)
   1560         MadeChange |= UpdateNodeType(ResNo, VT, TP);
   1561     }
   1562 
   1563     // If this is an INSERT_SUBREG, constrain the source and destination VTs to
   1564     // be the same.
   1565     if (getOperator()->getName() == "INSERT_SUBREG") {
   1566       assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
   1567       MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
   1568       MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
   1569     }
   1570 
   1571     unsigned ChildNo = 0;
   1572     for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
   1573       Record *OperandNode = Inst.getOperand(i);
   1574 
   1575       // If the instruction expects a predicate or optional def operand, we
   1576       // codegen this by setting the operand to it's default value if it has a
   1577       // non-empty DefaultOps field.
   1578       if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
   1579           !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
   1580         continue;
   1581 
   1582       // Verify that we didn't run out of provided operands.
   1583       if (ChildNo >= getNumChildren())
   1584         TP.error("Instruction '" + getOperator()->getName() +
   1585                  "' expects more operands than were provided.");
   1586 
   1587       MVT::SimpleValueType VT;
   1588       TreePatternNode *Child = getChild(ChildNo++);
   1589       unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
   1590 
   1591       if (OperandNode->isSubClassOf("RegisterClass")) {
   1592         const CodeGenRegisterClass &RC =
   1593           CDP.getTargetInfo().getRegisterClass(OperandNode);
   1594         MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP);
   1595       } else if (OperandNode->isSubClassOf("RegisterOperand")) {
   1596         Record *RegClass = OperandNode->getValueAsDef("RegClass");
   1597         const CodeGenRegisterClass &RC =
   1598           CDP.getTargetInfo().getRegisterClass(RegClass);
   1599         MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP);
   1600       } else if (OperandNode->isSubClassOf("Operand")) {
   1601         VT = getValueType(OperandNode->getValueAsDef("Type"));
   1602         MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP);
   1603       } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) {
   1604         MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP);
   1605       } else if (OperandNode->getName() == "unknown") {
   1606         // Nothing to do.
   1607       } else
   1608         llvm_unreachable("Unknown operand type!");
   1609 
   1610       MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
   1611     }
   1612 
   1613     if (ChildNo != getNumChildren())
   1614       TP.error("Instruction '" + getOperator()->getName() +
   1615                "' was provided too many operands!");
   1616 
   1617     return MadeChange;
   1618   }
   1619 
   1620   assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
   1621 
   1622   // Node transforms always take one operand.
   1623   if (getNumChildren() != 1)
   1624     TP.error("Node transform '" + getOperator()->getName() +
   1625              "' requires one operand!");
   1626 
   1627   bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
   1628 
   1629 
   1630   // If either the output or input of the xform does not have exact
   1631   // type info. We assume they must be the same. Otherwise, it is perfectly
   1632   // legal to transform from one type to a completely different type.
   1633 #if 0
   1634   if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
   1635     bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
   1636     MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
   1637     return MadeChange;
   1638   }
   1639 #endif
   1640   return MadeChange;
   1641 }
   1642 
   1643 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
   1644 /// RHS of a commutative operation, not the on LHS.
   1645 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
   1646   if (!N->isLeaf() && N->getOperator()->getName() == "imm")
   1647     return true;
   1648   if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
   1649     return true;
   1650   return false;
   1651 }
   1652 
   1653 
   1654 /// canPatternMatch - If it is impossible for this pattern to match on this
   1655 /// target, fill in Reason and return false.  Otherwise, return true.  This is
   1656 /// used as a sanity check for .td files (to prevent people from writing stuff
   1657 /// that can never possibly work), and to prevent the pattern permuter from
   1658 /// generating stuff that is useless.
   1659 bool TreePatternNode::canPatternMatch(std::string &Reason,
   1660                                       const CodeGenDAGPatterns &CDP) {
   1661   if (isLeaf()) return true;
   1662 
   1663   for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
   1664     if (!getChild(i)->canPatternMatch(Reason, CDP))
   1665       return false;
   1666 
   1667   // If this is an intrinsic, handle cases that would make it not match.  For
   1668   // example, if an operand is required to be an immediate.
   1669   if (getOperator()->isSubClassOf("Intrinsic")) {
   1670     // TODO:
   1671     return true;
   1672   }
   1673 
   1674   // If this node is a commutative operator, check that the LHS isn't an
   1675   // immediate.
   1676   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
   1677   bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
   1678   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
   1679     // Scan all of the operands of the node and make sure that only the last one
   1680     // is a constant node, unless the RHS also is.
   1681     if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
   1682       bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
   1683       for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
   1684         if (OnlyOnRHSOfCommutative(getChild(i))) {
   1685           Reason="Immediate value must be on the RHS of commutative operators!";
   1686           return false;
   1687         }
   1688     }
   1689   }
   1690 
   1691   return true;
   1692 }
   1693 
   1694 //===----------------------------------------------------------------------===//
   1695 // TreePattern implementation
   1696 //
   1697 
   1698 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
   1699                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
   1700   isInputPattern = isInput;
   1701   for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
   1702     Trees.push_back(ParseTreePattern(RawPat->getElement(i), ""));
   1703 }
   1704 
   1705 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
   1706                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
   1707   isInputPattern = isInput;
   1708   Trees.push_back(ParseTreePattern(Pat, ""));
   1709 }
   1710 
   1711 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
   1712                          CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){
   1713   isInputPattern = isInput;
   1714   Trees.push_back(Pat);
   1715 }
   1716 
   1717 void TreePattern::error(const std::string &Msg) const {
   1718   dump();
   1719   throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
   1720 }
   1721 
   1722 void TreePattern::ComputeNamedNodes() {
   1723   for (unsigned i = 0, e = Trees.size(); i != e; ++i)
   1724     ComputeNamedNodes(Trees[i]);
   1725 }
   1726 
   1727 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
   1728   if (!N->getName().empty())
   1729     NamedNodes[N->getName()].push_back(N);
   1730 
   1731   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
   1732     ComputeNamedNodes(N->getChild(i));
   1733 }
   1734 
   1735 
   1736 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
   1737   if (DefInit *DI = dynamic_cast<DefInit*>(TheInit)) {
   1738     Record *R = DI->getDef();
   1739 
   1740     // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
   1741     // TreePatternNode of its own.  For example:
   1742     ///   (foo GPR, imm) -> (foo GPR, (imm))
   1743     if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
   1744       return ParseTreePattern(
   1745         DagInit::get(DI, "",
   1746                      std::vector<std::pair<Init*, std::string> >()),
   1747         OpName);
   1748 
   1749     // Input argument?
   1750     TreePatternNode *Res = new TreePatternNode(DI, 1);
   1751     if (R->getName() == "node" && !OpName.empty()) {
   1752       if (OpName.empty())
   1753         error("'node' argument requires a name to match with operand list");
   1754       Args.push_back(OpName);
   1755     }
   1756 
   1757     Res->setName(OpName);
   1758     return Res;
   1759   }
   1760 
   1761   if (IntInit *II = dynamic_cast<IntInit*>(TheInit)) {
   1762     if (!OpName.empty())
   1763       error("Constant int argument should not have a name!");
   1764     return new TreePatternNode(II, 1);
   1765   }
   1766 
   1767   if (BitsInit *BI = dynamic_cast<BitsInit*>(TheInit)) {
   1768     // Turn this into an IntInit.
   1769     Init *II = BI->convertInitializerTo(IntRecTy::get());
   1770     if (II == 0 || !dynamic_cast<IntInit*>(II))
   1771       error("Bits value must be constants!");
   1772     return ParseTreePattern(II, OpName);
   1773   }
   1774 
   1775   DagInit *Dag = dynamic_cast<DagInit*>(TheInit);
   1776   if (!Dag) {
   1777     TheInit->dump();
   1778     error("Pattern has unexpected init kind!");
   1779   }
   1780   DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
   1781   if (!OpDef) error("Pattern has unexpected operator type!");
   1782   Record *Operator = OpDef->getDef();
   1783 
   1784   if (Operator->isSubClassOf("ValueType")) {
   1785     // If the operator is a ValueType, then this must be "type cast" of a leaf
   1786     // node.
   1787     if (Dag->getNumArgs() != 1)
   1788       error("Type cast only takes one operand!");
   1789 
   1790     TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));
   1791 
   1792     // Apply the type cast.
   1793     assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
   1794     New->UpdateNodeType(0, getValueType(Operator), *this);
   1795 
   1796     if (!OpName.empty())
   1797       error("ValueType cast should not have a name!");
   1798     return New;
   1799   }
   1800 
   1801   // Verify that this is something that makes sense for an operator.
   1802   if (!Operator->isSubClassOf("PatFrag") &&
   1803       !Operator->isSubClassOf("SDNode") &&
   1804       !Operator->isSubClassOf("Instruction") &&
   1805       !Operator->isSubClassOf("SDNodeXForm") &&
   1806       !Operator->isSubClassOf("Intrinsic") &&
   1807       Operator->getName() != "set" &&
   1808       Operator->getName() != "implicit")
   1809     error("Unrecognized node '" + Operator->getName() + "'!");
   1810 
   1811   //  Check to see if this is something that is illegal in an input pattern.
   1812   if (isInputPattern) {
   1813     if (Operator->isSubClassOf("Instruction") ||
   1814         Operator->isSubClassOf("SDNodeXForm"))
   1815       error("Cannot use '" + Operator->getName() + "' in an input pattern!");
   1816   } else {
   1817     if (Operator->isSubClassOf("Intrinsic"))
   1818       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
   1819 
   1820     if (Operator->isSubClassOf("SDNode") &&
   1821         Operator->getName() != "imm" &&
   1822         Operator->getName() != "fpimm" &&
   1823         Operator->getName() != "tglobaltlsaddr" &&
   1824         Operator->getName() != "tconstpool" &&
   1825         Operator->getName() != "tjumptable" &&
   1826         Operator->getName() != "tframeindex" &&
   1827         Operator->getName() != "texternalsym" &&
   1828         Operator->getName() != "tblockaddress" &&
   1829         Operator->getName() != "tglobaladdr" &&
   1830         Operator->getName() != "bb" &&
   1831         Operator->getName() != "vt")
   1832       error("Cannot use '" + Operator->getName() + "' in an output pattern!");
   1833   }
   1834 
   1835   std::vector<TreePatternNode*> Children;
   1836 
   1837   // Parse all the operands.
   1838   for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
   1839     Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
   1840 
   1841   // If the operator is an intrinsic, then this is just syntactic sugar for for
   1842   // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
   1843   // convert the intrinsic name to a number.
   1844   if (Operator->isSubClassOf("Intrinsic")) {
   1845     const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
   1846     unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
   1847 
   1848     // If this intrinsic returns void, it must have side-effects and thus a
   1849     // chain.
   1850     if (Int.IS.RetVTs.empty())
   1851       Operator = getDAGPatterns().get_intrinsic_void_sdnode();
   1852     else if (Int.ModRef != CodeGenIntrinsic::NoMem)
   1853       // Has side-effects, requires chain.
   1854       Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
   1855     else // Otherwise, no chain.
   1856       Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
   1857 
   1858     TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
   1859     Children.insert(Children.begin(), IIDNode);
   1860   }
   1861 
   1862   unsigned NumResults = GetNumNodeResults(Operator, CDP);
   1863   TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
   1864   Result->setName(OpName);
   1865 
   1866   if (!Dag->getName().empty()) {
   1867     assert(Result->getName().empty());
   1868     Result->setName(Dag->getName());
   1869   }
   1870   return Result;
   1871 }
   1872 
   1873 /// SimplifyTree - See if we can simplify this tree to eliminate something that
   1874 /// will never match in favor of something obvious that will.  This is here
   1875 /// strictly as a convenience to target authors because it allows them to write
   1876 /// more type generic things and have useless type casts fold away.
   1877 ///
   1878 /// This returns true if any change is made.
   1879 static bool SimplifyTree(TreePatternNode *&N) {
   1880   if (N->isLeaf())
   1881     return false;
   1882 
   1883   // If we have a bitconvert with a resolved type and if the source and
   1884   // destination types are the same, then the bitconvert is useless, remove it.
   1885   if (N->getOperator()->getName() == "bitconvert" &&
   1886       N->getExtType(0).isConcrete() &&
   1887       N->getExtType(0) == N->getChild(0)->getExtType(0) &&
   1888       N->getName().empty()) {
   1889     N = N->getChild(0);
   1890     SimplifyTree(N);
   1891     return true;
   1892   }
   1893 
   1894   // Walk all children.
   1895   bool MadeChange = false;
   1896   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
   1897     TreePatternNode *Child = N->getChild(i);
   1898     MadeChange |= SimplifyTree(Child);
   1899     N->setChild(i, Child);
   1900   }
   1901   return MadeChange;
   1902 }
   1903 
   1904 
   1905 
   1906 /// InferAllTypes - Infer/propagate as many types throughout the expression
   1907 /// patterns as possible.  Return true if all types are inferred, false
   1908 /// otherwise.  Throw an exception if a type contradiction is found.
   1909 bool TreePattern::
   1910 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
   1911   if (NamedNodes.empty())
   1912     ComputeNamedNodes();
   1913 
   1914   bool MadeChange = true;
   1915   while (MadeChange) {
   1916     MadeChange = false;
   1917     for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
   1918       MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
   1919       MadeChange |= SimplifyTree(Trees[i]);
   1920     }
   1921 
   1922     // If there are constraints on our named nodes, apply them.
   1923     for (StringMap<SmallVector<TreePatternNode*,1> >::iterator
   1924          I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) {
   1925       SmallVectorImpl<TreePatternNode*> &Nodes = I->second;
   1926 
   1927       // If we have input named node types, propagate their types to the named
   1928       // values here.
   1929       if (InNamedTypes) {
   1930         // FIXME: Should be error?
   1931         assert(InNamedTypes->count(I->getKey()) &&
   1932                "Named node in output pattern but not input pattern?");
   1933 
   1934         const SmallVectorImpl<TreePatternNode*> &InNodes =
   1935           InNamedTypes->find(I->getKey())->second;
   1936 
   1937         // The input types should be fully resolved by now.
   1938         for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
   1939           // If this node is a register class, and it is the root of the pattern
   1940           // then we're mapping something onto an input register.  We allow
   1941           // changing the type of the input register in this case.  This allows
   1942           // us to match things like:
   1943           //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
   1944           if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) {
   1945             DefInit *DI = dynamic_cast<DefInit*>(Nodes[i]->getLeafValue());
   1946             if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
   1947                        DI->getDef()->isSubClassOf("RegisterOperand")))
   1948               continue;
   1949           }
   1950 
   1951           assert(Nodes[i]->getNumTypes() == 1 &&
   1952                  InNodes[0]->getNumTypes() == 1 &&
   1953                  "FIXME: cannot name multiple result nodes yet");
   1954           MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0),
   1955                                                  *this);
   1956         }
   1957       }
   1958 
   1959       // If there are multiple nodes with the same name, they must all have the
   1960       // same type.
   1961       if (I->second.size() > 1) {
   1962         for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
   1963           TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
   1964           assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
   1965                  "FIXME: cannot name multiple result nodes yet");
   1966 
   1967           MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
   1968           MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
   1969         }
   1970       }
   1971     }
   1972   }
   1973 
   1974   bool HasUnresolvedTypes = false;
   1975   for (unsigned i = 0, e = Trees.size(); i != e; ++i)
   1976     HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
   1977   return !HasUnresolvedTypes;
   1978 }
   1979 
   1980 void TreePattern::print(raw_ostream &OS) const {
   1981   OS << getRecord()->getName();
   1982   if (!Args.empty()) {
   1983     OS << "(" << Args[0];
   1984     for (unsigned i = 1, e = Args.size(); i != e; ++i)
   1985       OS << ", " << Args[i];
   1986     OS << ")";
   1987   }
   1988   OS << ": ";
   1989 
   1990   if (Trees.size() > 1)
   1991     OS << "[\n";
   1992   for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
   1993     OS << "\t";
   1994     Trees[i]->print(OS);
   1995     OS << "\n";
   1996   }
   1997 
   1998   if (Trees.size() > 1)
   1999     OS << "]\n";
   2000 }
   2001 
   2002 void TreePattern::dump() const { print(errs()); }
   2003 
   2004 //===----------------------------------------------------------------------===//
   2005 // CodeGenDAGPatterns implementation
   2006 //
   2007 
   2008 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
   2009   Records(R), Target(R) {
   2010 
   2011   Intrinsics = LoadIntrinsics(Records, false);
   2012   TgtIntrinsics = LoadIntrinsics(Records, true);
   2013   ParseNodeInfo();
   2014   ParseNodeTransforms();
   2015   ParseComplexPatterns();
   2016   ParsePatternFragments();
   2017   ParseDefaultOperands();
   2018   ParseInstructions();
   2019   ParsePatterns();
   2020 
   2021   // Generate variants.  For example, commutative patterns can match
   2022   // multiple ways.  Add them to PatternsToMatch as well.
   2023   GenerateVariants();
   2024 
   2025   // Infer instruction flags.  For example, we can detect loads,
   2026   // stores, and side effects in many cases by examining an
   2027   // instruction's pattern.
   2028   InferInstructionFlags();
   2029 
   2030   // Verify that instruction flags match the patterns.
   2031   VerifyInstructionFlags();
   2032 }
   2033 
   2034 CodeGenDAGPatterns::~CodeGenDAGPatterns() {
   2035   for (pf_iterator I = PatternFragments.begin(),
   2036        E = PatternFragments.end(); I != E; ++I)
   2037     delete I->second;
   2038 }
   2039 
   2040 
   2041 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
   2042   Record *N = Records.getDef(Name);
   2043   if (!N || !N->isSubClassOf("SDNode")) {
   2044     errs() << "Error getting SDNode '" << Name << "'!\n";
   2045     exit(1);
   2046   }
   2047   return N;
   2048 }
   2049 
   2050 // Parse all of the SDNode definitions for the target, populating SDNodes.
   2051 void CodeGenDAGPatterns::ParseNodeInfo() {
   2052   std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
   2053   while (!Nodes.empty()) {
   2054     SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
   2055     Nodes.pop_back();
   2056   }
   2057 
   2058   // Get the builtin intrinsic nodes.
   2059   intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
   2060   intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
   2061   intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
   2062 }
   2063 
   2064 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
   2065 /// map, and emit them to the file as functions.
   2066 void CodeGenDAGPatterns::ParseNodeTransforms() {
   2067   std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
   2068   while (!Xforms.empty()) {
   2069     Record *XFormNode = Xforms.back();
   2070     Record *SDNode = XFormNode->getValueAsDef("Opcode");
   2071     std::string Code = XFormNode->getValueAsString("XFormFunction");
   2072     SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
   2073 
   2074     Xforms.pop_back();
   2075   }
   2076 }
   2077 
   2078 void CodeGenDAGPatterns::ParseComplexPatterns() {
   2079   std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
   2080   while (!AMs.empty()) {
   2081     ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
   2082     AMs.pop_back();
   2083   }
   2084 }
   2085 
   2086 
   2087 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
   2088 /// file, building up the PatternFragments map.  After we've collected them all,
   2089 /// inline fragments together as necessary, so that there are no references left
   2090 /// inside a pattern fragment to a pattern fragment.
   2091 ///
   2092 void CodeGenDAGPatterns::ParsePatternFragments() {
   2093   std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
   2094 
   2095   // First step, parse all of the fragments.
   2096   for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
   2097     DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
   2098     TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
   2099     PatternFragments[Fragments[i]] = P;
   2100 
   2101     // Validate the argument list, converting it to set, to discard duplicates.
   2102     std::vector<std::string> &Args = P->getArgList();
   2103     std::set<std::string> OperandsSet(Args.begin(), Args.end());
   2104 
   2105     if (OperandsSet.count(""))
   2106       P->error("Cannot have unnamed 'node' values in pattern fragment!");
   2107 
   2108     // Parse the operands list.
   2109     DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
   2110     DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
   2111     // Special cases: ops == outs == ins. Different names are used to
   2112     // improve readability.
   2113     if (!OpsOp ||
   2114         (OpsOp->getDef()->getName() != "ops" &&
   2115          OpsOp->getDef()->getName() != "outs" &&
   2116          OpsOp->getDef()->getName() != "ins"))
   2117       P->error("Operands list should start with '(ops ... '!");
   2118 
   2119     // Copy over the arguments.
   2120     Args.clear();
   2121     for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
   2122       if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
   2123           static_cast<DefInit*>(OpsList->getArg(j))->
   2124           getDef()->getName() != "node")
   2125         P->error("Operands list should all be 'node' values.");
   2126       if (OpsList->getArgName(j).empty())
   2127         P->error("Operands list should have names for each operand!");
   2128       if (!OperandsSet.count(OpsList->getArgName(j)))
   2129         P->error("'" + OpsList->getArgName(j) +
   2130                  "' does not occur in pattern or was multiply specified!");
   2131       OperandsSet.erase(OpsList->getArgName(j));
   2132       Args.push_back(OpsList->getArgName(j));
   2133     }
   2134 
   2135     if (!OperandsSet.empty())
   2136       P->error("Operands list does not contain an entry for operand '" +
   2137                *OperandsSet.begin() + "'!");
   2138 
   2139     // If there is a code init for this fragment, keep track of the fact that
   2140     // this fragment uses it.
   2141     TreePredicateFn PredFn(P);
   2142     if (!PredFn.isAlwaysTrue())
   2143       P->getOnlyTree()->addPredicateFn(PredFn);
   2144 
   2145     // If there is a node transformation corresponding to this, keep track of
   2146     // it.
   2147     Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
   2148     if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
   2149       P->getOnlyTree()->setTransformFn(Transform);
   2150   }
   2151 
   2152   // Now that we've parsed all of the tree fragments, do a closure on them so
   2153   // that there are not references to PatFrags left inside of them.
   2154   for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
   2155     TreePattern *ThePat = PatternFragments[Fragments[i]];
   2156     ThePat->InlinePatternFragments();
   2157 
   2158     // Infer as many types as possible.  Don't worry about it if we don't infer
   2159     // all of them, some may depend on the inputs of the pattern.
   2160     try {
   2161       ThePat->InferAllTypes();
   2162     } catch (...) {
   2163       // If this pattern fragment is not supported by this target (no types can
   2164       // satisfy its constraints), just ignore it.  If the bogus pattern is
   2165       // actually used by instructions, the type consistency error will be
   2166       // reported there.
   2167     }
   2168 
   2169     // If debugging, print out the pattern fragment result.
   2170     DEBUG(ThePat->dump());
   2171   }
   2172 }
   2173 
   2174 void CodeGenDAGPatterns::ParseDefaultOperands() {
   2175   std::vector<Record*> DefaultOps;
   2176   DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
   2177 
   2178   // Find some SDNode.
   2179   assert(!SDNodes.empty() && "No SDNodes parsed?");
   2180   Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
   2181 
   2182   for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
   2183     DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
   2184 
   2185     // Clone the DefaultInfo dag node, changing the operator from 'ops' to
   2186     // SomeSDnode so that we can parse this.
   2187     std::vector<std::pair<Init*, std::string> > Ops;
   2188     for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
   2189       Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
   2190                                    DefaultInfo->getArgName(op)));
   2191     DagInit *DI = DagInit::get(SomeSDNode, "", Ops);
   2192 
   2193     // Create a TreePattern to parse this.
   2194     TreePattern P(DefaultOps[i], DI, false, *this);
   2195     assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
   2196 
   2197     // Copy the operands over into a DAGDefaultOperand.
   2198     DAGDefaultOperand DefaultOpInfo;
   2199 
   2200     TreePatternNode *T = P.getTree(0);
   2201     for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
   2202       TreePatternNode *TPN = T->getChild(op);
   2203       while (TPN->ApplyTypeConstraints(P, false))
   2204         /* Resolve all types */;
   2205 
   2206       if (TPN->ContainsUnresolvedType()) {
   2207         throw "Value #" + utostr(i) + " of OperandWithDefaultOps '" +
   2208           DefaultOps[i]->getName() +"' doesn't have a concrete type!";
   2209       }
   2210       DefaultOpInfo.DefaultOps.push_back(TPN);
   2211     }
   2212 
   2213     // Insert it into the DefaultOperands map so we can find it later.
   2214     DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
   2215   }
   2216 }
   2217 
   2218 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
   2219 /// instruction input.  Return true if this is a real use.
   2220 static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
   2221                       std::map<std::string, TreePatternNode*> &InstInputs) {
   2222   // No name -> not interesting.
   2223   if (Pat->getName().empty()) {
   2224     if (Pat->isLeaf()) {
   2225       DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
   2226       if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
   2227                  DI->getDef()->isSubClassOf("RegisterOperand")))
   2228         I->error("Input " + DI->getDef()->getName() + " must be named!");
   2229     }
   2230     return false;
   2231   }
   2232 
   2233   Record *Rec;
   2234   if (Pat->isLeaf()) {
   2235     DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
   2236     if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
   2237     Rec = DI->getDef();
   2238   } else {
   2239     Rec = Pat->getOperator();
   2240   }
   2241 
   2242   // SRCVALUE nodes are ignored.
   2243   if (Rec->getName() == "srcvalue")
   2244     return false;
   2245 
   2246   TreePatternNode *&Slot = InstInputs[Pat->getName()];
   2247   if (!Slot) {
   2248     Slot = Pat;
   2249     return true;
   2250   }
   2251   Record *SlotRec;
   2252   if (Slot->isLeaf()) {
   2253     SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
   2254   } else {
   2255     assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
   2256     SlotRec = Slot->getOperator();
   2257   }
   2258 
   2259   // Ensure that the inputs agree if we've already seen this input.
   2260   if (Rec != SlotRec)
   2261     I->error("All $" + Pat->getName() + " inputs must agree with each other");
   2262   if (Slot->getExtTypes() != Pat->getExtTypes())
   2263     I->error("All $" + Pat->getName() + " inputs must agree with each other");
   2264   return true;
   2265 }
   2266 
   2267 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
   2268 /// part of "I", the instruction), computing the set of inputs and outputs of
   2269 /// the pattern.  Report errors if we see anything naughty.
   2270 void CodeGenDAGPatterns::
   2271 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
   2272                             std::map<std::string, TreePatternNode*> &InstInputs,
   2273                             std::map<std::string, TreePatternNode*>&InstResults,
   2274                             std::vector<Record*> &InstImpResults) {
   2275   if (Pat->isLeaf()) {
   2276     bool isUse = HandleUse(I, Pat, InstInputs);
   2277     if (!isUse && Pat->getTransformFn())
   2278       I->error("Cannot specify a transform function for a non-input value!");
   2279     return;
   2280   }
   2281 
   2282   if (Pat->getOperator()->getName() == "implicit") {
   2283     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
   2284       TreePatternNode *Dest = Pat->getChild(i);
   2285       if (!Dest->isLeaf())
   2286         I->error("implicitly defined value should be a register!");
   2287 
   2288       DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
   2289       if (!Val || !Val->getDef()->isSubClassOf("Register"))
   2290         I->error("implicitly defined value should be a register!");
   2291       InstImpResults.push_back(Val->getDef());
   2292     }
   2293     return;
   2294   }
   2295 
   2296   if (Pat->getOperator()->getName() != "set") {
   2297     // If this is not a set, verify that the children nodes are not void typed,
   2298     // and recurse.
   2299     for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
   2300       if (Pat->getChild(i)->getNumTypes() == 0)
   2301         I->error("Cannot have void nodes inside of patterns!");
   2302       FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
   2303                                   InstImpResults);
   2304     }
   2305 
   2306     // If this is a non-leaf node with no children, treat it basically as if
   2307     // it were a leaf.  This handles nodes like (imm).
   2308     bool isUse = HandleUse(I, Pat, InstInputs);
   2309 
   2310     if (!isUse && Pat->getTransformFn())
   2311       I->error("Cannot specify a transform function for a non-input value!");
   2312     return;
   2313   }
   2314 
   2315   // Otherwise, this is a set, validate and collect instruction results.
   2316   if (Pat->getNumChildren() == 0)
   2317     I->error("set requires operands!");
   2318 
   2319   if (Pat->getTransformFn())
   2320     I->error("Cannot specify a transform function on a set node!");
   2321 
   2322   // Check the set destinations.
   2323   unsigned NumDests = Pat->getNumChildren()-1;
   2324   for (unsigned i = 0; i != NumDests; ++i) {
   2325     TreePatternNode *Dest = Pat->getChild(i);
   2326     if (!Dest->isLeaf())
   2327       I->error("set destination should be a register!");
   2328 
   2329     DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
   2330     if (!Val)
   2331       I->error("set destination should be a register!");
   2332 
   2333     if (Val->getDef()->isSubClassOf("RegisterClass") ||
   2334         Val->getDef()->isSubClassOf("RegisterOperand") ||
   2335         Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
   2336       if (Dest->getName().empty())
   2337         I->error("set destination must have a name!");
   2338       if (InstResults.count(Dest->getName()))
   2339         I->error("cannot set '" + Dest->getName() +"' multiple times");
   2340       InstResults[Dest->getName()] = Dest;
   2341     } else if (Val->getDef()->isSubClassOf("Register")) {
   2342       InstImpResults.push_back(Val->getDef());
   2343     } else {
   2344       I->error("set destination should be a register!");
   2345     }
   2346   }
   2347 
   2348   // Verify and collect info from the computation.
   2349   FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
   2350                               InstInputs, InstResults, InstImpResults);
   2351 }
   2352 
   2353 //===----------------------------------------------------------------------===//
   2354 // Instruction Analysis
   2355 //===----------------------------------------------------------------------===//
   2356 
   2357 class InstAnalyzer {
   2358   const CodeGenDAGPatterns &CDP;
   2359 public:
   2360   bool hasSideEffects;
   2361   bool mayStore;
   2362   bool mayLoad;
   2363   bool isBitcast;
   2364   bool isVariadic;
   2365 
   2366   InstAnalyzer(const CodeGenDAGPatterns &cdp)
   2367     : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
   2368       isBitcast(false), isVariadic(false) {}
   2369 
   2370   void Analyze(const TreePattern *Pat) {
   2371     // Assume only the first tree is the pattern. The others are clobber nodes.
   2372     AnalyzeNode(Pat->getTree(0));
   2373   }
   2374 
   2375   void Analyze(const PatternToMatch *Pat) {
   2376     AnalyzeNode(Pat->getSrcPattern());
   2377   }
   2378 
   2379 private:
   2380   bool IsNodeBitcast(const TreePatternNode *N) const {
   2381     if (hasSideEffects || mayLoad || mayStore || isVariadic)
   2382       return false;
   2383 
   2384     if (N->getNumChildren() != 2)
   2385       return false;
   2386 
   2387     const TreePatternNode *N0 = N->getChild(0);
   2388     if (!N0->isLeaf() || !dynamic_cast<DefInit*>(N0->getLeafValue()))
   2389       return false;
   2390 
   2391     const TreePatternNode *N1 = N->getChild(1);
   2392     if (N1->isLeaf())
   2393       return false;
   2394     if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
   2395       return false;
   2396 
   2397     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
   2398     if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
   2399       return false;
   2400     return OpInfo.getEnumName() == "ISD::BITCAST";
   2401   }
   2402 
   2403 public:
   2404   void AnalyzeNode(const TreePatternNode *N) {
   2405     if (N->isLeaf()) {
   2406       if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
   2407         Record *LeafRec = DI->getDef();
   2408         // Handle ComplexPattern leaves.
   2409         if (LeafRec->isSubClassOf("ComplexPattern")) {
   2410           const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
   2411           if (CP.hasProperty(SDNPMayStore)) mayStore = true;
   2412           if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
   2413           if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
   2414         }
   2415       }
   2416       return;
   2417     }
   2418 
   2419     // Analyze children.
   2420     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
   2421       AnalyzeNode(N->getChild(i));
   2422 
   2423     // Ignore set nodes, which are not SDNodes.
   2424     if (N->getOperator()->getName() == "set") {
   2425       isBitcast = IsNodeBitcast(N);
   2426       return;
   2427     }
   2428 
   2429     // Get information about the SDNode for the operator.
   2430     const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
   2431 
   2432     // Notice properties of the node.
   2433     if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true;
   2434     if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true;
   2435     if (OpInfo.hasProperty(SDNPSideEffect)) hasSideEffects = true;
   2436     if (OpInfo.hasProperty(SDNPVariadic)) isVariadic = true;
   2437 
   2438     if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
   2439       // If this is an intrinsic, analyze it.
   2440       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem)
   2441         mayLoad = true;// These may load memory.
   2442 
   2443       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem)
   2444         mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
   2445 
   2446       if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem)
   2447         // WriteMem intrinsics can have other strange effects.
   2448         hasSideEffects = true;
   2449     }
   2450   }
   2451 
   2452 };
   2453 
   2454 static bool InferFromPattern(CodeGenInstruction &InstInfo,
   2455                              const InstAnalyzer &PatInfo,
   2456                              Record *PatDef) {
   2457   bool Error = false;
   2458 
   2459   // Remember where InstInfo got its flags.
   2460   if (InstInfo.hasUndefFlags())
   2461       InstInfo.InferredFrom = PatDef;
   2462 
   2463   // Check explicitly set flags for consistency.
   2464   if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
   2465       !InstInfo.hasSideEffects_Unset) {
   2466     // Allow explicitly setting hasSideEffects = 1 on instructions, even when
   2467     // the pattern has no side effects. That could be useful for div/rem
   2468     // instructions that may trap.
   2469     if (!InstInfo.hasSideEffects) {
   2470       Error = true;
   2471       PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
   2472                  Twine(InstInfo.hasSideEffects));
   2473     }
   2474   }
   2475 
   2476   if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
   2477     Error = true;
   2478     PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
   2479                Twine(InstInfo.mayStore));
   2480   }
   2481 
   2482   if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
   2483     // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
   2484     // Some targets translate imediates to loads.
   2485     if (!InstInfo.mayLoad) {
   2486       Error = true;
   2487       PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
   2488                  Twine(InstInfo.mayLoad));
   2489     }
   2490   }
   2491 
   2492   // Transfer inferred flags.
   2493   InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
   2494   InstInfo.mayStore |= PatInfo.mayStore;
   2495   InstInfo.mayLoad |= PatInfo.mayLoad;
   2496 
   2497   // These flags are silently added without any verification.
   2498   InstInfo.isBitcast |= PatInfo.isBitcast;
   2499 
   2500   // Don't infer isVariadic. This flag means something different on SDNodes and
   2501   // instructions. For example, a CALL SDNode is variadic because it has the
   2502   // call arguments as operands, but a CALL instruction is not variadic - it
   2503   // has argument registers as implicit, not explicit uses.
   2504 
   2505   return Error;
   2506 }
   2507 
   2508 /// hasNullFragReference - Return true if the DAG has any reference to the
   2509 /// null_frag operator.
   2510 static bool hasNullFragReference(DagInit *DI) {
   2511   DefInit *OpDef = dynamic_cast<DefInit*>(DI->getOperator());
   2512   if (!OpDef) return false;
   2513   Record *Operator = OpDef->getDef();
   2514 
   2515   // If this is the null fragment, return true.
   2516   if (Operator->getName() == "null_frag") return true;
   2517   // If any of the arguments reference the null fragment, return true.
   2518   for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
   2519     DagInit *Arg = dynamic_cast<DagInit*>(DI->getArg(i));
   2520     if (Arg && hasNullFragReference(Arg))
   2521       return true;
   2522   }
   2523 
   2524   return false;
   2525 }
   2526 
   2527 /// hasNullFragReference - Return true if any DAG in the list references
   2528 /// the null_frag operator.
   2529 static bool hasNullFragReference(ListInit *LI) {
   2530   for (unsigned i = 0, e = LI->getSize(); i != e; ++i) {
   2531     DagInit *DI = dynamic_cast<DagInit*>(LI->getElement(i));
   2532     assert(DI && "non-dag in an instruction Pattern list?!");
   2533     if (hasNullFragReference(DI))
   2534       return true;
   2535   }
   2536   return false;
   2537 }
   2538 
   2539 /// Get all the instructions in a tree.
   2540 static void
   2541 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
   2542   if (Tree->isLeaf())
   2543     return;
   2544   if (Tree->getOperator()->isSubClassOf("Instruction"))
   2545     Instrs.push_back(Tree->getOperator());
   2546   for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
   2547     getInstructionsInTree(Tree->getChild(i), Instrs);
   2548 }
   2549 
   2550 /// ParseInstructions - Parse all of the instructions, inlining and resolving
   2551 /// any fragments involved.  This populates the Instructions list with fully
   2552 /// resolved instructions.
   2553 void CodeGenDAGPatterns::ParseInstructions() {
   2554   std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
   2555 
   2556   for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
   2557     ListInit *LI = 0;
   2558 
   2559     if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
   2560       LI = Instrs[i]->getValueAsListInit("Pattern");
   2561 
   2562     // If there is no pattern, only collect minimal information about the
   2563     // instruction for its operand list.  We have to assume that there is one
   2564     // result, as we have no detailed info. A pattern which references the
   2565     // null_frag operator is as-if no pattern were specified. Normally this
   2566     // is from a multiclass expansion w/ a SDPatternOperator passed in as
   2567     // null_frag.
   2568     if (!LI || LI->getSize() == 0 || hasNullFragReference(LI)) {
   2569       std::vector<Record*> Results;
   2570       std::vector<Record*> Operands;
   2571 
   2572       CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
   2573 
   2574       if (InstInfo.Operands.size() != 0) {
   2575         if (InstInfo.Operands.NumDefs == 0) {
   2576           // These produce no results
   2577           for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j)
   2578             Operands.push_back(InstInfo.Operands[j].Rec);
   2579         } else {
   2580           // Assume the first operand is the result.
   2581           Results.push_back(InstInfo.Operands[0].Rec);
   2582 
   2583           // The rest are inputs.
   2584           for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j)
   2585             Operands.push_back(InstInfo.Operands[j].Rec);
   2586         }
   2587       }
   2588 
   2589       // Create and insert the instruction.
   2590       std::vector<Record*> ImpResults;
   2591       Instructions.insert(std::make_pair(Instrs[i],
   2592                           DAGInstruction(0, Results, Operands, ImpResults)));
   2593       continue;  // no pattern.
   2594     }
   2595 
   2596     // Parse the instruction.
   2597     TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
   2598     // Inline pattern fragments into it.
   2599     I->InlinePatternFragments();
   2600 
   2601     // Infer as many types as possible.  If we cannot infer all of them, we can
   2602     // never do anything with this instruction pattern: report it to the user.
   2603     if (!I->InferAllTypes())
   2604       I->error("Could not infer all types in pattern!");
   2605 
   2606     // InstInputs - Keep track of all of the inputs of the instruction, along
   2607     // with the record they are declared as.
   2608     std::map<std::string, TreePatternNode*> InstInputs;
   2609 
   2610     // InstResults - Keep track of all the virtual registers that are 'set'
   2611     // in the instruction, including what reg class they are.
   2612     std::map<std::string, TreePatternNode*> InstResults;
   2613 
   2614     std::vector<Record*> InstImpResults;
   2615 
   2616     // Verify that the top-level forms in the instruction are of void type, and
   2617     // fill in the InstResults map.
   2618     for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
   2619       TreePatternNode *Pat = I->getTree(j);
   2620       if (Pat->getNumTypes() != 0)
   2621         I->error("Top-level forms in instruction pattern should have"
   2622                  " void types");
   2623 
   2624       // Find inputs and outputs, and verify the structure of the uses/defs.
   2625       FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
   2626                                   InstImpResults);
   2627     }
   2628 
   2629     // Now that we have inputs and outputs of the pattern, inspect the operands
   2630     // list for the instruction.  This determines the order that operands are
   2631     // added to the machine instruction the node corresponds to.
   2632     unsigned NumResults = InstResults.size();
   2633 
   2634     // Parse the operands list from the (ops) list, validating it.
   2635     assert(I->getArgList().empty() && "Args list should still be empty here!");
   2636     CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]);
   2637 
   2638     // Check that all of the results occur first in the list.
   2639     std::vector<Record*> Results;
   2640     TreePatternNode *Res0Node = 0;
   2641     for (unsigned i = 0; i != NumResults; ++i) {
   2642       if (i == CGI.Operands.size())
   2643         I->error("'" + InstResults.begin()->first +
   2644                  "' set but does not appear in operand list!");
   2645       const std::string &OpName = CGI.Operands[i].Name;
   2646 
   2647       // Check that it exists in InstResults.
   2648       TreePatternNode *RNode = InstResults[OpName];
   2649       if (RNode == 0)
   2650         I->error("Operand $" + OpName + " does not exist in operand list!");
   2651 
   2652       if (i == 0)
   2653         Res0Node = RNode;
   2654       Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
   2655       if (R == 0)
   2656         I->error("Operand $" + OpName + " should be a set destination: all "
   2657                  "outputs must occur before inputs in operand list!");
   2658 
   2659       if (CGI.Operands[i].Rec != R)
   2660         I->error("Operand $" + OpName + " class mismatch!");
   2661 
   2662       // Remember the return type.
   2663       Results.push_back(CGI.Operands[i].Rec);
   2664 
   2665       // Okay, this one checks out.
   2666       InstResults.erase(OpName);
   2667     }
   2668 
   2669     // Loop over the inputs next.  Make a copy of InstInputs so we can destroy
   2670     // the copy while we're checking the inputs.
   2671     std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
   2672 
   2673     std::vector<TreePatternNode*> ResultNodeOperands;
   2674     std::vector<Record*> Operands;
   2675     for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
   2676       CGIOperandList::OperandInfo &Op = CGI.Operands[i];
   2677       const std::string &OpName = Op.Name;
   2678       if (OpName.empty())
   2679         I->error("Operand #" + utostr(i) + " in operands list has no name!");
   2680 
   2681       if (!InstInputsCheck.count(OpName)) {
   2682         // If this is an operand with a DefaultOps set filled in, we can ignore
   2683         // this.  When we codegen it, we will do so as always executed.
   2684         if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
   2685           // Does it have a non-empty DefaultOps field?  If so, ignore this
   2686           // operand.
   2687           if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
   2688             continue;
   2689         }
   2690         I->error("Operand $" + OpName +
   2691                  " does not appear in the instruction pattern");
   2692       }
   2693       TreePatternNode *InVal = InstInputsCheck[OpName];
   2694       InstInputsCheck.erase(OpName);   // It occurred, remove from map.
   2695 
   2696       if (InVal->isLeaf() &&
   2697           dynamic_cast<DefInit*>(InVal->getLeafValue())) {
   2698         Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
   2699         if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
   2700           I->error("Operand $" + OpName + "'s register class disagrees"
   2701                    " between the operand and pattern");
   2702       }
   2703       Operands.push_back(Op.Rec);
   2704 
   2705       // Construct the result for the dest-pattern operand list.
   2706       TreePatternNode *OpNode = InVal->clone();
   2707 
   2708       // No predicate is useful on the result.
   2709       OpNode->clearPredicateFns();
   2710 
   2711       // Promote the xform function to be an explicit node if set.
   2712       if (Record *Xform = OpNode->getTransformFn()) {
   2713         OpNode->setTransformFn(0);
   2714         std::vector<TreePatternNode*> Children;
   2715         Children.push_back(OpNode);
   2716         OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
   2717       }
   2718 
   2719       ResultNodeOperands.push_back(OpNode);
   2720     }
   2721 
   2722     if (!InstInputsCheck.empty())
   2723       I->error("Input operand $" + InstInputsCheck.begin()->first +
   2724                " occurs in pattern but not in operands list!");
   2725 
   2726     TreePatternNode *ResultPattern =
   2727       new TreePatternNode(I->getRecord(), ResultNodeOperands,
   2728                           GetNumNodeResults(I->getRecord(), *this));
   2729     // Copy fully inferred output node type to instruction result pattern.
   2730     for (unsigned i = 0; i != NumResults; ++i)
   2731       ResultPattern->setType(i, Res0Node->getExtType(i));
   2732 
   2733     // Create and insert the instruction.
   2734     // FIXME: InstImpResults should not be part of DAGInstruction.
   2735     DAGInstruction TheInst(I, Results, Operands, InstImpResults);
   2736     Instructions.insert(std::make_pair(I->getRecord(), TheInst));
   2737 
   2738     // Use a temporary tree pattern to infer all types and make sure that the
   2739     // constructed result is correct.  This depends on the instruction already
   2740     // being inserted into the Instructions map.
   2741     TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
   2742     Temp.InferAllTypes(&I->getNamedNodesMap());
   2743 
   2744     DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
   2745     TheInsertedInst.setResultPattern(Temp.getOnlyTree());
   2746 
   2747     DEBUG(I->dump());
   2748   }
   2749 
   2750   // If we can, convert the instructions to be patterns that are matched!
   2751   for (std::map<Record*, DAGInstruction, RecordPtrCmp>::iterator II =
   2752         Instructions.begin(),
   2753        E = Instructions.end(); II != E; ++II) {
   2754     DAGInstruction &TheInst = II->second;
   2755     const TreePattern *I = TheInst.getPattern();
   2756     if (I == 0) continue;  // No pattern.
   2757 
   2758     // FIXME: Assume only the first tree is the pattern. The others are clobber
   2759     // nodes.
   2760     TreePatternNode *Pattern = I->getTree(0);
   2761     TreePatternNode *SrcPattern;
   2762     if (Pattern->getOperator()->getName() == "set") {
   2763       SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
   2764     } else{
   2765       // Not a set (store or something?)
   2766       SrcPattern = Pattern;
   2767     }
   2768 
   2769     Record *Instr = II->first;
   2770     AddPatternToMatch(I,
   2771                       PatternToMatch(Instr,
   2772                                      Instr->getValueAsListInit("Predicates"),
   2773                                      SrcPattern,
   2774                                      TheInst.getResultPattern(),
   2775                                      TheInst.getImpResults(),
   2776                                      Instr->getValueAsInt("AddedComplexity"),
   2777                                      Instr->getID()));
   2778   }
   2779 }
   2780 
   2781 
   2782 typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
   2783 
   2784 static void FindNames(const TreePatternNode *P,
   2785                       std::map<std::string, NameRecord> &Names,
   2786                       const TreePattern *PatternTop) {
   2787   if (!P->getName().empty()) {
   2788     NameRecord &Rec = Names[P->getName()];
   2789     // If this is the first instance of the name, remember the node.
   2790     if (Rec.second++ == 0)
   2791       Rec.first = P;
   2792     else if (Rec.first->getExtTypes() != P->getExtTypes())
   2793       PatternTop->error("repetition of value: $" + P->getName() +
   2794                         " where different uses have different types!");
   2795   }
   2796 
   2797   if (!P->isLeaf()) {
   2798     for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
   2799       FindNames(P->getChild(i), Names, PatternTop);
   2800   }
   2801 }
   2802 
   2803 void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern,
   2804                                            const PatternToMatch &PTM) {
   2805   // Do some sanity checking on the pattern we're about to match.
   2806   std::string Reason;
   2807   if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this))
   2808     Pattern->error("Pattern can never match: " + Reason);
   2809 
   2810   // If the source pattern's root is a complex pattern, that complex pattern
   2811   // must specify the nodes it can potentially match.
   2812   if (const ComplexPattern *CP =
   2813         PTM.getSrcPattern()->getComplexPatternInfo(*this))
   2814     if (CP->getRootNodes().empty())
   2815       Pattern->error("ComplexPattern at root must specify list of opcodes it"
   2816                      " could match");
   2817 
   2818 
   2819   // Find all of the named values in the input and output, ensure they have the
   2820   // same type.
   2821   std::map<std::string, NameRecord> SrcNames, DstNames;
   2822   FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
   2823   FindNames(PTM.getDstPattern(), DstNames, Pattern);
   2824 
   2825   // Scan all of the named values in the destination pattern, rejecting them if
   2826   // they don't exist in the input pattern.
   2827   for (std::map<std::string, NameRecord>::iterator
   2828        I = DstNames.begin(), E = DstNames.end(); I != E; ++I) {
   2829     if (SrcNames[I->first].first == 0)
   2830       Pattern->error("Pattern has input without matching name in output: $" +
   2831                      I->first);
   2832   }
   2833 
   2834   // Scan all of the named values in the source pattern, rejecting them if the
   2835   // name isn't used in the dest, and isn't used to tie two values together.
   2836   for (std::map<std::string, NameRecord>::iterator
   2837        I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I)
   2838     if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1)
   2839       Pattern->error("Pattern has dead named input: $" + I->first);
   2840 
   2841   PatternsToMatch.push_back(PTM);
   2842 }
   2843 
   2844 
   2845 
   2846 void CodeGenDAGPatterns::InferInstructionFlags() {
   2847   const std::vector<const CodeGenInstruction*> &Instructions =
   2848     Target.getInstructionsByEnumValue();
   2849 
   2850   // First try to infer flags from the primary instruction pattern, if any.
   2851   SmallVector<CodeGenInstruction*, 8> Revisit;
   2852   unsigned Errors = 0;
   2853   for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
   2854     CodeGenInstruction &InstInfo =
   2855       const_cast<CodeGenInstruction &>(*Instructions[i]);
   2856 
   2857     // Treat neverHasSideEffects = 1 as the equivalent of hasSideEffects = 0.
   2858     // This flag is obsolete and will be removed.
   2859     if (InstInfo.neverHasSideEffects) {
   2860       assert(!InstInfo.hasSideEffects);
   2861       InstInfo.hasSideEffects_Unset = false;
   2862     }
   2863 
   2864     // Get the primary instruction pattern.
   2865     const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
   2866     if (!Pattern) {
   2867       if (InstInfo.hasUndefFlags())
   2868         Revisit.push_back(&InstInfo);
   2869       continue;
   2870     }
   2871     InstAnalyzer PatInfo(*this);
   2872     PatInfo.Analyze(Pattern);
   2873     Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
   2874   }
   2875 
   2876   // Second, look for single-instruction patterns defined outside the
   2877   // instruction.
   2878   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
   2879     const PatternToMatch &PTM = *I;
   2880 
   2881     // We can only infer from single-instruction patterns, otherwise we won't
   2882     // know which instruction should get the flags.
   2883     SmallVector<Record*, 8> PatInstrs;
   2884     getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
   2885     if (PatInstrs.size() != 1)
   2886       continue;
   2887 
   2888     // Get the single instruction.
   2889     CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
   2890 
   2891     // Only infer properties from the first pattern. We'll verify the others.
   2892     if (InstInfo.InferredFrom)
   2893       continue;
   2894 
   2895     InstAnalyzer PatInfo(*this);
   2896     PatInfo.Analyze(&PTM);
   2897     Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
   2898   }
   2899 
   2900   if (Errors)
   2901     throw "pattern conflicts";
   2902 
   2903   // Revisit instructions with undefined flags and no pattern.
   2904   if (Target.guessInstructionProperties()) {
   2905     for (unsigned i = 0, e = Revisit.size(); i != e; ++i) {
   2906       CodeGenInstruction &InstInfo = *Revisit[i];
   2907       if (InstInfo.InferredFrom)
   2908         continue;
   2909       // The mayLoad and mayStore flags default to false.
   2910       // Conservatively assume hasSideEffects if it wasn't explicit.
   2911       if (InstInfo.hasSideEffects_Unset)
   2912         InstInfo.hasSideEffects = true;
   2913     }
   2914     return;
   2915   }
   2916 
   2917   // Complain about any flags that are still undefined.
   2918   for (unsigned i = 0, e = Revisit.size(); i != e; ++i) {
   2919     CodeGenInstruction &InstInfo = *Revisit[i];
   2920     if (InstInfo.InferredFrom)
   2921       continue;
   2922     if (InstInfo.hasSideEffects_Unset)
   2923       PrintError(InstInfo.TheDef->getLoc(),
   2924                  "Can't infer hasSideEffects from patterns");
   2925     if (InstInfo.mayStore_Unset)
   2926       PrintError(InstInfo.TheDef->getLoc(),
   2927                  "Can't infer mayStore from patterns");
   2928     if (InstInfo.mayLoad_Unset)
   2929       PrintError(InstInfo.TheDef->getLoc(),
   2930                  "Can't infer mayLoad from patterns");
   2931   }
   2932 }
   2933 
   2934 
   2935 /// Verify instruction flags against pattern node properties.
   2936 void CodeGenDAGPatterns::VerifyInstructionFlags() {
   2937   unsigned Errors = 0;
   2938   for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
   2939     const PatternToMatch &PTM = *I;
   2940     SmallVector<Record*, 8> Instrs;
   2941     getInstructionsInTree(PTM.getDstPattern(), Instrs);
   2942     if (Instrs.empty())
   2943       continue;
   2944 
   2945     // Count the number of instructions with each flag set.
   2946     unsigned NumSideEffects = 0;
   2947     unsigned NumStores = 0;
   2948     unsigned NumLoads = 0;
   2949     for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
   2950       const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
   2951       NumSideEffects += InstInfo.hasSideEffects;
   2952       NumStores += InstInfo.mayStore;
   2953       NumLoads += InstInfo.mayLoad;
   2954     }
   2955 
   2956     // Analyze the source pattern.
   2957     InstAnalyzer PatInfo(*this);
   2958     PatInfo.Analyze(&PTM);
   2959 
   2960     // Collect error messages.
   2961     SmallVector<std::string, 4> Msgs;
   2962 
   2963     // Check for missing flags in the output.
   2964     // Permit extra flags for now at least.
   2965     if (PatInfo.hasSideEffects && !NumSideEffects)
   2966       Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
   2967 
   2968     // Don't verify store flags on instructions with side effects. At least for
   2969     // intrinsics, side effects implies mayStore.
   2970     if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
   2971       Msgs.push_back("pattern may store, but mayStore isn't set");
   2972 
   2973     // Similarly, mayStore implies mayLoad on intrinsics.
   2974     if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
   2975       Msgs.push_back("pattern may load, but mayLoad isn't set");
   2976 
   2977     // Print error messages.
   2978     if (Msgs.empty())
   2979       continue;
   2980     ++Errors;
   2981 
   2982     for (unsigned i = 0, e = Msgs.size(); i != e; ++i)
   2983       PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msgs[i]) + " on the " +
   2984                  (Instrs.size() == 1 ?
   2985                   "instruction" : "output instructions"));
   2986     // Provide the location of the relevant instruction definitions.
   2987     for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
   2988       if (Instrs[i] != PTM.getSrcRecord())
   2989         PrintError(Instrs[i]->getLoc(), "defined here");
   2990       const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]);
   2991       if (InstInfo.InferredFrom &&
   2992           InstInfo.InferredFrom != InstInfo.TheDef &&
   2993           InstInfo.InferredFrom != PTM.getSrcRecord())
   2994         PrintError(InstInfo.InferredFrom->getLoc(), "inferred from patttern");
   2995     }
   2996   }
   2997   if (Errors)
   2998     throw "Errors in DAG patterns";
   2999 }
   3000 
   3001 /// Given a pattern result with an unresolved type, see if we can find one
   3002 /// instruction with an unresolved result type.  Force this result type to an
   3003 /// arbitrary element if it's possible types to converge results.
   3004 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
   3005   if (N->isLeaf())
   3006     return false;
   3007 
   3008   // Analyze children.
   3009   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
   3010     if (ForceArbitraryInstResultType(N->getChild(i), TP))
   3011       return true;
   3012 
   3013   if (!N->getOperator()->isSubClassOf("Instruction"))
   3014     return false;
   3015 
   3016   // If this type is already concrete or completely unknown we can't do
   3017   // anything.
   3018   for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
   3019     if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
   3020       continue;
   3021 
   3022     // Otherwise, force its type to the first possibility (an arbitrary choice).
   3023     if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
   3024       return true;
   3025   }
   3026 
   3027   return false;
   3028 }
   3029 
   3030 void CodeGenDAGPatterns::ParsePatterns() {
   3031   std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
   3032 
   3033   for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
   3034     Record *CurPattern = Patterns[i];
   3035     DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
   3036 
   3037     // If the pattern references the null_frag, there's nothing to do.
   3038     if (hasNullFragReference(Tree))
   3039       continue;
   3040 
   3041     TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
   3042 
   3043     // Inline pattern fragments into it.
   3044     Pattern->InlinePatternFragments();
   3045 
   3046     ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
   3047     if (LI->getSize() == 0) continue;  // no pattern.
   3048 
   3049     // Parse the instruction.
   3050     TreePattern *Result = new TreePattern(CurPattern, LI, false, *this);
   3051 
   3052     // Inline pattern fragments into it.
   3053     Result->InlinePatternFragments();
   3054 
   3055     if (Result->getNumTrees() != 1)
   3056       Result->error("Cannot handle instructions producing instructions "
   3057                     "with temporaries yet!");
   3058 
   3059     bool IterateInference;
   3060     bool InferredAllPatternTypes, InferredAllResultTypes;
   3061     do {
   3062       // Infer as many types as possible.  If we cannot infer all of them, we
   3063       // can never do anything with this pattern: report it to the user.
   3064       InferredAllPatternTypes =
   3065         Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
   3066 
   3067       // Infer as many types as possible.  If we cannot infer all of them, we
   3068       // can never do anything with this pattern: report it to the user.
   3069       InferredAllResultTypes =
   3070         Result->InferAllTypes(&Pattern->getNamedNodesMap());
   3071 
   3072       IterateInference = false;
   3073 
   3074       // Apply the type of the result to the source pattern.  This helps us
   3075       // resolve cases where the input type is known to be a pointer type (which
   3076       // is considered resolved), but the result knows it needs to be 32- or
   3077       // 64-bits.  Infer the other way for good measure.
   3078       for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(),
   3079                                         Pattern->getTree(0)->getNumTypes());
   3080            i != e; ++i) {
   3081         IterateInference = Pattern->getTree(0)->
   3082           UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result);
   3083         IterateInference |= Result->getTree(0)->
   3084           UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result);
   3085       }
   3086 
   3087       // If our iteration has converged and the input pattern's types are fully
   3088       // resolved but the result pattern is not fully resolved, we may have a
   3089       // situation where we have two instructions in the result pattern and
   3090       // the instructions require a common register class, but don't care about
   3091       // what actual MVT is used.  This is actually a bug in our modelling:
   3092       // output patterns should have register classes, not MVTs.
   3093       //
   3094       // In any case, to handle this, we just go through and disambiguate some
   3095       // arbitrary types to the result pattern's nodes.
   3096       if (!IterateInference && InferredAllPatternTypes &&
   3097           !InferredAllResultTypes)
   3098         IterateInference = ForceArbitraryInstResultType(Result->getTree(0),
   3099                                                         *Result);
   3100     } while (IterateInference);
   3101 
   3102     // Verify that we inferred enough types that we can do something with the
   3103     // pattern and result.  If these fire the user has to add type casts.
   3104     if (!InferredAllPatternTypes)
   3105       Pattern->error("Could not infer all types in pattern!");
   3106     if (!InferredAllResultTypes) {
   3107       Pattern->dump();
   3108       Result->error("Could not infer all types in pattern result!");
   3109     }
   3110 
   3111     // Validate that the input pattern is correct.
   3112     std::map<std::string, TreePatternNode*> InstInputs;
   3113     std::map<std::string, TreePatternNode*> InstResults;
   3114     std::vector<Record*> InstImpResults;
   3115     for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
   3116       FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
   3117                                   InstInputs, InstResults,
   3118                                   InstImpResults);
   3119 
   3120     // Promote the xform function to be an explicit node if set.
   3121     TreePatternNode *DstPattern = Result->getOnlyTree();
   3122     std::vector<TreePatternNode*> ResultNodeOperands;
   3123     for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
   3124       TreePatternNode *OpNode = DstPattern->getChild(ii);
   3125       if (Record *Xform = OpNode->getTransformFn()) {
   3126         OpNode->setTransformFn(0);
   3127         std::vector<TreePatternNode*> Children;
   3128         Children.push_back(OpNode);
   3129         OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
   3130       }
   3131       ResultNodeOperands.push_back(OpNode);
   3132     }
   3133     DstPattern = Result->getOnlyTree();
   3134     if (!DstPattern->isLeaf())
   3135       DstPattern = new TreePatternNode(DstPattern->getOperator(),
   3136                                        ResultNodeOperands,
   3137                                        DstPattern->getNumTypes());
   3138 
   3139     for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i)
   3140       DstPattern->setType(i, Result->getOnlyTree()->getExtType(i));
   3141 
   3142     TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
   3143     Temp.InferAllTypes();
   3144 
   3145 
   3146     AddPatternToMatch(Pattern,
   3147                     PatternToMatch(CurPattern,
   3148                                    CurPattern->getValueAsListInit("Predicates"),
   3149                                    Pattern->getTree(0),
   3150                                    Temp.getOnlyTree(), InstImpResults,
   3151                                    CurPattern->getValueAsInt("AddedComplexity"),
   3152                                    CurPattern->getID()));
   3153   }
   3154 }
   3155 
   3156 /// CombineChildVariants - Given a bunch of permutations of each child of the
   3157 /// 'operator' node, put them together in all possible ways.
   3158 static void CombineChildVariants(TreePatternNode *Orig,
   3159                const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
   3160                                  std::vector<TreePatternNode*> &OutVariants,
   3161                                  CodeGenDAGPatterns &CDP,
   3162                                  const MultipleUseVarSet &DepVars) {
   3163   // Make sure that each operand has at least one variant to choose from.
   3164   for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
   3165     if (ChildVariants[i].empty())
   3166       return;
   3167 
   3168   // The end result is an all-pairs construction of the resultant pattern.
   3169   std::vector<unsigned> Idxs;
   3170   Idxs.resize(ChildVariants.size());
   3171   bool NotDone;
   3172   do {
   3173 #ifndef NDEBUG
   3174     DEBUG(if (!Idxs.empty()) {
   3175             errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
   3176               for (unsigned i = 0; i < Idxs.size(); ++i) {
   3177                 errs() << Idxs[i] << " ";
   3178             }
   3179             errs() << "]\n";
   3180           });
   3181 #endif
   3182     // Create the variant and add it to the output list.
   3183     std::vector<TreePatternNode*> NewChildren;
   3184     for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
   3185       NewChildren.push_back(ChildVariants[i][Idxs[i]]);
   3186     TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren,
   3187                                              Orig->getNumTypes());
   3188 
   3189     // Copy over properties.
   3190     R->setName(Orig->getName());
   3191     R->setPredicateFns(Orig->getPredicateFns());
   3192     R->setTransformFn(Orig->getTransformFn());
   3193     for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
   3194       R->setType(i, Orig->getExtType(i));
   3195 
   3196     // If this pattern cannot match, do not include it as a variant.
   3197     std::string ErrString;
   3198     if (!R->canPatternMatch(ErrString, CDP)) {
   3199       delete R;
   3200     } else {
   3201       bool AlreadyExists = false;
   3202 
   3203       // Scan to see if this pattern has already been emitted.  We can get
   3204       // duplication due to things like commuting:
   3205       //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
   3206       // which are the same pattern.  Ignore the dups.
   3207       for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
   3208         if (R->isIsomorphicTo(OutVariants[i], DepVars)) {
   3209           AlreadyExists = true;
   3210           break;
   3211         }
   3212 
   3213       if (AlreadyExists)
   3214         delete R;
   3215       else
   3216         OutVariants.push_back(R);
   3217     }
   3218 
   3219     // Increment indices to the next permutation by incrementing the
   3220     // indicies from last index backward, e.g., generate the sequence
   3221     // [0, 0], [0, 1], [1, 0], [1, 1].
   3222     int IdxsIdx;
   3223     for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
   3224       if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
   3225         Idxs[IdxsIdx] = 0;
   3226       else
   3227         break;
   3228     }
   3229     NotDone = (IdxsIdx >= 0);
   3230   } while (NotDone);
   3231 }
   3232 
   3233 /// CombineChildVariants - A helper function for binary operators.
   3234 ///
   3235 static void CombineChildVariants(TreePatternNode *Orig,
   3236                                  const std::vector<TreePatternNode*> &LHS,
   3237                                  const std::vector<TreePatternNode*> &RHS,
   3238                                  std::vector<TreePatternNode*> &OutVariants,
   3239                                  CodeGenDAGPatterns &CDP,
   3240                                  const MultipleUseVarSet &DepVars) {
   3241   std::vector<std::vector<TreePatternNode*> > ChildVariants;
   3242   ChildVariants.push_back(LHS);
   3243   ChildVariants.push_back(RHS);
   3244   CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
   3245 }
   3246 
   3247 
   3248 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
   3249                                      std::vector<TreePatternNode *> &Children) {
   3250   assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
   3251   Record *Operator = N->getOperator();
   3252 
   3253   // Only permit raw nodes.
   3254   if (!N->getName().empty() || !N->getPredicateFns().empty() ||
   3255       N->getTransformFn()) {
   3256     Children.push_back(N);
   3257     return;
   3258   }
   3259 
   3260   if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
   3261     Children.push_back(N->getChild(0));
   3262   else
   3263     GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
   3264 
   3265   if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
   3266     Children.push_back(N->getChild(1));
   3267   else
   3268     GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
   3269 }
   3270 
   3271 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
   3272 /// the (potentially recursive) pattern by using algebraic laws.
   3273 ///
   3274 static void GenerateVariantsOf(TreePatternNode *N,
   3275                                std::vector<TreePatternNode*> &OutVariants,
   3276                                CodeGenDAGPatterns &CDP,
   3277                                const MultipleUseVarSet &DepVars) {
   3278   // We cannot permute leaves.
   3279   if (N->isLeaf()) {
   3280     OutVariants.push_back(N);
   3281     return;
   3282   }
   3283 
   3284   // Look up interesting info about the node.
   3285   const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
   3286 
   3287   // If this node is associative, re-associate.
   3288   if (NodeInfo.hasProperty(SDNPAssociative)) {
   3289     // Re-associate by pulling together all of the linked operators
   3290     std::vector<TreePatternNode*> MaximalChildren;
   3291     GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
   3292 
   3293     // Only handle child sizes of 3.  Otherwise we'll end up trying too many
   3294     // permutations.
   3295     if (MaximalChildren.size() == 3) {
   3296       // Find the variants of all of our maximal children.
   3297       std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
   3298       GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
   3299       GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
   3300       GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
   3301 
   3302       // There are only two ways we can permute the tree:
   3303       //   (A op B) op C    and    A op (B op C)
   3304       // Within these forms, we can also permute A/B/C.
   3305 
   3306       // Generate legal pair permutations of A/B/C.
   3307       std::vector<TreePatternNode*> ABVariants;
   3308       std::vector<TreePatternNode*> BAVariants;
   3309       std::vector<TreePatternNode*> ACVariants;
   3310       std::vector<TreePatternNode*> CAVariants;
   3311       std::vector<TreePatternNode*> BCVariants;
   3312       std::vector<TreePatternNode*> CBVariants;
   3313       CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
   3314       CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
   3315       CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
   3316       CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
   3317       CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
   3318       CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
   3319 
   3320       // Combine those into the result: (x op x) op x
   3321       CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
   3322       CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
   3323       CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
   3324       CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
   3325       CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
   3326       CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
   3327 
   3328       // Combine those into the result: x op (x op x)
   3329       CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
   3330       CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
   3331       CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
   3332       CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
   3333       CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
   3334       CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
   3335       return;
   3336     }
   3337   }
   3338 
   3339   // Compute permutations of all children.
   3340   std::vector<std::vector<TreePatternNode*> > ChildVariants;
   3341   ChildVariants.resize(N->getNumChildren());
   3342   for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
   3343     GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
   3344 
   3345   // Build all permutations based on how the children were formed.
   3346   CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
   3347 
   3348   // If this node is commutative, consider the commuted order.
   3349   bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
   3350   if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
   3351     assert((N->getNumChildren()==2 || isCommIntrinsic) &&
   3352            "Commutative but doesn't have 2 children!");
   3353     // Don't count children which are actually register references.
   3354     unsigned NC = 0;
   3355     for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
   3356       TreePatternNode *Child = N->getChild(i);
   3357       if (Child->isLeaf())
   3358         if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
   3359           Record *RR = DI->getDef();
   3360           if (RR->isSubClassOf("Register"))
   3361             continue;
   3362         }
   3363       NC++;
   3364     }
   3365     // Consider the commuted order.
   3366     if (isCommIntrinsic) {
   3367       // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
   3368       // operands are the commutative operands, and there might be more operands
   3369       // after those.
   3370       assert(NC >= 3 &&
   3371              "Commutative intrinsic should have at least 3 childrean!");
   3372       std::vector<std::vector<TreePatternNode*> > Variants;
   3373       Variants.push_back(ChildVariants[0]); // Intrinsic id.
   3374       Variants.push_back(ChildVariants[2]);
   3375       Variants.push_back(ChildVariants[1]);
   3376       for (unsigned i = 3; i != NC; ++i)
   3377         Variants.push_back(ChildVariants[i]);
   3378       CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
   3379     } else if (NC == 2)
   3380       CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
   3381                            OutVariants, CDP, DepVars);
   3382   }
   3383 }
   3384 
   3385 
   3386 // GenerateVariants - Generate variants.  For example, commutative patterns can
   3387 // match multiple ways.  Add them to PatternsToMatch as well.
   3388 void CodeGenDAGPatterns::GenerateVariants() {
   3389   DEBUG(errs() << "Generating instruction variants.\n");
   3390 
   3391   // Loop over all of the patterns we've collected, checking to see if we can
   3392   // generate variants of the instruction, through the exploitation of
   3393   // identities.  This permits the target to provide aggressive matching without
   3394   // the .td file having to contain tons of variants of instructions.
   3395   //
   3396   // Note that this loop adds new patterns to the PatternsToMatch list, but we
   3397   // intentionally do not reconsider these.  Any variants of added patterns have
   3398   // already been added.
   3399   //
   3400   for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
   3401     MultipleUseVarSet             DepVars;
   3402     std::vector<TreePatternNode*> Variants;
   3403     FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
   3404     DEBUG(errs() << "Dependent/multiply used variables: ");
   3405     DEBUG(DumpDepVars(DepVars));
   3406     DEBUG(errs() << "\n");
   3407     GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
   3408                        DepVars);
   3409 
   3410     assert(!Variants.empty() && "Must create at least original variant!");
   3411     Variants.erase(Variants.begin());  // Remove the original pattern.
   3412 
   3413     if (Variants.empty())  // No variants for this pattern.
   3414       continue;
   3415 
   3416     DEBUG(errs() << "FOUND VARIANTS OF: ";
   3417           PatternsToMatch[i].getSrcPattern()->dump();
   3418           errs() << "\n");
   3419 
   3420     for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
   3421       TreePatternNode *Variant = Variants[v];
   3422 
   3423       DEBUG(errs() << "  VAR#" << v <<  ": ";
   3424             Variant->dump();
   3425             errs() << "\n");
   3426 
   3427       // Scan to see if an instruction or explicit pattern already matches this.
   3428       bool AlreadyExists = false;
   3429       for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
   3430         // Skip if the top level predicates do not match.
   3431         if (PatternsToMatch[i].getPredicates() !=
   3432             PatternsToMatch[p].getPredicates())
   3433           continue;
   3434         // Check to see if this variant already exists.
   3435         if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
   3436                                     DepVars)) {
   3437           DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
   3438           AlreadyExists = true;
   3439           break;
   3440         }
   3441       }
   3442       // If we already have it, ignore the variant.
   3443       if (AlreadyExists) continue;
   3444 
   3445       // Otherwise, add it to the list of patterns we have.
   3446       PatternsToMatch.
   3447         push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(),
   3448                                  PatternsToMatch[i].getPredicates(),
   3449                                  Variant, PatternsToMatch[i].getDstPattern(),
   3450                                  PatternsToMatch[i].getDstRegs(),
   3451                                  PatternsToMatch[i].getAddedComplexity(),
   3452                                  Record::getNewUID()));
   3453     }
   3454 
   3455     DEBUG(errs() << "\n");
   3456   }
   3457 }
   3458