Home | History | Annotate | Download | only in CodeGen
      1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code to emit Objective-C code as LLVM code.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "CGDebugInfo.h"
     15 #include "CGObjCRuntime.h"
     16 #include "CodeGenFunction.h"
     17 #include "CodeGenModule.h"
     18 #include "TargetInfo.h"
     19 #include "clang/AST/ASTContext.h"
     20 #include "clang/AST/DeclObjC.h"
     21 #include "clang/AST/StmtObjC.h"
     22 #include "clang/Basic/Diagnostic.h"
     23 #include "llvm/ADT/STLExtras.h"
     24 #include "llvm/Target/TargetData.h"
     25 #include "llvm/InlineAsm.h"
     26 using namespace clang;
     27 using namespace CodeGen;
     28 
     29 typedef llvm::PointerIntPair<llvm::Value*,1,bool> TryEmitResult;
     30 static TryEmitResult
     31 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e);
     32 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
     33                                       QualType ET,
     34                                       const ObjCMethodDecl *Method,
     35                                       RValue Result);
     36 
     37 /// Given the address of a variable of pointer type, find the correct
     38 /// null to store into it.
     39 static llvm::Constant *getNullForVariable(llvm::Value *addr) {
     40   llvm::Type *type =
     41     cast<llvm::PointerType>(addr->getType())->getElementType();
     42   return llvm::ConstantPointerNull::get(cast<llvm::PointerType>(type));
     43 }
     44 
     45 /// Emits an instance of NSConstantString representing the object.
     46 llvm::Value *CodeGenFunction::EmitObjCStringLiteral(const ObjCStringLiteral *E)
     47 {
     48   llvm::Constant *C =
     49       CGM.getObjCRuntime().GenerateConstantString(E->getString());
     50   // FIXME: This bitcast should just be made an invariant on the Runtime.
     51   return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType()));
     52 }
     53 
     54 /// EmitObjCBoxedExpr - This routine generates code to call
     55 /// the appropriate expression boxing method. This will either be
     56 /// one of +[NSNumber numberWith<Type>:], or +[NSString stringWithUTF8String:].
     57 ///
     58 llvm::Value *
     59 CodeGenFunction::EmitObjCBoxedExpr(const ObjCBoxedExpr *E) {
     60   // Generate the correct selector for this literal's concrete type.
     61   const Expr *SubExpr = E->getSubExpr();
     62   // Get the method.
     63   const ObjCMethodDecl *BoxingMethod = E->getBoxingMethod();
     64   assert(BoxingMethod && "BoxingMethod is null");
     65   assert(BoxingMethod->isClassMethod() && "BoxingMethod must be a class method");
     66   Selector Sel = BoxingMethod->getSelector();
     67 
     68   // Generate a reference to the class pointer, which will be the receiver.
     69   // Assumes that the method was introduced in the class that should be
     70   // messaged (avoids pulling it out of the result type).
     71   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
     72   const ObjCInterfaceDecl *ClassDecl = BoxingMethod->getClassInterface();
     73   llvm::Value *Receiver = Runtime.GetClass(Builder, ClassDecl);
     74 
     75   const ParmVarDecl *argDecl = *BoxingMethod->param_begin();
     76   QualType ArgQT = argDecl->getType().getUnqualifiedType();
     77   RValue RV = EmitAnyExpr(SubExpr);
     78   CallArgList Args;
     79   Args.add(RV, ArgQT);
     80 
     81   RValue result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
     82                                               BoxingMethod->getResultType(), Sel, Receiver, Args,
     83                                               ClassDecl, BoxingMethod);
     84   return Builder.CreateBitCast(result.getScalarVal(),
     85                                ConvertType(E->getType()));
     86 }
     87 
     88 llvm::Value *CodeGenFunction::EmitObjCCollectionLiteral(const Expr *E,
     89                                     const ObjCMethodDecl *MethodWithObjects) {
     90   ASTContext &Context = CGM.getContext();
     91   const ObjCDictionaryLiteral *DLE = 0;
     92   const ObjCArrayLiteral *ALE = dyn_cast<ObjCArrayLiteral>(E);
     93   if (!ALE)
     94     DLE = cast<ObjCDictionaryLiteral>(E);
     95 
     96   // Compute the type of the array we're initializing.
     97   uint64_t NumElements =
     98     ALE ? ALE->getNumElements() : DLE->getNumElements();
     99   llvm::APInt APNumElements(Context.getTypeSize(Context.getSizeType()),
    100                             NumElements);
    101   QualType ElementType = Context.getObjCIdType().withConst();
    102   QualType ElementArrayType
    103     = Context.getConstantArrayType(ElementType, APNumElements,
    104                                    ArrayType::Normal, /*IndexTypeQuals=*/0);
    105 
    106   // Allocate the temporary array(s).
    107   llvm::Value *Objects = CreateMemTemp(ElementArrayType, "objects");
    108   llvm::Value *Keys = 0;
    109   if (DLE)
    110     Keys = CreateMemTemp(ElementArrayType, "keys");
    111 
    112   // Perform the actual initialialization of the array(s).
    113   for (uint64_t i = 0; i < NumElements; i++) {
    114     if (ALE) {
    115       // Emit the initializer.
    116       const Expr *Rhs = ALE->getElement(i);
    117       LValue LV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
    118                                    ElementType,
    119                                    Context.getTypeAlignInChars(Rhs->getType()),
    120                                    Context);
    121       EmitScalarInit(Rhs, /*D=*/0, LV, /*capturedByInit=*/false);
    122     } else {
    123       // Emit the key initializer.
    124       const Expr *Key = DLE->getKeyValueElement(i).Key;
    125       LValue KeyLV = LValue::MakeAddr(Builder.CreateStructGEP(Keys, i),
    126                                       ElementType,
    127                                     Context.getTypeAlignInChars(Key->getType()),
    128                                       Context);
    129       EmitScalarInit(Key, /*D=*/0, KeyLV, /*capturedByInit=*/false);
    130 
    131       // Emit the value initializer.
    132       const Expr *Value = DLE->getKeyValueElement(i).Value;
    133       LValue ValueLV = LValue::MakeAddr(Builder.CreateStructGEP(Objects, i),
    134                                         ElementType,
    135                                   Context.getTypeAlignInChars(Value->getType()),
    136                                         Context);
    137       EmitScalarInit(Value, /*D=*/0, ValueLV, /*capturedByInit=*/false);
    138     }
    139   }
    140 
    141   // Generate the argument list.
    142   CallArgList Args;
    143   ObjCMethodDecl::param_const_iterator PI = MethodWithObjects->param_begin();
    144   const ParmVarDecl *argDecl = *PI++;
    145   QualType ArgQT = argDecl->getType().getUnqualifiedType();
    146   Args.add(RValue::get(Objects), ArgQT);
    147   if (DLE) {
    148     argDecl = *PI++;
    149     ArgQT = argDecl->getType().getUnqualifiedType();
    150     Args.add(RValue::get(Keys), ArgQT);
    151   }
    152   argDecl = *PI;
    153   ArgQT = argDecl->getType().getUnqualifiedType();
    154   llvm::Value *Count =
    155     llvm::ConstantInt::get(CGM.getTypes().ConvertType(ArgQT), NumElements);
    156   Args.add(RValue::get(Count), ArgQT);
    157 
    158   // Generate a reference to the class pointer, which will be the receiver.
    159   Selector Sel = MethodWithObjects->getSelector();
    160   QualType ResultType = E->getType();
    161   const ObjCObjectPointerType *InterfacePointerType
    162     = ResultType->getAsObjCInterfacePointerType();
    163   ObjCInterfaceDecl *Class
    164     = InterfacePointerType->getObjectType()->getInterface();
    165   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
    166   llvm::Value *Receiver = Runtime.GetClass(Builder, Class);
    167 
    168   // Generate the message send.
    169   RValue result
    170     = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
    171                                   MethodWithObjects->getResultType(),
    172                                   Sel,
    173                                   Receiver, Args, Class,
    174                                   MethodWithObjects);
    175   return Builder.CreateBitCast(result.getScalarVal(),
    176                                ConvertType(E->getType()));
    177 }
    178 
    179 llvm::Value *CodeGenFunction::EmitObjCArrayLiteral(const ObjCArrayLiteral *E) {
    180   return EmitObjCCollectionLiteral(E, E->getArrayWithObjectsMethod());
    181 }
    182 
    183 llvm::Value *CodeGenFunction::EmitObjCDictionaryLiteral(
    184                                             const ObjCDictionaryLiteral *E) {
    185   return EmitObjCCollectionLiteral(E, E->getDictWithObjectsMethod());
    186 }
    187 
    188 /// Emit a selector.
    189 llvm::Value *CodeGenFunction::EmitObjCSelectorExpr(const ObjCSelectorExpr *E) {
    190   // Untyped selector.
    191   // Note that this implementation allows for non-constant strings to be passed
    192   // as arguments to @selector().  Currently, the only thing preventing this
    193   // behaviour is the type checking in the front end.
    194   return CGM.getObjCRuntime().GetSelector(Builder, E->getSelector());
    195 }
    196 
    197 llvm::Value *CodeGenFunction::EmitObjCProtocolExpr(const ObjCProtocolExpr *E) {
    198   // FIXME: This should pass the Decl not the name.
    199   return CGM.getObjCRuntime().GenerateProtocolRef(Builder, E->getProtocol());
    200 }
    201 
    202 /// \brief Adjust the type of the result of an Objective-C message send
    203 /// expression when the method has a related result type.
    204 static RValue AdjustRelatedResultType(CodeGenFunction &CGF,
    205                                       QualType ExpT,
    206                                       const ObjCMethodDecl *Method,
    207                                       RValue Result) {
    208   if (!Method)
    209     return Result;
    210 
    211   if (!Method->hasRelatedResultType() ||
    212       CGF.getContext().hasSameType(ExpT, Method->getResultType()) ||
    213       !Result.isScalar())
    214     return Result;
    215 
    216   // We have applied a related result type. Cast the rvalue appropriately.
    217   return RValue::get(CGF.Builder.CreateBitCast(Result.getScalarVal(),
    218                                                CGF.ConvertType(ExpT)));
    219 }
    220 
    221 /// Decide whether to extend the lifetime of the receiver of a
    222 /// returns-inner-pointer message.
    223 static bool
    224 shouldExtendReceiverForInnerPointerMessage(const ObjCMessageExpr *message) {
    225   switch (message->getReceiverKind()) {
    226 
    227   // For a normal instance message, we should extend unless the
    228   // receiver is loaded from a variable with precise lifetime.
    229   case ObjCMessageExpr::Instance: {
    230     const Expr *receiver = message->getInstanceReceiver();
    231     const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(receiver);
    232     if (!ice || ice->getCastKind() != CK_LValueToRValue) return true;
    233     receiver = ice->getSubExpr()->IgnoreParens();
    234 
    235     // Only __strong variables.
    236     if (receiver->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
    237       return true;
    238 
    239     // All ivars and fields have precise lifetime.
    240     if (isa<MemberExpr>(receiver) || isa<ObjCIvarRefExpr>(receiver))
    241       return false;
    242 
    243     // Otherwise, check for variables.
    244     const DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(ice->getSubExpr());
    245     if (!declRef) return true;
    246     const VarDecl *var = dyn_cast<VarDecl>(declRef->getDecl());
    247     if (!var) return true;
    248 
    249     // All variables have precise lifetime except local variables with
    250     // automatic storage duration that aren't specially marked.
    251     return (var->hasLocalStorage() &&
    252             !var->hasAttr<ObjCPreciseLifetimeAttr>());
    253   }
    254 
    255   case ObjCMessageExpr::Class:
    256   case ObjCMessageExpr::SuperClass:
    257     // It's never necessary for class objects.
    258     return false;
    259 
    260   case ObjCMessageExpr::SuperInstance:
    261     // We generally assume that 'self' lives throughout a method call.
    262     return false;
    263   }
    264 
    265   llvm_unreachable("invalid receiver kind");
    266 }
    267 
    268 RValue CodeGenFunction::EmitObjCMessageExpr(const ObjCMessageExpr *E,
    269                                             ReturnValueSlot Return) {
    270   // Only the lookup mechanism and first two arguments of the method
    271   // implementation vary between runtimes.  We can get the receiver and
    272   // arguments in generic code.
    273 
    274   bool isDelegateInit = E->isDelegateInitCall();
    275 
    276   const ObjCMethodDecl *method = E->getMethodDecl();
    277 
    278   // We don't retain the receiver in delegate init calls, and this is
    279   // safe because the receiver value is always loaded from 'self',
    280   // which we zero out.  We don't want to Block_copy block receivers,
    281   // though.
    282   bool retainSelf =
    283     (!isDelegateInit &&
    284      CGM.getLangOpts().ObjCAutoRefCount &&
    285      method &&
    286      method->hasAttr<NSConsumesSelfAttr>());
    287 
    288   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
    289   bool isSuperMessage = false;
    290   bool isClassMessage = false;
    291   ObjCInterfaceDecl *OID = 0;
    292   // Find the receiver
    293   QualType ReceiverType;
    294   llvm::Value *Receiver = 0;
    295   switch (E->getReceiverKind()) {
    296   case ObjCMessageExpr::Instance:
    297     ReceiverType = E->getInstanceReceiver()->getType();
    298     if (retainSelf) {
    299       TryEmitResult ter = tryEmitARCRetainScalarExpr(*this,
    300                                                    E->getInstanceReceiver());
    301       Receiver = ter.getPointer();
    302       if (ter.getInt()) retainSelf = false;
    303     } else
    304       Receiver = EmitScalarExpr(E->getInstanceReceiver());
    305     break;
    306 
    307   case ObjCMessageExpr::Class: {
    308     ReceiverType = E->getClassReceiver();
    309     const ObjCObjectType *ObjTy = ReceiverType->getAs<ObjCObjectType>();
    310     assert(ObjTy && "Invalid Objective-C class message send");
    311     OID = ObjTy->getInterface();
    312     assert(OID && "Invalid Objective-C class message send");
    313     Receiver = Runtime.GetClass(Builder, OID);
    314     isClassMessage = true;
    315     break;
    316   }
    317 
    318   case ObjCMessageExpr::SuperInstance:
    319     ReceiverType = E->getSuperType();
    320     Receiver = LoadObjCSelf();
    321     isSuperMessage = true;
    322     break;
    323 
    324   case ObjCMessageExpr::SuperClass:
    325     ReceiverType = E->getSuperType();
    326     Receiver = LoadObjCSelf();
    327     isSuperMessage = true;
    328     isClassMessage = true;
    329     break;
    330   }
    331 
    332   if (retainSelf)
    333     Receiver = EmitARCRetainNonBlock(Receiver);
    334 
    335   // In ARC, we sometimes want to "extend the lifetime"
    336   // (i.e. retain+autorelease) of receivers of returns-inner-pointer
    337   // messages.
    338   if (getLangOpts().ObjCAutoRefCount && method &&
    339       method->hasAttr<ObjCReturnsInnerPointerAttr>() &&
    340       shouldExtendReceiverForInnerPointerMessage(E))
    341     Receiver = EmitARCRetainAutorelease(ReceiverType, Receiver);
    342 
    343   QualType ResultType =
    344     method ? method->getResultType() : E->getType();
    345 
    346   CallArgList Args;
    347   EmitCallArgs(Args, method, E->arg_begin(), E->arg_end());
    348 
    349   // For delegate init calls in ARC, do an unsafe store of null into
    350   // self.  This represents the call taking direct ownership of that
    351   // value.  We have to do this after emitting the other call
    352   // arguments because they might also reference self, but we don't
    353   // have to worry about any of them modifying self because that would
    354   // be an undefined read and write of an object in unordered
    355   // expressions.
    356   if (isDelegateInit) {
    357     assert(getLangOpts().ObjCAutoRefCount &&
    358            "delegate init calls should only be marked in ARC");
    359 
    360     // Do an unsafe store of null into self.
    361     llvm::Value *selfAddr =
    362       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
    363     assert(selfAddr && "no self entry for a delegate init call?");
    364 
    365     Builder.CreateStore(getNullForVariable(selfAddr), selfAddr);
    366   }
    367 
    368   RValue result;
    369   if (isSuperMessage) {
    370     // super is only valid in an Objective-C method
    371     const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
    372     bool isCategoryImpl = isa<ObjCCategoryImplDecl>(OMD->getDeclContext());
    373     result = Runtime.GenerateMessageSendSuper(*this, Return, ResultType,
    374                                               E->getSelector(),
    375                                               OMD->getClassInterface(),
    376                                               isCategoryImpl,
    377                                               Receiver,
    378                                               isClassMessage,
    379                                               Args,
    380                                               method);
    381   } else {
    382     result = Runtime.GenerateMessageSend(*this, Return, ResultType,
    383                                          E->getSelector(),
    384                                          Receiver, Args, OID,
    385                                          method);
    386   }
    387 
    388   // For delegate init calls in ARC, implicitly store the result of
    389   // the call back into self.  This takes ownership of the value.
    390   if (isDelegateInit) {
    391     llvm::Value *selfAddr =
    392       LocalDeclMap[cast<ObjCMethodDecl>(CurCodeDecl)->getSelfDecl()];
    393     llvm::Value *newSelf = result.getScalarVal();
    394 
    395     // The delegate return type isn't necessarily a matching type; in
    396     // fact, it's quite likely to be 'id'.
    397     llvm::Type *selfTy =
    398       cast<llvm::PointerType>(selfAddr->getType())->getElementType();
    399     newSelf = Builder.CreateBitCast(newSelf, selfTy);
    400 
    401     Builder.CreateStore(newSelf, selfAddr);
    402   }
    403 
    404   return AdjustRelatedResultType(*this, E->getType(), method, result);
    405 }
    406 
    407 namespace {
    408 struct FinishARCDealloc : EHScopeStack::Cleanup {
    409   void Emit(CodeGenFunction &CGF, Flags flags) {
    410     const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CGF.CurCodeDecl);
    411 
    412     const ObjCImplDecl *impl = cast<ObjCImplDecl>(method->getDeclContext());
    413     const ObjCInterfaceDecl *iface = impl->getClassInterface();
    414     if (!iface->getSuperClass()) return;
    415 
    416     bool isCategory = isa<ObjCCategoryImplDecl>(impl);
    417 
    418     // Call [super dealloc] if we have a superclass.
    419     llvm::Value *self = CGF.LoadObjCSelf();
    420 
    421     CallArgList args;
    422     CGF.CGM.getObjCRuntime().GenerateMessageSendSuper(CGF, ReturnValueSlot(),
    423                                                       CGF.getContext().VoidTy,
    424                                                       method->getSelector(),
    425                                                       iface,
    426                                                       isCategory,
    427                                                       self,
    428                                                       /*is class msg*/ false,
    429                                                       args,
    430                                                       method);
    431   }
    432 };
    433 }
    434 
    435 /// StartObjCMethod - Begin emission of an ObjCMethod. This generates
    436 /// the LLVM function and sets the other context used by
    437 /// CodeGenFunction.
    438 void CodeGenFunction::StartObjCMethod(const ObjCMethodDecl *OMD,
    439                                       const ObjCContainerDecl *CD,
    440                                       SourceLocation StartLoc) {
    441   FunctionArgList args;
    442   // Check if we should generate debug info for this method.
    443   if (CGM.getModuleDebugInfo() && !OMD->hasAttr<NoDebugAttr>())
    444     DebugInfo = CGM.getModuleDebugInfo();
    445 
    446   llvm::Function *Fn = CGM.getObjCRuntime().GenerateMethod(OMD, CD);
    447 
    448   const CGFunctionInfo &FI = CGM.getTypes().arrangeObjCMethodDeclaration(OMD);
    449   CGM.SetInternalFunctionAttributes(OMD, Fn, FI);
    450 
    451   args.push_back(OMD->getSelfDecl());
    452   args.push_back(OMD->getCmdDecl());
    453 
    454   for (ObjCMethodDecl::param_const_iterator PI = OMD->param_begin(),
    455          E = OMD->param_end(); PI != E; ++PI)
    456     args.push_back(*PI);
    457 
    458   CurGD = OMD;
    459 
    460   StartFunction(OMD, OMD->getResultType(), Fn, FI, args, StartLoc);
    461 
    462   // In ARC, certain methods get an extra cleanup.
    463   if (CGM.getLangOpts().ObjCAutoRefCount &&
    464       OMD->isInstanceMethod() &&
    465       OMD->getSelector().isUnarySelector()) {
    466     const IdentifierInfo *ident =
    467       OMD->getSelector().getIdentifierInfoForSlot(0);
    468     if (ident->isStr("dealloc"))
    469       EHStack.pushCleanup<FinishARCDealloc>(getARCCleanupKind());
    470   }
    471 }
    472 
    473 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
    474                                               LValue lvalue, QualType type);
    475 
    476 /// Generate an Objective-C method.  An Objective-C method is a C function with
    477 /// its pointer, name, and types registered in the class struture.
    478 void CodeGenFunction::GenerateObjCMethod(const ObjCMethodDecl *OMD) {
    479   StartObjCMethod(OMD, OMD->getClassInterface(), OMD->getLocStart());
    480   EmitStmt(OMD->getBody());
    481   FinishFunction(OMD->getBodyRBrace());
    482 }
    483 
    484 /// emitStructGetterCall - Call the runtime function to load a property
    485 /// into the return value slot.
    486 static void emitStructGetterCall(CodeGenFunction &CGF, ObjCIvarDecl *ivar,
    487                                  bool isAtomic, bool hasStrong) {
    488   ASTContext &Context = CGF.getContext();
    489 
    490   llvm::Value *src =
    491     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), CGF.LoadObjCSelf(),
    492                           ivar, 0).getAddress();
    493 
    494   // objc_copyStruct (ReturnValue, &structIvar,
    495   //                  sizeof (Type of Ivar), isAtomic, false);
    496   CallArgList args;
    497 
    498   llvm::Value *dest = CGF.Builder.CreateBitCast(CGF.ReturnValue, CGF.VoidPtrTy);
    499   args.add(RValue::get(dest), Context.VoidPtrTy);
    500 
    501   src = CGF.Builder.CreateBitCast(src, CGF.VoidPtrTy);
    502   args.add(RValue::get(src), Context.VoidPtrTy);
    503 
    504   CharUnits size = CGF.getContext().getTypeSizeInChars(ivar->getType());
    505   args.add(RValue::get(CGF.CGM.getSize(size)), Context.getSizeType());
    506   args.add(RValue::get(CGF.Builder.getInt1(isAtomic)), Context.BoolTy);
    507   args.add(RValue::get(CGF.Builder.getInt1(hasStrong)), Context.BoolTy);
    508 
    509   llvm::Value *fn = CGF.CGM.getObjCRuntime().GetGetStructFunction();
    510   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Context.VoidTy, args,
    511                                                       FunctionType::ExtInfo(),
    512                                                       RequiredArgs::All),
    513                fn, ReturnValueSlot(), args);
    514 }
    515 
    516 /// Determine whether the given architecture supports unaligned atomic
    517 /// accesses.  They don't have to be fast, just faster than a function
    518 /// call and a mutex.
    519 static bool hasUnalignedAtomics(llvm::Triple::ArchType arch) {
    520   // FIXME: Allow unaligned atomic load/store on x86.  (It is not
    521   // currently supported by the backend.)
    522   return 0;
    523 }
    524 
    525 /// Return the maximum size that permits atomic accesses for the given
    526 /// architecture.
    527 static CharUnits getMaxAtomicAccessSize(CodeGenModule &CGM,
    528                                         llvm::Triple::ArchType arch) {
    529   // ARM has 8-byte atomic accesses, but it's not clear whether we
    530   // want to rely on them here.
    531 
    532   // In the default case, just assume that any size up to a pointer is
    533   // fine given adequate alignment.
    534   return CharUnits::fromQuantity(CGM.PointerSizeInBytes);
    535 }
    536 
    537 namespace {
    538   class PropertyImplStrategy {
    539   public:
    540     enum StrategyKind {
    541       /// The 'native' strategy is to use the architecture's provided
    542       /// reads and writes.
    543       Native,
    544 
    545       /// Use objc_setProperty and objc_getProperty.
    546       GetSetProperty,
    547 
    548       /// Use objc_setProperty for the setter, but use expression
    549       /// evaluation for the getter.
    550       SetPropertyAndExpressionGet,
    551 
    552       /// Use objc_copyStruct.
    553       CopyStruct,
    554 
    555       /// The 'expression' strategy is to emit normal assignment or
    556       /// lvalue-to-rvalue expressions.
    557       Expression
    558     };
    559 
    560     StrategyKind getKind() const { return StrategyKind(Kind); }
    561 
    562     bool hasStrongMember() const { return HasStrong; }
    563     bool isAtomic() const { return IsAtomic; }
    564     bool isCopy() const { return IsCopy; }
    565 
    566     CharUnits getIvarSize() const { return IvarSize; }
    567     CharUnits getIvarAlignment() const { return IvarAlignment; }
    568 
    569     PropertyImplStrategy(CodeGenModule &CGM,
    570                          const ObjCPropertyImplDecl *propImpl);
    571 
    572   private:
    573     unsigned Kind : 8;
    574     unsigned IsAtomic : 1;
    575     unsigned IsCopy : 1;
    576     unsigned HasStrong : 1;
    577 
    578     CharUnits IvarSize;
    579     CharUnits IvarAlignment;
    580   };
    581 }
    582 
    583 /// Pick an implementation strategy for the given property synthesis.
    584 PropertyImplStrategy::PropertyImplStrategy(CodeGenModule &CGM,
    585                                      const ObjCPropertyImplDecl *propImpl) {
    586   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
    587   ObjCPropertyDecl::SetterKind setterKind = prop->getSetterKind();
    588 
    589   IsCopy = (setterKind == ObjCPropertyDecl::Copy);
    590   IsAtomic = prop->isAtomic();
    591   HasStrong = false; // doesn't matter here.
    592 
    593   // Evaluate the ivar's size and alignment.
    594   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
    595   QualType ivarType = ivar->getType();
    596   llvm::tie(IvarSize, IvarAlignment)
    597     = CGM.getContext().getTypeInfoInChars(ivarType);
    598 
    599   // If we have a copy property, we always have to use getProperty/setProperty.
    600   // TODO: we could actually use setProperty and an expression for non-atomics.
    601   if (IsCopy) {
    602     Kind = GetSetProperty;
    603     return;
    604   }
    605 
    606   // Handle retain.
    607   if (setterKind == ObjCPropertyDecl::Retain) {
    608     // In GC-only, there's nothing special that needs to be done.
    609     if (CGM.getLangOpts().getGC() == LangOptions::GCOnly) {
    610       // fallthrough
    611 
    612     // In ARC, if the property is non-atomic, use expression emission,
    613     // which translates to objc_storeStrong.  This isn't required, but
    614     // it's slightly nicer.
    615     } else if (CGM.getLangOpts().ObjCAutoRefCount && !IsAtomic) {
    616       // Using standard expression emission for the setter is only
    617       // acceptable if the ivar is __strong, which won't be true if
    618       // the property is annotated with __attribute__((NSObject)).
    619       // TODO: falling all the way back to objc_setProperty here is
    620       // just laziness, though;  we could still use objc_storeStrong
    621       // if we hacked it right.
    622       if (ivarType.getObjCLifetime() == Qualifiers::OCL_Strong)
    623         Kind = Expression;
    624       else
    625         Kind = SetPropertyAndExpressionGet;
    626       return;
    627 
    628     // Otherwise, we need to at least use setProperty.  However, if
    629     // the property isn't atomic, we can use normal expression
    630     // emission for the getter.
    631     } else if (!IsAtomic) {
    632       Kind = SetPropertyAndExpressionGet;
    633       return;
    634 
    635     // Otherwise, we have to use both setProperty and getProperty.
    636     } else {
    637       Kind = GetSetProperty;
    638       return;
    639     }
    640   }
    641 
    642   // If we're not atomic, just use expression accesses.
    643   if (!IsAtomic) {
    644     Kind = Expression;
    645     return;
    646   }
    647 
    648   // Properties on bitfield ivars need to be emitted using expression
    649   // accesses even if they're nominally atomic.
    650   if (ivar->isBitField()) {
    651     Kind = Expression;
    652     return;
    653   }
    654 
    655   // GC-qualified or ARC-qualified ivars need to be emitted as
    656   // expressions.  This actually works out to being atomic anyway,
    657   // except for ARC __strong, but that should trigger the above code.
    658   if (ivarType.hasNonTrivialObjCLifetime() ||
    659       (CGM.getLangOpts().getGC() &&
    660        CGM.getContext().getObjCGCAttrKind(ivarType))) {
    661     Kind = Expression;
    662     return;
    663   }
    664 
    665   // Compute whether the ivar has strong members.
    666   if (CGM.getLangOpts().getGC())
    667     if (const RecordType *recordType = ivarType->getAs<RecordType>())
    668       HasStrong = recordType->getDecl()->hasObjectMember();
    669 
    670   // We can never access structs with object members with a native
    671   // access, because we need to use write barriers.  This is what
    672   // objc_copyStruct is for.
    673   if (HasStrong) {
    674     Kind = CopyStruct;
    675     return;
    676   }
    677 
    678   // Otherwise, this is target-dependent and based on the size and
    679   // alignment of the ivar.
    680 
    681   // If the size of the ivar is not a power of two, give up.  We don't
    682   // want to get into the business of doing compare-and-swaps.
    683   if (!IvarSize.isPowerOfTwo()) {
    684     Kind = CopyStruct;
    685     return;
    686   }
    687 
    688   llvm::Triple::ArchType arch =
    689     CGM.getContext().getTargetInfo().getTriple().getArch();
    690 
    691   // Most architectures require memory to fit within a single cache
    692   // line, so the alignment has to be at least the size of the access.
    693   // Otherwise we have to grab a lock.
    694   if (IvarAlignment < IvarSize && !hasUnalignedAtomics(arch)) {
    695     Kind = CopyStruct;
    696     return;
    697   }
    698 
    699   // If the ivar's size exceeds the architecture's maximum atomic
    700   // access size, we have to use CopyStruct.
    701   if (IvarSize > getMaxAtomicAccessSize(CGM, arch)) {
    702     Kind = CopyStruct;
    703     return;
    704   }
    705 
    706   // Otherwise, we can use native loads and stores.
    707   Kind = Native;
    708 }
    709 
    710 /// \brief Generate an Objective-C property getter function.
    711 ///
    712 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
    713 /// is illegal within a category.
    714 void CodeGenFunction::GenerateObjCGetter(ObjCImplementationDecl *IMP,
    715                                          const ObjCPropertyImplDecl *PID) {
    716   llvm::Constant *AtomicHelperFn =
    717     GenerateObjCAtomicGetterCopyHelperFunction(PID);
    718   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
    719   ObjCMethodDecl *OMD = PD->getGetterMethodDecl();
    720   assert(OMD && "Invalid call to generate getter (empty method)");
    721   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
    722 
    723   generateObjCGetterBody(IMP, PID, OMD, AtomicHelperFn);
    724 
    725   FinishFunction();
    726 }
    727 
    728 static bool hasTrivialGetExpr(const ObjCPropertyImplDecl *propImpl) {
    729   const Expr *getter = propImpl->getGetterCXXConstructor();
    730   if (!getter) return true;
    731 
    732   // Sema only makes only of these when the ivar has a C++ class type,
    733   // so the form is pretty constrained.
    734 
    735   // If the property has a reference type, we might just be binding a
    736   // reference, in which case the result will be a gl-value.  We should
    737   // treat this as a non-trivial operation.
    738   if (getter->isGLValue())
    739     return false;
    740 
    741   // If we selected a trivial copy-constructor, we're okay.
    742   if (const CXXConstructExpr *construct = dyn_cast<CXXConstructExpr>(getter))
    743     return (construct->getConstructor()->isTrivial());
    744 
    745   // The constructor might require cleanups (in which case it's never
    746   // trivial).
    747   assert(isa<ExprWithCleanups>(getter));
    748   return false;
    749 }
    750 
    751 /// emitCPPObjectAtomicGetterCall - Call the runtime function to
    752 /// copy the ivar into the resturn slot.
    753 static void emitCPPObjectAtomicGetterCall(CodeGenFunction &CGF,
    754                                           llvm::Value *returnAddr,
    755                                           ObjCIvarDecl *ivar,
    756                                           llvm::Constant *AtomicHelperFn) {
    757   // objc_copyCppObjectAtomic (&returnSlot, &CppObjectIvar,
    758   //                           AtomicHelperFn);
    759   CallArgList args;
    760 
    761   // The 1st argument is the return Slot.
    762   args.add(RValue::get(returnAddr), CGF.getContext().VoidPtrTy);
    763 
    764   // The 2nd argument is the address of the ivar.
    765   llvm::Value *ivarAddr =
    766   CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
    767                         CGF.LoadObjCSelf(), ivar, 0).getAddress();
    768   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
    769   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
    770 
    771   // Third argument is the helper function.
    772   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
    773 
    774   llvm::Value *copyCppAtomicObjectFn =
    775   CGF.CGM.getObjCRuntime().GetCppAtomicObjectFunction();
    776   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
    777                                                       args,
    778                                                       FunctionType::ExtInfo(),
    779                                                       RequiredArgs::All),
    780                copyCppAtomicObjectFn, ReturnValueSlot(), args);
    781 }
    782 
    783 void
    784 CodeGenFunction::generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
    785                                         const ObjCPropertyImplDecl *propImpl,
    786                                         const ObjCMethodDecl *GetterMethodDecl,
    787                                         llvm::Constant *AtomicHelperFn) {
    788   // If there's a non-trivial 'get' expression, we just have to emit that.
    789   if (!hasTrivialGetExpr(propImpl)) {
    790     if (!AtomicHelperFn) {
    791       ReturnStmt ret(SourceLocation(), propImpl->getGetterCXXConstructor(),
    792                      /*nrvo*/ 0);
    793       EmitReturnStmt(ret);
    794     }
    795     else {
    796       ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
    797       emitCPPObjectAtomicGetterCall(*this, ReturnValue,
    798                                     ivar, AtomicHelperFn);
    799     }
    800     return;
    801   }
    802 
    803   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
    804   QualType propType = prop->getType();
    805   ObjCMethodDecl *getterMethod = prop->getGetterMethodDecl();
    806 
    807   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
    808 
    809   // Pick an implementation strategy.
    810   PropertyImplStrategy strategy(CGM, propImpl);
    811   switch (strategy.getKind()) {
    812   case PropertyImplStrategy::Native: {
    813     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
    814 
    815     // Currently, all atomic accesses have to be through integer
    816     // types, so there's no point in trying to pick a prettier type.
    817     llvm::Type *bitcastType =
    818       llvm::Type::getIntNTy(getLLVMContext(),
    819                             getContext().toBits(strategy.getIvarSize()));
    820     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
    821 
    822     // Perform an atomic load.  This does not impose ordering constraints.
    823     llvm::Value *ivarAddr = LV.getAddress();
    824     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
    825     llvm::LoadInst *load = Builder.CreateLoad(ivarAddr, "load");
    826     load->setAlignment(strategy.getIvarAlignment().getQuantity());
    827     load->setAtomic(llvm::Unordered);
    828 
    829     // Store that value into the return address.  Doing this with a
    830     // bitcast is likely to produce some pretty ugly IR, but it's not
    831     // the *most* terrible thing in the world.
    832     Builder.CreateStore(load, Builder.CreateBitCast(ReturnValue, bitcastType));
    833 
    834     // Make sure we don't do an autorelease.
    835     AutoreleaseResult = false;
    836     return;
    837   }
    838 
    839   case PropertyImplStrategy::GetSetProperty: {
    840     llvm::Value *getPropertyFn =
    841       CGM.getObjCRuntime().GetPropertyGetFunction();
    842     if (!getPropertyFn) {
    843       CGM.ErrorUnsupported(propImpl, "Obj-C getter requiring atomic copy");
    844       return;
    845     }
    846 
    847     // Return (ivar-type) objc_getProperty((id) self, _cmd, offset, true).
    848     // FIXME: Can't this be simpler? This might even be worse than the
    849     // corresponding gcc code.
    850     llvm::Value *cmd =
    851       Builder.CreateLoad(LocalDeclMap[getterMethod->getCmdDecl()], "cmd");
    852     llvm::Value *self = Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
    853     llvm::Value *ivarOffset =
    854       EmitIvarOffset(classImpl->getClassInterface(), ivar);
    855 
    856     CallArgList args;
    857     args.add(RValue::get(self), getContext().getObjCIdType());
    858     args.add(RValue::get(cmd), getContext().getObjCSelType());
    859     args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
    860     args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
    861              getContext().BoolTy);
    862 
    863     // FIXME: We shouldn't need to get the function info here, the
    864     // runtime already should have computed it to build the function.
    865     RValue RV = EmitCall(getTypes().arrangeFreeFunctionCall(propType, args,
    866                                                        FunctionType::ExtInfo(),
    867                                                             RequiredArgs::All),
    868                          getPropertyFn, ReturnValueSlot(), args);
    869 
    870     // We need to fix the type here. Ivars with copy & retain are
    871     // always objects so we don't need to worry about complex or
    872     // aggregates.
    873     RV = RValue::get(Builder.CreateBitCast(RV.getScalarVal(),
    874            getTypes().ConvertType(getterMethod->getResultType())));
    875 
    876     EmitReturnOfRValue(RV, propType);
    877 
    878     // objc_getProperty does an autorelease, so we should suppress ours.
    879     AutoreleaseResult = false;
    880 
    881     return;
    882   }
    883 
    884   case PropertyImplStrategy::CopyStruct:
    885     emitStructGetterCall(*this, ivar, strategy.isAtomic(),
    886                          strategy.hasStrongMember());
    887     return;
    888 
    889   case PropertyImplStrategy::Expression:
    890   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
    891     LValue LV = EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, 0);
    892 
    893     QualType ivarType = ivar->getType();
    894     if (ivarType->isAnyComplexType()) {
    895       ComplexPairTy pair = LoadComplexFromAddr(LV.getAddress(),
    896                                                LV.isVolatileQualified());
    897       StoreComplexToAddr(pair, ReturnValue, LV.isVolatileQualified());
    898     } else if (hasAggregateLLVMType(ivarType)) {
    899       // The return value slot is guaranteed to not be aliased, but
    900       // that's not necessarily the same as "on the stack", so
    901       // we still potentially need objc_memmove_collectable.
    902       EmitAggregateCopy(ReturnValue, LV.getAddress(), ivarType);
    903     } else {
    904       llvm::Value *value;
    905       if (propType->isReferenceType()) {
    906         value = LV.getAddress();
    907       } else {
    908         // We want to load and autoreleaseReturnValue ARC __weak ivars.
    909         if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
    910           value = emitARCRetainLoadOfScalar(*this, LV, ivarType);
    911 
    912         // Otherwise we want to do a simple load, suppressing the
    913         // final autorelease.
    914         } else {
    915           value = EmitLoadOfLValue(LV).getScalarVal();
    916           AutoreleaseResult = false;
    917         }
    918 
    919         value = Builder.CreateBitCast(value, ConvertType(propType));
    920         value = Builder.CreateBitCast(value,
    921                   ConvertType(GetterMethodDecl->getResultType()));
    922       }
    923 
    924       EmitReturnOfRValue(RValue::get(value), propType);
    925     }
    926     return;
    927   }
    928 
    929   }
    930   llvm_unreachable("bad @property implementation strategy!");
    931 }
    932 
    933 /// emitStructSetterCall - Call the runtime function to store the value
    934 /// from the first formal parameter into the given ivar.
    935 static void emitStructSetterCall(CodeGenFunction &CGF, ObjCMethodDecl *OMD,
    936                                  ObjCIvarDecl *ivar) {
    937   // objc_copyStruct (&structIvar, &Arg,
    938   //                  sizeof (struct something), true, false);
    939   CallArgList args;
    940 
    941   // The first argument is the address of the ivar.
    942   llvm::Value *ivarAddr = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
    943                                                 CGF.LoadObjCSelf(), ivar, 0)
    944     .getAddress();
    945   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
    946   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
    947 
    948   // The second argument is the address of the parameter variable.
    949   ParmVarDecl *argVar = *OMD->param_begin();
    950   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
    951                      VK_LValue, SourceLocation());
    952   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
    953   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
    954   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
    955 
    956   // The third argument is the sizeof the type.
    957   llvm::Value *size =
    958     CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(ivar->getType()));
    959   args.add(RValue::get(size), CGF.getContext().getSizeType());
    960 
    961   // The fourth argument is the 'isAtomic' flag.
    962   args.add(RValue::get(CGF.Builder.getTrue()), CGF.getContext().BoolTy);
    963 
    964   // The fifth argument is the 'hasStrong' flag.
    965   // FIXME: should this really always be false?
    966   args.add(RValue::get(CGF.Builder.getFalse()), CGF.getContext().BoolTy);
    967 
    968   llvm::Value *copyStructFn = CGF.CGM.getObjCRuntime().GetSetStructFunction();
    969   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
    970                                                       args,
    971                                                       FunctionType::ExtInfo(),
    972                                                       RequiredArgs::All),
    973                copyStructFn, ReturnValueSlot(), args);
    974 }
    975 
    976 /// emitCPPObjectAtomicSetterCall - Call the runtime function to store
    977 /// the value from the first formal parameter into the given ivar, using
    978 /// the Cpp API for atomic Cpp objects with non-trivial copy assignment.
    979 static void emitCPPObjectAtomicSetterCall(CodeGenFunction &CGF,
    980                                           ObjCMethodDecl *OMD,
    981                                           ObjCIvarDecl *ivar,
    982                                           llvm::Constant *AtomicHelperFn) {
    983   // objc_copyCppObjectAtomic (&CppObjectIvar, &Arg,
    984   //                           AtomicHelperFn);
    985   CallArgList args;
    986 
    987   // The first argument is the address of the ivar.
    988   llvm::Value *ivarAddr =
    989     CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(),
    990                           CGF.LoadObjCSelf(), ivar, 0).getAddress();
    991   ivarAddr = CGF.Builder.CreateBitCast(ivarAddr, CGF.Int8PtrTy);
    992   args.add(RValue::get(ivarAddr), CGF.getContext().VoidPtrTy);
    993 
    994   // The second argument is the address of the parameter variable.
    995   ParmVarDecl *argVar = *OMD->param_begin();
    996   DeclRefExpr argRef(argVar, false, argVar->getType().getNonReferenceType(),
    997                      VK_LValue, SourceLocation());
    998   llvm::Value *argAddr = CGF.EmitLValue(&argRef).getAddress();
    999   argAddr = CGF.Builder.CreateBitCast(argAddr, CGF.Int8PtrTy);
   1000   args.add(RValue::get(argAddr), CGF.getContext().VoidPtrTy);
   1001 
   1002   // Third argument is the helper function.
   1003   args.add(RValue::get(AtomicHelperFn), CGF.getContext().VoidPtrTy);
   1004 
   1005   llvm::Value *copyCppAtomicObjectFn =
   1006     CGF.CGM.getObjCRuntime().GetCppAtomicObjectFunction();
   1007   CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(CGF.getContext().VoidTy,
   1008                                                       args,
   1009                                                       FunctionType::ExtInfo(),
   1010                                                       RequiredArgs::All),
   1011                copyCppAtomicObjectFn, ReturnValueSlot(), args);
   1012 
   1013 
   1014 }
   1015 
   1016 
   1017 static bool hasTrivialSetExpr(const ObjCPropertyImplDecl *PID) {
   1018   Expr *setter = PID->getSetterCXXAssignment();
   1019   if (!setter) return true;
   1020 
   1021   // Sema only makes only of these when the ivar has a C++ class type,
   1022   // so the form is pretty constrained.
   1023 
   1024   // An operator call is trivial if the function it calls is trivial.
   1025   // This also implies that there's nothing non-trivial going on with
   1026   // the arguments, because operator= can only be trivial if it's a
   1027   // synthesized assignment operator and therefore both parameters are
   1028   // references.
   1029   if (CallExpr *call = dyn_cast<CallExpr>(setter)) {
   1030     if (const FunctionDecl *callee
   1031           = dyn_cast_or_null<FunctionDecl>(call->getCalleeDecl()))
   1032       if (callee->isTrivial())
   1033         return true;
   1034     return false;
   1035   }
   1036 
   1037   assert(isa<ExprWithCleanups>(setter));
   1038   return false;
   1039 }
   1040 
   1041 static bool UseOptimizedSetter(CodeGenModule &CGM) {
   1042   if (CGM.getLangOpts().getGC() != LangOptions::NonGC)
   1043     return false;
   1044   const TargetInfo &Target = CGM.getContext().getTargetInfo();
   1045 
   1046   if (Target.getPlatformName() != "macosx")
   1047     return false;
   1048 
   1049   return Target.getPlatformMinVersion() >= VersionTuple(10, 8);
   1050 }
   1051 
   1052 void
   1053 CodeGenFunction::generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
   1054                                         const ObjCPropertyImplDecl *propImpl,
   1055                                         llvm::Constant *AtomicHelperFn) {
   1056   const ObjCPropertyDecl *prop = propImpl->getPropertyDecl();
   1057   ObjCIvarDecl *ivar = propImpl->getPropertyIvarDecl();
   1058   ObjCMethodDecl *setterMethod = prop->getSetterMethodDecl();
   1059 
   1060   // Just use the setter expression if Sema gave us one and it's
   1061   // non-trivial.
   1062   if (!hasTrivialSetExpr(propImpl)) {
   1063     if (!AtomicHelperFn)
   1064       // If non-atomic, assignment is called directly.
   1065       EmitStmt(propImpl->getSetterCXXAssignment());
   1066     else
   1067       // If atomic, assignment is called via a locking api.
   1068       emitCPPObjectAtomicSetterCall(*this, setterMethod, ivar,
   1069                                     AtomicHelperFn);
   1070     return;
   1071   }
   1072 
   1073   PropertyImplStrategy strategy(CGM, propImpl);
   1074   switch (strategy.getKind()) {
   1075   case PropertyImplStrategy::Native: {
   1076     llvm::Value *argAddr = LocalDeclMap[*setterMethod->param_begin()];
   1077 
   1078     LValue ivarLValue =
   1079       EmitLValueForIvar(TypeOfSelfObject(), LoadObjCSelf(), ivar, /*quals*/ 0);
   1080     llvm::Value *ivarAddr = ivarLValue.getAddress();
   1081 
   1082     // Currently, all atomic accesses have to be through integer
   1083     // types, so there's no point in trying to pick a prettier type.
   1084     llvm::Type *bitcastType =
   1085       llvm::Type::getIntNTy(getLLVMContext(),
   1086                             getContext().toBits(strategy.getIvarSize()));
   1087     bitcastType = bitcastType->getPointerTo(); // addrspace 0 okay
   1088 
   1089     // Cast both arguments to the chosen operation type.
   1090     argAddr = Builder.CreateBitCast(argAddr, bitcastType);
   1091     ivarAddr = Builder.CreateBitCast(ivarAddr, bitcastType);
   1092 
   1093     // This bitcast load is likely to cause some nasty IR.
   1094     llvm::Value *load = Builder.CreateLoad(argAddr);
   1095 
   1096     // Perform an atomic store.  There are no memory ordering requirements.
   1097     llvm::StoreInst *store = Builder.CreateStore(load, ivarAddr);
   1098     store->setAlignment(strategy.getIvarAlignment().getQuantity());
   1099     store->setAtomic(llvm::Unordered);
   1100     return;
   1101   }
   1102 
   1103   case PropertyImplStrategy::GetSetProperty:
   1104   case PropertyImplStrategy::SetPropertyAndExpressionGet: {
   1105 
   1106     llvm::Value *setOptimizedPropertyFn = 0;
   1107     llvm::Value *setPropertyFn = 0;
   1108     if (UseOptimizedSetter(CGM)) {
   1109       // 10.8 code and GC is off
   1110       setOptimizedPropertyFn =
   1111         CGM.getObjCRuntime()
   1112            .GetOptimizedPropertySetFunction(strategy.isAtomic(),
   1113                                             strategy.isCopy());
   1114       if (!setOptimizedPropertyFn) {
   1115         CGM.ErrorUnsupported(propImpl, "Obj-C optimized setter - NYI");
   1116         return;
   1117       }
   1118     }
   1119     else {
   1120       setPropertyFn = CGM.getObjCRuntime().GetPropertySetFunction();
   1121       if (!setPropertyFn) {
   1122         CGM.ErrorUnsupported(propImpl, "Obj-C setter requiring atomic copy");
   1123         return;
   1124       }
   1125     }
   1126 
   1127     // Emit objc_setProperty((id) self, _cmd, offset, arg,
   1128     //                       <is-atomic>, <is-copy>).
   1129     llvm::Value *cmd =
   1130       Builder.CreateLoad(LocalDeclMap[setterMethod->getCmdDecl()]);
   1131     llvm::Value *self =
   1132       Builder.CreateBitCast(LoadObjCSelf(), VoidPtrTy);
   1133     llvm::Value *ivarOffset =
   1134       EmitIvarOffset(classImpl->getClassInterface(), ivar);
   1135     llvm::Value *arg = LocalDeclMap[*setterMethod->param_begin()];
   1136     arg = Builder.CreateBitCast(Builder.CreateLoad(arg, "arg"), VoidPtrTy);
   1137 
   1138     CallArgList args;
   1139     args.add(RValue::get(self), getContext().getObjCIdType());
   1140     args.add(RValue::get(cmd), getContext().getObjCSelType());
   1141     if (setOptimizedPropertyFn) {
   1142       args.add(RValue::get(arg), getContext().getObjCIdType());
   1143       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
   1144       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
   1145                                                   FunctionType::ExtInfo(),
   1146                                                   RequiredArgs::All),
   1147                setOptimizedPropertyFn, ReturnValueSlot(), args);
   1148     } else {
   1149       args.add(RValue::get(ivarOffset), getContext().getPointerDiffType());
   1150       args.add(RValue::get(arg), getContext().getObjCIdType());
   1151       args.add(RValue::get(Builder.getInt1(strategy.isAtomic())),
   1152                getContext().BoolTy);
   1153       args.add(RValue::get(Builder.getInt1(strategy.isCopy())),
   1154                getContext().BoolTy);
   1155       // FIXME: We shouldn't need to get the function info here, the runtime
   1156       // already should have computed it to build the function.
   1157       EmitCall(getTypes().arrangeFreeFunctionCall(getContext().VoidTy, args,
   1158                                                   FunctionType::ExtInfo(),
   1159                                                   RequiredArgs::All),
   1160                setPropertyFn, ReturnValueSlot(), args);
   1161     }
   1162 
   1163     return;
   1164   }
   1165 
   1166   case PropertyImplStrategy::CopyStruct:
   1167     emitStructSetterCall(*this, setterMethod, ivar);
   1168     return;
   1169 
   1170   case PropertyImplStrategy::Expression:
   1171     break;
   1172   }
   1173 
   1174   // Otherwise, fake up some ASTs and emit a normal assignment.
   1175   ValueDecl *selfDecl = setterMethod->getSelfDecl();
   1176   DeclRefExpr self(selfDecl, false, selfDecl->getType(),
   1177                    VK_LValue, SourceLocation());
   1178   ImplicitCastExpr selfLoad(ImplicitCastExpr::OnStack,
   1179                             selfDecl->getType(), CK_LValueToRValue, &self,
   1180                             VK_RValue);
   1181   ObjCIvarRefExpr ivarRef(ivar, ivar->getType().getNonReferenceType(),
   1182                           SourceLocation(), &selfLoad, true, true);
   1183 
   1184   ParmVarDecl *argDecl = *setterMethod->param_begin();
   1185   QualType argType = argDecl->getType().getNonReferenceType();
   1186   DeclRefExpr arg(argDecl, false, argType, VK_LValue, SourceLocation());
   1187   ImplicitCastExpr argLoad(ImplicitCastExpr::OnStack,
   1188                            argType.getUnqualifiedType(), CK_LValueToRValue,
   1189                            &arg, VK_RValue);
   1190 
   1191   // The property type can differ from the ivar type in some situations with
   1192   // Objective-C pointer types, we can always bit cast the RHS in these cases.
   1193   // The following absurdity is just to ensure well-formed IR.
   1194   CastKind argCK = CK_NoOp;
   1195   if (ivarRef.getType()->isObjCObjectPointerType()) {
   1196     if (argLoad.getType()->isObjCObjectPointerType())
   1197       argCK = CK_BitCast;
   1198     else if (argLoad.getType()->isBlockPointerType())
   1199       argCK = CK_BlockPointerToObjCPointerCast;
   1200     else
   1201       argCK = CK_CPointerToObjCPointerCast;
   1202   } else if (ivarRef.getType()->isBlockPointerType()) {
   1203      if (argLoad.getType()->isBlockPointerType())
   1204       argCK = CK_BitCast;
   1205     else
   1206       argCK = CK_AnyPointerToBlockPointerCast;
   1207   } else if (ivarRef.getType()->isPointerType()) {
   1208     argCK = CK_BitCast;
   1209   }
   1210   ImplicitCastExpr argCast(ImplicitCastExpr::OnStack,
   1211                            ivarRef.getType(), argCK, &argLoad,
   1212                            VK_RValue);
   1213   Expr *finalArg = &argLoad;
   1214   if (!getContext().hasSameUnqualifiedType(ivarRef.getType(),
   1215                                            argLoad.getType()))
   1216     finalArg = &argCast;
   1217 
   1218 
   1219   BinaryOperator assign(&ivarRef, finalArg, BO_Assign,
   1220                         ivarRef.getType(), VK_RValue, OK_Ordinary,
   1221                         SourceLocation());
   1222   EmitStmt(&assign);
   1223 }
   1224 
   1225 /// \brief Generate an Objective-C property setter function.
   1226 ///
   1227 /// The given Decl must be an ObjCImplementationDecl. \@synthesize
   1228 /// is illegal within a category.
   1229 void CodeGenFunction::GenerateObjCSetter(ObjCImplementationDecl *IMP,
   1230                                          const ObjCPropertyImplDecl *PID) {
   1231   llvm::Constant *AtomicHelperFn =
   1232     GenerateObjCAtomicSetterCopyHelperFunction(PID);
   1233   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
   1234   ObjCMethodDecl *OMD = PD->getSetterMethodDecl();
   1235   assert(OMD && "Invalid call to generate setter (empty method)");
   1236   StartObjCMethod(OMD, IMP->getClassInterface(), OMD->getLocStart());
   1237 
   1238   generateObjCSetterBody(IMP, PID, AtomicHelperFn);
   1239 
   1240   FinishFunction();
   1241 }
   1242 
   1243 namespace {
   1244   struct DestroyIvar : EHScopeStack::Cleanup {
   1245   private:
   1246     llvm::Value *addr;
   1247     const ObjCIvarDecl *ivar;
   1248     CodeGenFunction::Destroyer *destroyer;
   1249     bool useEHCleanupForArray;
   1250   public:
   1251     DestroyIvar(llvm::Value *addr, const ObjCIvarDecl *ivar,
   1252                 CodeGenFunction::Destroyer *destroyer,
   1253                 bool useEHCleanupForArray)
   1254       : addr(addr), ivar(ivar), destroyer(destroyer),
   1255         useEHCleanupForArray(useEHCleanupForArray) {}
   1256 
   1257     void Emit(CodeGenFunction &CGF, Flags flags) {
   1258       LValue lvalue
   1259         = CGF.EmitLValueForIvar(CGF.TypeOfSelfObject(), addr, ivar, /*CVR*/ 0);
   1260       CGF.emitDestroy(lvalue.getAddress(), ivar->getType(), destroyer,
   1261                       flags.isForNormalCleanup() && useEHCleanupForArray);
   1262     }
   1263   };
   1264 }
   1265 
   1266 /// Like CodeGenFunction::destroyARCStrong, but do it with a call.
   1267 static void destroyARCStrongWithStore(CodeGenFunction &CGF,
   1268                                       llvm::Value *addr,
   1269                                       QualType type) {
   1270   llvm::Value *null = getNullForVariable(addr);
   1271   CGF.EmitARCStoreStrongCall(addr, null, /*ignored*/ true);
   1272 }
   1273 
   1274 static void emitCXXDestructMethod(CodeGenFunction &CGF,
   1275                                   ObjCImplementationDecl *impl) {
   1276   CodeGenFunction::RunCleanupsScope scope(CGF);
   1277 
   1278   llvm::Value *self = CGF.LoadObjCSelf();
   1279 
   1280   const ObjCInterfaceDecl *iface = impl->getClassInterface();
   1281   for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
   1282        ivar; ivar = ivar->getNextIvar()) {
   1283     QualType type = ivar->getType();
   1284 
   1285     // Check whether the ivar is a destructible type.
   1286     QualType::DestructionKind dtorKind = type.isDestructedType();
   1287     if (!dtorKind) continue;
   1288 
   1289     CodeGenFunction::Destroyer *destroyer = 0;
   1290 
   1291     // Use a call to objc_storeStrong to destroy strong ivars, for the
   1292     // general benefit of the tools.
   1293     if (dtorKind == QualType::DK_objc_strong_lifetime) {
   1294       destroyer = destroyARCStrongWithStore;
   1295 
   1296     // Otherwise use the default for the destruction kind.
   1297     } else {
   1298       destroyer = CGF.getDestroyer(dtorKind);
   1299     }
   1300 
   1301     CleanupKind cleanupKind = CGF.getCleanupKind(dtorKind);
   1302 
   1303     CGF.EHStack.pushCleanup<DestroyIvar>(cleanupKind, self, ivar, destroyer,
   1304                                          cleanupKind & EHCleanup);
   1305   }
   1306 
   1307   assert(scope.requiresCleanups() && "nothing to do in .cxx_destruct?");
   1308 }
   1309 
   1310 void CodeGenFunction::GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
   1311                                                  ObjCMethodDecl *MD,
   1312                                                  bool ctor) {
   1313   MD->createImplicitParams(CGM.getContext(), IMP->getClassInterface());
   1314   StartObjCMethod(MD, IMP->getClassInterface(), MD->getLocStart());
   1315 
   1316   // Emit .cxx_construct.
   1317   if (ctor) {
   1318     // Suppress the final autorelease in ARC.
   1319     AutoreleaseResult = false;
   1320 
   1321     SmallVector<CXXCtorInitializer *, 8> IvarInitializers;
   1322     for (ObjCImplementationDecl::init_const_iterator B = IMP->init_begin(),
   1323            E = IMP->init_end(); B != E; ++B) {
   1324       CXXCtorInitializer *IvarInit = (*B);
   1325       FieldDecl *Field = IvarInit->getAnyMember();
   1326       ObjCIvarDecl  *Ivar = cast<ObjCIvarDecl>(Field);
   1327       LValue LV = EmitLValueForIvar(TypeOfSelfObject(),
   1328                                     LoadObjCSelf(), Ivar, 0);
   1329       EmitAggExpr(IvarInit->getInit(),
   1330                   AggValueSlot::forLValue(LV, AggValueSlot::IsDestructed,
   1331                                           AggValueSlot::DoesNotNeedGCBarriers,
   1332                                           AggValueSlot::IsNotAliased));
   1333     }
   1334     // constructor returns 'self'.
   1335     CodeGenTypes &Types = CGM.getTypes();
   1336     QualType IdTy(CGM.getContext().getObjCIdType());
   1337     llvm::Value *SelfAsId =
   1338       Builder.CreateBitCast(LoadObjCSelf(), Types.ConvertType(IdTy));
   1339     EmitReturnOfRValue(RValue::get(SelfAsId), IdTy);
   1340 
   1341   // Emit .cxx_destruct.
   1342   } else {
   1343     emitCXXDestructMethod(*this, IMP);
   1344   }
   1345   FinishFunction();
   1346 }
   1347 
   1348 bool CodeGenFunction::IndirectObjCSetterArg(const CGFunctionInfo &FI) {
   1349   CGFunctionInfo::const_arg_iterator it = FI.arg_begin();
   1350   it++; it++;
   1351   const ABIArgInfo &AI = it->info;
   1352   // FIXME. Is this sufficient check?
   1353   return (AI.getKind() == ABIArgInfo::Indirect);
   1354 }
   1355 
   1356 bool CodeGenFunction::IvarTypeWithAggrGCObjects(QualType Ty) {
   1357   if (CGM.getLangOpts().getGC() == LangOptions::NonGC)
   1358     return false;
   1359   if (const RecordType *FDTTy = Ty.getTypePtr()->getAs<RecordType>())
   1360     return FDTTy->getDecl()->hasObjectMember();
   1361   return false;
   1362 }
   1363 
   1364 llvm::Value *CodeGenFunction::LoadObjCSelf() {
   1365   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
   1366   return Builder.CreateLoad(LocalDeclMap[OMD->getSelfDecl()], "self");
   1367 }
   1368 
   1369 QualType CodeGenFunction::TypeOfSelfObject() {
   1370   const ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(CurFuncDecl);
   1371   ImplicitParamDecl *selfDecl = OMD->getSelfDecl();
   1372   const ObjCObjectPointerType *PTy = cast<ObjCObjectPointerType>(
   1373     getContext().getCanonicalType(selfDecl->getType()));
   1374   return PTy->getPointeeType();
   1375 }
   1376 
   1377 void CodeGenFunction::EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S){
   1378   llvm::Constant *EnumerationMutationFn =
   1379     CGM.getObjCRuntime().EnumerationMutationFunction();
   1380 
   1381   if (!EnumerationMutationFn) {
   1382     CGM.ErrorUnsupported(&S, "Obj-C fast enumeration for this runtime");
   1383     return;
   1384   }
   1385 
   1386   CGDebugInfo *DI = getDebugInfo();
   1387   if (DI)
   1388     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
   1389 
   1390   // The local variable comes into scope immediately.
   1391   AutoVarEmission variable = AutoVarEmission::invalid();
   1392   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement()))
   1393     variable = EmitAutoVarAlloca(*cast<VarDecl>(SD->getSingleDecl()));
   1394 
   1395   JumpDest LoopEnd = getJumpDestInCurrentScope("forcoll.end");
   1396 
   1397   // Fast enumeration state.
   1398   QualType StateTy = CGM.getObjCFastEnumerationStateType();
   1399   llvm::Value *StatePtr = CreateMemTemp(StateTy, "state.ptr");
   1400   EmitNullInitialization(StatePtr, StateTy);
   1401 
   1402   // Number of elements in the items array.
   1403   static const unsigned NumItems = 16;
   1404 
   1405   // Fetch the countByEnumeratingWithState:objects:count: selector.
   1406   IdentifierInfo *II[] = {
   1407     &CGM.getContext().Idents.get("countByEnumeratingWithState"),
   1408     &CGM.getContext().Idents.get("objects"),
   1409     &CGM.getContext().Idents.get("count")
   1410   };
   1411   Selector FastEnumSel =
   1412     CGM.getContext().Selectors.getSelector(llvm::array_lengthof(II), &II[0]);
   1413 
   1414   QualType ItemsTy =
   1415     getContext().getConstantArrayType(getContext().getObjCIdType(),
   1416                                       llvm::APInt(32, NumItems),
   1417                                       ArrayType::Normal, 0);
   1418   llvm::Value *ItemsPtr = CreateMemTemp(ItemsTy, "items.ptr");
   1419 
   1420   // Emit the collection pointer.  In ARC, we do a retain.
   1421   llvm::Value *Collection;
   1422   if (getLangOpts().ObjCAutoRefCount) {
   1423     Collection = EmitARCRetainScalarExpr(S.getCollection());
   1424 
   1425     // Enter a cleanup to do the release.
   1426     EmitObjCConsumeObject(S.getCollection()->getType(), Collection);
   1427   } else {
   1428     Collection = EmitScalarExpr(S.getCollection());
   1429   }
   1430 
   1431   // The 'continue' label needs to appear within the cleanup for the
   1432   // collection object.
   1433   JumpDest AfterBody = getJumpDestInCurrentScope("forcoll.next");
   1434 
   1435   // Send it our message:
   1436   CallArgList Args;
   1437 
   1438   // The first argument is a temporary of the enumeration-state type.
   1439   Args.add(RValue::get(StatePtr), getContext().getPointerType(StateTy));
   1440 
   1441   // The second argument is a temporary array with space for NumItems
   1442   // pointers.  We'll actually be loading elements from the array
   1443   // pointer written into the control state; this buffer is so that
   1444   // collections that *aren't* backed by arrays can still queue up
   1445   // batches of elements.
   1446   Args.add(RValue::get(ItemsPtr), getContext().getPointerType(ItemsTy));
   1447 
   1448   // The third argument is the capacity of that temporary array.
   1449   llvm::Type *UnsignedLongLTy = ConvertType(getContext().UnsignedLongTy);
   1450   llvm::Constant *Count = llvm::ConstantInt::get(UnsignedLongLTy, NumItems);
   1451   Args.add(RValue::get(Count), getContext().UnsignedLongTy);
   1452 
   1453   // Start the enumeration.
   1454   RValue CountRV =
   1455     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
   1456                                              getContext().UnsignedLongTy,
   1457                                              FastEnumSel,
   1458                                              Collection, Args);
   1459 
   1460   // The initial number of objects that were returned in the buffer.
   1461   llvm::Value *initialBufferLimit = CountRV.getScalarVal();
   1462 
   1463   llvm::BasicBlock *EmptyBB = createBasicBlock("forcoll.empty");
   1464   llvm::BasicBlock *LoopInitBB = createBasicBlock("forcoll.loopinit");
   1465 
   1466   llvm::Value *zero = llvm::Constant::getNullValue(UnsignedLongLTy);
   1467 
   1468   // If the limit pointer was zero to begin with, the collection is
   1469   // empty; skip all this.
   1470   Builder.CreateCondBr(Builder.CreateICmpEQ(initialBufferLimit, zero, "iszero"),
   1471                        EmptyBB, LoopInitBB);
   1472 
   1473   // Otherwise, initialize the loop.
   1474   EmitBlock(LoopInitBB);
   1475 
   1476   // Save the initial mutations value.  This is the value at an
   1477   // address that was written into the state object by
   1478   // countByEnumeratingWithState:objects:count:.
   1479   llvm::Value *StateMutationsPtrPtr =
   1480     Builder.CreateStructGEP(StatePtr, 2, "mutationsptr.ptr");
   1481   llvm::Value *StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr,
   1482                                                       "mutationsptr");
   1483 
   1484   llvm::Value *initialMutations =
   1485     Builder.CreateLoad(StateMutationsPtr, "forcoll.initial-mutations");
   1486 
   1487   // Start looping.  This is the point we return to whenever we have a
   1488   // fresh, non-empty batch of objects.
   1489   llvm::BasicBlock *LoopBodyBB = createBasicBlock("forcoll.loopbody");
   1490   EmitBlock(LoopBodyBB);
   1491 
   1492   // The current index into the buffer.
   1493   llvm::PHINode *index = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.index");
   1494   index->addIncoming(zero, LoopInitBB);
   1495 
   1496   // The current buffer size.
   1497   llvm::PHINode *count = Builder.CreatePHI(UnsignedLongLTy, 3, "forcoll.count");
   1498   count->addIncoming(initialBufferLimit, LoopInitBB);
   1499 
   1500   // Check whether the mutations value has changed from where it was
   1501   // at start.  StateMutationsPtr should actually be invariant between
   1502   // refreshes.
   1503   StateMutationsPtr = Builder.CreateLoad(StateMutationsPtrPtr, "mutationsptr");
   1504   llvm::Value *currentMutations
   1505     = Builder.CreateLoad(StateMutationsPtr, "statemutations");
   1506 
   1507   llvm::BasicBlock *WasMutatedBB = createBasicBlock("forcoll.mutated");
   1508   llvm::BasicBlock *WasNotMutatedBB = createBasicBlock("forcoll.notmutated");
   1509 
   1510   Builder.CreateCondBr(Builder.CreateICmpEQ(currentMutations, initialMutations),
   1511                        WasNotMutatedBB, WasMutatedBB);
   1512 
   1513   // If so, call the enumeration-mutation function.
   1514   EmitBlock(WasMutatedBB);
   1515   llvm::Value *V =
   1516     Builder.CreateBitCast(Collection,
   1517                           ConvertType(getContext().getObjCIdType()));
   1518   CallArgList Args2;
   1519   Args2.add(RValue::get(V), getContext().getObjCIdType());
   1520   // FIXME: We shouldn't need to get the function info here, the runtime already
   1521   // should have computed it to build the function.
   1522   EmitCall(CGM.getTypes().arrangeFreeFunctionCall(getContext().VoidTy, Args2,
   1523                                                   FunctionType::ExtInfo(),
   1524                                                   RequiredArgs::All),
   1525            EnumerationMutationFn, ReturnValueSlot(), Args2);
   1526 
   1527   // Otherwise, or if the mutation function returns, just continue.
   1528   EmitBlock(WasNotMutatedBB);
   1529 
   1530   // Initialize the element variable.
   1531   RunCleanupsScope elementVariableScope(*this);
   1532   bool elementIsVariable;
   1533   LValue elementLValue;
   1534   QualType elementType;
   1535   if (const DeclStmt *SD = dyn_cast<DeclStmt>(S.getElement())) {
   1536     // Initialize the variable, in case it's a __block variable or something.
   1537     EmitAutoVarInit(variable);
   1538 
   1539     const VarDecl* D = cast<VarDecl>(SD->getSingleDecl());
   1540     DeclRefExpr tempDRE(const_cast<VarDecl*>(D), false, D->getType(),
   1541                         VK_LValue, SourceLocation());
   1542     elementLValue = EmitLValue(&tempDRE);
   1543     elementType = D->getType();
   1544     elementIsVariable = true;
   1545 
   1546     if (D->isARCPseudoStrong())
   1547       elementLValue.getQuals().setObjCLifetime(Qualifiers::OCL_ExplicitNone);
   1548   } else {
   1549     elementLValue = LValue(); // suppress warning
   1550     elementType = cast<Expr>(S.getElement())->getType();
   1551     elementIsVariable = false;
   1552   }
   1553   llvm::Type *convertedElementType = ConvertType(elementType);
   1554 
   1555   // Fetch the buffer out of the enumeration state.
   1556   // TODO: this pointer should actually be invariant between
   1557   // refreshes, which would help us do certain loop optimizations.
   1558   llvm::Value *StateItemsPtr =
   1559     Builder.CreateStructGEP(StatePtr, 1, "stateitems.ptr");
   1560   llvm::Value *EnumStateItems =
   1561     Builder.CreateLoad(StateItemsPtr, "stateitems");
   1562 
   1563   // Fetch the value at the current index from the buffer.
   1564   llvm::Value *CurrentItemPtr =
   1565     Builder.CreateGEP(EnumStateItems, index, "currentitem.ptr");
   1566   llvm::Value *CurrentItem = Builder.CreateLoad(CurrentItemPtr);
   1567 
   1568   // Cast that value to the right type.
   1569   CurrentItem = Builder.CreateBitCast(CurrentItem, convertedElementType,
   1570                                       "currentitem");
   1571 
   1572   // Make sure we have an l-value.  Yes, this gets evaluated every
   1573   // time through the loop.
   1574   if (!elementIsVariable) {
   1575     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
   1576     EmitStoreThroughLValue(RValue::get(CurrentItem), elementLValue);
   1577   } else {
   1578     EmitScalarInit(CurrentItem, elementLValue);
   1579   }
   1580 
   1581   // If we do have an element variable, this assignment is the end of
   1582   // its initialization.
   1583   if (elementIsVariable)
   1584     EmitAutoVarCleanups(variable);
   1585 
   1586   // Perform the loop body, setting up break and continue labels.
   1587   BreakContinueStack.push_back(BreakContinue(LoopEnd, AfterBody));
   1588   {
   1589     RunCleanupsScope Scope(*this);
   1590     EmitStmt(S.getBody());
   1591   }
   1592   BreakContinueStack.pop_back();
   1593 
   1594   // Destroy the element variable now.
   1595   elementVariableScope.ForceCleanup();
   1596 
   1597   // Check whether there are more elements.
   1598   EmitBlock(AfterBody.getBlock());
   1599 
   1600   llvm::BasicBlock *FetchMoreBB = createBasicBlock("forcoll.refetch");
   1601 
   1602   // First we check in the local buffer.
   1603   llvm::Value *indexPlusOne
   1604     = Builder.CreateAdd(index, llvm::ConstantInt::get(UnsignedLongLTy, 1));
   1605 
   1606   // If we haven't overrun the buffer yet, we can continue.
   1607   Builder.CreateCondBr(Builder.CreateICmpULT(indexPlusOne, count),
   1608                        LoopBodyBB, FetchMoreBB);
   1609 
   1610   index->addIncoming(indexPlusOne, AfterBody.getBlock());
   1611   count->addIncoming(count, AfterBody.getBlock());
   1612 
   1613   // Otherwise, we have to fetch more elements.
   1614   EmitBlock(FetchMoreBB);
   1615 
   1616   CountRV =
   1617     CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
   1618                                              getContext().UnsignedLongTy,
   1619                                              FastEnumSel,
   1620                                              Collection, Args);
   1621 
   1622   // If we got a zero count, we're done.
   1623   llvm::Value *refetchCount = CountRV.getScalarVal();
   1624 
   1625   // (note that the message send might split FetchMoreBB)
   1626   index->addIncoming(zero, Builder.GetInsertBlock());
   1627   count->addIncoming(refetchCount, Builder.GetInsertBlock());
   1628 
   1629   Builder.CreateCondBr(Builder.CreateICmpEQ(refetchCount, zero),
   1630                        EmptyBB, LoopBodyBB);
   1631 
   1632   // No more elements.
   1633   EmitBlock(EmptyBB);
   1634 
   1635   if (!elementIsVariable) {
   1636     // If the element was not a declaration, set it to be null.
   1637 
   1638     llvm::Value *null = llvm::Constant::getNullValue(convertedElementType);
   1639     elementLValue = EmitLValue(cast<Expr>(S.getElement()));
   1640     EmitStoreThroughLValue(RValue::get(null), elementLValue);
   1641   }
   1642 
   1643   if (DI)
   1644     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
   1645 
   1646   // Leave the cleanup we entered in ARC.
   1647   if (getLangOpts().ObjCAutoRefCount)
   1648     PopCleanupBlock();
   1649 
   1650   EmitBlock(LoopEnd.getBlock());
   1651 }
   1652 
   1653 void CodeGenFunction::EmitObjCAtTryStmt(const ObjCAtTryStmt &S) {
   1654   CGM.getObjCRuntime().EmitTryStmt(*this, S);
   1655 }
   1656 
   1657 void CodeGenFunction::EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S) {
   1658   CGM.getObjCRuntime().EmitThrowStmt(*this, S);
   1659 }
   1660 
   1661 void CodeGenFunction::EmitObjCAtSynchronizedStmt(
   1662                                               const ObjCAtSynchronizedStmt &S) {
   1663   CGM.getObjCRuntime().EmitSynchronizedStmt(*this, S);
   1664 }
   1665 
   1666 /// Produce the code for a CK_ARCProduceObject.  Just does a
   1667 /// primitive retain.
   1668 llvm::Value *CodeGenFunction::EmitObjCProduceObject(QualType type,
   1669                                                     llvm::Value *value) {
   1670   return EmitARCRetain(type, value);
   1671 }
   1672 
   1673 namespace {
   1674   struct CallObjCRelease : EHScopeStack::Cleanup {
   1675     CallObjCRelease(llvm::Value *object) : object(object) {}
   1676     llvm::Value *object;
   1677 
   1678     void Emit(CodeGenFunction &CGF, Flags flags) {
   1679       CGF.EmitARCRelease(object, /*precise*/ true);
   1680     }
   1681   };
   1682 }
   1683 
   1684 /// Produce the code for a CK_ARCConsumeObject.  Does a primitive
   1685 /// release at the end of the full-expression.
   1686 llvm::Value *CodeGenFunction::EmitObjCConsumeObject(QualType type,
   1687                                                     llvm::Value *object) {
   1688   // If we're in a conditional branch, we need to make the cleanup
   1689   // conditional.
   1690   pushFullExprCleanup<CallObjCRelease>(getARCCleanupKind(), object);
   1691   return object;
   1692 }
   1693 
   1694 llvm::Value *CodeGenFunction::EmitObjCExtendObjectLifetime(QualType type,
   1695                                                            llvm::Value *value) {
   1696   return EmitARCRetainAutorelease(type, value);
   1697 }
   1698 
   1699 
   1700 static llvm::Constant *createARCRuntimeFunction(CodeGenModule &CGM,
   1701                                                 llvm::FunctionType *type,
   1702                                                 StringRef fnName) {
   1703   llvm::Constant *fn = CGM.CreateRuntimeFunction(type, fnName);
   1704 
   1705   // If the target runtime doesn't naturally support ARC, emit weak
   1706   // references to the runtime support library.  We don't really
   1707   // permit this to fail, but we need a particular relocation style.
   1708   if (llvm::Function *f = dyn_cast<llvm::Function>(fn)) {
   1709     if (!CGM.getLangOpts().ObjCRuntime.hasNativeARC())
   1710       f->setLinkage(llvm::Function::ExternalWeakLinkage);
   1711     // set nonlazybind attribute for these APIs for performance.
   1712     if (fnName == "objc_retain" || fnName  == "objc_release")
   1713       f->addFnAttr(llvm::Attribute::NonLazyBind);
   1714   }
   1715 
   1716   return fn;
   1717 }
   1718 
   1719 /// Perform an operation having the signature
   1720 ///   i8* (i8*)
   1721 /// where a null input causes a no-op and returns null.
   1722 static llvm::Value *emitARCValueOperation(CodeGenFunction &CGF,
   1723                                           llvm::Value *value,
   1724                                           llvm::Constant *&fn,
   1725                                           StringRef fnName) {
   1726   if (isa<llvm::ConstantPointerNull>(value)) return value;
   1727 
   1728   if (!fn) {
   1729     std::vector<llvm::Type*> args(1, CGF.Int8PtrTy);
   1730     llvm::FunctionType *fnType =
   1731       llvm::FunctionType::get(CGF.Int8PtrTy, args, false);
   1732     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
   1733   }
   1734 
   1735   // Cast the argument to 'id'.
   1736   llvm::Type *origType = value->getType();
   1737   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
   1738 
   1739   // Call the function.
   1740   llvm::CallInst *call = CGF.Builder.CreateCall(fn, value);
   1741   call->setDoesNotThrow();
   1742 
   1743   // Cast the result back to the original type.
   1744   return CGF.Builder.CreateBitCast(call, origType);
   1745 }
   1746 
   1747 /// Perform an operation having the following signature:
   1748 ///   i8* (i8**)
   1749 static llvm::Value *emitARCLoadOperation(CodeGenFunction &CGF,
   1750                                          llvm::Value *addr,
   1751                                          llvm::Constant *&fn,
   1752                                          StringRef fnName) {
   1753   if (!fn) {
   1754     std::vector<llvm::Type*> args(1, CGF.Int8PtrPtrTy);
   1755     llvm::FunctionType *fnType =
   1756       llvm::FunctionType::get(CGF.Int8PtrTy, args, false);
   1757     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
   1758   }
   1759 
   1760   // Cast the argument to 'id*'.
   1761   llvm::Type *origType = addr->getType();
   1762   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
   1763 
   1764   // Call the function.
   1765   llvm::CallInst *call = CGF.Builder.CreateCall(fn, addr);
   1766   call->setDoesNotThrow();
   1767 
   1768   // Cast the result back to a dereference of the original type.
   1769   llvm::Value *result = call;
   1770   if (origType != CGF.Int8PtrPtrTy)
   1771     result = CGF.Builder.CreateBitCast(result,
   1772                         cast<llvm::PointerType>(origType)->getElementType());
   1773 
   1774   return result;
   1775 }
   1776 
   1777 /// Perform an operation having the following signature:
   1778 ///   i8* (i8**, i8*)
   1779 static llvm::Value *emitARCStoreOperation(CodeGenFunction &CGF,
   1780                                           llvm::Value *addr,
   1781                                           llvm::Value *value,
   1782                                           llvm::Constant *&fn,
   1783                                           StringRef fnName,
   1784                                           bool ignored) {
   1785   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
   1786            == value->getType());
   1787 
   1788   if (!fn) {
   1789     llvm::Type *argTypes[] = { CGF.Int8PtrPtrTy, CGF.Int8PtrTy };
   1790 
   1791     llvm::FunctionType *fnType
   1792       = llvm::FunctionType::get(CGF.Int8PtrTy, argTypes, false);
   1793     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
   1794   }
   1795 
   1796   llvm::Type *origType = value->getType();
   1797 
   1798   addr = CGF.Builder.CreateBitCast(addr, CGF.Int8PtrPtrTy);
   1799   value = CGF.Builder.CreateBitCast(value, CGF.Int8PtrTy);
   1800 
   1801   llvm::CallInst *result = CGF.Builder.CreateCall2(fn, addr, value);
   1802   result->setDoesNotThrow();
   1803 
   1804   if (ignored) return 0;
   1805 
   1806   return CGF.Builder.CreateBitCast(result, origType);
   1807 }
   1808 
   1809 /// Perform an operation having the following signature:
   1810 ///   void (i8**, i8**)
   1811 static void emitARCCopyOperation(CodeGenFunction &CGF,
   1812                                  llvm::Value *dst,
   1813                                  llvm::Value *src,
   1814                                  llvm::Constant *&fn,
   1815                                  StringRef fnName) {
   1816   assert(dst->getType() == src->getType());
   1817 
   1818   if (!fn) {
   1819     std::vector<llvm::Type*> argTypes(2, CGF.Int8PtrPtrTy);
   1820     llvm::FunctionType *fnType
   1821       = llvm::FunctionType::get(CGF.Builder.getVoidTy(), argTypes, false);
   1822     fn = createARCRuntimeFunction(CGF.CGM, fnType, fnName);
   1823   }
   1824 
   1825   dst = CGF.Builder.CreateBitCast(dst, CGF.Int8PtrPtrTy);
   1826   src = CGF.Builder.CreateBitCast(src, CGF.Int8PtrPtrTy);
   1827 
   1828   llvm::CallInst *result = CGF.Builder.CreateCall2(fn, dst, src);
   1829   result->setDoesNotThrow();
   1830 }
   1831 
   1832 /// Produce the code to do a retain.  Based on the type, calls one of:
   1833 ///   call i8* \@objc_retain(i8* %value)
   1834 ///   call i8* \@objc_retainBlock(i8* %value)
   1835 llvm::Value *CodeGenFunction::EmitARCRetain(QualType type, llvm::Value *value) {
   1836   if (type->isBlockPointerType())
   1837     return EmitARCRetainBlock(value, /*mandatory*/ false);
   1838   else
   1839     return EmitARCRetainNonBlock(value);
   1840 }
   1841 
   1842 /// Retain the given object, with normal retain semantics.
   1843 ///   call i8* \@objc_retain(i8* %value)
   1844 llvm::Value *CodeGenFunction::EmitARCRetainNonBlock(llvm::Value *value) {
   1845   return emitARCValueOperation(*this, value,
   1846                                CGM.getARCEntrypoints().objc_retain,
   1847                                "objc_retain");
   1848 }
   1849 
   1850 /// Retain the given block, with _Block_copy semantics.
   1851 ///   call i8* \@objc_retainBlock(i8* %value)
   1852 ///
   1853 /// \param mandatory - If false, emit the call with metadata
   1854 /// indicating that it's okay for the optimizer to eliminate this call
   1855 /// if it can prove that the block never escapes except down the stack.
   1856 llvm::Value *CodeGenFunction::EmitARCRetainBlock(llvm::Value *value,
   1857                                                  bool mandatory) {
   1858   llvm::Value *result
   1859     = emitARCValueOperation(*this, value,
   1860                             CGM.getARCEntrypoints().objc_retainBlock,
   1861                             "objc_retainBlock");
   1862 
   1863   // If the copy isn't mandatory, add !clang.arc.copy_on_escape to
   1864   // tell the optimizer that it doesn't need to do this copy if the
   1865   // block doesn't escape, where being passed as an argument doesn't
   1866   // count as escaping.
   1867   if (!mandatory && isa<llvm::Instruction>(result)) {
   1868     llvm::CallInst *call
   1869       = cast<llvm::CallInst>(result->stripPointerCasts());
   1870     assert(call->getCalledValue() == CGM.getARCEntrypoints().objc_retainBlock);
   1871 
   1872     SmallVector<llvm::Value*,1> args;
   1873     call->setMetadata("clang.arc.copy_on_escape",
   1874                       llvm::MDNode::get(Builder.getContext(), args));
   1875   }
   1876 
   1877   return result;
   1878 }
   1879 
   1880 /// Retain the given object which is the result of a function call.
   1881 ///   call i8* \@objc_retainAutoreleasedReturnValue(i8* %value)
   1882 ///
   1883 /// Yes, this function name is one character away from a different
   1884 /// call with completely different semantics.
   1885 llvm::Value *
   1886 CodeGenFunction::EmitARCRetainAutoreleasedReturnValue(llvm::Value *value) {
   1887   // Fetch the void(void) inline asm which marks that we're going to
   1888   // retain the autoreleased return value.
   1889   llvm::InlineAsm *&marker
   1890     = CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker;
   1891   if (!marker) {
   1892     StringRef assembly
   1893       = CGM.getTargetCodeGenInfo()
   1894            .getARCRetainAutoreleasedReturnValueMarker();
   1895 
   1896     // If we have an empty assembly string, there's nothing to do.
   1897     if (assembly.empty()) {
   1898 
   1899     // Otherwise, at -O0, build an inline asm that we're going to call
   1900     // in a moment.
   1901     } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
   1902       llvm::FunctionType *type =
   1903         llvm::FunctionType::get(VoidTy, /*variadic*/false);
   1904 
   1905       marker = llvm::InlineAsm::get(type, assembly, "", /*sideeffects*/ true);
   1906 
   1907     // If we're at -O1 and above, we don't want to litter the code
   1908     // with this marker yet, so leave a breadcrumb for the ARC
   1909     // optimizer to pick up.
   1910     } else {
   1911       llvm::NamedMDNode *metadata =
   1912         CGM.getModule().getOrInsertNamedMetadata(
   1913                             "clang.arc.retainAutoreleasedReturnValueMarker");
   1914       assert(metadata->getNumOperands() <= 1);
   1915       if (metadata->getNumOperands() == 0) {
   1916         llvm::Value *string = llvm::MDString::get(getLLVMContext(), assembly);
   1917         metadata->addOperand(llvm::MDNode::get(getLLVMContext(), string));
   1918       }
   1919     }
   1920   }
   1921 
   1922   // Call the marker asm if we made one, which we do only at -O0.
   1923   if (marker) Builder.CreateCall(marker);
   1924 
   1925   return emitARCValueOperation(*this, value,
   1926                      CGM.getARCEntrypoints().objc_retainAutoreleasedReturnValue,
   1927                                "objc_retainAutoreleasedReturnValue");
   1928 }
   1929 
   1930 /// Release the given object.
   1931 ///   call void \@objc_release(i8* %value)
   1932 void CodeGenFunction::EmitARCRelease(llvm::Value *value, bool precise) {
   1933   if (isa<llvm::ConstantPointerNull>(value)) return;
   1934 
   1935   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_release;
   1936   if (!fn) {
   1937     std::vector<llvm::Type*> args(1, Int8PtrTy);
   1938     llvm::FunctionType *fnType =
   1939       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
   1940     fn = createARCRuntimeFunction(CGM, fnType, "objc_release");
   1941   }
   1942 
   1943   // Cast the argument to 'id'.
   1944   value = Builder.CreateBitCast(value, Int8PtrTy);
   1945 
   1946   // Call objc_release.
   1947   llvm::CallInst *call = Builder.CreateCall(fn, value);
   1948   call->setDoesNotThrow();
   1949 
   1950   if (!precise) {
   1951     SmallVector<llvm::Value*,1> args;
   1952     call->setMetadata("clang.imprecise_release",
   1953                       llvm::MDNode::get(Builder.getContext(), args));
   1954   }
   1955 }
   1956 
   1957 /// Store into a strong object.  Always calls this:
   1958 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
   1959 llvm::Value *CodeGenFunction::EmitARCStoreStrongCall(llvm::Value *addr,
   1960                                                      llvm::Value *value,
   1961                                                      bool ignored) {
   1962   assert(cast<llvm::PointerType>(addr->getType())->getElementType()
   1963            == value->getType());
   1964 
   1965   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_storeStrong;
   1966   if (!fn) {
   1967     llvm::Type *argTypes[] = { Int8PtrPtrTy, Int8PtrTy };
   1968     llvm::FunctionType *fnType
   1969       = llvm::FunctionType::get(Builder.getVoidTy(), argTypes, false);
   1970     fn = createARCRuntimeFunction(CGM, fnType, "objc_storeStrong");
   1971   }
   1972 
   1973   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
   1974   llvm::Value *castValue = Builder.CreateBitCast(value, Int8PtrTy);
   1975 
   1976   Builder.CreateCall2(fn, addr, castValue)->setDoesNotThrow();
   1977 
   1978   if (ignored) return 0;
   1979   return value;
   1980 }
   1981 
   1982 /// Store into a strong object.  Sometimes calls this:
   1983 ///   call void \@objc_storeStrong(i8** %addr, i8* %value)
   1984 /// Other times, breaks it down into components.
   1985 llvm::Value *CodeGenFunction::EmitARCStoreStrong(LValue dst,
   1986                                                  llvm::Value *newValue,
   1987                                                  bool ignored) {
   1988   QualType type = dst.getType();
   1989   bool isBlock = type->isBlockPointerType();
   1990 
   1991   // Use a store barrier at -O0 unless this is a block type or the
   1992   // lvalue is inadequately aligned.
   1993   if (shouldUseFusedARCCalls() &&
   1994       !isBlock &&
   1995       (dst.getAlignment().isZero() ||
   1996        dst.getAlignment() >= CharUnits::fromQuantity(PointerAlignInBytes))) {
   1997     return EmitARCStoreStrongCall(dst.getAddress(), newValue, ignored);
   1998   }
   1999 
   2000   // Otherwise, split it out.
   2001 
   2002   // Retain the new value.
   2003   newValue = EmitARCRetain(type, newValue);
   2004 
   2005   // Read the old value.
   2006   llvm::Value *oldValue = EmitLoadOfScalar(dst);
   2007 
   2008   // Store.  We do this before the release so that any deallocs won't
   2009   // see the old value.
   2010   EmitStoreOfScalar(newValue, dst);
   2011 
   2012   // Finally, release the old value.
   2013   EmitARCRelease(oldValue, /*precise*/ false);
   2014 
   2015   return newValue;
   2016 }
   2017 
   2018 /// Autorelease the given object.
   2019 ///   call i8* \@objc_autorelease(i8* %value)
   2020 llvm::Value *CodeGenFunction::EmitARCAutorelease(llvm::Value *value) {
   2021   return emitARCValueOperation(*this, value,
   2022                                CGM.getARCEntrypoints().objc_autorelease,
   2023                                "objc_autorelease");
   2024 }
   2025 
   2026 /// Autorelease the given object.
   2027 ///   call i8* \@objc_autoreleaseReturnValue(i8* %value)
   2028 llvm::Value *
   2029 CodeGenFunction::EmitARCAutoreleaseReturnValue(llvm::Value *value) {
   2030   return emitARCValueOperation(*this, value,
   2031                             CGM.getARCEntrypoints().objc_autoreleaseReturnValue,
   2032                                "objc_autoreleaseReturnValue");
   2033 }
   2034 
   2035 /// Do a fused retain/autorelease of the given object.
   2036 ///   call i8* \@objc_retainAutoreleaseReturnValue(i8* %value)
   2037 llvm::Value *
   2038 CodeGenFunction::EmitARCRetainAutoreleaseReturnValue(llvm::Value *value) {
   2039   return emitARCValueOperation(*this, value,
   2040                      CGM.getARCEntrypoints().objc_retainAutoreleaseReturnValue,
   2041                                "objc_retainAutoreleaseReturnValue");
   2042 }
   2043 
   2044 /// Do a fused retain/autorelease of the given object.
   2045 ///   call i8* \@objc_retainAutorelease(i8* %value)
   2046 /// or
   2047 ///   %retain = call i8* \@objc_retainBlock(i8* %value)
   2048 ///   call i8* \@objc_autorelease(i8* %retain)
   2049 llvm::Value *CodeGenFunction::EmitARCRetainAutorelease(QualType type,
   2050                                                        llvm::Value *value) {
   2051   if (!type->isBlockPointerType())
   2052     return EmitARCRetainAutoreleaseNonBlock(value);
   2053 
   2054   if (isa<llvm::ConstantPointerNull>(value)) return value;
   2055 
   2056   llvm::Type *origType = value->getType();
   2057   value = Builder.CreateBitCast(value, Int8PtrTy);
   2058   value = EmitARCRetainBlock(value, /*mandatory*/ true);
   2059   value = EmitARCAutorelease(value);
   2060   return Builder.CreateBitCast(value, origType);
   2061 }
   2062 
   2063 /// Do a fused retain/autorelease of the given object.
   2064 ///   call i8* \@objc_retainAutorelease(i8* %value)
   2065 llvm::Value *
   2066 CodeGenFunction::EmitARCRetainAutoreleaseNonBlock(llvm::Value *value) {
   2067   return emitARCValueOperation(*this, value,
   2068                                CGM.getARCEntrypoints().objc_retainAutorelease,
   2069                                "objc_retainAutorelease");
   2070 }
   2071 
   2072 /// i8* \@objc_loadWeak(i8** %addr)
   2073 /// Essentially objc_autorelease(objc_loadWeakRetained(addr)).
   2074 llvm::Value *CodeGenFunction::EmitARCLoadWeak(llvm::Value *addr) {
   2075   return emitARCLoadOperation(*this, addr,
   2076                               CGM.getARCEntrypoints().objc_loadWeak,
   2077                               "objc_loadWeak");
   2078 }
   2079 
   2080 /// i8* \@objc_loadWeakRetained(i8** %addr)
   2081 llvm::Value *CodeGenFunction::EmitARCLoadWeakRetained(llvm::Value *addr) {
   2082   return emitARCLoadOperation(*this, addr,
   2083                               CGM.getARCEntrypoints().objc_loadWeakRetained,
   2084                               "objc_loadWeakRetained");
   2085 }
   2086 
   2087 /// i8* \@objc_storeWeak(i8** %addr, i8* %value)
   2088 /// Returns %value.
   2089 llvm::Value *CodeGenFunction::EmitARCStoreWeak(llvm::Value *addr,
   2090                                                llvm::Value *value,
   2091                                                bool ignored) {
   2092   return emitARCStoreOperation(*this, addr, value,
   2093                                CGM.getARCEntrypoints().objc_storeWeak,
   2094                                "objc_storeWeak", ignored);
   2095 }
   2096 
   2097 /// i8* \@objc_initWeak(i8** %addr, i8* %value)
   2098 /// Returns %value.  %addr is known to not have a current weak entry.
   2099 /// Essentially equivalent to:
   2100 ///   *addr = nil; objc_storeWeak(addr, value);
   2101 void CodeGenFunction::EmitARCInitWeak(llvm::Value *addr, llvm::Value *value) {
   2102   // If we're initializing to null, just write null to memory; no need
   2103   // to get the runtime involved.  But don't do this if optimization
   2104   // is enabled, because accounting for this would make the optimizer
   2105   // much more complicated.
   2106   if (isa<llvm::ConstantPointerNull>(value) &&
   2107       CGM.getCodeGenOpts().OptimizationLevel == 0) {
   2108     Builder.CreateStore(value, addr);
   2109     return;
   2110   }
   2111 
   2112   emitARCStoreOperation(*this, addr, value,
   2113                         CGM.getARCEntrypoints().objc_initWeak,
   2114                         "objc_initWeak", /*ignored*/ true);
   2115 }
   2116 
   2117 /// void \@objc_destroyWeak(i8** %addr)
   2118 /// Essentially objc_storeWeak(addr, nil).
   2119 void CodeGenFunction::EmitARCDestroyWeak(llvm::Value *addr) {
   2120   llvm::Constant *&fn = CGM.getARCEntrypoints().objc_destroyWeak;
   2121   if (!fn) {
   2122     std::vector<llvm::Type*> args(1, Int8PtrPtrTy);
   2123     llvm::FunctionType *fnType =
   2124       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
   2125     fn = createARCRuntimeFunction(CGM, fnType, "objc_destroyWeak");
   2126   }
   2127 
   2128   // Cast the argument to 'id*'.
   2129   addr = Builder.CreateBitCast(addr, Int8PtrPtrTy);
   2130 
   2131   llvm::CallInst *call = Builder.CreateCall(fn, addr);
   2132   call->setDoesNotThrow();
   2133 }
   2134 
   2135 /// void \@objc_moveWeak(i8** %dest, i8** %src)
   2136 /// Disregards the current value in %dest.  Leaves %src pointing to nothing.
   2137 /// Essentially (objc_copyWeak(dest, src), objc_destroyWeak(src)).
   2138 void CodeGenFunction::EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src) {
   2139   emitARCCopyOperation(*this, dst, src,
   2140                        CGM.getARCEntrypoints().objc_moveWeak,
   2141                        "objc_moveWeak");
   2142 }
   2143 
   2144 /// void \@objc_copyWeak(i8** %dest, i8** %src)
   2145 /// Disregards the current value in %dest.  Essentially
   2146 ///   objc_release(objc_initWeak(dest, objc_readWeakRetained(src)))
   2147 void CodeGenFunction::EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src) {
   2148   emitARCCopyOperation(*this, dst, src,
   2149                        CGM.getARCEntrypoints().objc_copyWeak,
   2150                        "objc_copyWeak");
   2151 }
   2152 
   2153 /// Produce the code to do a objc_autoreleasepool_push.
   2154 ///   call i8* \@objc_autoreleasePoolPush(void)
   2155 llvm::Value *CodeGenFunction::EmitObjCAutoreleasePoolPush() {
   2156   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPush;
   2157   if (!fn) {
   2158     llvm::FunctionType *fnType =
   2159       llvm::FunctionType::get(Int8PtrTy, false);
   2160     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPush");
   2161   }
   2162 
   2163   llvm::CallInst *call = Builder.CreateCall(fn);
   2164   call->setDoesNotThrow();
   2165 
   2166   return call;
   2167 }
   2168 
   2169 /// Produce the code to do a primitive release.
   2170 ///   call void \@objc_autoreleasePoolPop(i8* %ptr)
   2171 void CodeGenFunction::EmitObjCAutoreleasePoolPop(llvm::Value *value) {
   2172   assert(value->getType() == Int8PtrTy);
   2173 
   2174   llvm::Constant *&fn = CGM.getRREntrypoints().objc_autoreleasePoolPop;
   2175   if (!fn) {
   2176     std::vector<llvm::Type*> args(1, Int8PtrTy);
   2177     llvm::FunctionType *fnType =
   2178       llvm::FunctionType::get(Builder.getVoidTy(), args, false);
   2179 
   2180     // We don't want to use a weak import here; instead we should not
   2181     // fall into this path.
   2182     fn = createARCRuntimeFunction(CGM, fnType, "objc_autoreleasePoolPop");
   2183   }
   2184 
   2185   llvm::CallInst *call = Builder.CreateCall(fn, value);
   2186   call->setDoesNotThrow();
   2187 }
   2188 
   2189 /// Produce the code to do an MRR version objc_autoreleasepool_push.
   2190 /// Which is: [[NSAutoreleasePool alloc] init];
   2191 /// Where alloc is declared as: + (id) alloc; in NSAutoreleasePool class.
   2192 /// init is declared as: - (id) init; in its NSObject super class.
   2193 ///
   2194 llvm::Value *CodeGenFunction::EmitObjCMRRAutoreleasePoolPush() {
   2195   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
   2196   llvm::Value *Receiver = Runtime.EmitNSAutoreleasePoolClassRef(Builder);
   2197   // [NSAutoreleasePool alloc]
   2198   IdentifierInfo *II = &CGM.getContext().Idents.get("alloc");
   2199   Selector AllocSel = getContext().Selectors.getSelector(0, &II);
   2200   CallArgList Args;
   2201   RValue AllocRV =
   2202     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
   2203                                 getContext().getObjCIdType(),
   2204                                 AllocSel, Receiver, Args);
   2205 
   2206   // [Receiver init]
   2207   Receiver = AllocRV.getScalarVal();
   2208   II = &CGM.getContext().Idents.get("init");
   2209   Selector InitSel = getContext().Selectors.getSelector(0, &II);
   2210   RValue InitRV =
   2211     Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
   2212                                 getContext().getObjCIdType(),
   2213                                 InitSel, Receiver, Args);
   2214   return InitRV.getScalarVal();
   2215 }
   2216 
   2217 /// Produce the code to do a primitive release.
   2218 /// [tmp drain];
   2219 void CodeGenFunction::EmitObjCMRRAutoreleasePoolPop(llvm::Value *Arg) {
   2220   IdentifierInfo *II = &CGM.getContext().Idents.get("drain");
   2221   Selector DrainSel = getContext().Selectors.getSelector(0, &II);
   2222   CallArgList Args;
   2223   CGM.getObjCRuntime().GenerateMessageSend(*this, ReturnValueSlot(),
   2224                               getContext().VoidTy, DrainSel, Arg, Args);
   2225 }
   2226 
   2227 void CodeGenFunction::destroyARCStrongPrecise(CodeGenFunction &CGF,
   2228                                               llvm::Value *addr,
   2229                                               QualType type) {
   2230   llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy");
   2231   CGF.EmitARCRelease(ptr, /*precise*/ true);
   2232 }
   2233 
   2234 void CodeGenFunction::destroyARCStrongImprecise(CodeGenFunction &CGF,
   2235                                                 llvm::Value *addr,
   2236                                                 QualType type) {
   2237   llvm::Value *ptr = CGF.Builder.CreateLoad(addr, "strongdestroy");
   2238   CGF.EmitARCRelease(ptr, /*precise*/ false);
   2239 }
   2240 
   2241 void CodeGenFunction::destroyARCWeak(CodeGenFunction &CGF,
   2242                                      llvm::Value *addr,
   2243                                      QualType type) {
   2244   CGF.EmitARCDestroyWeak(addr);
   2245 }
   2246 
   2247 namespace {
   2248   struct CallObjCAutoreleasePoolObject : EHScopeStack::Cleanup {
   2249     llvm::Value *Token;
   2250 
   2251     CallObjCAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
   2252 
   2253     void Emit(CodeGenFunction &CGF, Flags flags) {
   2254       CGF.EmitObjCAutoreleasePoolPop(Token);
   2255     }
   2256   };
   2257   struct CallObjCMRRAutoreleasePoolObject : EHScopeStack::Cleanup {
   2258     llvm::Value *Token;
   2259 
   2260     CallObjCMRRAutoreleasePoolObject(llvm::Value *token) : Token(token) {}
   2261 
   2262     void Emit(CodeGenFunction &CGF, Flags flags) {
   2263       CGF.EmitObjCMRRAutoreleasePoolPop(Token);
   2264     }
   2265   };
   2266 }
   2267 
   2268 void CodeGenFunction::EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr) {
   2269   if (CGM.getLangOpts().ObjCAutoRefCount)
   2270     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, Ptr);
   2271   else
   2272     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, Ptr);
   2273 }
   2274 
   2275 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
   2276                                                   LValue lvalue,
   2277                                                   QualType type) {
   2278   switch (type.getObjCLifetime()) {
   2279   case Qualifiers::OCL_None:
   2280   case Qualifiers::OCL_ExplicitNone:
   2281   case Qualifiers::OCL_Strong:
   2282   case Qualifiers::OCL_Autoreleasing:
   2283     return TryEmitResult(CGF.EmitLoadOfLValue(lvalue).getScalarVal(),
   2284                          false);
   2285 
   2286   case Qualifiers::OCL_Weak:
   2287     return TryEmitResult(CGF.EmitARCLoadWeakRetained(lvalue.getAddress()),
   2288                          true);
   2289   }
   2290 
   2291   llvm_unreachable("impossible lifetime!");
   2292 }
   2293 
   2294 static TryEmitResult tryEmitARCRetainLoadOfScalar(CodeGenFunction &CGF,
   2295                                                   const Expr *e) {
   2296   e = e->IgnoreParens();
   2297   QualType type = e->getType();
   2298 
   2299   // If we're loading retained from a __strong xvalue, we can avoid
   2300   // an extra retain/release pair by zeroing out the source of this
   2301   // "move" operation.
   2302   if (e->isXValue() &&
   2303       !type.isConstQualified() &&
   2304       type.getObjCLifetime() == Qualifiers::OCL_Strong) {
   2305     // Emit the lvalue.
   2306     LValue lv = CGF.EmitLValue(e);
   2307 
   2308     // Load the object pointer.
   2309     llvm::Value *result = CGF.EmitLoadOfLValue(lv).getScalarVal();
   2310 
   2311     // Set the source pointer to NULL.
   2312     CGF.EmitStoreOfScalar(getNullForVariable(lv.getAddress()), lv);
   2313 
   2314     return TryEmitResult(result, true);
   2315   }
   2316 
   2317   // As a very special optimization, in ARC++, if the l-value is the
   2318   // result of a non-volatile assignment, do a simple retain of the
   2319   // result of the call to objc_storeWeak instead of reloading.
   2320   if (CGF.getLangOpts().CPlusPlus &&
   2321       !type.isVolatileQualified() &&
   2322       type.getObjCLifetime() == Qualifiers::OCL_Weak &&
   2323       isa<BinaryOperator>(e) &&
   2324       cast<BinaryOperator>(e)->getOpcode() == BO_Assign)
   2325     return TryEmitResult(CGF.EmitScalarExpr(e), false);
   2326 
   2327   return tryEmitARCRetainLoadOfScalar(CGF, CGF.EmitLValue(e), type);
   2328 }
   2329 
   2330 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
   2331                                            llvm::Value *value);
   2332 
   2333 /// Given that the given expression is some sort of call (which does
   2334 /// not return retained), emit a retain following it.
   2335 static llvm::Value *emitARCRetainCall(CodeGenFunction &CGF, const Expr *e) {
   2336   llvm::Value *value = CGF.EmitScalarExpr(e);
   2337   return emitARCRetainAfterCall(CGF, value);
   2338 }
   2339 
   2340 static llvm::Value *emitARCRetainAfterCall(CodeGenFunction &CGF,
   2341                                            llvm::Value *value) {
   2342   if (llvm::CallInst *call = dyn_cast<llvm::CallInst>(value)) {
   2343     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
   2344 
   2345     // Place the retain immediately following the call.
   2346     CGF.Builder.SetInsertPoint(call->getParent(),
   2347                                ++llvm::BasicBlock::iterator(call));
   2348     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
   2349 
   2350     CGF.Builder.restoreIP(ip);
   2351     return value;
   2352   } else if (llvm::InvokeInst *invoke = dyn_cast<llvm::InvokeInst>(value)) {
   2353     CGBuilderTy::InsertPoint ip = CGF.Builder.saveIP();
   2354 
   2355     // Place the retain at the beginning of the normal destination block.
   2356     llvm::BasicBlock *BB = invoke->getNormalDest();
   2357     CGF.Builder.SetInsertPoint(BB, BB->begin());
   2358     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
   2359 
   2360     CGF.Builder.restoreIP(ip);
   2361     return value;
   2362 
   2363   // Bitcasts can arise because of related-result returns.  Rewrite
   2364   // the operand.
   2365   } else if (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(value)) {
   2366     llvm::Value *operand = bitcast->getOperand(0);
   2367     operand = emitARCRetainAfterCall(CGF, operand);
   2368     bitcast->setOperand(0, operand);
   2369     return bitcast;
   2370 
   2371   // Generic fall-back case.
   2372   } else {
   2373     // Retain using the non-block variant: we never need to do a copy
   2374     // of a block that's been returned to us.
   2375     return CGF.EmitARCRetainNonBlock(value);
   2376   }
   2377 }
   2378 
   2379 /// Determine whether it might be important to emit a separate
   2380 /// objc_retain_block on the result of the given expression, or
   2381 /// whether it's okay to just emit it in a +1 context.
   2382 static bool shouldEmitSeparateBlockRetain(const Expr *e) {
   2383   assert(e->getType()->isBlockPointerType());
   2384   e = e->IgnoreParens();
   2385 
   2386   // For future goodness, emit block expressions directly in +1
   2387   // contexts if we can.
   2388   if (isa<BlockExpr>(e))
   2389     return false;
   2390 
   2391   if (const CastExpr *cast = dyn_cast<CastExpr>(e)) {
   2392     switch (cast->getCastKind()) {
   2393     // Emitting these operations in +1 contexts is goodness.
   2394     case CK_LValueToRValue:
   2395     case CK_ARCReclaimReturnedObject:
   2396     case CK_ARCConsumeObject:
   2397     case CK_ARCProduceObject:
   2398       return false;
   2399 
   2400     // These operations preserve a block type.
   2401     case CK_NoOp:
   2402     case CK_BitCast:
   2403       return shouldEmitSeparateBlockRetain(cast->getSubExpr());
   2404 
   2405     // These operations are known to be bad (or haven't been considered).
   2406     case CK_AnyPointerToBlockPointerCast:
   2407     default:
   2408       return true;
   2409     }
   2410   }
   2411 
   2412   return true;
   2413 }
   2414 
   2415 /// Try to emit a PseudoObjectExpr at +1.
   2416 ///
   2417 /// This massively duplicates emitPseudoObjectRValue.
   2418 static TryEmitResult tryEmitARCRetainPseudoObject(CodeGenFunction &CGF,
   2419                                                   const PseudoObjectExpr *E) {
   2420   llvm::SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
   2421 
   2422   // Find the result expression.
   2423   const Expr *resultExpr = E->getResultExpr();
   2424   assert(resultExpr);
   2425   TryEmitResult result;
   2426 
   2427   for (PseudoObjectExpr::const_semantics_iterator
   2428          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
   2429     const Expr *semantic = *i;
   2430 
   2431     // If this semantic expression is an opaque value, bind it
   2432     // to the result of its source expression.
   2433     if (const OpaqueValueExpr *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
   2434       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
   2435       OVMA opaqueData;
   2436 
   2437       // If this semantic is the result of the pseudo-object
   2438       // expression, try to evaluate the source as +1.
   2439       if (ov == resultExpr) {
   2440         assert(!OVMA::shouldBindAsLValue(ov));
   2441         result = tryEmitARCRetainScalarExpr(CGF, ov->getSourceExpr());
   2442         opaqueData = OVMA::bind(CGF, ov, RValue::get(result.getPointer()));
   2443 
   2444       // Otherwise, just bind it.
   2445       } else {
   2446         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
   2447       }
   2448       opaques.push_back(opaqueData);
   2449 
   2450     // Otherwise, if the expression is the result, evaluate it
   2451     // and remember the result.
   2452     } else if (semantic == resultExpr) {
   2453       result = tryEmitARCRetainScalarExpr(CGF, semantic);
   2454 
   2455     // Otherwise, evaluate the expression in an ignored context.
   2456     } else {
   2457       CGF.EmitIgnoredExpr(semantic);
   2458     }
   2459   }
   2460 
   2461   // Unbind all the opaques now.
   2462   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
   2463     opaques[i].unbind(CGF);
   2464 
   2465   return result;
   2466 }
   2467 
   2468 static TryEmitResult
   2469 tryEmitARCRetainScalarExpr(CodeGenFunction &CGF, const Expr *e) {
   2470   // Look through cleanups.
   2471   if (const ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(e)) {
   2472     CGF.enterFullExpression(cleanups);
   2473     CodeGenFunction::RunCleanupsScope scope(CGF);
   2474     return tryEmitARCRetainScalarExpr(CGF, cleanups->getSubExpr());
   2475   }
   2476 
   2477   // The desired result type, if it differs from the type of the
   2478   // ultimate opaque expression.
   2479   llvm::Type *resultType = 0;
   2480 
   2481   while (true) {
   2482     e = e->IgnoreParens();
   2483 
   2484     // There's a break at the end of this if-chain;  anything
   2485     // that wants to keep looping has to explicitly continue.
   2486     if (const CastExpr *ce = dyn_cast<CastExpr>(e)) {
   2487       switch (ce->getCastKind()) {
   2488       // No-op casts don't change the type, so we just ignore them.
   2489       case CK_NoOp:
   2490         e = ce->getSubExpr();
   2491         continue;
   2492 
   2493       case CK_LValueToRValue: {
   2494         TryEmitResult loadResult
   2495           = tryEmitARCRetainLoadOfScalar(CGF, ce->getSubExpr());
   2496         if (resultType) {
   2497           llvm::Value *value = loadResult.getPointer();
   2498           value = CGF.Builder.CreateBitCast(value, resultType);
   2499           loadResult.setPointer(value);
   2500         }
   2501         return loadResult;
   2502       }
   2503 
   2504       // These casts can change the type, so remember that and
   2505       // soldier on.  We only need to remember the outermost such
   2506       // cast, though.
   2507       case CK_CPointerToObjCPointerCast:
   2508       case CK_BlockPointerToObjCPointerCast:
   2509       case CK_AnyPointerToBlockPointerCast:
   2510       case CK_BitCast:
   2511         if (!resultType)
   2512           resultType = CGF.ConvertType(ce->getType());
   2513         e = ce->getSubExpr();
   2514         assert(e->getType()->hasPointerRepresentation());
   2515         continue;
   2516 
   2517       // For consumptions, just emit the subexpression and thus elide
   2518       // the retain/release pair.
   2519       case CK_ARCConsumeObject: {
   2520         llvm::Value *result = CGF.EmitScalarExpr(ce->getSubExpr());
   2521         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2522         return TryEmitResult(result, true);
   2523       }
   2524 
   2525       // Block extends are net +0.  Naively, we could just recurse on
   2526       // the subexpression, but actually we need to ensure that the
   2527       // value is copied as a block, so there's a little filter here.
   2528       case CK_ARCExtendBlockObject: {
   2529         llvm::Value *result; // will be a +0 value
   2530 
   2531         // If we can't safely assume the sub-expression will produce a
   2532         // block-copied value, emit the sub-expression at +0.
   2533         if (shouldEmitSeparateBlockRetain(ce->getSubExpr())) {
   2534           result = CGF.EmitScalarExpr(ce->getSubExpr());
   2535 
   2536         // Otherwise, try to emit the sub-expression at +1 recursively.
   2537         } else {
   2538           TryEmitResult subresult
   2539             = tryEmitARCRetainScalarExpr(CGF, ce->getSubExpr());
   2540           result = subresult.getPointer();
   2541 
   2542           // If that produced a retained value, just use that,
   2543           // possibly casting down.
   2544           if (subresult.getInt()) {
   2545             if (resultType)
   2546               result = CGF.Builder.CreateBitCast(result, resultType);
   2547             return TryEmitResult(result, true);
   2548           }
   2549 
   2550           // Otherwise it's +0.
   2551         }
   2552 
   2553         // Retain the object as a block, then cast down.
   2554         result = CGF.EmitARCRetainBlock(result, /*mandatory*/ true);
   2555         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2556         return TryEmitResult(result, true);
   2557       }
   2558 
   2559       // For reclaims, emit the subexpression as a retained call and
   2560       // skip the consumption.
   2561       case CK_ARCReclaimReturnedObject: {
   2562         llvm::Value *result = emitARCRetainCall(CGF, ce->getSubExpr());
   2563         if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2564         return TryEmitResult(result, true);
   2565       }
   2566 
   2567       default:
   2568         break;
   2569       }
   2570 
   2571     // Skip __extension__.
   2572     } else if (const UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
   2573       if (op->getOpcode() == UO_Extension) {
   2574         e = op->getSubExpr();
   2575         continue;
   2576       }
   2577 
   2578     // For calls and message sends, use the retained-call logic.
   2579     // Delegate inits are a special case in that they're the only
   2580     // returns-retained expression that *isn't* surrounded by
   2581     // a consume.
   2582     } else if (isa<CallExpr>(e) ||
   2583                (isa<ObjCMessageExpr>(e) &&
   2584                 !cast<ObjCMessageExpr>(e)->isDelegateInitCall())) {
   2585       llvm::Value *result = emitARCRetainCall(CGF, e);
   2586       if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2587       return TryEmitResult(result, true);
   2588 
   2589     // Look through pseudo-object expressions.
   2590     } else if (const PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
   2591       TryEmitResult result
   2592         = tryEmitARCRetainPseudoObject(CGF, pseudo);
   2593       if (resultType) {
   2594         llvm::Value *value = result.getPointer();
   2595         value = CGF.Builder.CreateBitCast(value, resultType);
   2596         result.setPointer(value);
   2597       }
   2598       return result;
   2599     }
   2600 
   2601     // Conservatively halt the search at any other expression kind.
   2602     break;
   2603   }
   2604 
   2605   // We didn't find an obvious production, so emit what we've got and
   2606   // tell the caller that we didn't manage to retain.
   2607   llvm::Value *result = CGF.EmitScalarExpr(e);
   2608   if (resultType) result = CGF.Builder.CreateBitCast(result, resultType);
   2609   return TryEmitResult(result, false);
   2610 }
   2611 
   2612 static llvm::Value *emitARCRetainLoadOfScalar(CodeGenFunction &CGF,
   2613                                                 LValue lvalue,
   2614                                                 QualType type) {
   2615   TryEmitResult result = tryEmitARCRetainLoadOfScalar(CGF, lvalue, type);
   2616   llvm::Value *value = result.getPointer();
   2617   if (!result.getInt())
   2618     value = CGF.EmitARCRetain(type, value);
   2619   return value;
   2620 }
   2621 
   2622 /// EmitARCRetainScalarExpr - Semantically equivalent to
   2623 /// EmitARCRetainObject(e->getType(), EmitScalarExpr(e)), but making a
   2624 /// best-effort attempt to peephole expressions that naturally produce
   2625 /// retained objects.
   2626 llvm::Value *CodeGenFunction::EmitARCRetainScalarExpr(const Expr *e) {
   2627   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
   2628   llvm::Value *value = result.getPointer();
   2629   if (!result.getInt())
   2630     value = EmitARCRetain(e->getType(), value);
   2631   return value;
   2632 }
   2633 
   2634 llvm::Value *
   2635 CodeGenFunction::EmitARCRetainAutoreleaseScalarExpr(const Expr *e) {
   2636   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e);
   2637   llvm::Value *value = result.getPointer();
   2638   if (result.getInt())
   2639     value = EmitARCAutorelease(value);
   2640   else
   2641     value = EmitARCRetainAutorelease(e->getType(), value);
   2642   return value;
   2643 }
   2644 
   2645 llvm::Value *CodeGenFunction::EmitARCExtendBlockObject(const Expr *e) {
   2646   llvm::Value *result;
   2647   bool doRetain;
   2648 
   2649   if (shouldEmitSeparateBlockRetain(e)) {
   2650     result = EmitScalarExpr(e);
   2651     doRetain = true;
   2652   } else {
   2653     TryEmitResult subresult = tryEmitARCRetainScalarExpr(*this, e);
   2654     result = subresult.getPointer();
   2655     doRetain = !subresult.getInt();
   2656   }
   2657 
   2658   if (doRetain)
   2659     result = EmitARCRetainBlock(result, /*mandatory*/ true);
   2660   return EmitObjCConsumeObject(e->getType(), result);
   2661 }
   2662 
   2663 llvm::Value *CodeGenFunction::EmitObjCThrowOperand(const Expr *expr) {
   2664   // In ARC, retain and autorelease the expression.
   2665   if (getLangOpts().ObjCAutoRefCount) {
   2666     // Do so before running any cleanups for the full-expression.
   2667     // tryEmitARCRetainScalarExpr does make an effort to do things
   2668     // inside cleanups, but there are crazy cases like
   2669     //   @throw A().foo;
   2670     // where a full retain+autorelease is required and would
   2671     // otherwise happen after the destructor for the temporary.
   2672     if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(expr)) {
   2673       enterFullExpression(ewc);
   2674       expr = ewc->getSubExpr();
   2675     }
   2676 
   2677     CodeGenFunction::RunCleanupsScope cleanups(*this);
   2678     return EmitARCRetainAutoreleaseScalarExpr(expr);
   2679   }
   2680 
   2681   // Otherwise, use the normal scalar-expression emission.  The
   2682   // exception machinery doesn't do anything special with the
   2683   // exception like retaining it, so there's no safety associated with
   2684   // only running cleanups after the throw has started, and when it
   2685   // matters it tends to be substantially inferior code.
   2686   return EmitScalarExpr(expr);
   2687 }
   2688 
   2689 std::pair<LValue,llvm::Value*>
   2690 CodeGenFunction::EmitARCStoreStrong(const BinaryOperator *e,
   2691                                     bool ignored) {
   2692   // Evaluate the RHS first.
   2693   TryEmitResult result = tryEmitARCRetainScalarExpr(*this, e->getRHS());
   2694   llvm::Value *value = result.getPointer();
   2695 
   2696   bool hasImmediateRetain = result.getInt();
   2697 
   2698   // If we didn't emit a retained object, and the l-value is of block
   2699   // type, then we need to emit the block-retain immediately in case
   2700   // it invalidates the l-value.
   2701   if (!hasImmediateRetain && e->getType()->isBlockPointerType()) {
   2702     value = EmitARCRetainBlock(value, /*mandatory*/ false);
   2703     hasImmediateRetain = true;
   2704   }
   2705 
   2706   LValue lvalue = EmitLValue(e->getLHS());
   2707 
   2708   // If the RHS was emitted retained, expand this.
   2709   if (hasImmediateRetain) {
   2710     llvm::Value *oldValue =
   2711       EmitLoadOfScalar(lvalue);
   2712     EmitStoreOfScalar(value, lvalue);
   2713     EmitARCRelease(oldValue, /*precise*/ false);
   2714   } else {
   2715     value = EmitARCStoreStrong(lvalue, value, ignored);
   2716   }
   2717 
   2718   return std::pair<LValue,llvm::Value*>(lvalue, value);
   2719 }
   2720 
   2721 std::pair<LValue,llvm::Value*>
   2722 CodeGenFunction::EmitARCStoreAutoreleasing(const BinaryOperator *e) {
   2723   llvm::Value *value = EmitARCRetainAutoreleaseScalarExpr(e->getRHS());
   2724   LValue lvalue = EmitLValue(e->getLHS());
   2725 
   2726   EmitStoreOfScalar(value, lvalue);
   2727 
   2728   return std::pair<LValue,llvm::Value*>(lvalue, value);
   2729 }
   2730 
   2731 void CodeGenFunction::EmitObjCAutoreleasePoolStmt(
   2732                                           const ObjCAutoreleasePoolStmt &ARPS) {
   2733   const Stmt *subStmt = ARPS.getSubStmt();
   2734   const CompoundStmt &S = cast<CompoundStmt>(*subStmt);
   2735 
   2736   CGDebugInfo *DI = getDebugInfo();
   2737   if (DI)
   2738     DI->EmitLexicalBlockStart(Builder, S.getLBracLoc());
   2739 
   2740   // Keep track of the current cleanup stack depth.
   2741   RunCleanupsScope Scope(*this);
   2742   if (CGM.getLangOpts().ObjCRuntime.hasNativeARC()) {
   2743     llvm::Value *token = EmitObjCAutoreleasePoolPush();
   2744     EHStack.pushCleanup<CallObjCAutoreleasePoolObject>(NormalCleanup, token);
   2745   } else {
   2746     llvm::Value *token = EmitObjCMRRAutoreleasePoolPush();
   2747     EHStack.pushCleanup<CallObjCMRRAutoreleasePoolObject>(NormalCleanup, token);
   2748   }
   2749 
   2750   for (CompoundStmt::const_body_iterator I = S.body_begin(),
   2751        E = S.body_end(); I != E; ++I)
   2752     EmitStmt(*I);
   2753 
   2754   if (DI)
   2755     DI->EmitLexicalBlockEnd(Builder, S.getRBracLoc());
   2756 }
   2757 
   2758 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
   2759 /// make sure it survives garbage collection until this point.
   2760 void CodeGenFunction::EmitExtendGCLifetime(llvm::Value *object) {
   2761   // We just use an inline assembly.
   2762   llvm::FunctionType *extenderType
   2763     = llvm::FunctionType::get(VoidTy, VoidPtrTy, RequiredArgs::All);
   2764   llvm::Value *extender
   2765     = llvm::InlineAsm::get(extenderType,
   2766                            /* assembly */ "",
   2767                            /* constraints */ "r",
   2768                            /* side effects */ true);
   2769 
   2770   object = Builder.CreateBitCast(object, VoidPtrTy);
   2771   Builder.CreateCall(extender, object)->setDoesNotThrow();
   2772 }
   2773 
   2774 static bool hasAtomicCopyHelperAPI(const ObjCRuntime &runtime) {
   2775   // For now, only NeXT has these APIs.
   2776   return runtime.isNeXTFamily();
   2777 }
   2778 
   2779 /// GenerateObjCAtomicSetterCopyHelperFunction - Given a c++ object type with
   2780 /// non-trivial copy assignment function, produce following helper function.
   2781 /// static void copyHelper(Ty *dest, const Ty *source) { *dest = *source; }
   2782 ///
   2783 llvm::Constant *
   2784 CodeGenFunction::GenerateObjCAtomicSetterCopyHelperFunction(
   2785                                         const ObjCPropertyImplDecl *PID) {
   2786   // FIXME. This api is for NeXt runtime only for now.
   2787   if (!getLangOpts().CPlusPlus ||
   2788       !hasAtomicCopyHelperAPI(getLangOpts().ObjCRuntime))
   2789     return 0;
   2790   QualType Ty = PID->getPropertyIvarDecl()->getType();
   2791   if (!Ty->isRecordType())
   2792     return 0;
   2793   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
   2794   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
   2795     return 0;
   2796   llvm::Constant * HelperFn = 0;
   2797   if (hasTrivialSetExpr(PID))
   2798     return 0;
   2799   assert(PID->getSetterCXXAssignment() && "SetterCXXAssignment - null");
   2800   if ((HelperFn = CGM.getAtomicSetterHelperFnMap(Ty)))
   2801     return HelperFn;
   2802 
   2803   ASTContext &C = getContext();
   2804   IdentifierInfo *II
   2805     = &CGM.getContext().Idents.get("__assign_helper_atomic_property_");
   2806   FunctionDecl *FD = FunctionDecl::Create(C,
   2807                                           C.getTranslationUnitDecl(),
   2808                                           SourceLocation(),
   2809                                           SourceLocation(), II, C.VoidTy, 0,
   2810                                           SC_Static,
   2811                                           SC_None,
   2812                                           false,
   2813                                           false);
   2814 
   2815   QualType DestTy = C.getPointerType(Ty);
   2816   QualType SrcTy = Ty;
   2817   SrcTy.addConst();
   2818   SrcTy = C.getPointerType(SrcTy);
   2819 
   2820   FunctionArgList args;
   2821   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
   2822   args.push_back(&dstDecl);
   2823   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
   2824   args.push_back(&srcDecl);
   2825 
   2826   const CGFunctionInfo &FI =
   2827     CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
   2828                                               FunctionType::ExtInfo(),
   2829                                               RequiredArgs::All);
   2830 
   2831   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
   2832 
   2833   llvm::Function *Fn =
   2834     llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
   2835                            "__assign_helper_atomic_property_",
   2836                            &CGM.getModule());
   2837 
   2838   if (CGM.getModuleDebugInfo())
   2839     DebugInfo = CGM.getModuleDebugInfo();
   2840 
   2841 
   2842   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
   2843 
   2844   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
   2845                       VK_RValue, SourceLocation());
   2846   UnaryOperator DST(&DstExpr, UO_Deref, DestTy->getPointeeType(),
   2847                     VK_LValue, OK_Ordinary, SourceLocation());
   2848 
   2849   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
   2850                       VK_RValue, SourceLocation());
   2851   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
   2852                     VK_LValue, OK_Ordinary, SourceLocation());
   2853 
   2854   Expr *Args[2] = { &DST, &SRC };
   2855   CallExpr *CalleeExp = cast<CallExpr>(PID->getSetterCXXAssignment());
   2856   CXXOperatorCallExpr TheCall(C, OO_Equal, CalleeExp->getCallee(),
   2857                               Args, DestTy->getPointeeType(),
   2858                               VK_LValue, SourceLocation());
   2859 
   2860   EmitStmt(&TheCall);
   2861 
   2862   FinishFunction();
   2863   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
   2864   CGM.setAtomicSetterHelperFnMap(Ty, HelperFn);
   2865   return HelperFn;
   2866 }
   2867 
   2868 llvm::Constant *
   2869 CodeGenFunction::GenerateObjCAtomicGetterCopyHelperFunction(
   2870                                             const ObjCPropertyImplDecl *PID) {
   2871   // FIXME. This api is for NeXt runtime only for now.
   2872   if (!getLangOpts().CPlusPlus ||
   2873       !hasAtomicCopyHelperAPI(getLangOpts().ObjCRuntime))
   2874     return 0;
   2875   const ObjCPropertyDecl *PD = PID->getPropertyDecl();
   2876   QualType Ty = PD->getType();
   2877   if (!Ty->isRecordType())
   2878     return 0;
   2879   if ((!(PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_atomic)))
   2880     return 0;
   2881   llvm::Constant * HelperFn = 0;
   2882 
   2883   if (hasTrivialGetExpr(PID))
   2884     return 0;
   2885   assert(PID->getGetterCXXConstructor() && "getGetterCXXConstructor - null");
   2886   if ((HelperFn = CGM.getAtomicGetterHelperFnMap(Ty)))
   2887     return HelperFn;
   2888 
   2889 
   2890   ASTContext &C = getContext();
   2891   IdentifierInfo *II
   2892   = &CGM.getContext().Idents.get("__copy_helper_atomic_property_");
   2893   FunctionDecl *FD = FunctionDecl::Create(C,
   2894                                           C.getTranslationUnitDecl(),
   2895                                           SourceLocation(),
   2896                                           SourceLocation(), II, C.VoidTy, 0,
   2897                                           SC_Static,
   2898                                           SC_None,
   2899                                           false,
   2900                                           false);
   2901 
   2902   QualType DestTy = C.getPointerType(Ty);
   2903   QualType SrcTy = Ty;
   2904   SrcTy.addConst();
   2905   SrcTy = C.getPointerType(SrcTy);
   2906 
   2907   FunctionArgList args;
   2908   ImplicitParamDecl dstDecl(FD, SourceLocation(), 0, DestTy);
   2909   args.push_back(&dstDecl);
   2910   ImplicitParamDecl srcDecl(FD, SourceLocation(), 0, SrcTy);
   2911   args.push_back(&srcDecl);
   2912 
   2913   const CGFunctionInfo &FI =
   2914   CGM.getTypes().arrangeFunctionDeclaration(C.VoidTy, args,
   2915                                             FunctionType::ExtInfo(),
   2916                                             RequiredArgs::All);
   2917 
   2918   llvm::FunctionType *LTy = CGM.getTypes().GetFunctionType(FI);
   2919 
   2920   llvm::Function *Fn =
   2921   llvm::Function::Create(LTy, llvm::GlobalValue::InternalLinkage,
   2922                          "__copy_helper_atomic_property_", &CGM.getModule());
   2923 
   2924   if (CGM.getModuleDebugInfo())
   2925     DebugInfo = CGM.getModuleDebugInfo();
   2926 
   2927 
   2928   StartFunction(FD, C.VoidTy, Fn, FI, args, SourceLocation());
   2929 
   2930   DeclRefExpr SrcExpr(&srcDecl, false, SrcTy,
   2931                       VK_RValue, SourceLocation());
   2932 
   2933   UnaryOperator SRC(&SrcExpr, UO_Deref, SrcTy->getPointeeType(),
   2934                     VK_LValue, OK_Ordinary, SourceLocation());
   2935 
   2936   CXXConstructExpr *CXXConstExpr =
   2937     cast<CXXConstructExpr>(PID->getGetterCXXConstructor());
   2938 
   2939   SmallVector<Expr*, 4> ConstructorArgs;
   2940   ConstructorArgs.push_back(&SRC);
   2941   CXXConstructExpr::arg_iterator A = CXXConstExpr->arg_begin();
   2942   ++A;
   2943 
   2944   for (CXXConstructExpr::arg_iterator AEnd = CXXConstExpr->arg_end();
   2945        A != AEnd; ++A)
   2946     ConstructorArgs.push_back(*A);
   2947 
   2948   CXXConstructExpr *TheCXXConstructExpr =
   2949     CXXConstructExpr::Create(C, Ty, SourceLocation(),
   2950                              CXXConstExpr->getConstructor(),
   2951                              CXXConstExpr->isElidable(),
   2952                              ConstructorArgs,
   2953                              CXXConstExpr->hadMultipleCandidates(),
   2954                              CXXConstExpr->isListInitialization(),
   2955                              CXXConstExpr->requiresZeroInitialization(),
   2956                              CXXConstExpr->getConstructionKind(),
   2957                              SourceRange());
   2958 
   2959   DeclRefExpr DstExpr(&dstDecl, false, DestTy,
   2960                       VK_RValue, SourceLocation());
   2961 
   2962   RValue DV = EmitAnyExpr(&DstExpr);
   2963   CharUnits Alignment
   2964     = getContext().getTypeAlignInChars(TheCXXConstructExpr->getType());
   2965   EmitAggExpr(TheCXXConstructExpr,
   2966               AggValueSlot::forAddr(DV.getScalarVal(), Alignment, Qualifiers(),
   2967                                     AggValueSlot::IsDestructed,
   2968                                     AggValueSlot::DoesNotNeedGCBarriers,
   2969                                     AggValueSlot::IsNotAliased));
   2970 
   2971   FinishFunction();
   2972   HelperFn = llvm::ConstantExpr::getBitCast(Fn, VoidPtrTy);
   2973   CGM.setAtomicGetterHelperFnMap(Ty, HelperFn);
   2974   return HelperFn;
   2975 }
   2976 
   2977 llvm::Value *
   2978 CodeGenFunction::EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty) {
   2979   // Get selectors for retain/autorelease.
   2980   IdentifierInfo *CopyID = &getContext().Idents.get("copy");
   2981   Selector CopySelector =
   2982       getContext().Selectors.getNullarySelector(CopyID);
   2983   IdentifierInfo *AutoreleaseID = &getContext().Idents.get("autorelease");
   2984   Selector AutoreleaseSelector =
   2985       getContext().Selectors.getNullarySelector(AutoreleaseID);
   2986 
   2987   // Emit calls to retain/autorelease.
   2988   CGObjCRuntime &Runtime = CGM.getObjCRuntime();
   2989   llvm::Value *Val = Block;
   2990   RValue Result;
   2991   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
   2992                                        Ty, CopySelector,
   2993                                        Val, CallArgList(), 0, 0);
   2994   Val = Result.getScalarVal();
   2995   Result = Runtime.GenerateMessageSend(*this, ReturnValueSlot(),
   2996                                        Ty, AutoreleaseSelector,
   2997                                        Val, CallArgList(), 0, 0);
   2998   Val = Result.getScalarVal();
   2999   return Val;
   3000 }
   3001 
   3002 
   3003 CGObjCRuntime::~CGObjCRuntime() {}
   3004