Home | History | Annotate | Download | only in CodeGen
      1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This is the internal per-function state used for llvm translation.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef CLANG_CODEGEN_CODEGENFUNCTION_H
     15 #define CLANG_CODEGEN_CODEGENFUNCTION_H
     16 
     17 #include "clang/AST/Type.h"
     18 #include "clang/AST/ExprCXX.h"
     19 #include "clang/AST/ExprObjC.h"
     20 #include "clang/AST/CharUnits.h"
     21 #include "clang/Frontend/CodeGenOptions.h"
     22 #include "clang/Basic/ABI.h"
     23 #include "clang/Basic/TargetInfo.h"
     24 #include "llvm/ADT/ArrayRef.h"
     25 #include "llvm/ADT/DenseMap.h"
     26 #include "llvm/ADT/SmallVector.h"
     27 #include "llvm/Support/ValueHandle.h"
     28 #include "llvm/Support/Debug.h"
     29 #include "CodeGenModule.h"
     30 #include "CGBuilder.h"
     31 #include "CGDebugInfo.h"
     32 #include "CGValue.h"
     33 
     34 namespace llvm {
     35   class BasicBlock;
     36   class LLVMContext;
     37   class MDNode;
     38   class Module;
     39   class SwitchInst;
     40   class Twine;
     41   class Value;
     42   class CallSite;
     43 }
     44 
     45 namespace clang {
     46   class ASTContext;
     47   class BlockDecl;
     48   class CXXDestructorDecl;
     49   class CXXForRangeStmt;
     50   class CXXTryStmt;
     51   class Decl;
     52   class LabelDecl;
     53   class EnumConstantDecl;
     54   class FunctionDecl;
     55   class FunctionProtoType;
     56   class LabelStmt;
     57   class ObjCContainerDecl;
     58   class ObjCInterfaceDecl;
     59   class ObjCIvarDecl;
     60   class ObjCMethodDecl;
     61   class ObjCImplementationDecl;
     62   class ObjCPropertyImplDecl;
     63   class TargetInfo;
     64   class TargetCodeGenInfo;
     65   class VarDecl;
     66   class ObjCForCollectionStmt;
     67   class ObjCAtTryStmt;
     68   class ObjCAtThrowStmt;
     69   class ObjCAtSynchronizedStmt;
     70   class ObjCAutoreleasePoolStmt;
     71 
     72 namespace CodeGen {
     73   class CodeGenTypes;
     74   class CGFunctionInfo;
     75   class CGRecordLayout;
     76   class CGBlockInfo;
     77   class CGCXXABI;
     78   class BlockFlags;
     79   class BlockFieldFlags;
     80 
     81 /// A branch fixup.  These are required when emitting a goto to a
     82 /// label which hasn't been emitted yet.  The goto is optimistically
     83 /// emitted as a branch to the basic block for the label, and (if it
     84 /// occurs in a scope with non-trivial cleanups) a fixup is added to
     85 /// the innermost cleanup.  When a (normal) cleanup is popped, any
     86 /// unresolved fixups in that scope are threaded through the cleanup.
     87 struct BranchFixup {
     88   /// The block containing the terminator which needs to be modified
     89   /// into a switch if this fixup is resolved into the current scope.
     90   /// If null, LatestBranch points directly to the destination.
     91   llvm::BasicBlock *OptimisticBranchBlock;
     92 
     93   /// The ultimate destination of the branch.
     94   ///
     95   /// This can be set to null to indicate that this fixup was
     96   /// successfully resolved.
     97   llvm::BasicBlock *Destination;
     98 
     99   /// The destination index value.
    100   unsigned DestinationIndex;
    101 
    102   /// The initial branch of the fixup.
    103   llvm::BranchInst *InitialBranch;
    104 };
    105 
    106 template <class T> struct InvariantValue {
    107   typedef T type;
    108   typedef T saved_type;
    109   static bool needsSaving(type value) { return false; }
    110   static saved_type save(CodeGenFunction &CGF, type value) { return value; }
    111   static type restore(CodeGenFunction &CGF, saved_type value) { return value; }
    112 };
    113 
    114 /// A metaprogramming class for ensuring that a value will dominate an
    115 /// arbitrary position in a function.
    116 template <class T> struct DominatingValue : InvariantValue<T> {};
    117 
    118 template <class T, bool mightBeInstruction =
    119             llvm::is_base_of<llvm::Value, T>::value &&
    120             !llvm::is_base_of<llvm::Constant, T>::value &&
    121             !llvm::is_base_of<llvm::BasicBlock, T>::value>
    122 struct DominatingPointer;
    123 template <class T> struct DominatingPointer<T,false> : InvariantValue<T*> {};
    124 // template <class T> struct DominatingPointer<T,true> at end of file
    125 
    126 template <class T> struct DominatingValue<T*> : DominatingPointer<T> {};
    127 
    128 enum CleanupKind {
    129   EHCleanup = 0x1,
    130   NormalCleanup = 0x2,
    131   NormalAndEHCleanup = EHCleanup | NormalCleanup,
    132 
    133   InactiveCleanup = 0x4,
    134   InactiveEHCleanup = EHCleanup | InactiveCleanup,
    135   InactiveNormalCleanup = NormalCleanup | InactiveCleanup,
    136   InactiveNormalAndEHCleanup = NormalAndEHCleanup | InactiveCleanup
    137 };
    138 
    139 /// A stack of scopes which respond to exceptions, including cleanups
    140 /// and catch blocks.
    141 class EHScopeStack {
    142 public:
    143   /// A saved depth on the scope stack.  This is necessary because
    144   /// pushing scopes onto the stack invalidates iterators.
    145   class stable_iterator {
    146     friend class EHScopeStack;
    147 
    148     /// Offset from StartOfData to EndOfBuffer.
    149     ptrdiff_t Size;
    150 
    151     stable_iterator(ptrdiff_t Size) : Size(Size) {}
    152 
    153   public:
    154     static stable_iterator invalid() { return stable_iterator(-1); }
    155     stable_iterator() : Size(-1) {}
    156 
    157     bool isValid() const { return Size >= 0; }
    158 
    159     /// Returns true if this scope encloses I.
    160     /// Returns false if I is invalid.
    161     /// This scope must be valid.
    162     bool encloses(stable_iterator I) const { return Size <= I.Size; }
    163 
    164     /// Returns true if this scope strictly encloses I: that is,
    165     /// if it encloses I and is not I.
    166     /// Returns false is I is invalid.
    167     /// This scope must be valid.
    168     bool strictlyEncloses(stable_iterator I) const { return Size < I.Size; }
    169 
    170     friend bool operator==(stable_iterator A, stable_iterator B) {
    171       return A.Size == B.Size;
    172     }
    173     friend bool operator!=(stable_iterator A, stable_iterator B) {
    174       return A.Size != B.Size;
    175     }
    176   };
    177 
    178   /// Information for lazily generating a cleanup.  Subclasses must be
    179   /// POD-like: cleanups will not be destructed, and they will be
    180   /// allocated on the cleanup stack and freely copied and moved
    181   /// around.
    182   ///
    183   /// Cleanup implementations should generally be declared in an
    184   /// anonymous namespace.
    185   class Cleanup {
    186     // Anchor the construction vtable.
    187     virtual void anchor();
    188   public:
    189     /// Generation flags.
    190     class Flags {
    191       enum {
    192         F_IsForEH             = 0x1,
    193         F_IsNormalCleanupKind = 0x2,
    194         F_IsEHCleanupKind     = 0x4
    195       };
    196       unsigned flags;
    197 
    198     public:
    199       Flags() : flags(0) {}
    200 
    201       /// isForEH - true if the current emission is for an EH cleanup.
    202       bool isForEHCleanup() const { return flags & F_IsForEH; }
    203       bool isForNormalCleanup() const { return !isForEHCleanup(); }
    204       void setIsForEHCleanup() { flags |= F_IsForEH; }
    205 
    206       bool isNormalCleanupKind() const { return flags & F_IsNormalCleanupKind; }
    207       void setIsNormalCleanupKind() { flags |= F_IsNormalCleanupKind; }
    208 
    209       /// isEHCleanupKind - true if the cleanup was pushed as an EH
    210       /// cleanup.
    211       bool isEHCleanupKind() const { return flags & F_IsEHCleanupKind; }
    212       void setIsEHCleanupKind() { flags |= F_IsEHCleanupKind; }
    213     };
    214 
    215     // Provide a virtual destructor to suppress a very common warning
    216     // that unfortunately cannot be suppressed without this.  Cleanups
    217     // should not rely on this destructor ever being called.
    218     virtual ~Cleanup() {}
    219 
    220     /// Emit the cleanup.  For normal cleanups, this is run in the
    221     /// same EH context as when the cleanup was pushed, i.e. the
    222     /// immediately-enclosing context of the cleanup scope.  For
    223     /// EH cleanups, this is run in a terminate context.
    224     ///
    225     // \param flags cleanup kind.
    226     virtual void Emit(CodeGenFunction &CGF, Flags flags) = 0;
    227   };
    228 
    229   /// ConditionalCleanupN stores the saved form of its N parameters,
    230   /// then restores them and performs the cleanup.
    231   template <class T, class A0>
    232   class ConditionalCleanup1 : public Cleanup {
    233     typedef typename DominatingValue<A0>::saved_type A0_saved;
    234     A0_saved a0_saved;
    235 
    236     void Emit(CodeGenFunction &CGF, Flags flags) {
    237       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
    238       T(a0).Emit(CGF, flags);
    239     }
    240 
    241   public:
    242     ConditionalCleanup1(A0_saved a0)
    243       : a0_saved(a0) {}
    244   };
    245 
    246   template <class T, class A0, class A1>
    247   class ConditionalCleanup2 : public Cleanup {
    248     typedef typename DominatingValue<A0>::saved_type A0_saved;
    249     typedef typename DominatingValue<A1>::saved_type A1_saved;
    250     A0_saved a0_saved;
    251     A1_saved a1_saved;
    252 
    253     void Emit(CodeGenFunction &CGF, Flags flags) {
    254       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
    255       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
    256       T(a0, a1).Emit(CGF, flags);
    257     }
    258 
    259   public:
    260     ConditionalCleanup2(A0_saved a0, A1_saved a1)
    261       : a0_saved(a0), a1_saved(a1) {}
    262   };
    263 
    264   template <class T, class A0, class A1, class A2>
    265   class ConditionalCleanup3 : public Cleanup {
    266     typedef typename DominatingValue<A0>::saved_type A0_saved;
    267     typedef typename DominatingValue<A1>::saved_type A1_saved;
    268     typedef typename DominatingValue<A2>::saved_type A2_saved;
    269     A0_saved a0_saved;
    270     A1_saved a1_saved;
    271     A2_saved a2_saved;
    272 
    273     void Emit(CodeGenFunction &CGF, Flags flags) {
    274       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
    275       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
    276       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
    277       T(a0, a1, a2).Emit(CGF, flags);
    278     }
    279 
    280   public:
    281     ConditionalCleanup3(A0_saved a0, A1_saved a1, A2_saved a2)
    282       : a0_saved(a0), a1_saved(a1), a2_saved(a2) {}
    283   };
    284 
    285   template <class T, class A0, class A1, class A2, class A3>
    286   class ConditionalCleanup4 : public Cleanup {
    287     typedef typename DominatingValue<A0>::saved_type A0_saved;
    288     typedef typename DominatingValue<A1>::saved_type A1_saved;
    289     typedef typename DominatingValue<A2>::saved_type A2_saved;
    290     typedef typename DominatingValue<A3>::saved_type A3_saved;
    291     A0_saved a0_saved;
    292     A1_saved a1_saved;
    293     A2_saved a2_saved;
    294     A3_saved a3_saved;
    295 
    296     void Emit(CodeGenFunction &CGF, Flags flags) {
    297       A0 a0 = DominatingValue<A0>::restore(CGF, a0_saved);
    298       A1 a1 = DominatingValue<A1>::restore(CGF, a1_saved);
    299       A2 a2 = DominatingValue<A2>::restore(CGF, a2_saved);
    300       A3 a3 = DominatingValue<A3>::restore(CGF, a3_saved);
    301       T(a0, a1, a2, a3).Emit(CGF, flags);
    302     }
    303 
    304   public:
    305     ConditionalCleanup4(A0_saved a0, A1_saved a1, A2_saved a2, A3_saved a3)
    306       : a0_saved(a0), a1_saved(a1), a2_saved(a2), a3_saved(a3) {}
    307   };
    308 
    309 private:
    310   // The implementation for this class is in CGException.h and
    311   // CGException.cpp; the definition is here because it's used as a
    312   // member of CodeGenFunction.
    313 
    314   /// The start of the scope-stack buffer, i.e. the allocated pointer
    315   /// for the buffer.  All of these pointers are either simultaneously
    316   /// null or simultaneously valid.
    317   char *StartOfBuffer;
    318 
    319   /// The end of the buffer.
    320   char *EndOfBuffer;
    321 
    322   /// The first valid entry in the buffer.
    323   char *StartOfData;
    324 
    325   /// The innermost normal cleanup on the stack.
    326   stable_iterator InnermostNormalCleanup;
    327 
    328   /// The innermost EH scope on the stack.
    329   stable_iterator InnermostEHScope;
    330 
    331   /// The current set of branch fixups.  A branch fixup is a jump to
    332   /// an as-yet unemitted label, i.e. a label for which we don't yet
    333   /// know the EH stack depth.  Whenever we pop a cleanup, we have
    334   /// to thread all the current branch fixups through it.
    335   ///
    336   /// Fixups are recorded as the Use of the respective branch or
    337   /// switch statement.  The use points to the final destination.
    338   /// When popping out of a cleanup, these uses are threaded through
    339   /// the cleanup and adjusted to point to the new cleanup.
    340   ///
    341   /// Note that branches are allowed to jump into protected scopes
    342   /// in certain situations;  e.g. the following code is legal:
    343   ///     struct A { ~A(); }; // trivial ctor, non-trivial dtor
    344   ///     goto foo;
    345   ///     A a;
    346   ///    foo:
    347   ///     bar();
    348   SmallVector<BranchFixup, 8> BranchFixups;
    349 
    350   char *allocate(size_t Size);
    351 
    352   void *pushCleanup(CleanupKind K, size_t DataSize);
    353 
    354 public:
    355   EHScopeStack() : StartOfBuffer(0), EndOfBuffer(0), StartOfData(0),
    356                    InnermostNormalCleanup(stable_end()),
    357                    InnermostEHScope(stable_end()) {}
    358   ~EHScopeStack() { delete[] StartOfBuffer; }
    359 
    360   // Variadic templates would make this not terrible.
    361 
    362   /// Push a lazily-created cleanup on the stack.
    363   template <class T>
    364   void pushCleanup(CleanupKind Kind) {
    365     void *Buffer = pushCleanup(Kind, sizeof(T));
    366     Cleanup *Obj = new(Buffer) T();
    367     (void) Obj;
    368   }
    369 
    370   /// Push a lazily-created cleanup on the stack.
    371   template <class T, class A0>
    372   void pushCleanup(CleanupKind Kind, A0 a0) {
    373     void *Buffer = pushCleanup(Kind, sizeof(T));
    374     Cleanup *Obj = new(Buffer) T(a0);
    375     (void) Obj;
    376   }
    377 
    378   /// Push a lazily-created cleanup on the stack.
    379   template <class T, class A0, class A1>
    380   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1) {
    381     void *Buffer = pushCleanup(Kind, sizeof(T));
    382     Cleanup *Obj = new(Buffer) T(a0, a1);
    383     (void) Obj;
    384   }
    385 
    386   /// Push a lazily-created cleanup on the stack.
    387   template <class T, class A0, class A1, class A2>
    388   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2) {
    389     void *Buffer = pushCleanup(Kind, sizeof(T));
    390     Cleanup *Obj = new(Buffer) T(a0, a1, a2);
    391     (void) Obj;
    392   }
    393 
    394   /// Push a lazily-created cleanup on the stack.
    395   template <class T, class A0, class A1, class A2, class A3>
    396   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3) {
    397     void *Buffer = pushCleanup(Kind, sizeof(T));
    398     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3);
    399     (void) Obj;
    400   }
    401 
    402   /// Push a lazily-created cleanup on the stack.
    403   template <class T, class A0, class A1, class A2, class A3, class A4>
    404   void pushCleanup(CleanupKind Kind, A0 a0, A1 a1, A2 a2, A3 a3, A4 a4) {
    405     void *Buffer = pushCleanup(Kind, sizeof(T));
    406     Cleanup *Obj = new(Buffer) T(a0, a1, a2, a3, a4);
    407     (void) Obj;
    408   }
    409 
    410   // Feel free to add more variants of the following:
    411 
    412   /// Push a cleanup with non-constant storage requirements on the
    413   /// stack.  The cleanup type must provide an additional static method:
    414   ///   static size_t getExtraSize(size_t);
    415   /// The argument to this method will be the value N, which will also
    416   /// be passed as the first argument to the constructor.
    417   ///
    418   /// The data stored in the extra storage must obey the same
    419   /// restrictions as normal cleanup member data.
    420   ///
    421   /// The pointer returned from this method is valid until the cleanup
    422   /// stack is modified.
    423   template <class T, class A0, class A1, class A2>
    424   T *pushCleanupWithExtra(CleanupKind Kind, size_t N, A0 a0, A1 a1, A2 a2) {
    425     void *Buffer = pushCleanup(Kind, sizeof(T) + T::getExtraSize(N));
    426     return new (Buffer) T(N, a0, a1, a2);
    427   }
    428 
    429   /// Pops a cleanup scope off the stack.  This is private to CGCleanup.cpp.
    430   void popCleanup();
    431 
    432   /// Push a set of catch handlers on the stack.  The catch is
    433   /// uninitialized and will need to have the given number of handlers
    434   /// set on it.
    435   class EHCatchScope *pushCatch(unsigned NumHandlers);
    436 
    437   /// Pops a catch scope off the stack.  This is private to CGException.cpp.
    438   void popCatch();
    439 
    440   /// Push an exceptions filter on the stack.
    441   class EHFilterScope *pushFilter(unsigned NumFilters);
    442 
    443   /// Pops an exceptions filter off the stack.
    444   void popFilter();
    445 
    446   /// Push a terminate handler on the stack.
    447   void pushTerminate();
    448 
    449   /// Pops a terminate handler off the stack.
    450   void popTerminate();
    451 
    452   /// Determines whether the exception-scopes stack is empty.
    453   bool empty() const { return StartOfData == EndOfBuffer; }
    454 
    455   bool requiresLandingPad() const {
    456     return InnermostEHScope != stable_end();
    457   }
    458 
    459   /// Determines whether there are any normal cleanups on the stack.
    460   bool hasNormalCleanups() const {
    461     return InnermostNormalCleanup != stable_end();
    462   }
    463 
    464   /// Returns the innermost normal cleanup on the stack, or
    465   /// stable_end() if there are no normal cleanups.
    466   stable_iterator getInnermostNormalCleanup() const {
    467     return InnermostNormalCleanup;
    468   }
    469   stable_iterator getInnermostActiveNormalCleanup() const;
    470 
    471   stable_iterator getInnermostEHScope() const {
    472     return InnermostEHScope;
    473   }
    474 
    475   stable_iterator getInnermostActiveEHScope() const;
    476 
    477   /// An unstable reference to a scope-stack depth.  Invalidated by
    478   /// pushes but not pops.
    479   class iterator;
    480 
    481   /// Returns an iterator pointing to the innermost EH scope.
    482   iterator begin() const;
    483 
    484   /// Returns an iterator pointing to the outermost EH scope.
    485   iterator end() const;
    486 
    487   /// Create a stable reference to the top of the EH stack.  The
    488   /// returned reference is valid until that scope is popped off the
    489   /// stack.
    490   stable_iterator stable_begin() const {
    491     return stable_iterator(EndOfBuffer - StartOfData);
    492   }
    493 
    494   /// Create a stable reference to the bottom of the EH stack.
    495   static stable_iterator stable_end() {
    496     return stable_iterator(0);
    497   }
    498 
    499   /// Translates an iterator into a stable_iterator.
    500   stable_iterator stabilize(iterator it) const;
    501 
    502   /// Turn a stable reference to a scope depth into a unstable pointer
    503   /// to the EH stack.
    504   iterator find(stable_iterator save) const;
    505 
    506   /// Removes the cleanup pointed to by the given stable_iterator.
    507   void removeCleanup(stable_iterator save);
    508 
    509   /// Add a branch fixup to the current cleanup scope.
    510   BranchFixup &addBranchFixup() {
    511     assert(hasNormalCleanups() && "adding fixup in scope without cleanups");
    512     BranchFixups.push_back(BranchFixup());
    513     return BranchFixups.back();
    514   }
    515 
    516   unsigned getNumBranchFixups() const { return BranchFixups.size(); }
    517   BranchFixup &getBranchFixup(unsigned I) {
    518     assert(I < getNumBranchFixups());
    519     return BranchFixups[I];
    520   }
    521 
    522   /// Pops lazily-removed fixups from the end of the list.  This
    523   /// should only be called by procedures which have just popped a
    524   /// cleanup or resolved one or more fixups.
    525   void popNullFixups();
    526 
    527   /// Clears the branch-fixups list.  This should only be called by
    528   /// ResolveAllBranchFixups.
    529   void clearFixups() { BranchFixups.clear(); }
    530 };
    531 
    532 /// CodeGenFunction - This class organizes the per-function state that is used
    533 /// while generating LLVM code.
    534 class CodeGenFunction : public CodeGenTypeCache {
    535   CodeGenFunction(const CodeGenFunction&); // DO NOT IMPLEMENT
    536   void operator=(const CodeGenFunction&);  // DO NOT IMPLEMENT
    537 
    538   friend class CGCXXABI;
    539 public:
    540   /// A jump destination is an abstract label, branching to which may
    541   /// require a jump out through normal cleanups.
    542   struct JumpDest {
    543     JumpDest() : Block(0), ScopeDepth(), Index(0) {}
    544     JumpDest(llvm::BasicBlock *Block,
    545              EHScopeStack::stable_iterator Depth,
    546              unsigned Index)
    547       : Block(Block), ScopeDepth(Depth), Index(Index) {}
    548 
    549     bool isValid() const { return Block != 0; }
    550     llvm::BasicBlock *getBlock() const { return Block; }
    551     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
    552     unsigned getDestIndex() const { return Index; }
    553 
    554   private:
    555     llvm::BasicBlock *Block;
    556     EHScopeStack::stable_iterator ScopeDepth;
    557     unsigned Index;
    558   };
    559 
    560   CodeGenModule &CGM;  // Per-module state.
    561   const TargetInfo &Target;
    562 
    563   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
    564   CGBuilderTy Builder;
    565 
    566   /// CurFuncDecl - Holds the Decl for the current function or ObjC method.
    567   /// This excludes BlockDecls.
    568   const Decl *CurFuncDecl;
    569   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
    570   const Decl *CurCodeDecl;
    571   const CGFunctionInfo *CurFnInfo;
    572   QualType FnRetTy;
    573   llvm::Function *CurFn;
    574 
    575   /// CurGD - The GlobalDecl for the current function being compiled.
    576   GlobalDecl CurGD;
    577 
    578   /// PrologueCleanupDepth - The cleanup depth enclosing all the
    579   /// cleanups associated with the parameters.
    580   EHScopeStack::stable_iterator PrologueCleanupDepth;
    581 
    582   /// ReturnBlock - Unified return block.
    583   JumpDest ReturnBlock;
    584 
    585   /// ReturnValue - The temporary alloca to hold the return value. This is null
    586   /// iff the function has no return value.
    587   llvm::Value *ReturnValue;
    588 
    589   /// AllocaInsertPoint - This is an instruction in the entry block before which
    590   /// we prefer to insert allocas.
    591   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
    592 
    593   /// BoundsChecking - Emit run-time bounds checks. Higher values mean
    594   /// potentially higher performance penalties.
    595   unsigned char BoundsChecking;
    596 
    597   /// CatchUndefined - Emit run-time checks to catch undefined behaviors.
    598   bool CatchUndefined;
    599 
    600   /// In ARC, whether we should autorelease the return value.
    601   bool AutoreleaseResult;
    602 
    603   const CodeGen::CGBlockInfo *BlockInfo;
    604   llvm::Value *BlockPointer;
    605 
    606   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
    607   FieldDecl *LambdaThisCaptureField;
    608 
    609   /// \brief A mapping from NRVO variables to the flags used to indicate
    610   /// when the NRVO has been applied to this variable.
    611   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
    612 
    613   EHScopeStack EHStack;
    614 
    615   /// i32s containing the indexes of the cleanup destinations.
    616   llvm::AllocaInst *NormalCleanupDest;
    617 
    618   unsigned NextCleanupDestIndex;
    619 
    620   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
    621   CGBlockInfo *FirstBlockInfo;
    622 
    623   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
    624   llvm::BasicBlock *EHResumeBlock;
    625 
    626   /// The exception slot.  All landing pads write the current exception pointer
    627   /// into this alloca.
    628   llvm::Value *ExceptionSlot;
    629 
    630   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
    631   /// write the current selector value into this alloca.
    632   llvm::AllocaInst *EHSelectorSlot;
    633 
    634   /// Emits a landing pad for the current EH stack.
    635   llvm::BasicBlock *EmitLandingPad();
    636 
    637   llvm::BasicBlock *getInvokeDestImpl();
    638 
    639   template <class T>
    640   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
    641     return DominatingValue<T>::save(*this, value);
    642   }
    643 
    644 public:
    645   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
    646   /// rethrows.
    647   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
    648 
    649   /// A class controlling the emission of a finally block.
    650   class FinallyInfo {
    651     /// Where the catchall's edge through the cleanup should go.
    652     JumpDest RethrowDest;
    653 
    654     /// A function to call to enter the catch.
    655     llvm::Constant *BeginCatchFn;
    656 
    657     /// An i1 variable indicating whether or not the @finally is
    658     /// running for an exception.
    659     llvm::AllocaInst *ForEHVar;
    660 
    661     /// An i8* variable into which the exception pointer to rethrow
    662     /// has been saved.
    663     llvm::AllocaInst *SavedExnVar;
    664 
    665   public:
    666     void enter(CodeGenFunction &CGF, const Stmt *Finally,
    667                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
    668                llvm::Constant *rethrowFn);
    669     void exit(CodeGenFunction &CGF);
    670   };
    671 
    672   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
    673   /// current full-expression.  Safe against the possibility that
    674   /// we're currently inside a conditionally-evaluated expression.
    675   template <class T, class A0>
    676   void pushFullExprCleanup(CleanupKind kind, A0 a0) {
    677     // If we're not in a conditional branch, or if none of the
    678     // arguments requires saving, then use the unconditional cleanup.
    679     if (!isInConditionalBranch())
    680       return EHStack.pushCleanup<T>(kind, a0);
    681 
    682     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
    683 
    684     typedef EHScopeStack::ConditionalCleanup1<T, A0> CleanupType;
    685     EHStack.pushCleanup<CleanupType>(kind, a0_saved);
    686     initFullExprCleanup();
    687   }
    688 
    689   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
    690   /// current full-expression.  Safe against the possibility that
    691   /// we're currently inside a conditionally-evaluated expression.
    692   template <class T, class A0, class A1>
    693   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1) {
    694     // If we're not in a conditional branch, or if none of the
    695     // arguments requires saving, then use the unconditional cleanup.
    696     if (!isInConditionalBranch())
    697       return EHStack.pushCleanup<T>(kind, a0, a1);
    698 
    699     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
    700     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
    701 
    702     typedef EHScopeStack::ConditionalCleanup2<T, A0, A1> CleanupType;
    703     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved);
    704     initFullExprCleanup();
    705   }
    706 
    707   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
    708   /// current full-expression.  Safe against the possibility that
    709   /// we're currently inside a conditionally-evaluated expression.
    710   template <class T, class A0, class A1, class A2>
    711   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2) {
    712     // If we're not in a conditional branch, or if none of the
    713     // arguments requires saving, then use the unconditional cleanup.
    714     if (!isInConditionalBranch()) {
    715       return EHStack.pushCleanup<T>(kind, a0, a1, a2);
    716     }
    717 
    718     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
    719     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
    720     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
    721 
    722     typedef EHScopeStack::ConditionalCleanup3<T, A0, A1, A2> CleanupType;
    723     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved, a2_saved);
    724     initFullExprCleanup();
    725   }
    726 
    727   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
    728   /// current full-expression.  Safe against the possibility that
    729   /// we're currently inside a conditionally-evaluated expression.
    730   template <class T, class A0, class A1, class A2, class A3>
    731   void pushFullExprCleanup(CleanupKind kind, A0 a0, A1 a1, A2 a2, A3 a3) {
    732     // If we're not in a conditional branch, or if none of the
    733     // arguments requires saving, then use the unconditional cleanup.
    734     if (!isInConditionalBranch()) {
    735       return EHStack.pushCleanup<T>(kind, a0, a1, a2, a3);
    736     }
    737 
    738     typename DominatingValue<A0>::saved_type a0_saved = saveValueInCond(a0);
    739     typename DominatingValue<A1>::saved_type a1_saved = saveValueInCond(a1);
    740     typename DominatingValue<A2>::saved_type a2_saved = saveValueInCond(a2);
    741     typename DominatingValue<A3>::saved_type a3_saved = saveValueInCond(a3);
    742 
    743     typedef EHScopeStack::ConditionalCleanup4<T, A0, A1, A2, A3> CleanupType;
    744     EHStack.pushCleanup<CleanupType>(kind, a0_saved, a1_saved,
    745                                      a2_saved, a3_saved);
    746     initFullExprCleanup();
    747   }
    748 
    749   /// Set up the last cleaup that was pushed as a conditional
    750   /// full-expression cleanup.
    751   void initFullExprCleanup();
    752 
    753   /// PushDestructorCleanup - Push a cleanup to call the
    754   /// complete-object destructor of an object of the given type at the
    755   /// given address.  Does nothing if T is not a C++ class type with a
    756   /// non-trivial destructor.
    757   void PushDestructorCleanup(QualType T, llvm::Value *Addr);
    758 
    759   /// PushDestructorCleanup - Push a cleanup to call the
    760   /// complete-object variant of the given destructor on the object at
    761   /// the given address.
    762   void PushDestructorCleanup(const CXXDestructorDecl *Dtor,
    763                              llvm::Value *Addr);
    764 
    765   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
    766   /// process all branch fixups.
    767   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
    768 
    769   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
    770   /// The block cannot be reactivated.  Pops it if it's the top of the
    771   /// stack.
    772   ///
    773   /// \param DominatingIP - An instruction which is known to
    774   ///   dominate the current IP (if set) and which lies along
    775   ///   all paths of execution between the current IP and the
    776   ///   the point at which the cleanup comes into scope.
    777   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
    778                               llvm::Instruction *DominatingIP);
    779 
    780   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
    781   /// Cannot be used to resurrect a deactivated cleanup.
    782   ///
    783   /// \param DominatingIP - An instruction which is known to
    784   ///   dominate the current IP (if set) and which lies along
    785   ///   all paths of execution between the current IP and the
    786   ///   the point at which the cleanup comes into scope.
    787   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
    788                             llvm::Instruction *DominatingIP);
    789 
    790   /// \brief Enters a new scope for capturing cleanups, all of which
    791   /// will be executed once the scope is exited.
    792   class RunCleanupsScope {
    793     EHScopeStack::stable_iterator CleanupStackDepth;
    794     bool OldDidCallStackSave;
    795     bool PerformCleanup;
    796 
    797     RunCleanupsScope(const RunCleanupsScope &); // DO NOT IMPLEMENT
    798     RunCleanupsScope &operator=(const RunCleanupsScope &); // DO NOT IMPLEMENT
    799 
    800   protected:
    801     CodeGenFunction& CGF;
    802 
    803   public:
    804     /// \brief Enter a new cleanup scope.
    805     explicit RunCleanupsScope(CodeGenFunction &CGF)
    806       : PerformCleanup(true), CGF(CGF)
    807     {
    808       CleanupStackDepth = CGF.EHStack.stable_begin();
    809       OldDidCallStackSave = CGF.DidCallStackSave;
    810       CGF.DidCallStackSave = false;
    811     }
    812 
    813     /// \brief Exit this cleanup scope, emitting any accumulated
    814     /// cleanups.
    815     ~RunCleanupsScope() {
    816       if (PerformCleanup) {
    817         CGF.DidCallStackSave = OldDidCallStackSave;
    818         CGF.PopCleanupBlocks(CleanupStackDepth);
    819       }
    820     }
    821 
    822     /// \brief Determine whether this scope requires any cleanups.
    823     bool requiresCleanups() const {
    824       return CGF.EHStack.stable_begin() != CleanupStackDepth;
    825     }
    826 
    827     /// \brief Force the emission of cleanups now, instead of waiting
    828     /// until this object is destroyed.
    829     void ForceCleanup() {
    830       assert(PerformCleanup && "Already forced cleanup");
    831       CGF.DidCallStackSave = OldDidCallStackSave;
    832       CGF.PopCleanupBlocks(CleanupStackDepth);
    833       PerformCleanup = false;
    834     }
    835   };
    836 
    837   class LexicalScope: protected RunCleanupsScope {
    838     SourceRange Range;
    839     bool PopDebugStack;
    840 
    841     LexicalScope(const LexicalScope &); // DO NOT IMPLEMENT THESE
    842     LexicalScope &operator=(const LexicalScope &);
    843 
    844   public:
    845     /// \brief Enter a new cleanup scope.
    846     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
    847       : RunCleanupsScope(CGF), Range(Range), PopDebugStack(true) {
    848       if (CGDebugInfo *DI = CGF.getDebugInfo())
    849         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
    850     }
    851 
    852     /// \brief Exit this cleanup scope, emitting any accumulated
    853     /// cleanups.
    854     ~LexicalScope() {
    855       if (PopDebugStack) {
    856         CGDebugInfo *DI = CGF.getDebugInfo();
    857         if (DI) DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
    858       }
    859     }
    860 
    861     /// \brief Force the emission of cleanups now, instead of waiting
    862     /// until this object is destroyed.
    863     void ForceCleanup() {
    864       RunCleanupsScope::ForceCleanup();
    865       if (CGDebugInfo *DI = CGF.getDebugInfo()) {
    866         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
    867         PopDebugStack = false;
    868       }
    869     }
    870   };
    871 
    872 
    873   /// PopCleanupBlocks - Takes the old cleanup stack size and emits
    874   /// the cleanup blocks that have been added.
    875   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
    876 
    877   void ResolveBranchFixups(llvm::BasicBlock *Target);
    878 
    879   /// The given basic block lies in the current EH scope, but may be a
    880   /// target of a potentially scope-crossing jump; get a stable handle
    881   /// to which we can perform this jump later.
    882   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
    883     return JumpDest(Target,
    884                     EHStack.getInnermostNormalCleanup(),
    885                     NextCleanupDestIndex++);
    886   }
    887 
    888   /// The given basic block lies in the current EH scope, but may be a
    889   /// target of a potentially scope-crossing jump; get a stable handle
    890   /// to which we can perform this jump later.
    891   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
    892     return getJumpDestInCurrentScope(createBasicBlock(Name));
    893   }
    894 
    895   /// EmitBranchThroughCleanup - Emit a branch from the current insert
    896   /// block through the normal cleanup handling code (if any) and then
    897   /// on to \arg Dest.
    898   void EmitBranchThroughCleanup(JumpDest Dest);
    899 
    900   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
    901   /// specified destination obviously has no cleanups to run.  'false' is always
    902   /// a conservatively correct answer for this method.
    903   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
    904 
    905   /// popCatchScope - Pops the catch scope at the top of the EHScope
    906   /// stack, emitting any required code (other than the catch handlers
    907   /// themselves).
    908   void popCatchScope();
    909 
    910   llvm::BasicBlock *getEHResumeBlock();
    911   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
    912 
    913   /// An object to manage conditionally-evaluated expressions.
    914   class ConditionalEvaluation {
    915     llvm::BasicBlock *StartBB;
    916 
    917   public:
    918     ConditionalEvaluation(CodeGenFunction &CGF)
    919       : StartBB(CGF.Builder.GetInsertBlock()) {}
    920 
    921     void begin(CodeGenFunction &CGF) {
    922       assert(CGF.OutermostConditional != this);
    923       if (!CGF.OutermostConditional)
    924         CGF.OutermostConditional = this;
    925     }
    926 
    927     void end(CodeGenFunction &CGF) {
    928       assert(CGF.OutermostConditional != 0);
    929       if (CGF.OutermostConditional == this)
    930         CGF.OutermostConditional = 0;
    931     }
    932 
    933     /// Returns a block which will be executed prior to each
    934     /// evaluation of the conditional code.
    935     llvm::BasicBlock *getStartingBlock() const {
    936       return StartBB;
    937     }
    938   };
    939 
    940   /// isInConditionalBranch - Return true if we're currently emitting
    941   /// one branch or the other of a conditional expression.
    942   bool isInConditionalBranch() const { return OutermostConditional != 0; }
    943 
    944   void setBeforeOutermostConditional(llvm::Value *value, llvm::Value *addr) {
    945     assert(isInConditionalBranch());
    946     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
    947     new llvm::StoreInst(value, addr, &block->back());
    948   }
    949 
    950   /// An RAII object to record that we're evaluating a statement
    951   /// expression.
    952   class StmtExprEvaluation {
    953     CodeGenFunction &CGF;
    954 
    955     /// We have to save the outermost conditional: cleanups in a
    956     /// statement expression aren't conditional just because the
    957     /// StmtExpr is.
    958     ConditionalEvaluation *SavedOutermostConditional;
    959 
    960   public:
    961     StmtExprEvaluation(CodeGenFunction &CGF)
    962       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
    963       CGF.OutermostConditional = 0;
    964     }
    965 
    966     ~StmtExprEvaluation() {
    967       CGF.OutermostConditional = SavedOutermostConditional;
    968       CGF.EnsureInsertPoint();
    969     }
    970   };
    971 
    972   /// An object which temporarily prevents a value from being
    973   /// destroyed by aggressive peephole optimizations that assume that
    974   /// all uses of a value have been realized in the IR.
    975   class PeepholeProtection {
    976     llvm::Instruction *Inst;
    977     friend class CodeGenFunction;
    978 
    979   public:
    980     PeepholeProtection() : Inst(0) {}
    981   };
    982 
    983   /// A non-RAII class containing all the information about a bound
    984   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
    985   /// this which makes individual mappings very simple; using this
    986   /// class directly is useful when you have a variable number of
    987   /// opaque values or don't want the RAII functionality for some
    988   /// reason.
    989   class OpaqueValueMappingData {
    990     const OpaqueValueExpr *OpaqueValue;
    991     bool BoundLValue;
    992     CodeGenFunction::PeepholeProtection Protection;
    993 
    994     OpaqueValueMappingData(const OpaqueValueExpr *ov,
    995                            bool boundLValue)
    996       : OpaqueValue(ov), BoundLValue(boundLValue) {}
    997   public:
    998     OpaqueValueMappingData() : OpaqueValue(0) {}
    999 
   1000     static bool shouldBindAsLValue(const Expr *expr) {
   1001       // gl-values should be bound as l-values for obvious reasons.
   1002       // Records should be bound as l-values because IR generation
   1003       // always keeps them in memory.  Expressions of function type
   1004       // act exactly like l-values but are formally required to be
   1005       // r-values in C.
   1006       return expr->isGLValue() ||
   1007              expr->getType()->isRecordType() ||
   1008              expr->getType()->isFunctionType();
   1009     }
   1010 
   1011     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
   1012                                        const OpaqueValueExpr *ov,
   1013                                        const Expr *e) {
   1014       if (shouldBindAsLValue(ov))
   1015         return bind(CGF, ov, CGF.EmitLValue(e));
   1016       return bind(CGF, ov, CGF.EmitAnyExpr(e));
   1017     }
   1018 
   1019     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
   1020                                        const OpaqueValueExpr *ov,
   1021                                        const LValue &lv) {
   1022       assert(shouldBindAsLValue(ov));
   1023       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
   1024       return OpaqueValueMappingData(ov, true);
   1025     }
   1026 
   1027     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
   1028                                        const OpaqueValueExpr *ov,
   1029                                        const RValue &rv) {
   1030       assert(!shouldBindAsLValue(ov));
   1031       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
   1032 
   1033       OpaqueValueMappingData data(ov, false);
   1034 
   1035       // Work around an extremely aggressive peephole optimization in
   1036       // EmitScalarConversion which assumes that all other uses of a
   1037       // value are extant.
   1038       data.Protection = CGF.protectFromPeepholes(rv);
   1039 
   1040       return data;
   1041     }
   1042 
   1043     bool isValid() const { return OpaqueValue != 0; }
   1044     void clear() { OpaqueValue = 0; }
   1045 
   1046     void unbind(CodeGenFunction &CGF) {
   1047       assert(OpaqueValue && "no data to unbind!");
   1048 
   1049       if (BoundLValue) {
   1050         CGF.OpaqueLValues.erase(OpaqueValue);
   1051       } else {
   1052         CGF.OpaqueRValues.erase(OpaqueValue);
   1053         CGF.unprotectFromPeepholes(Protection);
   1054       }
   1055     }
   1056   };
   1057 
   1058   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
   1059   class OpaqueValueMapping {
   1060     CodeGenFunction &CGF;
   1061     OpaqueValueMappingData Data;
   1062 
   1063   public:
   1064     static bool shouldBindAsLValue(const Expr *expr) {
   1065       return OpaqueValueMappingData::shouldBindAsLValue(expr);
   1066     }
   1067 
   1068     /// Build the opaque value mapping for the given conditional
   1069     /// operator if it's the GNU ?: extension.  This is a common
   1070     /// enough pattern that the convenience operator is really
   1071     /// helpful.
   1072     ///
   1073     OpaqueValueMapping(CodeGenFunction &CGF,
   1074                        const AbstractConditionalOperator *op) : CGF(CGF) {
   1075       if (isa<ConditionalOperator>(op))
   1076         // Leave Data empty.
   1077         return;
   1078 
   1079       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
   1080       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
   1081                                           e->getCommon());
   1082     }
   1083 
   1084     OpaqueValueMapping(CodeGenFunction &CGF,
   1085                        const OpaqueValueExpr *opaqueValue,
   1086                        LValue lvalue)
   1087       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
   1088     }
   1089 
   1090     OpaqueValueMapping(CodeGenFunction &CGF,
   1091                        const OpaqueValueExpr *opaqueValue,
   1092                        RValue rvalue)
   1093       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
   1094     }
   1095 
   1096     void pop() {
   1097       Data.unbind(CGF);
   1098       Data.clear();
   1099     }
   1100 
   1101     ~OpaqueValueMapping() {
   1102       if (Data.isValid()) Data.unbind(CGF);
   1103     }
   1104   };
   1105 
   1106   /// getByrefValueFieldNumber - Given a declaration, returns the LLVM field
   1107   /// number that holds the value.
   1108   unsigned getByRefValueLLVMField(const ValueDecl *VD) const;
   1109 
   1110   /// BuildBlockByrefAddress - Computes address location of the
   1111   /// variable which is declared as __block.
   1112   llvm::Value *BuildBlockByrefAddress(llvm::Value *BaseAddr,
   1113                                       const VarDecl *V);
   1114 private:
   1115   CGDebugInfo *DebugInfo;
   1116   bool DisableDebugInfo;
   1117 
   1118   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
   1119   /// calling llvm.stacksave for multiple VLAs in the same scope.
   1120   bool DidCallStackSave;
   1121 
   1122   /// IndirectBranch - The first time an indirect goto is seen we create a block
   1123   /// with an indirect branch.  Every time we see the address of a label taken,
   1124   /// we add the label to the indirect goto.  Every subsequent indirect goto is
   1125   /// codegen'd as a jump to the IndirectBranch's basic block.
   1126   llvm::IndirectBrInst *IndirectBranch;
   1127 
   1128   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
   1129   /// decls.
   1130   typedef llvm::DenseMap<const Decl*, llvm::Value*> DeclMapTy;
   1131   DeclMapTy LocalDeclMap;
   1132 
   1133   /// LabelMap - This keeps track of the LLVM basic block for each C label.
   1134   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
   1135 
   1136   // BreakContinueStack - This keeps track of where break and continue
   1137   // statements should jump to.
   1138   struct BreakContinue {
   1139     BreakContinue(JumpDest Break, JumpDest Continue)
   1140       : BreakBlock(Break), ContinueBlock(Continue) {}
   1141 
   1142     JumpDest BreakBlock;
   1143     JumpDest ContinueBlock;
   1144   };
   1145   SmallVector<BreakContinue, 8> BreakContinueStack;
   1146 
   1147   /// SwitchInsn - This is nearest current switch instruction. It is null if
   1148   /// current context is not in a switch.
   1149   llvm::SwitchInst *SwitchInsn;
   1150 
   1151   /// CaseRangeBlock - This block holds if condition check for last case
   1152   /// statement range in current switch instruction.
   1153   llvm::BasicBlock *CaseRangeBlock;
   1154 
   1155   /// OpaqueLValues - Keeps track of the current set of opaque value
   1156   /// expressions.
   1157   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
   1158   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
   1159 
   1160   // VLASizeMap - This keeps track of the associated size for each VLA type.
   1161   // We track this by the size expression rather than the type itself because
   1162   // in certain situations, like a const qualifier applied to an VLA typedef,
   1163   // multiple VLA types can share the same size expression.
   1164   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
   1165   // enter/leave scopes.
   1166   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
   1167 
   1168   /// A block containing a single 'unreachable' instruction.  Created
   1169   /// lazily by getUnreachableBlock().
   1170   llvm::BasicBlock *UnreachableBlock;
   1171 
   1172   /// CXXThisDecl - When generating code for a C++ member function,
   1173   /// this will hold the implicit 'this' declaration.
   1174   ImplicitParamDecl *CXXABIThisDecl;
   1175   llvm::Value *CXXABIThisValue;
   1176   llvm::Value *CXXThisValue;
   1177 
   1178   /// CXXVTTDecl - When generating code for a base object constructor or
   1179   /// base object destructor with virtual bases, this will hold the implicit
   1180   /// VTT parameter.
   1181   ImplicitParamDecl *CXXVTTDecl;
   1182   llvm::Value *CXXVTTValue;
   1183 
   1184   /// OutermostConditional - Points to the outermost active
   1185   /// conditional control.  This is used so that we know if a
   1186   /// temporary should be destroyed conditionally.
   1187   ConditionalEvaluation *OutermostConditional;
   1188 
   1189 
   1190   /// ByrefValueInfoMap - For each __block variable, contains a pair of the LLVM
   1191   /// type as well as the field number that contains the actual data.
   1192   llvm::DenseMap<const ValueDecl *, std::pair<llvm::Type *,
   1193                                               unsigned> > ByRefValueInfo;
   1194 
   1195   llvm::BasicBlock *TerminateLandingPad;
   1196   llvm::BasicBlock *TerminateHandler;
   1197   llvm::BasicBlock *TrapBB;
   1198 
   1199   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
   1200   /// In the kernel metadata node, reference the kernel function and metadata
   1201   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
   1202   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
   1203   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
   1204   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
   1205   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
   1206   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
   1207                                 llvm::Function *Fn);
   1208 
   1209 public:
   1210   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
   1211   ~CodeGenFunction();
   1212 
   1213   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
   1214   ASTContext &getContext() const { return CGM.getContext(); }
   1215   CGDebugInfo *getDebugInfo() {
   1216     if (DisableDebugInfo)
   1217       return NULL;
   1218     return DebugInfo;
   1219   }
   1220   void disableDebugInfo() { DisableDebugInfo = true; }
   1221   void enableDebugInfo() { DisableDebugInfo = false; }
   1222 
   1223   bool shouldUseFusedARCCalls() {
   1224     return CGM.getCodeGenOpts().OptimizationLevel == 0;
   1225   }
   1226 
   1227   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
   1228 
   1229   /// Returns a pointer to the function's exception object and selector slot,
   1230   /// which is assigned in every landing pad.
   1231   llvm::Value *getExceptionSlot();
   1232   llvm::Value *getEHSelectorSlot();
   1233 
   1234   /// Returns the contents of the function's exception object and selector
   1235   /// slots.
   1236   llvm::Value *getExceptionFromSlot();
   1237   llvm::Value *getSelectorFromSlot();
   1238 
   1239   llvm::Value *getNormalCleanupDestSlot();
   1240 
   1241   llvm::BasicBlock *getUnreachableBlock() {
   1242     if (!UnreachableBlock) {
   1243       UnreachableBlock = createBasicBlock("unreachable");
   1244       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
   1245     }
   1246     return UnreachableBlock;
   1247   }
   1248 
   1249   llvm::BasicBlock *getInvokeDest() {
   1250     if (!EHStack.requiresLandingPad()) return 0;
   1251     return getInvokeDestImpl();
   1252   }
   1253 
   1254   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
   1255 
   1256   //===--------------------------------------------------------------------===//
   1257   //                                  Cleanups
   1258   //===--------------------------------------------------------------------===//
   1259 
   1260   typedef void Destroyer(CodeGenFunction &CGF, llvm::Value *addr, QualType ty);
   1261 
   1262   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
   1263                                         llvm::Value *arrayEndPointer,
   1264                                         QualType elementType,
   1265                                         Destroyer *destroyer);
   1266   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
   1267                                       llvm::Value *arrayEnd,
   1268                                       QualType elementType,
   1269                                       Destroyer *destroyer);
   1270 
   1271   void pushDestroy(QualType::DestructionKind dtorKind,
   1272                    llvm::Value *addr, QualType type);
   1273   void pushDestroy(CleanupKind kind, llvm::Value *addr, QualType type,
   1274                    Destroyer *destroyer, bool useEHCleanupForArray);
   1275   void emitDestroy(llvm::Value *addr, QualType type, Destroyer *destroyer,
   1276                    bool useEHCleanupForArray);
   1277   llvm::Function *generateDestroyHelper(llvm::Constant *addr,
   1278                                         QualType type,
   1279                                         Destroyer *destroyer,
   1280                                         bool useEHCleanupForArray);
   1281   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
   1282                         QualType type, Destroyer *destroyer,
   1283                         bool checkZeroLength, bool useEHCleanup);
   1284 
   1285   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
   1286 
   1287   /// Determines whether an EH cleanup is required to destroy a type
   1288   /// with the given destruction kind.
   1289   bool needsEHCleanup(QualType::DestructionKind kind) {
   1290     switch (kind) {
   1291     case QualType::DK_none:
   1292       return false;
   1293     case QualType::DK_cxx_destructor:
   1294     case QualType::DK_objc_weak_lifetime:
   1295       return getLangOpts().Exceptions;
   1296     case QualType::DK_objc_strong_lifetime:
   1297       return getLangOpts().Exceptions &&
   1298              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
   1299     }
   1300     llvm_unreachable("bad destruction kind");
   1301   }
   1302 
   1303   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
   1304     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
   1305   }
   1306 
   1307   //===--------------------------------------------------------------------===//
   1308   //                                  Objective-C
   1309   //===--------------------------------------------------------------------===//
   1310 
   1311   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
   1312 
   1313   void StartObjCMethod(const ObjCMethodDecl *MD,
   1314                        const ObjCContainerDecl *CD,
   1315                        SourceLocation StartLoc);
   1316 
   1317   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
   1318   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
   1319                           const ObjCPropertyImplDecl *PID);
   1320   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
   1321                               const ObjCPropertyImplDecl *propImpl,
   1322                               const ObjCMethodDecl *GetterMothodDecl,
   1323                               llvm::Constant *AtomicHelperFn);
   1324 
   1325   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
   1326                                   ObjCMethodDecl *MD, bool ctor);
   1327 
   1328   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
   1329   /// for the given property.
   1330   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
   1331                           const ObjCPropertyImplDecl *PID);
   1332   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
   1333                               const ObjCPropertyImplDecl *propImpl,
   1334                               llvm::Constant *AtomicHelperFn);
   1335   bool IndirectObjCSetterArg(const CGFunctionInfo &FI);
   1336   bool IvarTypeWithAggrGCObjects(QualType Ty);
   1337 
   1338   //===--------------------------------------------------------------------===//
   1339   //                                  Block Bits
   1340   //===--------------------------------------------------------------------===//
   1341 
   1342   llvm::Value *EmitBlockLiteral(const BlockExpr *);
   1343   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
   1344   static void destroyBlockInfos(CGBlockInfo *info);
   1345   llvm::Constant *BuildDescriptorBlockDecl(const BlockExpr *,
   1346                                            const CGBlockInfo &Info,
   1347                                            llvm::StructType *,
   1348                                            llvm::Constant *BlockVarLayout);
   1349 
   1350   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
   1351                                         const CGBlockInfo &Info,
   1352                                         const Decl *OuterFuncDecl,
   1353                                         const DeclMapTy &ldm,
   1354                                         bool IsLambdaConversionToBlock);
   1355 
   1356   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
   1357   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
   1358   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
   1359                                              const ObjCPropertyImplDecl *PID);
   1360   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
   1361                                              const ObjCPropertyImplDecl *PID);
   1362   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
   1363 
   1364   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
   1365 
   1366   class AutoVarEmission;
   1367 
   1368   void emitByrefStructureInit(const AutoVarEmission &emission);
   1369   void enterByrefCleanup(const AutoVarEmission &emission);
   1370 
   1371   llvm::Value *LoadBlockStruct() {
   1372     assert(BlockPointer && "no block pointer set!");
   1373     return BlockPointer;
   1374   }
   1375 
   1376   void AllocateBlockCXXThisPointer(const CXXThisExpr *E);
   1377   void AllocateBlockDecl(const DeclRefExpr *E);
   1378   llvm::Value *GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
   1379   llvm::Type *BuildByRefType(const VarDecl *var);
   1380 
   1381   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
   1382                     const CGFunctionInfo &FnInfo);
   1383   void StartFunction(GlobalDecl GD, QualType RetTy,
   1384                      llvm::Function *Fn,
   1385                      const CGFunctionInfo &FnInfo,
   1386                      const FunctionArgList &Args,
   1387                      SourceLocation StartLoc);
   1388 
   1389   void EmitConstructorBody(FunctionArgList &Args);
   1390   void EmitDestructorBody(FunctionArgList &Args);
   1391   void EmitFunctionBody(FunctionArgList &Args);
   1392 
   1393   void EmitForwardingCallToLambda(const CXXRecordDecl *Lambda,
   1394                                   CallArgList &CallArgs);
   1395   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
   1396   void EmitLambdaBlockInvokeBody();
   1397   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
   1398   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
   1399 
   1400   /// EmitReturnBlock - Emit the unified return block, trying to avoid its
   1401   /// emission when possible.
   1402   void EmitReturnBlock();
   1403 
   1404   /// FinishFunction - Complete IR generation of the current function. It is
   1405   /// legal to call this function even if there is no current insertion point.
   1406   void FinishFunction(SourceLocation EndLoc=SourceLocation());
   1407 
   1408   /// GenerateThunk - Generate a thunk for the given method.
   1409   void GenerateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
   1410                      GlobalDecl GD, const ThunkInfo &Thunk);
   1411 
   1412   void GenerateVarArgsThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
   1413                             GlobalDecl GD, const ThunkInfo &Thunk);
   1414 
   1415   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
   1416                         FunctionArgList &Args);
   1417 
   1418   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
   1419                                ArrayRef<VarDecl *> ArrayIndexes);
   1420 
   1421   /// InitializeVTablePointer - Initialize the vtable pointer of the given
   1422   /// subobject.
   1423   ///
   1424   void InitializeVTablePointer(BaseSubobject Base,
   1425                                const CXXRecordDecl *NearestVBase,
   1426                                CharUnits OffsetFromNearestVBase,
   1427                                llvm::Constant *VTable,
   1428                                const CXXRecordDecl *VTableClass);
   1429 
   1430   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
   1431   void InitializeVTablePointers(BaseSubobject Base,
   1432                                 const CXXRecordDecl *NearestVBase,
   1433                                 CharUnits OffsetFromNearestVBase,
   1434                                 bool BaseIsNonVirtualPrimaryBase,
   1435                                 llvm::Constant *VTable,
   1436                                 const CXXRecordDecl *VTableClass,
   1437                                 VisitedVirtualBasesSetTy& VBases);
   1438 
   1439   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
   1440 
   1441   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
   1442   /// to by This.
   1443   llvm::Value *GetVTablePtr(llvm::Value *This, llvm::Type *Ty);
   1444 
   1445   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
   1446   /// given phase of destruction for a destructor.  The end result
   1447   /// should call destructors on members and base classes in reverse
   1448   /// order of their construction.
   1449   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
   1450 
   1451   /// ShouldInstrumentFunction - Return true if the current function should be
   1452   /// instrumented with __cyg_profile_func_* calls
   1453   bool ShouldInstrumentFunction();
   1454 
   1455   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
   1456   /// instrumentation function with the current function and the call site, if
   1457   /// function instrumentation is enabled.
   1458   void EmitFunctionInstrumentation(const char *Fn);
   1459 
   1460   /// EmitMCountInstrumentation - Emit call to .mcount.
   1461   void EmitMCountInstrumentation();
   1462 
   1463   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
   1464   /// arguments for the given function. This is also responsible for naming the
   1465   /// LLVM function arguments.
   1466   void EmitFunctionProlog(const CGFunctionInfo &FI,
   1467                           llvm::Function *Fn,
   1468                           const FunctionArgList &Args);
   1469 
   1470   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
   1471   /// given temporary.
   1472   void EmitFunctionEpilog(const CGFunctionInfo &FI);
   1473 
   1474   /// EmitStartEHSpec - Emit the start of the exception spec.
   1475   void EmitStartEHSpec(const Decl *D);
   1476 
   1477   /// EmitEndEHSpec - Emit the end of the exception spec.
   1478   void EmitEndEHSpec(const Decl *D);
   1479 
   1480   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
   1481   llvm::BasicBlock *getTerminateLandingPad();
   1482 
   1483   /// getTerminateHandler - Return a handler (not a landing pad, just
   1484   /// a catch handler) that just calls terminate.  This is used when
   1485   /// a terminate scope encloses a try.
   1486   llvm::BasicBlock *getTerminateHandler();
   1487 
   1488   llvm::Type *ConvertTypeForMem(QualType T);
   1489   llvm::Type *ConvertType(QualType T);
   1490   llvm::Type *ConvertType(const TypeDecl *T) {
   1491     return ConvertType(getContext().getTypeDeclType(T));
   1492   }
   1493 
   1494   /// LoadObjCSelf - Load the value of self. This function is only valid while
   1495   /// generating code for an Objective-C method.
   1496   llvm::Value *LoadObjCSelf();
   1497 
   1498   /// TypeOfSelfObject - Return type of object that this self represents.
   1499   QualType TypeOfSelfObject();
   1500 
   1501   /// hasAggregateLLVMType - Return true if the specified AST type will map into
   1502   /// an aggregate LLVM type or is void.
   1503   static bool hasAggregateLLVMType(QualType T);
   1504 
   1505   /// createBasicBlock - Create an LLVM basic block.
   1506   llvm::BasicBlock *createBasicBlock(StringRef name = "",
   1507                                      llvm::Function *parent = 0,
   1508                                      llvm::BasicBlock *before = 0) {
   1509 #ifdef NDEBUG
   1510     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
   1511 #else
   1512     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
   1513 #endif
   1514   }
   1515 
   1516   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
   1517   /// label maps to.
   1518   JumpDest getJumpDestForLabel(const LabelDecl *S);
   1519 
   1520   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
   1521   /// another basic block, simplify it. This assumes that no other code could
   1522   /// potentially reference the basic block.
   1523   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
   1524 
   1525   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
   1526   /// adding a fall-through branch from the current insert block if
   1527   /// necessary. It is legal to call this function even if there is no current
   1528   /// insertion point.
   1529   ///
   1530   /// IsFinished - If true, indicates that the caller has finished emitting
   1531   /// branches to the given block and does not expect to emit code into it. This
   1532   /// means the block can be ignored if it is unreachable.
   1533   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
   1534 
   1535   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
   1536   /// near its uses, and leave the insertion point in it.
   1537   void EmitBlockAfterUses(llvm::BasicBlock *BB);
   1538 
   1539   /// EmitBranch - Emit a branch to the specified basic block from the current
   1540   /// insert block, taking care to avoid creation of branches from dummy
   1541   /// blocks. It is legal to call this function even if there is no current
   1542   /// insertion point.
   1543   ///
   1544   /// This function clears the current insertion point. The caller should follow
   1545   /// calls to this function with calls to Emit*Block prior to generation new
   1546   /// code.
   1547   void EmitBranch(llvm::BasicBlock *Block);
   1548 
   1549   /// HaveInsertPoint - True if an insertion point is defined. If not, this
   1550   /// indicates that the current code being emitted is unreachable.
   1551   bool HaveInsertPoint() const {
   1552     return Builder.GetInsertBlock() != 0;
   1553   }
   1554 
   1555   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
   1556   /// emitted IR has a place to go. Note that by definition, if this function
   1557   /// creates a block then that block is unreachable; callers may do better to
   1558   /// detect when no insertion point is defined and simply skip IR generation.
   1559   void EnsureInsertPoint() {
   1560     if (!HaveInsertPoint())
   1561       EmitBlock(createBasicBlock());
   1562   }
   1563 
   1564   /// ErrorUnsupported - Print out an error that codegen doesn't support the
   1565   /// specified stmt yet.
   1566   void ErrorUnsupported(const Stmt *S, const char *Type,
   1567                         bool OmitOnError=false);
   1568 
   1569   //===--------------------------------------------------------------------===//
   1570   //                                  Helpers
   1571   //===--------------------------------------------------------------------===//
   1572 
   1573   LValue MakeAddrLValue(llvm::Value *V, QualType T,
   1574                         CharUnits Alignment = CharUnits()) {
   1575     return LValue::MakeAddr(V, T, Alignment, getContext(),
   1576                             CGM.getTBAAInfo(T));
   1577   }
   1578 
   1579   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) {
   1580     CharUnits Alignment;
   1581     if (!T->isIncompleteType())
   1582       Alignment = getContext().getTypeAlignInChars(T);
   1583     return LValue::MakeAddr(V, T, Alignment, getContext(),
   1584                             CGM.getTBAAInfo(T));
   1585   }
   1586 
   1587   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
   1588   /// block. The caller is responsible for setting an appropriate alignment on
   1589   /// the alloca.
   1590   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
   1591                                      const Twine &Name = "tmp");
   1592 
   1593   /// InitTempAlloca - Provide an initial value for the given alloca.
   1594   void InitTempAlloca(llvm::AllocaInst *Alloca, llvm::Value *Value);
   1595 
   1596   /// CreateIRTemp - Create a temporary IR object of the given type, with
   1597   /// appropriate alignment. This routine should only be used when an temporary
   1598   /// value needs to be stored into an alloca (for example, to avoid explicit
   1599   /// PHI construction), but the type is the IR type, not the type appropriate
   1600   /// for storing in memory.
   1601   llvm::AllocaInst *CreateIRTemp(QualType T, const Twine &Name = "tmp");
   1602 
   1603   /// CreateMemTemp - Create a temporary memory object of the given type, with
   1604   /// appropriate alignment.
   1605   llvm::AllocaInst *CreateMemTemp(QualType T, const Twine &Name = "tmp");
   1606 
   1607   /// CreateAggTemp - Create a temporary memory object for the given
   1608   /// aggregate type.
   1609   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
   1610     CharUnits Alignment = getContext().getTypeAlignInChars(T);
   1611     return AggValueSlot::forAddr(CreateMemTemp(T, Name), Alignment,
   1612                                  T.getQualifiers(),
   1613                                  AggValueSlot::IsNotDestructed,
   1614                                  AggValueSlot::DoesNotNeedGCBarriers,
   1615                                  AggValueSlot::IsNotAliased);
   1616   }
   1617 
   1618   /// Emit a cast to void* in the appropriate address space.
   1619   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
   1620 
   1621   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
   1622   /// expression and compare the result against zero, returning an Int1Ty value.
   1623   llvm::Value *EvaluateExprAsBool(const Expr *E);
   1624 
   1625   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
   1626   void EmitIgnoredExpr(const Expr *E);
   1627 
   1628   /// EmitAnyExpr - Emit code to compute the specified expression which can have
   1629   /// any type.  The result is returned as an RValue struct.  If this is an
   1630   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
   1631   /// the result should be returned.
   1632   ///
   1633   /// \param ignoreResult True if the resulting value isn't used.
   1634   RValue EmitAnyExpr(const Expr *E,
   1635                      AggValueSlot aggSlot = AggValueSlot::ignored(),
   1636                      bool ignoreResult = false);
   1637 
   1638   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
   1639   // or the value of the expression, depending on how va_list is defined.
   1640   llvm::Value *EmitVAListRef(const Expr *E);
   1641 
   1642   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
   1643   /// always be accessible even if no aggregate location is provided.
   1644   RValue EmitAnyExprToTemp(const Expr *E);
   1645 
   1646   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
   1647   /// arbitrary expression into the given memory location.
   1648   void EmitAnyExprToMem(const Expr *E, llvm::Value *Location,
   1649                         Qualifiers Quals, bool IsInitializer);
   1650 
   1651   /// EmitExprAsInit - Emits the code necessary to initialize a
   1652   /// location in memory with the given initializer.
   1653   void EmitExprAsInit(const Expr *init, const ValueDecl *D,
   1654                       LValue lvalue, bool capturedByInit);
   1655 
   1656   /// EmitAggregateCopy - Emit an aggrate copy.
   1657   ///
   1658   /// \param isVolatile - True iff either the source or the destination is
   1659   /// volatile.
   1660   void EmitAggregateCopy(llvm::Value *DestPtr, llvm::Value *SrcPtr,
   1661                          QualType EltTy, bool isVolatile=false,
   1662                          CharUnits Alignment = CharUnits::Zero());
   1663 
   1664   /// StartBlock - Start new block named N. If insert block is a dummy block
   1665   /// then reuse it.
   1666   void StartBlock(const char *N);
   1667 
   1668   /// GetAddrOfStaticLocalVar - Return the address of a static local variable.
   1669   llvm::Constant *GetAddrOfStaticLocalVar(const VarDecl *BVD) {
   1670     return cast<llvm::Constant>(GetAddrOfLocalVar(BVD));
   1671   }
   1672 
   1673   /// GetAddrOfLocalVar - Return the address of a local variable.
   1674   llvm::Value *GetAddrOfLocalVar(const VarDecl *VD) {
   1675     llvm::Value *Res = LocalDeclMap[VD];
   1676     assert(Res && "Invalid argument to GetAddrOfLocalVar(), no decl!");
   1677     return Res;
   1678   }
   1679 
   1680   /// getOpaqueLValueMapping - Given an opaque value expression (which
   1681   /// must be mapped to an l-value), return its mapping.
   1682   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
   1683     assert(OpaqueValueMapping::shouldBindAsLValue(e));
   1684 
   1685     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
   1686       it = OpaqueLValues.find(e);
   1687     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
   1688     return it->second;
   1689   }
   1690 
   1691   /// getOpaqueRValueMapping - Given an opaque value expression (which
   1692   /// must be mapped to an r-value), return its mapping.
   1693   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
   1694     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
   1695 
   1696     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
   1697       it = OpaqueRValues.find(e);
   1698     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
   1699     return it->second;
   1700   }
   1701 
   1702   /// getAccessedFieldNo - Given an encoded value and a result number, return
   1703   /// the input field number being accessed.
   1704   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
   1705 
   1706   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
   1707   llvm::BasicBlock *GetIndirectGotoBlock();
   1708 
   1709   /// EmitNullInitialization - Generate code to set a value of the given type to
   1710   /// null, If the type contains data member pointers, they will be initialized
   1711   /// to -1 in accordance with the Itanium C++ ABI.
   1712   void EmitNullInitialization(llvm::Value *DestPtr, QualType Ty);
   1713 
   1714   // EmitVAArg - Generate code to get an argument from the passed in pointer
   1715   // and update it accordingly. The return value is a pointer to the argument.
   1716   // FIXME: We should be able to get rid of this method and use the va_arg
   1717   // instruction in LLVM instead once it works well enough.
   1718   llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty);
   1719 
   1720   /// emitArrayLength - Compute the length of an array, even if it's a
   1721   /// VLA, and drill down to the base element type.
   1722   llvm::Value *emitArrayLength(const ArrayType *arrayType,
   1723                                QualType &baseType,
   1724                                llvm::Value *&addr);
   1725 
   1726   /// EmitVLASize - Capture all the sizes for the VLA expressions in
   1727   /// the given variably-modified type and store them in the VLASizeMap.
   1728   ///
   1729   /// This function can be called with a null (unreachable) insert point.
   1730   void EmitVariablyModifiedType(QualType Ty);
   1731 
   1732   /// getVLASize - Returns an LLVM value that corresponds to the size,
   1733   /// in non-variably-sized elements, of a variable length array type,
   1734   /// plus that largest non-variably-sized element type.  Assumes that
   1735   /// the type has already been emitted with EmitVariablyModifiedType.
   1736   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
   1737   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
   1738 
   1739   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
   1740   /// generating code for an C++ member function.
   1741   llvm::Value *LoadCXXThis() {
   1742     assert(CXXThisValue && "no 'this' value for this function");
   1743     return CXXThisValue;
   1744   }
   1745 
   1746   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
   1747   /// virtual bases.
   1748   llvm::Value *LoadCXXVTT() {
   1749     assert(CXXVTTValue && "no VTT value for this function");
   1750     return CXXVTTValue;
   1751   }
   1752 
   1753   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
   1754   /// complete class to the given direct base.
   1755   llvm::Value *
   1756   GetAddressOfDirectBaseInCompleteClass(llvm::Value *Value,
   1757                                         const CXXRecordDecl *Derived,
   1758                                         const CXXRecordDecl *Base,
   1759                                         bool BaseIsVirtual);
   1760 
   1761   /// GetAddressOfBaseClass - This function will add the necessary delta to the
   1762   /// load of 'this' and returns address of the base class.
   1763   llvm::Value *GetAddressOfBaseClass(llvm::Value *Value,
   1764                                      const CXXRecordDecl *Derived,
   1765                                      CastExpr::path_const_iterator PathBegin,
   1766                                      CastExpr::path_const_iterator PathEnd,
   1767                                      bool NullCheckValue);
   1768 
   1769   llvm::Value *GetAddressOfDerivedClass(llvm::Value *Value,
   1770                                         const CXXRecordDecl *Derived,
   1771                                         CastExpr::path_const_iterator PathBegin,
   1772                                         CastExpr::path_const_iterator PathEnd,
   1773                                         bool NullCheckValue);
   1774 
   1775   llvm::Value *GetVirtualBaseClassOffset(llvm::Value *This,
   1776                                          const CXXRecordDecl *ClassDecl,
   1777                                          const CXXRecordDecl *BaseClassDecl);
   1778 
   1779   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
   1780                                       CXXCtorType CtorType,
   1781                                       const FunctionArgList &Args);
   1782   // It's important not to confuse this and the previous function. Delegating
   1783   // constructors are the C++0x feature. The constructor delegate optimization
   1784   // is used to reduce duplication in the base and complete consturctors where
   1785   // they are substantially the same.
   1786   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
   1787                                         const FunctionArgList &Args);
   1788   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
   1789                               bool ForVirtualBase, llvm::Value *This,
   1790                               CallExpr::const_arg_iterator ArgBeg,
   1791                               CallExpr::const_arg_iterator ArgEnd);
   1792 
   1793   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
   1794                               llvm::Value *This, llvm::Value *Src,
   1795                               CallExpr::const_arg_iterator ArgBeg,
   1796                               CallExpr::const_arg_iterator ArgEnd);
   1797 
   1798   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
   1799                                   const ConstantArrayType *ArrayTy,
   1800                                   llvm::Value *ArrayPtr,
   1801                                   CallExpr::const_arg_iterator ArgBeg,
   1802                                   CallExpr::const_arg_iterator ArgEnd,
   1803                                   bool ZeroInitialization = false);
   1804 
   1805   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
   1806                                   llvm::Value *NumElements,
   1807                                   llvm::Value *ArrayPtr,
   1808                                   CallExpr::const_arg_iterator ArgBeg,
   1809                                   CallExpr::const_arg_iterator ArgEnd,
   1810                                   bool ZeroInitialization = false);
   1811 
   1812   static Destroyer destroyCXXObject;
   1813 
   1814   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
   1815                              bool ForVirtualBase, llvm::Value *This);
   1816 
   1817   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
   1818                                llvm::Value *NewPtr, llvm::Value *NumElements);
   1819 
   1820   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
   1821                         llvm::Value *Ptr);
   1822 
   1823   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
   1824   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
   1825 
   1826   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
   1827                       QualType DeleteTy);
   1828 
   1829   llvm::Value* EmitCXXTypeidExpr(const CXXTypeidExpr *E);
   1830   llvm::Value *EmitDynamicCast(llvm::Value *V, const CXXDynamicCastExpr *DCE);
   1831 
   1832   void MaybeEmitStdInitializerListCleanup(llvm::Value *loc, const Expr *init);
   1833   void EmitStdInitializerListCleanup(llvm::Value *loc,
   1834                                      const InitListExpr *init);
   1835 
   1836   /// \brief Situations in which we might emit a check for the suitability of a
   1837   ///        pointer or glvalue.
   1838   enum TypeCheckKind {
   1839     /// Checking the operand of a load. Must be suitably sized and aligned.
   1840     TCK_Load,
   1841     /// Checking the destination of a store. Must be suitably sized and aligned.
   1842     TCK_Store,
   1843     /// Checking the bound value in a reference binding. Must be suitably sized
   1844     /// and aligned, but is not required to refer to an object (until the
   1845     /// reference is used), per core issue 453.
   1846     TCK_ReferenceBinding,
   1847     /// Checking the object expression in a non-static data member access. Must
   1848     /// be an object within its lifetime.
   1849     TCK_MemberAccess,
   1850     /// Checking the 'this' pointer for a call to a non-static member function.
   1851     /// Must be an object within its lifetime.
   1852     TCK_MemberCall
   1853   };
   1854 
   1855   /// \brief Emit a check that \p V is the address of storage of the
   1856   /// appropriate size and alignment for an object of type \p Type.
   1857   void EmitTypeCheck(TypeCheckKind TCK, llvm::Value *V,
   1858                      QualType Type, CharUnits Alignment = CharUnits::Zero());
   1859 
   1860   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
   1861                                        bool isInc, bool isPre);
   1862   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
   1863                                          bool isInc, bool isPre);
   1864   //===--------------------------------------------------------------------===//
   1865   //                            Declaration Emission
   1866   //===--------------------------------------------------------------------===//
   1867 
   1868   /// EmitDecl - Emit a declaration.
   1869   ///
   1870   /// This function can be called with a null (unreachable) insert point.
   1871   void EmitDecl(const Decl &D);
   1872 
   1873   /// EmitVarDecl - Emit a local variable declaration.
   1874   ///
   1875   /// This function can be called with a null (unreachable) insert point.
   1876   void EmitVarDecl(const VarDecl &D);
   1877 
   1878   void EmitScalarInit(const Expr *init, const ValueDecl *D,
   1879                       LValue lvalue, bool capturedByInit);
   1880   void EmitScalarInit(llvm::Value *init, LValue lvalue);
   1881 
   1882   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
   1883                              llvm::Value *Address);
   1884 
   1885   /// EmitAutoVarDecl - Emit an auto variable declaration.
   1886   ///
   1887   /// This function can be called with a null (unreachable) insert point.
   1888   void EmitAutoVarDecl(const VarDecl &D);
   1889 
   1890   class AutoVarEmission {
   1891     friend class CodeGenFunction;
   1892 
   1893     const VarDecl *Variable;
   1894 
   1895     /// The alignment of the variable.
   1896     CharUnits Alignment;
   1897 
   1898     /// The address of the alloca.  Null if the variable was emitted
   1899     /// as a global constant.
   1900     llvm::Value *Address;
   1901 
   1902     llvm::Value *NRVOFlag;
   1903 
   1904     /// True if the variable is a __block variable.
   1905     bool IsByRef;
   1906 
   1907     /// True if the variable is of aggregate type and has a constant
   1908     /// initializer.
   1909     bool IsConstantAggregate;
   1910 
   1911     struct Invalid {};
   1912     AutoVarEmission(Invalid) : Variable(0) {}
   1913 
   1914     AutoVarEmission(const VarDecl &variable)
   1915       : Variable(&variable), Address(0), NRVOFlag(0),
   1916         IsByRef(false), IsConstantAggregate(false) {}
   1917 
   1918     bool wasEmittedAsGlobal() const { return Address == 0; }
   1919 
   1920   public:
   1921     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
   1922 
   1923     /// Returns the address of the object within this declaration.
   1924     /// Note that this does not chase the forwarding pointer for
   1925     /// __block decls.
   1926     llvm::Value *getObjectAddress(CodeGenFunction &CGF) const {
   1927       if (!IsByRef) return Address;
   1928 
   1929       return CGF.Builder.CreateStructGEP(Address,
   1930                                          CGF.getByRefValueLLVMField(Variable),
   1931                                          Variable->getNameAsString());
   1932     }
   1933   };
   1934   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
   1935   void EmitAutoVarInit(const AutoVarEmission &emission);
   1936   void EmitAutoVarCleanups(const AutoVarEmission &emission);
   1937   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
   1938                               QualType::DestructionKind dtorKind);
   1939 
   1940   void EmitStaticVarDecl(const VarDecl &D,
   1941                          llvm::GlobalValue::LinkageTypes Linkage);
   1942 
   1943   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
   1944   void EmitParmDecl(const VarDecl &D, llvm::Value *Arg, unsigned ArgNo);
   1945 
   1946   /// protectFromPeepholes - Protect a value that we're intending to
   1947   /// store to the side, but which will probably be used later, from
   1948   /// aggressive peepholing optimizations that might delete it.
   1949   ///
   1950   /// Pass the result to unprotectFromPeepholes to declare that
   1951   /// protection is no longer required.
   1952   ///
   1953   /// There's no particular reason why this shouldn't apply to
   1954   /// l-values, it's just that no existing peepholes work on pointers.
   1955   PeepholeProtection protectFromPeepholes(RValue rvalue);
   1956   void unprotectFromPeepholes(PeepholeProtection protection);
   1957 
   1958   //===--------------------------------------------------------------------===//
   1959   //                             Statement Emission
   1960   //===--------------------------------------------------------------------===//
   1961 
   1962   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
   1963   void EmitStopPoint(const Stmt *S);
   1964 
   1965   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
   1966   /// this function even if there is no current insertion point.
   1967   ///
   1968   /// This function may clear the current insertion point; callers should use
   1969   /// EnsureInsertPoint if they wish to subsequently generate code without first
   1970   /// calling EmitBlock, EmitBranch, or EmitStmt.
   1971   void EmitStmt(const Stmt *S);
   1972 
   1973   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
   1974   /// necessarily require an insertion point or debug information; typically
   1975   /// because the statement amounts to a jump or a container of other
   1976   /// statements.
   1977   ///
   1978   /// \return True if the statement was handled.
   1979   bool EmitSimpleStmt(const Stmt *S);
   1980 
   1981   RValue EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
   1982                           AggValueSlot AVS = AggValueSlot::ignored());
   1983 
   1984   /// EmitLabel - Emit the block for the given label. It is legal to call this
   1985   /// function even if there is no current insertion point.
   1986   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
   1987 
   1988   void EmitLabelStmt(const LabelStmt &S);
   1989   void EmitAttributedStmt(const AttributedStmt &S);
   1990   void EmitGotoStmt(const GotoStmt &S);
   1991   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
   1992   void EmitIfStmt(const IfStmt &S);
   1993   void EmitWhileStmt(const WhileStmt &S);
   1994   void EmitDoStmt(const DoStmt &S);
   1995   void EmitForStmt(const ForStmt &S);
   1996   void EmitReturnStmt(const ReturnStmt &S);
   1997   void EmitDeclStmt(const DeclStmt &S);
   1998   void EmitBreakStmt(const BreakStmt &S);
   1999   void EmitContinueStmt(const ContinueStmt &S);
   2000   void EmitSwitchStmt(const SwitchStmt &S);
   2001   void EmitDefaultStmt(const DefaultStmt &S);
   2002   void EmitCaseStmt(const CaseStmt &S);
   2003   void EmitCaseStmtRange(const CaseStmt &S);
   2004   void EmitAsmStmt(const AsmStmt &S);
   2005 
   2006   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
   2007   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
   2008   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
   2009   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
   2010   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
   2011 
   2012   llvm::Constant *getUnwindResumeFn();
   2013   llvm::Constant *getUnwindResumeOrRethrowFn();
   2014   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
   2015   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
   2016 
   2017   void EmitCXXTryStmt(const CXXTryStmt &S);
   2018   void EmitCXXForRangeStmt(const CXXForRangeStmt &S);
   2019 
   2020   //===--------------------------------------------------------------------===//
   2021   //                         LValue Expression Emission
   2022   //===--------------------------------------------------------------------===//
   2023 
   2024   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
   2025   RValue GetUndefRValue(QualType Ty);
   2026 
   2027   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
   2028   /// and issue an ErrorUnsupported style diagnostic (using the
   2029   /// provided Name).
   2030   RValue EmitUnsupportedRValue(const Expr *E,
   2031                                const char *Name);
   2032 
   2033   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
   2034   /// an ErrorUnsupported style diagnostic (using the provided Name).
   2035   LValue EmitUnsupportedLValue(const Expr *E,
   2036                                const char *Name);
   2037 
   2038   /// EmitLValue - Emit code to compute a designator that specifies the location
   2039   /// of the expression.
   2040   ///
   2041   /// This can return one of two things: a simple address or a bitfield
   2042   /// reference.  In either case, the LLVM Value* in the LValue structure is
   2043   /// guaranteed to be an LLVM pointer type.
   2044   ///
   2045   /// If this returns a bitfield reference, nothing about the pointee type of
   2046   /// the LLVM value is known: For example, it may not be a pointer to an
   2047   /// integer.
   2048   ///
   2049   /// If this returns a normal address, and if the lvalue's C type is fixed
   2050   /// size, this method guarantees that the returned pointer type will point to
   2051   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
   2052   /// variable length type, this is not possible.
   2053   ///
   2054   LValue EmitLValue(const Expr *E);
   2055 
   2056   /// \brief Same as EmitLValue but additionally we generate checking code to
   2057   /// guard against undefined behavior.  This is only suitable when we know
   2058   /// that the address will be used to access the object.
   2059   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
   2060 
   2061   /// EmitToMemory - Change a scalar value from its value
   2062   /// representation to its in-memory representation.
   2063   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
   2064 
   2065   /// EmitFromMemory - Change a scalar value from its memory
   2066   /// representation to its value representation.
   2067   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
   2068 
   2069   /// EmitLoadOfScalar - Load a scalar value from an address, taking
   2070   /// care to appropriately convert from the memory representation to
   2071   /// the LLVM value representation.
   2072   llvm::Value *EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
   2073                                 unsigned Alignment, QualType Ty,
   2074                                 llvm::MDNode *TBAAInfo = 0);
   2075 
   2076   /// EmitLoadOfScalar - Load a scalar value from an address, taking
   2077   /// care to appropriately convert from the memory representation to
   2078   /// the LLVM value representation.  The l-value must be a simple
   2079   /// l-value.
   2080   llvm::Value *EmitLoadOfScalar(LValue lvalue);
   2081 
   2082   /// EmitStoreOfScalar - Store a scalar value to an address, taking
   2083   /// care to appropriately convert from the memory representation to
   2084   /// the LLVM value representation.
   2085   void EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
   2086                          bool Volatile, unsigned Alignment, QualType Ty,
   2087                          llvm::MDNode *TBAAInfo = 0, bool isInit=false);
   2088 
   2089   /// EmitStoreOfScalar - Store a scalar value to an address, taking
   2090   /// care to appropriately convert from the memory representation to
   2091   /// the LLVM value representation.  The l-value must be a simple
   2092   /// l-value.  The isInit flag indicates whether this is an initialization.
   2093   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
   2094   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
   2095 
   2096   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
   2097   /// this method emits the address of the lvalue, then loads the result as an
   2098   /// rvalue, returning the rvalue.
   2099   RValue EmitLoadOfLValue(LValue V);
   2100   RValue EmitLoadOfExtVectorElementLValue(LValue V);
   2101   RValue EmitLoadOfBitfieldLValue(LValue LV);
   2102 
   2103   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
   2104   /// lvalue, where both are guaranteed to the have the same type, and that type
   2105   /// is 'Ty'.
   2106   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit=false);
   2107   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
   2108 
   2109   /// EmitStoreThroughLValue - Store Src into Dst with same constraints as
   2110   /// EmitStoreThroughLValue.
   2111   ///
   2112   /// \param Result [out] - If non-null, this will be set to a Value* for the
   2113   /// bit-field contents after the store, appropriate for use as the result of
   2114   /// an assignment to the bit-field.
   2115   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
   2116                                       llvm::Value **Result=0);
   2117 
   2118   /// Emit an l-value for an assignment (simple or compound) of complex type.
   2119   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
   2120   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
   2121 
   2122   // Note: only available for agg return types
   2123   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
   2124   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
   2125   // Note: only available for agg return types
   2126   LValue EmitCallExprLValue(const CallExpr *E);
   2127   // Note: only available for agg return types
   2128   LValue EmitVAArgExprLValue(const VAArgExpr *E);
   2129   LValue EmitDeclRefLValue(const DeclRefExpr *E);
   2130   LValue EmitStringLiteralLValue(const StringLiteral *E);
   2131   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
   2132   LValue EmitPredefinedLValue(const PredefinedExpr *E);
   2133   LValue EmitUnaryOpLValue(const UnaryOperator *E);
   2134   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E);
   2135   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
   2136   LValue EmitMemberExpr(const MemberExpr *E);
   2137   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
   2138   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
   2139   LValue EmitInitListLValue(const InitListExpr *E);
   2140   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
   2141   LValue EmitCastLValue(const CastExpr *E);
   2142   LValue EmitNullInitializationLValue(const CXXScalarValueInitExpr *E);
   2143   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
   2144   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
   2145 
   2146   RValue EmitRValueForField(LValue LV, const FieldDecl *FD);
   2147 
   2148   class ConstantEmission {
   2149     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
   2150     ConstantEmission(llvm::Constant *C, bool isReference)
   2151       : ValueAndIsReference(C, isReference) {}
   2152   public:
   2153     ConstantEmission() {}
   2154     static ConstantEmission forReference(llvm::Constant *C) {
   2155       return ConstantEmission(C, true);
   2156     }
   2157     static ConstantEmission forValue(llvm::Constant *C) {
   2158       return ConstantEmission(C, false);
   2159     }
   2160 
   2161     operator bool() const { return ValueAndIsReference.getOpaqueValue() != 0; }
   2162 
   2163     bool isReference() const { return ValueAndIsReference.getInt(); }
   2164     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
   2165       assert(isReference());
   2166       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
   2167                                             refExpr->getType());
   2168     }
   2169 
   2170     llvm::Constant *getValue() const {
   2171       assert(!isReference());
   2172       return ValueAndIsReference.getPointer();
   2173     }
   2174   };
   2175 
   2176   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
   2177 
   2178   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
   2179                                 AggValueSlot slot = AggValueSlot::ignored());
   2180   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
   2181 
   2182   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
   2183                               const ObjCIvarDecl *Ivar);
   2184   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
   2185 
   2186   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
   2187   /// if the Field is a reference, this will return the address of the reference
   2188   /// and not the address of the value stored in the reference.
   2189   LValue EmitLValueForFieldInitialization(LValue Base,
   2190                                           const FieldDecl* Field);
   2191 
   2192   LValue EmitLValueForIvar(QualType ObjectTy,
   2193                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
   2194                            unsigned CVRQualifiers);
   2195 
   2196   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
   2197   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
   2198   LValue EmitLambdaLValue(const LambdaExpr *E);
   2199   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
   2200 
   2201   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
   2202   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
   2203   LValue EmitStmtExprLValue(const StmtExpr *E);
   2204   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
   2205   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
   2206   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
   2207 
   2208   //===--------------------------------------------------------------------===//
   2209   //                         Scalar Expression Emission
   2210   //===--------------------------------------------------------------------===//
   2211 
   2212   /// EmitCall - Generate a call of the given function, expecting the given
   2213   /// result type, and using the given argument list which specifies both the
   2214   /// LLVM arguments and the types they were derived from.
   2215   ///
   2216   /// \param TargetDecl - If given, the decl of the function in a direct call;
   2217   /// used to set attributes on the call (noreturn, etc.).
   2218   RValue EmitCall(const CGFunctionInfo &FnInfo,
   2219                   llvm::Value *Callee,
   2220                   ReturnValueSlot ReturnValue,
   2221                   const CallArgList &Args,
   2222                   const Decl *TargetDecl = 0,
   2223                   llvm::Instruction **callOrInvoke = 0);
   2224 
   2225   RValue EmitCall(QualType FnType, llvm::Value *Callee,
   2226                   ReturnValueSlot ReturnValue,
   2227                   CallExpr::const_arg_iterator ArgBeg,
   2228                   CallExpr::const_arg_iterator ArgEnd,
   2229                   const Decl *TargetDecl = 0);
   2230   RValue EmitCallExpr(const CallExpr *E,
   2231                       ReturnValueSlot ReturnValue = ReturnValueSlot());
   2232 
   2233   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
   2234                                   ArrayRef<llvm::Value *> Args,
   2235                                   const Twine &Name = "");
   2236   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
   2237                                   const Twine &Name = "");
   2238 
   2239   llvm::Value *BuildVirtualCall(const CXXMethodDecl *MD, llvm::Value *This,
   2240                                 llvm::Type *Ty);
   2241   llvm::Value *BuildVirtualCall(const CXXDestructorDecl *DD, CXXDtorType Type,
   2242                                 llvm::Value *This, llvm::Type *Ty);
   2243   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
   2244                                          NestedNameSpecifier *Qual,
   2245                                          llvm::Type *Ty);
   2246 
   2247   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
   2248                                                    CXXDtorType Type,
   2249                                                    const CXXRecordDecl *RD);
   2250 
   2251   RValue EmitCXXMemberCall(const CXXMethodDecl *MD,
   2252                            llvm::Value *Callee,
   2253                            ReturnValueSlot ReturnValue,
   2254                            llvm::Value *This,
   2255                            llvm::Value *VTT,
   2256                            CallExpr::const_arg_iterator ArgBeg,
   2257                            CallExpr::const_arg_iterator ArgEnd);
   2258   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
   2259                                ReturnValueSlot ReturnValue);
   2260   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
   2261                                       ReturnValueSlot ReturnValue);
   2262 
   2263   llvm::Value *EmitCXXOperatorMemberCallee(const CXXOperatorCallExpr *E,
   2264                                            const CXXMethodDecl *MD,
   2265                                            llvm::Value *This);
   2266   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
   2267                                        const CXXMethodDecl *MD,
   2268                                        ReturnValueSlot ReturnValue);
   2269 
   2270   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
   2271                                 ReturnValueSlot ReturnValue);
   2272 
   2273 
   2274   RValue EmitBuiltinExpr(const FunctionDecl *FD,
   2275                          unsigned BuiltinID, const CallExpr *E);
   2276 
   2277   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
   2278 
   2279   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
   2280   /// is unhandled by the current target.
   2281   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2282 
   2283   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2284   llvm::Value *EmitNeonCall(llvm::Function *F,
   2285                             SmallVectorImpl<llvm::Value*> &O,
   2286                             const char *name,
   2287                             unsigned shift = 0, bool rightshift = false);
   2288   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
   2289   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
   2290                                    bool negateForRightShift);
   2291 
   2292   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
   2293   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2294   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2295 
   2296   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
   2297   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
   2298   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
   2299   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
   2300   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
   2301   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
   2302                                 const ObjCMethodDecl *MethodWithObjects);
   2303   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
   2304   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
   2305                              ReturnValueSlot Return = ReturnValueSlot());
   2306 
   2307   /// Retrieves the default cleanup kind for an ARC cleanup.
   2308   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
   2309   CleanupKind getARCCleanupKind() {
   2310     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
   2311              ? NormalAndEHCleanup : NormalCleanup;
   2312   }
   2313 
   2314   // ARC primitives.
   2315   void EmitARCInitWeak(llvm::Value *value, llvm::Value *addr);
   2316   void EmitARCDestroyWeak(llvm::Value *addr);
   2317   llvm::Value *EmitARCLoadWeak(llvm::Value *addr);
   2318   llvm::Value *EmitARCLoadWeakRetained(llvm::Value *addr);
   2319   llvm::Value *EmitARCStoreWeak(llvm::Value *value, llvm::Value *addr,
   2320                                 bool ignored);
   2321   void EmitARCCopyWeak(llvm::Value *dst, llvm::Value *src);
   2322   void EmitARCMoveWeak(llvm::Value *dst, llvm::Value *src);
   2323   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
   2324   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
   2325   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
   2326                                   bool ignored);
   2327   llvm::Value *EmitARCStoreStrongCall(llvm::Value *addr, llvm::Value *value,
   2328                                       bool ignored);
   2329   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
   2330   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
   2331   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
   2332   void EmitARCRelease(llvm::Value *value, bool precise);
   2333   llvm::Value *EmitARCAutorelease(llvm::Value *value);
   2334   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
   2335   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
   2336   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
   2337 
   2338   std::pair<LValue,llvm::Value*>
   2339   EmitARCStoreAutoreleasing(const BinaryOperator *e);
   2340   std::pair<LValue,llvm::Value*>
   2341   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
   2342 
   2343   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
   2344 
   2345   llvm::Value *EmitObjCProduceObject(QualType T, llvm::Value *Ptr);
   2346   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
   2347   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
   2348 
   2349   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
   2350   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
   2351   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
   2352 
   2353   static Destroyer destroyARCStrongImprecise;
   2354   static Destroyer destroyARCStrongPrecise;
   2355   static Destroyer destroyARCWeak;
   2356 
   2357   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
   2358   llvm::Value *EmitObjCAutoreleasePoolPush();
   2359   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
   2360   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
   2361   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
   2362 
   2363   /// EmitReferenceBindingToExpr - Emits a reference binding to the passed in
   2364   /// expression. Will emit a temporary variable if E is not an LValue.
   2365   RValue EmitReferenceBindingToExpr(const Expr* E,
   2366                                     const NamedDecl *InitializedDecl);
   2367 
   2368   //===--------------------------------------------------------------------===//
   2369   //                           Expression Emission
   2370   //===--------------------------------------------------------------------===//
   2371 
   2372   // Expressions are broken into three classes: scalar, complex, aggregate.
   2373 
   2374   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
   2375   /// scalar type, returning the result.
   2376   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
   2377 
   2378   /// EmitScalarConversion - Emit a conversion from the specified type to the
   2379   /// specified destination type, both of which are LLVM scalar types.
   2380   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
   2381                                     QualType DstTy);
   2382 
   2383   /// EmitComplexToScalarConversion - Emit a conversion from the specified
   2384   /// complex type to the specified destination type, where the destination type
   2385   /// is an LLVM scalar type.
   2386   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
   2387                                              QualType DstTy);
   2388 
   2389 
   2390   /// EmitAggExpr - Emit the computation of the specified expression
   2391   /// of aggregate type.  The result is computed into the given slot,
   2392   /// which may be null to indicate that the value is not needed.
   2393   void EmitAggExpr(const Expr *E, AggValueSlot AS);
   2394 
   2395   /// EmitAggExprToLValue - Emit the computation of the specified expression of
   2396   /// aggregate type into a temporary LValue.
   2397   LValue EmitAggExprToLValue(const Expr *E);
   2398 
   2399   /// EmitGCMemmoveCollectable - Emit special API for structs with object
   2400   /// pointers.
   2401   void EmitGCMemmoveCollectable(llvm::Value *DestPtr, llvm::Value *SrcPtr,
   2402                                 QualType Ty);
   2403 
   2404   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
   2405   /// make sure it survives garbage collection until this point.
   2406   void EmitExtendGCLifetime(llvm::Value *object);
   2407 
   2408   /// EmitComplexExpr - Emit the computation of the specified expression of
   2409   /// complex type, returning the result.
   2410   ComplexPairTy EmitComplexExpr(const Expr *E,
   2411                                 bool IgnoreReal = false,
   2412                                 bool IgnoreImag = false);
   2413 
   2414   /// EmitComplexExprIntoAddr - Emit the computation of the specified expression
   2415   /// of complex type, storing into the specified Value*.
   2416   void EmitComplexExprIntoAddr(const Expr *E, llvm::Value *DestAddr,
   2417                                bool DestIsVolatile);
   2418 
   2419   /// StoreComplexToAddr - Store a complex number into the specified address.
   2420   void StoreComplexToAddr(ComplexPairTy V, llvm::Value *DestAddr,
   2421                           bool DestIsVolatile);
   2422   /// LoadComplexFromAddr - Load a complex number from the specified address.
   2423   ComplexPairTy LoadComplexFromAddr(llvm::Value *SrcAddr, bool SrcIsVolatile);
   2424 
   2425   /// CreateStaticVarDecl - Create a zero-initialized LLVM global for
   2426   /// a static local variable.
   2427   llvm::GlobalVariable *CreateStaticVarDecl(const VarDecl &D,
   2428                                             const char *Separator,
   2429                                        llvm::GlobalValue::LinkageTypes Linkage);
   2430 
   2431   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
   2432   /// global variable that has already been created for it.  If the initializer
   2433   /// has a different type than GV does, this may free GV and return a different
   2434   /// one.  Otherwise it just returns GV.
   2435   llvm::GlobalVariable *
   2436   AddInitializerToStaticVarDecl(const VarDecl &D,
   2437                                 llvm::GlobalVariable *GV);
   2438 
   2439 
   2440   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
   2441   /// variable with global storage.
   2442   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
   2443                                 bool PerformInit);
   2444 
   2445   /// Call atexit() with a function that passes the given argument to
   2446   /// the given function.
   2447   void registerGlobalDtorWithAtExit(llvm::Constant *fn, llvm::Constant *addr);
   2448 
   2449   /// Emit code in this function to perform a guarded variable
   2450   /// initialization.  Guarded initializations are used when it's not
   2451   /// possible to prove that an initialization will be done exactly
   2452   /// once, e.g. with a static local variable or a static data member
   2453   /// of a class template.
   2454   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
   2455                           bool PerformInit);
   2456 
   2457   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
   2458   /// variables.
   2459   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
   2460                                  llvm::Constant **Decls,
   2461                                  unsigned NumDecls);
   2462 
   2463   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
   2464   /// variables.
   2465   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
   2466                                   const std::vector<std::pair<llvm::WeakVH,
   2467                                   llvm::Constant*> > &DtorsAndObjects);
   2468 
   2469   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
   2470                                         const VarDecl *D,
   2471                                         llvm::GlobalVariable *Addr,
   2472                                         bool PerformInit);
   2473 
   2474   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
   2475 
   2476   void EmitSynthesizedCXXCopyCtor(llvm::Value *Dest, llvm::Value *Src,
   2477                                   const Expr *Exp);
   2478 
   2479   void enterFullExpression(const ExprWithCleanups *E) {
   2480     if (E->getNumObjects() == 0) return;
   2481     enterNonTrivialFullExpression(E);
   2482   }
   2483   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
   2484 
   2485   void EmitCXXThrowExpr(const CXXThrowExpr *E);
   2486 
   2487   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
   2488 
   2489   RValue EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest = 0);
   2490 
   2491   //===--------------------------------------------------------------------===//
   2492   //                         Annotations Emission
   2493   //===--------------------------------------------------------------------===//
   2494 
   2495   /// Emit an annotation call (intrinsic or builtin).
   2496   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
   2497                                   llvm::Value *AnnotatedVal,
   2498                                   llvm::StringRef AnnotationStr,
   2499                                   SourceLocation Location);
   2500 
   2501   /// Emit local annotations for the local variable V, declared by D.
   2502   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
   2503 
   2504   /// Emit field annotations for the given field & value. Returns the
   2505   /// annotation result.
   2506   llvm::Value *EmitFieldAnnotations(const FieldDecl *D, llvm::Value *V);
   2507 
   2508   //===--------------------------------------------------------------------===//
   2509   //                             Internal Helpers
   2510   //===--------------------------------------------------------------------===//
   2511 
   2512   /// ContainsLabel - Return true if the statement contains a label in it.  If
   2513   /// this statement is not executed normally, it not containing a label means
   2514   /// that we can just remove the code.
   2515   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
   2516 
   2517   /// containsBreak - Return true if the statement contains a break out of it.
   2518   /// If the statement (recursively) contains a switch or loop with a break
   2519   /// inside of it, this is fine.
   2520   static bool containsBreak(const Stmt *S);
   2521 
   2522   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
   2523   /// to a constant, or if it does but contains a label, return false.  If it
   2524   /// constant folds return true and set the boolean result in Result.
   2525   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
   2526 
   2527   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
   2528   /// to a constant, or if it does but contains a label, return false.  If it
   2529   /// constant folds return true and set the folded value.
   2530   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
   2531 
   2532   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
   2533   /// if statement) to the specified blocks.  Based on the condition, this might
   2534   /// try to simplify the codegen of the conditional based on the branch.
   2535   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
   2536                             llvm::BasicBlock *FalseBlock);
   2537 
   2538   /// \brief Create a basic block that will call the trap intrinsic, and emit a
   2539   /// conditional branch to it.
   2540   void EmitCheck(llvm::Value *Checked);
   2541 
   2542   /// EmitCallArg - Emit a single call argument.
   2543   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
   2544 
   2545   /// EmitDelegateCallArg - We are performing a delegate call; that
   2546   /// is, the current function is delegating to another one.  Produce
   2547   /// a r-value suitable for passing the given parameter.
   2548   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param);
   2549 
   2550   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
   2551   /// point operation, expressed as the maximum relative error in ulp.
   2552   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
   2553 
   2554 private:
   2555   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
   2556   void EmitReturnOfRValue(RValue RV, QualType Ty);
   2557 
   2558   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
   2559   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
   2560   ///
   2561   /// \param AI - The first function argument of the expansion.
   2562   /// \return The argument following the last expanded function
   2563   /// argument.
   2564   llvm::Function::arg_iterator
   2565   ExpandTypeFromArgs(QualType Ty, LValue Dst,
   2566                      llvm::Function::arg_iterator AI);
   2567 
   2568   /// ExpandTypeToArgs - Expand an RValue \arg Src, with the LLVM type for \arg
   2569   /// Ty, into individual arguments on the provided vector \arg Args. See
   2570   /// ABIArgInfo::Expand.
   2571   void ExpandTypeToArgs(QualType Ty, RValue Src,
   2572                         SmallVector<llvm::Value*, 16> &Args,
   2573                         llvm::FunctionType *IRFuncTy);
   2574 
   2575   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
   2576                             const Expr *InputExpr, std::string &ConstraintStr);
   2577 
   2578   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
   2579                                   LValue InputValue, QualType InputType,
   2580                                   std::string &ConstraintStr);
   2581 
   2582   /// EmitCallArgs - Emit call arguments for a function.
   2583   /// The CallArgTypeInfo parameter is used for iterating over the known
   2584   /// argument types of the function being called.
   2585   template<typename T>
   2586   void EmitCallArgs(CallArgList& Args, const T* CallArgTypeInfo,
   2587                     CallExpr::const_arg_iterator ArgBeg,
   2588                     CallExpr::const_arg_iterator ArgEnd) {
   2589       CallExpr::const_arg_iterator Arg = ArgBeg;
   2590 
   2591     // First, use the argument types that the type info knows about
   2592     if (CallArgTypeInfo) {
   2593       for (typename T::arg_type_iterator I = CallArgTypeInfo->arg_type_begin(),
   2594            E = CallArgTypeInfo->arg_type_end(); I != E; ++I, ++Arg) {
   2595         assert(Arg != ArgEnd && "Running over edge of argument list!");
   2596         QualType ArgType = *I;
   2597 #ifndef NDEBUG
   2598         QualType ActualArgType = Arg->getType();
   2599         if (ArgType->isPointerType() && ActualArgType->isPointerType()) {
   2600           QualType ActualBaseType =
   2601             ActualArgType->getAs<PointerType>()->getPointeeType();
   2602           QualType ArgBaseType =
   2603             ArgType->getAs<PointerType>()->getPointeeType();
   2604           if (ArgBaseType->isVariableArrayType()) {
   2605             if (const VariableArrayType *VAT =
   2606                 getContext().getAsVariableArrayType(ActualBaseType)) {
   2607               if (!VAT->getSizeExpr())
   2608                 ActualArgType = ArgType;
   2609             }
   2610           }
   2611         }
   2612         assert(getContext().getCanonicalType(ArgType.getNonReferenceType()).
   2613                getTypePtr() ==
   2614                getContext().getCanonicalType(ActualArgType).getTypePtr() &&
   2615                "type mismatch in call argument!");
   2616 #endif
   2617         EmitCallArg(Args, *Arg, ArgType);
   2618       }
   2619 
   2620       // Either we've emitted all the call args, or we have a call to a
   2621       // variadic function.
   2622       assert((Arg == ArgEnd || CallArgTypeInfo->isVariadic()) &&
   2623              "Extra arguments in non-variadic function!");
   2624 
   2625     }
   2626 
   2627     // If we still have any arguments, emit them using the type of the argument.
   2628     for (; Arg != ArgEnd; ++Arg)
   2629       EmitCallArg(Args, *Arg, Arg->getType());
   2630   }
   2631 
   2632   const TargetCodeGenInfo &getTargetHooks() const {
   2633     return CGM.getTargetCodeGenInfo();
   2634   }
   2635 
   2636   void EmitDeclMetadata();
   2637 
   2638   CodeGenModule::ByrefHelpers *
   2639   buildByrefHelpers(llvm::StructType &byrefType,
   2640                     const AutoVarEmission &emission);
   2641 
   2642   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
   2643 
   2644   /// GetPointeeAlignment - Given an expression with a pointer type, emit the
   2645   /// value and compute our best estimate of the alignment of the pointee.
   2646   std::pair<llvm::Value*, unsigned> EmitPointerWithAlignment(const Expr *Addr);
   2647 };
   2648 
   2649 /// Helper class with most of the code for saving a value for a
   2650 /// conditional expression cleanup.
   2651 struct DominatingLLVMValue {
   2652   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
   2653 
   2654   /// Answer whether the given value needs extra work to be saved.
   2655   static bool needsSaving(llvm::Value *value) {
   2656     // If it's not an instruction, we don't need to save.
   2657     if (!isa<llvm::Instruction>(value)) return false;
   2658 
   2659     // If it's an instruction in the entry block, we don't need to save.
   2660     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
   2661     return (block != &block->getParent()->getEntryBlock());
   2662   }
   2663 
   2664   /// Try to save the given value.
   2665   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
   2666     if (!needsSaving(value)) return saved_type(value, false);
   2667 
   2668     // Otherwise we need an alloca.
   2669     llvm::Value *alloca =
   2670       CGF.CreateTempAlloca(value->getType(), "cond-cleanup.save");
   2671     CGF.Builder.CreateStore(value, alloca);
   2672 
   2673     return saved_type(alloca, true);
   2674   }
   2675 
   2676   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
   2677     if (!value.getInt()) return value.getPointer();
   2678     return CGF.Builder.CreateLoad(value.getPointer());
   2679   }
   2680 };
   2681 
   2682 /// A partial specialization of DominatingValue for llvm::Values that
   2683 /// might be llvm::Instructions.
   2684 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
   2685   typedef T *type;
   2686   static type restore(CodeGenFunction &CGF, saved_type value) {
   2687     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
   2688   }
   2689 };
   2690 
   2691 /// A specialization of DominatingValue for RValue.
   2692 template <> struct DominatingValue<RValue> {
   2693   typedef RValue type;
   2694   class saved_type {
   2695     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
   2696                 AggregateAddress, ComplexAddress };
   2697 
   2698     llvm::Value *Value;
   2699     Kind K;
   2700     saved_type(llvm::Value *v, Kind k) : Value(v), K(k) {}
   2701 
   2702   public:
   2703     static bool needsSaving(RValue value);
   2704     static saved_type save(CodeGenFunction &CGF, RValue value);
   2705     RValue restore(CodeGenFunction &CGF);
   2706 
   2707     // implementations in CGExprCXX.cpp
   2708   };
   2709 
   2710   static bool needsSaving(type value) {
   2711     return saved_type::needsSaving(value);
   2712   }
   2713   static saved_type save(CodeGenFunction &CGF, type value) {
   2714     return saved_type::save(CGF, value);
   2715   }
   2716   static type restore(CodeGenFunction &CGF, saved_type value) {
   2717     return value.restore(CGF);
   2718   }
   2719 };
   2720 
   2721 }  // end namespace CodeGen
   2722 }  // end namespace clang
   2723 
   2724 #endif
   2725