Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // These classes wrap the information about a call or function
     11 // definition used to handle ABI compliancy.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "CGCall.h"
     16 #include "CGCXXABI.h"
     17 #include "ABIInfo.h"
     18 #include "CodeGenFunction.h"
     19 #include "CodeGenModule.h"
     20 #include "TargetInfo.h"
     21 #include "clang/Basic/TargetInfo.h"
     22 #include "clang/AST/Decl.h"
     23 #include "clang/AST/DeclCXX.h"
     24 #include "clang/AST/DeclObjC.h"
     25 #include "clang/Frontend/CodeGenOptions.h"
     26 #include "llvm/Attributes.h"
     27 #include "llvm/Support/CallSite.h"
     28 #include "llvm/Target/TargetData.h"
     29 #include "llvm/InlineAsm.h"
     30 #include "llvm/Transforms/Utils/Local.h"
     31 using namespace clang;
     32 using namespace CodeGen;
     33 
     34 /***/
     35 
     36 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
     37   switch (CC) {
     38   default: return llvm::CallingConv::C;
     39   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
     40   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
     41   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
     42   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
     43   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
     44   // TODO: add support for CC_X86Pascal to llvm
     45   }
     46 }
     47 
     48 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
     49 /// qualification.
     50 /// FIXME: address space qualification?
     51 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
     52   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
     53   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
     54 }
     55 
     56 /// Returns the canonical formal type of the given C++ method.
     57 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
     58   return MD->getType()->getCanonicalTypeUnqualified()
     59            .getAs<FunctionProtoType>();
     60 }
     61 
     62 /// Returns the "extra-canonicalized" return type, which discards
     63 /// qualifiers on the return type.  Codegen doesn't care about them,
     64 /// and it makes ABI code a little easier to be able to assume that
     65 /// all parameter and return types are top-level unqualified.
     66 static CanQualType GetReturnType(QualType RetTy) {
     67   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
     68 }
     69 
     70 /// Arrange the argument and result information for a value of the given
     71 /// unprototyped freestanding function type.
     72 const CGFunctionInfo &
     73 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
     74   // When translating an unprototyped function type, always use a
     75   // variadic type.
     76   return arrangeLLVMFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
     77                                  ArrayRef<CanQualType>(),
     78                                  FTNP->getExtInfo(),
     79                                  RequiredArgs(0));
     80 }
     81 
     82 /// Arrange the LLVM function layout for a value of the given function
     83 /// type, on top of any implicit parameters already stored.  Use the
     84 /// given ExtInfo instead of the ExtInfo from the function type.
     85 static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT,
     86                                        SmallVectorImpl<CanQualType> &prefix,
     87                                              CanQual<FunctionProtoType> FTP,
     88                                               FunctionType::ExtInfo extInfo) {
     89   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
     90   // FIXME: Kill copy.
     91   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
     92     prefix.push_back(FTP->getArgType(i));
     93   CanQualType resultType = FTP->getResultType().getUnqualifiedType();
     94   return CGT.arrangeLLVMFunctionInfo(resultType, prefix, extInfo, required);
     95 }
     96 
     97 /// Arrange the argument and result information for a free function (i.e.
     98 /// not a C++ or ObjC instance method) of the given type.
     99 static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT,
    100                                       SmallVectorImpl<CanQualType> &prefix,
    101                                             CanQual<FunctionProtoType> FTP) {
    102   return arrangeLLVMFunctionInfo(CGT, prefix, FTP, FTP->getExtInfo());
    103 }
    104 
    105 /// Given the formal ext-info of a C++ instance method, adjust it
    106 /// according to the C++ ABI in effect.
    107 static void adjustCXXMethodInfo(CodeGenTypes &CGT,
    108                                 FunctionType::ExtInfo &extInfo,
    109                                 bool isVariadic) {
    110   if (extInfo.getCC() == CC_Default) {
    111     CallingConv CC = CGT.getContext().getDefaultCXXMethodCallConv(isVariadic);
    112     extInfo = extInfo.withCallingConv(CC);
    113   }
    114 }
    115 
    116 /// Arrange the argument and result information for a free function (i.e.
    117 /// not a C++ or ObjC instance method) of the given type.
    118 static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT,
    119                                       SmallVectorImpl<CanQualType> &prefix,
    120                                             CanQual<FunctionProtoType> FTP) {
    121   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
    122   adjustCXXMethodInfo(CGT, extInfo, FTP->isVariadic());
    123   return arrangeLLVMFunctionInfo(CGT, prefix, FTP, extInfo);
    124 }
    125 
    126 /// Arrange the argument and result information for a value of the
    127 /// given freestanding function type.
    128 const CGFunctionInfo &
    129 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
    130   SmallVector<CanQualType, 16> argTypes;
    131   return ::arrangeFreeFunctionType(*this, argTypes, FTP);
    132 }
    133 
    134 static CallingConv getCallingConventionForDecl(const Decl *D) {
    135   // Set the appropriate calling convention for the Function.
    136   if (D->hasAttr<StdCallAttr>())
    137     return CC_X86StdCall;
    138 
    139   if (D->hasAttr<FastCallAttr>())
    140     return CC_X86FastCall;
    141 
    142   if (D->hasAttr<ThisCallAttr>())
    143     return CC_X86ThisCall;
    144 
    145   if (D->hasAttr<PascalAttr>())
    146     return CC_X86Pascal;
    147 
    148   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
    149     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
    150 
    151   return CC_C;
    152 }
    153 
    154 /// Arrange the argument and result information for a call to an
    155 /// unknown C++ non-static member function of the given abstract type.
    156 /// The member function must be an ordinary function, i.e. not a
    157 /// constructor or destructor.
    158 const CGFunctionInfo &
    159 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
    160                                    const FunctionProtoType *FTP) {
    161   SmallVector<CanQualType, 16> argTypes;
    162 
    163   // Add the 'this' pointer.
    164   argTypes.push_back(GetThisType(Context, RD));
    165 
    166   return ::arrangeCXXMethodType(*this, argTypes,
    167               FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
    168 }
    169 
    170 /// Arrange the argument and result information for a declaration or
    171 /// definition of the given C++ non-static member function.  The
    172 /// member function must be an ordinary function, i.e. not a
    173 /// constructor or destructor.
    174 const CGFunctionInfo &
    175 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
    176   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
    177   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
    178 
    179   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
    180 
    181   if (MD->isInstance()) {
    182     // The abstract case is perfectly fine.
    183     return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr());
    184   }
    185 
    186   return arrangeFreeFunctionType(prototype);
    187 }
    188 
    189 /// Arrange the argument and result information for a declaration
    190 /// or definition to the given constructor variant.
    191 const CGFunctionInfo &
    192 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
    193                                                CXXCtorType ctorKind) {
    194   SmallVector<CanQualType, 16> argTypes;
    195   argTypes.push_back(GetThisType(Context, D->getParent()));
    196   CanQualType resultType = Context.VoidTy;
    197 
    198   TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
    199 
    200   CanQual<FunctionProtoType> FTP = GetFormalType(D);
    201 
    202   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
    203 
    204   // Add the formal parameters.
    205   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
    206     argTypes.push_back(FTP->getArgType(i));
    207 
    208   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
    209   adjustCXXMethodInfo(*this, extInfo, FTP->isVariadic());
    210   return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, required);
    211 }
    212 
    213 /// Arrange the argument and result information for a declaration,
    214 /// definition, or call to the given destructor variant.  It so
    215 /// happens that all three cases produce the same information.
    216 const CGFunctionInfo &
    217 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
    218                                    CXXDtorType dtorKind) {
    219   SmallVector<CanQualType, 2> argTypes;
    220   argTypes.push_back(GetThisType(Context, D->getParent()));
    221   CanQualType resultType = Context.VoidTy;
    222 
    223   TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
    224 
    225   CanQual<FunctionProtoType> FTP = GetFormalType(D);
    226   assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
    227   assert(FTP->isVariadic() == 0 && "dtor with formal parameters");
    228 
    229   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
    230   adjustCXXMethodInfo(*this, extInfo, false);
    231   return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo,
    232                                  RequiredArgs::All);
    233 }
    234 
    235 /// Arrange the argument and result information for the declaration or
    236 /// definition of the given function.
    237 const CGFunctionInfo &
    238 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
    239   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
    240     if (MD->isInstance())
    241       return arrangeCXXMethodDeclaration(MD);
    242 
    243   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
    244 
    245   assert(isa<FunctionType>(FTy));
    246 
    247   // When declaring a function without a prototype, always use a
    248   // non-variadic type.
    249   if (isa<FunctionNoProtoType>(FTy)) {
    250     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
    251     return arrangeLLVMFunctionInfo(noProto->getResultType(),
    252                                    ArrayRef<CanQualType>(),
    253                                    noProto->getExtInfo(),
    254                                    RequiredArgs::All);
    255   }
    256 
    257   assert(isa<FunctionProtoType>(FTy));
    258   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
    259 }
    260 
    261 /// Arrange the argument and result information for the declaration or
    262 /// definition of an Objective-C method.
    263 const CGFunctionInfo &
    264 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
    265   // It happens that this is the same as a call with no optional
    266   // arguments, except also using the formal 'self' type.
    267   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
    268 }
    269 
    270 /// Arrange the argument and result information for the function type
    271 /// through which to perform a send to the given Objective-C method,
    272 /// using the given receiver type.  The receiver type is not always
    273 /// the 'self' type of the method or even an Objective-C pointer type.
    274 /// This is *not* the right method for actually performing such a
    275 /// message send, due to the possibility of optional arguments.
    276 const CGFunctionInfo &
    277 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
    278                                               QualType receiverType) {
    279   SmallVector<CanQualType, 16> argTys;
    280   argTys.push_back(Context.getCanonicalParamType(receiverType));
    281   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
    282   // FIXME: Kill copy?
    283   for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
    284          e = MD->param_end(); i != e; ++i) {
    285     argTys.push_back(Context.getCanonicalParamType((*i)->getType()));
    286   }
    287 
    288   FunctionType::ExtInfo einfo;
    289   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
    290 
    291   if (getContext().getLangOpts().ObjCAutoRefCount &&
    292       MD->hasAttr<NSReturnsRetainedAttr>())
    293     einfo = einfo.withProducesResult(true);
    294 
    295   RequiredArgs required =
    296     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
    297 
    298   return arrangeLLVMFunctionInfo(GetReturnType(MD->getResultType()), argTys,
    299                                  einfo, required);
    300 }
    301 
    302 const CGFunctionInfo &
    303 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
    304   // FIXME: Do we need to handle ObjCMethodDecl?
    305   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
    306 
    307   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
    308     return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
    309 
    310   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
    311     return arrangeCXXDestructor(DD, GD.getDtorType());
    312 
    313   return arrangeFunctionDeclaration(FD);
    314 }
    315 
    316 /// Figure out the rules for calling a function with the given formal
    317 /// type using the given arguments.  The arguments are necessary
    318 /// because the function might be unprototyped, in which case it's
    319 /// target-dependent in crazy ways.
    320 const CGFunctionInfo &
    321 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
    322                                       const FunctionType *fnType) {
    323   RequiredArgs required = RequiredArgs::All;
    324   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
    325     if (proto->isVariadic())
    326       required = RequiredArgs(proto->getNumArgs());
    327   } else if (CGM.getTargetCodeGenInfo()
    328                .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) {
    329     required = RequiredArgs(0);
    330   }
    331 
    332   return arrangeFreeFunctionCall(fnType->getResultType(), args,
    333                                  fnType->getExtInfo(), required);
    334 }
    335 
    336 const CGFunctionInfo &
    337 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
    338                                       const CallArgList &args,
    339                                       FunctionType::ExtInfo info,
    340                                       RequiredArgs required) {
    341   // FIXME: Kill copy.
    342   SmallVector<CanQualType, 16> argTypes;
    343   for (CallArgList::const_iterator i = args.begin(), e = args.end();
    344        i != e; ++i)
    345     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
    346   return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
    347                                  required);
    348 }
    349 
    350 /// Arrange a call to a C++ method, passing the given arguments.
    351 const CGFunctionInfo &
    352 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
    353                                    const FunctionProtoType *FPT,
    354                                    RequiredArgs required) {
    355   // FIXME: Kill copy.
    356   SmallVector<CanQualType, 16> argTypes;
    357   for (CallArgList::const_iterator i = args.begin(), e = args.end();
    358        i != e; ++i)
    359     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
    360 
    361   FunctionType::ExtInfo info = FPT->getExtInfo();
    362   adjustCXXMethodInfo(*this, info, FPT->isVariadic());
    363   return arrangeLLVMFunctionInfo(GetReturnType(FPT->getResultType()),
    364                                  argTypes, info, required);
    365 }
    366 
    367 const CGFunctionInfo &
    368 CodeGenTypes::arrangeFunctionDeclaration(QualType resultType,
    369                                          const FunctionArgList &args,
    370                                          const FunctionType::ExtInfo &info,
    371                                          bool isVariadic) {
    372   // FIXME: Kill copy.
    373   SmallVector<CanQualType, 16> argTypes;
    374   for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
    375        i != e; ++i)
    376     argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
    377 
    378   RequiredArgs required =
    379     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
    380   return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
    381                                  required);
    382 }
    383 
    384 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
    385   return arrangeLLVMFunctionInfo(getContext().VoidTy, ArrayRef<CanQualType>(),
    386                                  FunctionType::ExtInfo(), RequiredArgs::All);
    387 }
    388 
    389 /// Arrange the argument and result information for an abstract value
    390 /// of a given function type.  This is the method which all of the
    391 /// above functions ultimately defer to.
    392 const CGFunctionInfo &
    393 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
    394                                       ArrayRef<CanQualType> argTypes,
    395                                       FunctionType::ExtInfo info,
    396                                       RequiredArgs required) {
    397 #ifndef NDEBUG
    398   for (ArrayRef<CanQualType>::const_iterator
    399          I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
    400     assert(I->isCanonicalAsParam());
    401 #endif
    402 
    403   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
    404 
    405   // Lookup or create unique function info.
    406   llvm::FoldingSetNodeID ID;
    407   CGFunctionInfo::Profile(ID, info, required, resultType, argTypes);
    408 
    409   void *insertPos = 0;
    410   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
    411   if (FI)
    412     return *FI;
    413 
    414   // Construct the function info.  We co-allocate the ArgInfos.
    415   FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required);
    416   FunctionInfos.InsertNode(FI, insertPos);
    417 
    418   bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
    419   assert(inserted && "Recursively being processed?");
    420 
    421   // Compute ABI information.
    422   getABIInfo().computeInfo(*FI);
    423 
    424   // Loop over all of the computed argument and return value info.  If any of
    425   // them are direct or extend without a specified coerce type, specify the
    426   // default now.
    427   ABIArgInfo &retInfo = FI->getReturnInfo();
    428   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0)
    429     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
    430 
    431   for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
    432        I != E; ++I)
    433     if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
    434       I->info.setCoerceToType(ConvertType(I->type));
    435 
    436   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
    437   assert(erased && "Not in set?");
    438 
    439   return *FI;
    440 }
    441 
    442 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
    443                                        const FunctionType::ExtInfo &info,
    444                                        CanQualType resultType,
    445                                        ArrayRef<CanQualType> argTypes,
    446                                        RequiredArgs required) {
    447   void *buffer = operator new(sizeof(CGFunctionInfo) +
    448                               sizeof(ArgInfo) * (argTypes.size() + 1));
    449   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
    450   FI->CallingConvention = llvmCC;
    451   FI->EffectiveCallingConvention = llvmCC;
    452   FI->ASTCallingConvention = info.getCC();
    453   FI->NoReturn = info.getNoReturn();
    454   FI->ReturnsRetained = info.getProducesResult();
    455   FI->Required = required;
    456   FI->HasRegParm = info.getHasRegParm();
    457   FI->RegParm = info.getRegParm();
    458   FI->NumArgs = argTypes.size();
    459   FI->getArgsBuffer()[0].type = resultType;
    460   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
    461     FI->getArgsBuffer()[i + 1].type = argTypes[i];
    462   return FI;
    463 }
    464 
    465 /***/
    466 
    467 void CodeGenTypes::GetExpandedTypes(QualType type,
    468                      SmallVectorImpl<llvm::Type*> &expandedTypes) {
    469   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
    470     uint64_t NumElts = AT->getSize().getZExtValue();
    471     for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
    472       GetExpandedTypes(AT->getElementType(), expandedTypes);
    473   } else if (const RecordType *RT = type->getAs<RecordType>()) {
    474     const RecordDecl *RD = RT->getDecl();
    475     assert(!RD->hasFlexibleArrayMember() &&
    476            "Cannot expand structure with flexible array.");
    477     if (RD->isUnion()) {
    478       // Unions can be here only in degenerative cases - all the fields are same
    479       // after flattening. Thus we have to use the "largest" field.
    480       const FieldDecl *LargestFD = 0;
    481       CharUnits UnionSize = CharUnits::Zero();
    482 
    483       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
    484            i != e; ++i) {
    485         const FieldDecl *FD = *i;
    486         assert(!FD->isBitField() &&
    487                "Cannot expand structure with bit-field members.");
    488         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
    489         if (UnionSize < FieldSize) {
    490           UnionSize = FieldSize;
    491           LargestFD = FD;
    492         }
    493       }
    494       if (LargestFD)
    495         GetExpandedTypes(LargestFD->getType(), expandedTypes);
    496     } else {
    497       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
    498            i != e; ++i) {
    499         assert(!i->isBitField() &&
    500                "Cannot expand structure with bit-field members.");
    501         GetExpandedTypes(i->getType(), expandedTypes);
    502       }
    503     }
    504   } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
    505     llvm::Type *EltTy = ConvertType(CT->getElementType());
    506     expandedTypes.push_back(EltTy);
    507     expandedTypes.push_back(EltTy);
    508   } else
    509     expandedTypes.push_back(ConvertType(type));
    510 }
    511 
    512 llvm::Function::arg_iterator
    513 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
    514                                     llvm::Function::arg_iterator AI) {
    515   assert(LV.isSimple() &&
    516          "Unexpected non-simple lvalue during struct expansion.");
    517 
    518   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
    519     unsigned NumElts = AT->getSize().getZExtValue();
    520     QualType EltTy = AT->getElementType();
    521     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
    522       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
    523       LValue LV = MakeAddrLValue(EltAddr, EltTy);
    524       AI = ExpandTypeFromArgs(EltTy, LV, AI);
    525     }
    526   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
    527     RecordDecl *RD = RT->getDecl();
    528     if (RD->isUnion()) {
    529       // Unions can be here only in degenerative cases - all the fields are same
    530       // after flattening. Thus we have to use the "largest" field.
    531       const FieldDecl *LargestFD = 0;
    532       CharUnits UnionSize = CharUnits::Zero();
    533 
    534       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
    535            i != e; ++i) {
    536         const FieldDecl *FD = *i;
    537         assert(!FD->isBitField() &&
    538                "Cannot expand structure with bit-field members.");
    539         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
    540         if (UnionSize < FieldSize) {
    541           UnionSize = FieldSize;
    542           LargestFD = FD;
    543         }
    544       }
    545       if (LargestFD) {
    546         // FIXME: What are the right qualifiers here?
    547         LValue SubLV = EmitLValueForField(LV, LargestFD);
    548         AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
    549       }
    550     } else {
    551       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
    552            i != e; ++i) {
    553         FieldDecl *FD = *i;
    554         QualType FT = FD->getType();
    555 
    556         // FIXME: What are the right qualifiers here?
    557         LValue SubLV = EmitLValueForField(LV, FD);
    558         AI = ExpandTypeFromArgs(FT, SubLV, AI);
    559       }
    560     }
    561   } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
    562     QualType EltTy = CT->getElementType();
    563     llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
    564     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
    565     llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
    566     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
    567   } else {
    568     EmitStoreThroughLValue(RValue::get(AI), LV);
    569     ++AI;
    570   }
    571 
    572   return AI;
    573 }
    574 
    575 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
    576 /// accessing some number of bytes out of it, try to gep into the struct to get
    577 /// at its inner goodness.  Dive as deep as possible without entering an element
    578 /// with an in-memory size smaller than DstSize.
    579 static llvm::Value *
    580 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
    581                                    llvm::StructType *SrcSTy,
    582                                    uint64_t DstSize, CodeGenFunction &CGF) {
    583   // We can't dive into a zero-element struct.
    584   if (SrcSTy->getNumElements() == 0) return SrcPtr;
    585 
    586   llvm::Type *FirstElt = SrcSTy->getElementType(0);
    587 
    588   // If the first elt is at least as large as what we're looking for, or if the
    589   // first element is the same size as the whole struct, we can enter it.
    590   uint64_t FirstEltSize =
    591     CGF.CGM.getTargetData().getTypeAllocSize(FirstElt);
    592   if (FirstEltSize < DstSize &&
    593       FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy))
    594     return SrcPtr;
    595 
    596   // GEP into the first element.
    597   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
    598 
    599   // If the first element is a struct, recurse.
    600   llvm::Type *SrcTy =
    601     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
    602   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
    603     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
    604 
    605   return SrcPtr;
    606 }
    607 
    608 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
    609 /// are either integers or pointers.  This does a truncation of the value if it
    610 /// is too large or a zero extension if it is too small.
    611 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
    612                                              llvm::Type *Ty,
    613                                              CodeGenFunction &CGF) {
    614   if (Val->getType() == Ty)
    615     return Val;
    616 
    617   if (isa<llvm::PointerType>(Val->getType())) {
    618     // If this is Pointer->Pointer avoid conversion to and from int.
    619     if (isa<llvm::PointerType>(Ty))
    620       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
    621 
    622     // Convert the pointer to an integer so we can play with its width.
    623     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
    624   }
    625 
    626   llvm::Type *DestIntTy = Ty;
    627   if (isa<llvm::PointerType>(DestIntTy))
    628     DestIntTy = CGF.IntPtrTy;
    629 
    630   if (Val->getType() != DestIntTy)
    631     Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
    632 
    633   if (isa<llvm::PointerType>(Ty))
    634     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
    635   return Val;
    636 }
    637 
    638 
    639 
    640 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
    641 /// a pointer to an object of type \arg Ty.
    642 ///
    643 /// This safely handles the case when the src type is smaller than the
    644 /// destination type; in this situation the values of bits which not
    645 /// present in the src are undefined.
    646 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
    647                                       llvm::Type *Ty,
    648                                       CodeGenFunction &CGF) {
    649   llvm::Type *SrcTy =
    650     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
    651 
    652   // If SrcTy and Ty are the same, just do a load.
    653   if (SrcTy == Ty)
    654     return CGF.Builder.CreateLoad(SrcPtr);
    655 
    656   uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty);
    657 
    658   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
    659     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
    660     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
    661   }
    662 
    663   uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
    664 
    665   // If the source and destination are integer or pointer types, just do an
    666   // extension or truncation to the desired type.
    667   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
    668       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
    669     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
    670     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
    671   }
    672 
    673   // If load is legal, just bitcast the src pointer.
    674   if (SrcSize >= DstSize) {
    675     // Generally SrcSize is never greater than DstSize, since this means we are
    676     // losing bits. However, this can happen in cases where the structure has
    677     // additional padding, for example due to a user specified alignment.
    678     //
    679     // FIXME: Assert that we aren't truncating non-padding bits when have access
    680     // to that information.
    681     llvm::Value *Casted =
    682       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
    683     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
    684     // FIXME: Use better alignment / avoid requiring aligned load.
    685     Load->setAlignment(1);
    686     return Load;
    687   }
    688 
    689   // Otherwise do coercion through memory. This is stupid, but
    690   // simple.
    691   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
    692   llvm::Value *Casted =
    693     CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy));
    694   llvm::StoreInst *Store =
    695     CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted);
    696   // FIXME: Use better alignment / avoid requiring aligned store.
    697   Store->setAlignment(1);
    698   return CGF.Builder.CreateLoad(Tmp);
    699 }
    700 
    701 // Function to store a first-class aggregate into memory.  We prefer to
    702 // store the elements rather than the aggregate to be more friendly to
    703 // fast-isel.
    704 // FIXME: Do we need to recurse here?
    705 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
    706                           llvm::Value *DestPtr, bool DestIsVolatile,
    707                           bool LowAlignment) {
    708   // Prefer scalar stores to first-class aggregate stores.
    709   if (llvm::StructType *STy =
    710         dyn_cast<llvm::StructType>(Val->getType())) {
    711     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    712       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
    713       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
    714       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
    715                                                     DestIsVolatile);
    716       if (LowAlignment)
    717         SI->setAlignment(1);
    718     }
    719   } else {
    720     llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
    721     if (LowAlignment)
    722       SI->setAlignment(1);
    723   }
    724 }
    725 
    726 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
    727 /// where the source and destination may have different types.
    728 ///
    729 /// This safely handles the case when the src type is larger than the
    730 /// destination type; the upper bits of the src will be lost.
    731 static void CreateCoercedStore(llvm::Value *Src,
    732                                llvm::Value *DstPtr,
    733                                bool DstIsVolatile,
    734                                CodeGenFunction &CGF) {
    735   llvm::Type *SrcTy = Src->getType();
    736   llvm::Type *DstTy =
    737     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
    738   if (SrcTy == DstTy) {
    739     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
    740     return;
    741   }
    742 
    743   uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
    744 
    745   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
    746     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
    747     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
    748   }
    749 
    750   // If the source and destination are integer or pointer types, just do an
    751   // extension or truncation to the desired type.
    752   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
    753       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
    754     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
    755     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
    756     return;
    757   }
    758 
    759   uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy);
    760 
    761   // If store is legal, just bitcast the src pointer.
    762   if (SrcSize <= DstSize) {
    763     llvm::Value *Casted =
    764       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
    765     // FIXME: Use better alignment / avoid requiring aligned store.
    766     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
    767   } else {
    768     // Otherwise do coercion through memory. This is stupid, but
    769     // simple.
    770 
    771     // Generally SrcSize is never greater than DstSize, since this means we are
    772     // losing bits. However, this can happen in cases where the structure has
    773     // additional padding, for example due to a user specified alignment.
    774     //
    775     // FIXME: Assert that we aren't truncating non-padding bits when have access
    776     // to that information.
    777     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
    778     CGF.Builder.CreateStore(Src, Tmp);
    779     llvm::Value *Casted =
    780       CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy));
    781     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
    782     // FIXME: Use better alignment / avoid requiring aligned load.
    783     Load->setAlignment(1);
    784     CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile);
    785   }
    786 }
    787 
    788 /***/
    789 
    790 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
    791   return FI.getReturnInfo().isIndirect();
    792 }
    793 
    794 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
    795   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
    796     switch (BT->getKind()) {
    797     default:
    798       return false;
    799     case BuiltinType::Float:
    800       return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Float);
    801     case BuiltinType::Double:
    802       return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Double);
    803     case BuiltinType::LongDouble:
    804       return getContext().getTargetInfo().useObjCFPRetForRealType(
    805         TargetInfo::LongDouble);
    806     }
    807   }
    808 
    809   return false;
    810 }
    811 
    812 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
    813   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
    814     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
    815       if (BT->getKind() == BuiltinType::LongDouble)
    816         return getContext().getTargetInfo().useObjCFP2RetForComplexLongDouble();
    817     }
    818   }
    819 
    820   return false;
    821 }
    822 
    823 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
    824   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
    825   return GetFunctionType(FI);
    826 }
    827 
    828 llvm::FunctionType *
    829 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
    830 
    831   bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
    832   assert(Inserted && "Recursively being processed?");
    833 
    834   SmallVector<llvm::Type*, 8> argTypes;
    835   llvm::Type *resultType = 0;
    836 
    837   const ABIArgInfo &retAI = FI.getReturnInfo();
    838   switch (retAI.getKind()) {
    839   case ABIArgInfo::Expand:
    840     llvm_unreachable("Invalid ABI kind for return argument");
    841 
    842   case ABIArgInfo::Extend:
    843   case ABIArgInfo::Direct:
    844     resultType = retAI.getCoerceToType();
    845     break;
    846 
    847   case ABIArgInfo::Indirect: {
    848     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
    849     resultType = llvm::Type::getVoidTy(getLLVMContext());
    850 
    851     QualType ret = FI.getReturnType();
    852     llvm::Type *ty = ConvertType(ret);
    853     unsigned addressSpace = Context.getTargetAddressSpace(ret);
    854     argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
    855     break;
    856   }
    857 
    858   case ABIArgInfo::Ignore:
    859     resultType = llvm::Type::getVoidTy(getLLVMContext());
    860     break;
    861   }
    862 
    863   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
    864          ie = FI.arg_end(); it != ie; ++it) {
    865     const ABIArgInfo &argAI = it->info;
    866 
    867     switch (argAI.getKind()) {
    868     case ABIArgInfo::Ignore:
    869       break;
    870 
    871     case ABIArgInfo::Indirect: {
    872       // indirect arguments are always on the stack, which is addr space #0.
    873       llvm::Type *LTy = ConvertTypeForMem(it->type);
    874       argTypes.push_back(LTy->getPointerTo());
    875       break;
    876     }
    877 
    878     case ABIArgInfo::Extend:
    879     case ABIArgInfo::Direct: {
    880       // Insert a padding type to ensure proper alignment.
    881       if (llvm::Type *PaddingType = argAI.getPaddingType())
    882         argTypes.push_back(PaddingType);
    883       // If the coerce-to type is a first class aggregate, flatten it.  Either
    884       // way is semantically identical, but fast-isel and the optimizer
    885       // generally likes scalar values better than FCAs.
    886       llvm::Type *argType = argAI.getCoerceToType();
    887       if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
    888         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
    889           argTypes.push_back(st->getElementType(i));
    890       } else {
    891         argTypes.push_back(argType);
    892       }
    893       break;
    894     }
    895 
    896     case ABIArgInfo::Expand:
    897       GetExpandedTypes(it->type, argTypes);
    898       break;
    899     }
    900   }
    901 
    902   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
    903   assert(Erased && "Not in set?");
    904 
    905   return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
    906 }
    907 
    908 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
    909   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
    910   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
    911 
    912   if (!isFuncTypeConvertible(FPT))
    913     return llvm::StructType::get(getLLVMContext());
    914 
    915   const CGFunctionInfo *Info;
    916   if (isa<CXXDestructorDecl>(MD))
    917     Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
    918   else
    919     Info = &arrangeCXXMethodDeclaration(MD);
    920   return GetFunctionType(*Info);
    921 }
    922 
    923 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
    924                                            const Decl *TargetDecl,
    925                                            AttributeListType &PAL,
    926                                            unsigned &CallingConv) {
    927   llvm::Attributes FuncAttrs;
    928   llvm::Attributes RetAttrs;
    929 
    930   CallingConv = FI.getEffectiveCallingConvention();
    931 
    932   if (FI.isNoReturn())
    933     FuncAttrs |= llvm::Attribute::NoReturn;
    934 
    935   // FIXME: handle sseregparm someday...
    936   if (TargetDecl) {
    937     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
    938       FuncAttrs |= llvm::Attribute::ReturnsTwice;
    939     if (TargetDecl->hasAttr<NoThrowAttr>())
    940       FuncAttrs |= llvm::Attribute::NoUnwind;
    941     else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
    942       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
    943       if (FPT && FPT->isNothrow(getContext()))
    944         FuncAttrs |= llvm::Attribute::NoUnwind;
    945     }
    946 
    947     if (TargetDecl->hasAttr<NoReturnAttr>())
    948       FuncAttrs |= llvm::Attribute::NoReturn;
    949 
    950     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
    951       FuncAttrs |= llvm::Attribute::ReturnsTwice;
    952 
    953     // 'const' and 'pure' attribute functions are also nounwind.
    954     if (TargetDecl->hasAttr<ConstAttr>()) {
    955       FuncAttrs |= llvm::Attribute::ReadNone;
    956       FuncAttrs |= llvm::Attribute::NoUnwind;
    957     } else if (TargetDecl->hasAttr<PureAttr>()) {
    958       FuncAttrs |= llvm::Attribute::ReadOnly;
    959       FuncAttrs |= llvm::Attribute::NoUnwind;
    960     }
    961     if (TargetDecl->hasAttr<MallocAttr>())
    962       RetAttrs |= llvm::Attribute::NoAlias;
    963   }
    964 
    965   if (CodeGenOpts.OptimizeSize)
    966     FuncAttrs |= llvm::Attribute::OptimizeForSize;
    967   if (CodeGenOpts.DisableRedZone)
    968     FuncAttrs |= llvm::Attribute::NoRedZone;
    969   if (CodeGenOpts.NoImplicitFloat)
    970     FuncAttrs |= llvm::Attribute::NoImplicitFloat;
    971 
    972   QualType RetTy = FI.getReturnType();
    973   unsigned Index = 1;
    974   const ABIArgInfo &RetAI = FI.getReturnInfo();
    975   switch (RetAI.getKind()) {
    976   case ABIArgInfo::Extend:
    977    if (RetTy->hasSignedIntegerRepresentation())
    978      RetAttrs |= llvm::Attribute::SExt;
    979    else if (RetTy->hasUnsignedIntegerRepresentation())
    980      RetAttrs |= llvm::Attribute::ZExt;
    981     break;
    982   case ABIArgInfo::Direct:
    983   case ABIArgInfo::Ignore:
    984     break;
    985 
    986   case ABIArgInfo::Indirect: {
    987     llvm::Attributes SRETAttrs = llvm::Attribute::StructRet;
    988     if (RetAI.getInReg())
    989       SRETAttrs |= llvm::Attribute::InReg;
    990     PAL.push_back(llvm::AttributeWithIndex::get(Index, SRETAttrs));
    991 
    992     ++Index;
    993     // sret disables readnone and readonly
    994     FuncAttrs &= ~(llvm::Attribute::ReadOnly |
    995                    llvm::Attribute::ReadNone);
    996     break;
    997   }
    998 
    999   case ABIArgInfo::Expand:
   1000     llvm_unreachable("Invalid ABI kind for return argument");
   1001   }
   1002 
   1003   if (RetAttrs)
   1004     PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs));
   1005 
   1006   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
   1007          ie = FI.arg_end(); it != ie; ++it) {
   1008     QualType ParamType = it->type;
   1009     const ABIArgInfo &AI = it->info;
   1010     llvm::Attributes Attrs;
   1011 
   1012     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
   1013     // have the corresponding parameter variable.  It doesn't make
   1014     // sense to do it here because parameters are so messed up.
   1015     switch (AI.getKind()) {
   1016     case ABIArgInfo::Extend:
   1017       if (ParamType->isSignedIntegerOrEnumerationType())
   1018         Attrs |= llvm::Attribute::SExt;
   1019       else if (ParamType->isUnsignedIntegerOrEnumerationType())
   1020         Attrs |= llvm::Attribute::ZExt;
   1021       // FALL THROUGH
   1022     case ABIArgInfo::Direct:
   1023       if (AI.getInReg())
   1024           Attrs |= llvm::Attribute::InReg;
   1025 
   1026       // FIXME: handle sseregparm someday...
   1027 
   1028       // Increment Index if there is padding.
   1029       Index += (AI.getPaddingType() != 0);
   1030 
   1031       if (llvm::StructType *STy =
   1032           dyn_cast<llvm::StructType>(AI.getCoerceToType())) {
   1033         unsigned Extra = STy->getNumElements()-1;  // 1 will be added below.
   1034         if (Attrs != llvm::Attribute::None)
   1035           for (unsigned I = 0; I < Extra; ++I)
   1036             PAL.push_back(llvm::AttributeWithIndex::get(Index + I, Attrs));
   1037         Index += Extra;
   1038       }
   1039       break;
   1040 
   1041     case ABIArgInfo::Indirect:
   1042       if (AI.getIndirectByVal())
   1043         Attrs |= llvm::Attribute::ByVal;
   1044 
   1045       Attrs |=
   1046         llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign());
   1047       // byval disables readnone and readonly.
   1048       FuncAttrs &= ~(llvm::Attribute::ReadOnly |
   1049                      llvm::Attribute::ReadNone);
   1050       break;
   1051 
   1052     case ABIArgInfo::Ignore:
   1053       // Skip increment, no matching LLVM parameter.
   1054       continue;
   1055 
   1056     case ABIArgInfo::Expand: {
   1057       SmallVector<llvm::Type*, 8> types;
   1058       // FIXME: This is rather inefficient. Do we ever actually need to do
   1059       // anything here? The result should be just reconstructed on the other
   1060       // side, so extension should be a non-issue.
   1061       getTypes().GetExpandedTypes(ParamType, types);
   1062       Index += types.size();
   1063       continue;
   1064     }
   1065     }
   1066 
   1067     if (Attrs)
   1068       PAL.push_back(llvm::AttributeWithIndex::get(Index, Attrs));
   1069     ++Index;
   1070   }
   1071   if (FuncAttrs)
   1072     PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs));
   1073 }
   1074 
   1075 /// An argument came in as a promoted argument; demote it back to its
   1076 /// declared type.
   1077 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
   1078                                          const VarDecl *var,
   1079                                          llvm::Value *value) {
   1080   llvm::Type *varType = CGF.ConvertType(var->getType());
   1081 
   1082   // This can happen with promotions that actually don't change the
   1083   // underlying type, like the enum promotions.
   1084   if (value->getType() == varType) return value;
   1085 
   1086   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
   1087          && "unexpected promotion type");
   1088 
   1089   if (isa<llvm::IntegerType>(varType))
   1090     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
   1091 
   1092   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
   1093 }
   1094 
   1095 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
   1096                                          llvm::Function *Fn,
   1097                                          const FunctionArgList &Args) {
   1098   // If this is an implicit-return-zero function, go ahead and
   1099   // initialize the return value.  TODO: it might be nice to have
   1100   // a more general mechanism for this that didn't require synthesized
   1101   // return statements.
   1102   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
   1103     if (FD->hasImplicitReturnZero()) {
   1104       QualType RetTy = FD->getResultType().getUnqualifiedType();
   1105       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
   1106       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
   1107       Builder.CreateStore(Zero, ReturnValue);
   1108     }
   1109   }
   1110 
   1111   // FIXME: We no longer need the types from FunctionArgList; lift up and
   1112   // simplify.
   1113 
   1114   // Emit allocs for param decls.  Give the LLVM Argument nodes names.
   1115   llvm::Function::arg_iterator AI = Fn->arg_begin();
   1116 
   1117   // Name the struct return argument.
   1118   if (CGM.ReturnTypeUsesSRet(FI)) {
   1119     AI->setName("agg.result");
   1120     AI->addAttr(llvm::Attribute::NoAlias);
   1121     ++AI;
   1122   }
   1123 
   1124   assert(FI.arg_size() == Args.size() &&
   1125          "Mismatch between function signature & arguments.");
   1126   unsigned ArgNo = 1;
   1127   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
   1128   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
   1129        i != e; ++i, ++info_it, ++ArgNo) {
   1130     const VarDecl *Arg = *i;
   1131     QualType Ty = info_it->type;
   1132     const ABIArgInfo &ArgI = info_it->info;
   1133 
   1134     bool isPromoted =
   1135       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
   1136 
   1137     switch (ArgI.getKind()) {
   1138     case ABIArgInfo::Indirect: {
   1139       llvm::Value *V = AI;
   1140 
   1141       if (hasAggregateLLVMType(Ty)) {
   1142         // Aggregates and complex variables are accessed by reference.  All we
   1143         // need to do is realign the value, if requested
   1144         if (ArgI.getIndirectRealign()) {
   1145           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
   1146 
   1147           // Copy from the incoming argument pointer to the temporary with the
   1148           // appropriate alignment.
   1149           //
   1150           // FIXME: We should have a common utility for generating an aggregate
   1151           // copy.
   1152           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
   1153           CharUnits Size = getContext().getTypeSizeInChars(Ty);
   1154           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
   1155           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
   1156           Builder.CreateMemCpy(Dst,
   1157                                Src,
   1158                                llvm::ConstantInt::get(IntPtrTy,
   1159                                                       Size.getQuantity()),
   1160                                ArgI.getIndirectAlign(),
   1161                                false);
   1162           V = AlignedTemp;
   1163         }
   1164       } else {
   1165         // Load scalar value from indirect argument.
   1166         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
   1167         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
   1168 
   1169         if (isPromoted)
   1170           V = emitArgumentDemotion(*this, Arg, V);
   1171       }
   1172       EmitParmDecl(*Arg, V, ArgNo);
   1173       break;
   1174     }
   1175 
   1176     case ABIArgInfo::Extend:
   1177     case ABIArgInfo::Direct: {
   1178       // Skip the dummy padding argument.
   1179       if (ArgI.getPaddingType())
   1180         ++AI;
   1181 
   1182       // If we have the trivial case, handle it with no muss and fuss.
   1183       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
   1184           ArgI.getCoerceToType() == ConvertType(Ty) &&
   1185           ArgI.getDirectOffset() == 0) {
   1186         assert(AI != Fn->arg_end() && "Argument mismatch!");
   1187         llvm::Value *V = AI;
   1188 
   1189         if (Arg->getType().isRestrictQualified())
   1190           AI->addAttr(llvm::Attribute::NoAlias);
   1191 
   1192         // Ensure the argument is the correct type.
   1193         if (V->getType() != ArgI.getCoerceToType())
   1194           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
   1195 
   1196         if (isPromoted)
   1197           V = emitArgumentDemotion(*this, Arg, V);
   1198 
   1199         EmitParmDecl(*Arg, V, ArgNo);
   1200         break;
   1201       }
   1202 
   1203       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
   1204 
   1205       // The alignment we need to use is the max of the requested alignment for
   1206       // the argument plus the alignment required by our access code below.
   1207       unsigned AlignmentToUse =
   1208         CGM.getTargetData().getABITypeAlignment(ArgI.getCoerceToType());
   1209       AlignmentToUse = std::max(AlignmentToUse,
   1210                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
   1211 
   1212       Alloca->setAlignment(AlignmentToUse);
   1213       llvm::Value *V = Alloca;
   1214       llvm::Value *Ptr = V;    // Pointer to store into.
   1215 
   1216       // If the value is offset in memory, apply the offset now.
   1217       if (unsigned Offs = ArgI.getDirectOffset()) {
   1218         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
   1219         Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
   1220         Ptr = Builder.CreateBitCast(Ptr,
   1221                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
   1222       }
   1223 
   1224       // If the coerce-to type is a first class aggregate, we flatten it and
   1225       // pass the elements. Either way is semantically identical, but fast-isel
   1226       // and the optimizer generally likes scalar values better than FCAs.
   1227       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
   1228       if (STy && STy->getNumElements() > 1) {
   1229         uint64_t SrcSize = CGM.getTargetData().getTypeAllocSize(STy);
   1230         llvm::Type *DstTy =
   1231           cast<llvm::PointerType>(Ptr->getType())->getElementType();
   1232         uint64_t DstSize = CGM.getTargetData().getTypeAllocSize(DstTy);
   1233 
   1234         if (SrcSize <= DstSize) {
   1235           Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
   1236 
   1237           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1238             assert(AI != Fn->arg_end() && "Argument mismatch!");
   1239             AI->setName(Arg->getName() + ".coerce" + Twine(i));
   1240             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
   1241             Builder.CreateStore(AI++, EltPtr);
   1242           }
   1243         } else {
   1244           llvm::AllocaInst *TempAlloca =
   1245             CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
   1246           TempAlloca->setAlignment(AlignmentToUse);
   1247           llvm::Value *TempV = TempAlloca;
   1248 
   1249           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   1250             assert(AI != Fn->arg_end() && "Argument mismatch!");
   1251             AI->setName(Arg->getName() + ".coerce" + Twine(i));
   1252             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
   1253             Builder.CreateStore(AI++, EltPtr);
   1254           }
   1255 
   1256           Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
   1257         }
   1258       } else {
   1259         // Simple case, just do a coerced store of the argument into the alloca.
   1260         assert(AI != Fn->arg_end() && "Argument mismatch!");
   1261         AI->setName(Arg->getName() + ".coerce");
   1262         CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
   1263       }
   1264 
   1265 
   1266       // Match to what EmitParmDecl is expecting for this type.
   1267       if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
   1268         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
   1269         if (isPromoted)
   1270           V = emitArgumentDemotion(*this, Arg, V);
   1271       }
   1272       EmitParmDecl(*Arg, V, ArgNo);
   1273       continue;  // Skip ++AI increment, already done.
   1274     }
   1275 
   1276     case ABIArgInfo::Expand: {
   1277       // If this structure was expanded into multiple arguments then
   1278       // we need to create a temporary and reconstruct it from the
   1279       // arguments.
   1280       llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
   1281       CharUnits Align = getContext().getDeclAlign(Arg);
   1282       Alloca->setAlignment(Align.getQuantity());
   1283       LValue LV = MakeAddrLValue(Alloca, Ty, Align);
   1284       llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
   1285       EmitParmDecl(*Arg, Alloca, ArgNo);
   1286 
   1287       // Name the arguments used in expansion and increment AI.
   1288       unsigned Index = 0;
   1289       for (; AI != End; ++AI, ++Index)
   1290         AI->setName(Arg->getName() + "." + Twine(Index));
   1291       continue;
   1292     }
   1293 
   1294     case ABIArgInfo::Ignore:
   1295       // Initialize the local variable appropriately.
   1296       if (hasAggregateLLVMType(Ty))
   1297         EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
   1298       else
   1299         EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
   1300                      ArgNo);
   1301 
   1302       // Skip increment, no matching LLVM parameter.
   1303       continue;
   1304     }
   1305 
   1306     ++AI;
   1307   }
   1308   assert(AI == Fn->arg_end() && "Argument mismatch!");
   1309 }
   1310 
   1311 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
   1312   while (insn->use_empty()) {
   1313     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
   1314     if (!bitcast) return;
   1315 
   1316     // This is "safe" because we would have used a ConstantExpr otherwise.
   1317     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
   1318     bitcast->eraseFromParent();
   1319   }
   1320 }
   1321 
   1322 /// Try to emit a fused autorelease of a return result.
   1323 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
   1324                                                     llvm::Value *result) {
   1325   // We must be immediately followed the cast.
   1326   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
   1327   if (BB->empty()) return 0;
   1328   if (&BB->back() != result) return 0;
   1329 
   1330   llvm::Type *resultType = result->getType();
   1331 
   1332   // result is in a BasicBlock and is therefore an Instruction.
   1333   llvm::Instruction *generator = cast<llvm::Instruction>(result);
   1334 
   1335   SmallVector<llvm::Instruction*,4> insnsToKill;
   1336 
   1337   // Look for:
   1338   //  %generator = bitcast %type1* %generator2 to %type2*
   1339   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
   1340     // We would have emitted this as a constant if the operand weren't
   1341     // an Instruction.
   1342     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
   1343 
   1344     // Require the generator to be immediately followed by the cast.
   1345     if (generator->getNextNode() != bitcast)
   1346       return 0;
   1347 
   1348     insnsToKill.push_back(bitcast);
   1349   }
   1350 
   1351   // Look for:
   1352   //   %generator = call i8* @objc_retain(i8* %originalResult)
   1353   // or
   1354   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
   1355   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
   1356   if (!call) return 0;
   1357 
   1358   bool doRetainAutorelease;
   1359 
   1360   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
   1361     doRetainAutorelease = true;
   1362   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
   1363                                           .objc_retainAutoreleasedReturnValue) {
   1364     doRetainAutorelease = false;
   1365 
   1366     // If we emitted an assembly marker for this call (and the
   1367     // ARCEntrypoints field should have been set if so), go looking
   1368     // for that call.  If we can't find it, we can't do this
   1369     // optimization.  But it should always be the immediately previous
   1370     // instruction, unless we needed bitcasts around the call.
   1371     if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
   1372       llvm::Instruction *prev = call->getPrevNode();
   1373       assert(prev);
   1374       if (isa<llvm::BitCastInst>(prev)) {
   1375         prev = prev->getPrevNode();
   1376         assert(prev);
   1377       }
   1378       assert(isa<llvm::CallInst>(prev));
   1379       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
   1380                CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
   1381       insnsToKill.push_back(prev);
   1382     }
   1383   } else {
   1384     return 0;
   1385   }
   1386 
   1387   result = call->getArgOperand(0);
   1388   insnsToKill.push_back(call);
   1389 
   1390   // Keep killing bitcasts, for sanity.  Note that we no longer care
   1391   // about precise ordering as long as there's exactly one use.
   1392   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
   1393     if (!bitcast->hasOneUse()) break;
   1394     insnsToKill.push_back(bitcast);
   1395     result = bitcast->getOperand(0);
   1396   }
   1397 
   1398   // Delete all the unnecessary instructions, from latest to earliest.
   1399   for (SmallVectorImpl<llvm::Instruction*>::iterator
   1400          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
   1401     (*i)->eraseFromParent();
   1402 
   1403   // Do the fused retain/autorelease if we were asked to.
   1404   if (doRetainAutorelease)
   1405     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
   1406 
   1407   // Cast back to the result type.
   1408   return CGF.Builder.CreateBitCast(result, resultType);
   1409 }
   1410 
   1411 /// If this is a +1 of the value of an immutable 'self', remove it.
   1412 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
   1413                                           llvm::Value *result) {
   1414   // This is only applicable to a method with an immutable 'self'.
   1415   const ObjCMethodDecl *method =
   1416     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
   1417   if (!method) return 0;
   1418   const VarDecl *self = method->getSelfDecl();
   1419   if (!self->getType().isConstQualified()) return 0;
   1420 
   1421   // Look for a retain call.
   1422   llvm::CallInst *retainCall =
   1423     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
   1424   if (!retainCall ||
   1425       retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
   1426     return 0;
   1427 
   1428   // Look for an ordinary load of 'self'.
   1429   llvm::Value *retainedValue = retainCall->getArgOperand(0);
   1430   llvm::LoadInst *load =
   1431     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
   1432   if (!load || load->isAtomic() || load->isVolatile() ||
   1433       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
   1434     return 0;
   1435 
   1436   // Okay!  Burn it all down.  This relies for correctness on the
   1437   // assumption that the retain is emitted as part of the return and
   1438   // that thereafter everything is used "linearly".
   1439   llvm::Type *resultType = result->getType();
   1440   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
   1441   assert(retainCall->use_empty());
   1442   retainCall->eraseFromParent();
   1443   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
   1444 
   1445   return CGF.Builder.CreateBitCast(load, resultType);
   1446 }
   1447 
   1448 /// Emit an ARC autorelease of the result of a function.
   1449 ///
   1450 /// \return the value to actually return from the function
   1451 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
   1452                                             llvm::Value *result) {
   1453   // If we're returning 'self', kill the initial retain.  This is a
   1454   // heuristic attempt to "encourage correctness" in the really unfortunate
   1455   // case where we have a return of self during a dealloc and we desperately
   1456   // need to avoid the possible autorelease.
   1457   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
   1458     return self;
   1459 
   1460   // At -O0, try to emit a fused retain/autorelease.
   1461   if (CGF.shouldUseFusedARCCalls())
   1462     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
   1463       return fused;
   1464 
   1465   return CGF.EmitARCAutoreleaseReturnValue(result);
   1466 }
   1467 
   1468 /// Heuristically search for a dominating store to the return-value slot.
   1469 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
   1470   // If there are multiple uses of the return-value slot, just check
   1471   // for something immediately preceding the IP.  Sometimes this can
   1472   // happen with how we generate implicit-returns; it can also happen
   1473   // with noreturn cleanups.
   1474   if (!CGF.ReturnValue->hasOneUse()) {
   1475     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
   1476     if (IP->empty()) return 0;
   1477     llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
   1478     if (!store) return 0;
   1479     if (store->getPointerOperand() != CGF.ReturnValue) return 0;
   1480     assert(!store->isAtomic() && !store->isVolatile()); // see below
   1481     return store;
   1482   }
   1483 
   1484   llvm::StoreInst *store =
   1485     dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back());
   1486   if (!store) return 0;
   1487 
   1488   // These aren't actually possible for non-coerced returns, and we
   1489   // only care about non-coerced returns on this code path.
   1490   assert(!store->isAtomic() && !store->isVolatile());
   1491 
   1492   // Now do a first-and-dirty dominance check: just walk up the
   1493   // single-predecessors chain from the current insertion point.
   1494   llvm::BasicBlock *StoreBB = store->getParent();
   1495   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
   1496   while (IP != StoreBB) {
   1497     if (!(IP = IP->getSinglePredecessor()))
   1498       return 0;
   1499   }
   1500 
   1501   // Okay, the store's basic block dominates the insertion point; we
   1502   // can do our thing.
   1503   return store;
   1504 }
   1505 
   1506 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) {
   1507   // Functions with no result always return void.
   1508   if (ReturnValue == 0) {
   1509     Builder.CreateRetVoid();
   1510     return;
   1511   }
   1512 
   1513   llvm::DebugLoc RetDbgLoc;
   1514   llvm::Value *RV = 0;
   1515   QualType RetTy = FI.getReturnType();
   1516   const ABIArgInfo &RetAI = FI.getReturnInfo();
   1517 
   1518   switch (RetAI.getKind()) {
   1519   case ABIArgInfo::Indirect: {
   1520     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
   1521     if (RetTy->isAnyComplexType()) {
   1522       ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
   1523       StoreComplexToAddr(RT, CurFn->arg_begin(), false);
   1524     } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
   1525       // Do nothing; aggregrates get evaluated directly into the destination.
   1526     } else {
   1527       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
   1528                         false, Alignment, RetTy);
   1529     }
   1530     break;
   1531   }
   1532 
   1533   case ABIArgInfo::Extend:
   1534   case ABIArgInfo::Direct:
   1535     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
   1536         RetAI.getDirectOffset() == 0) {
   1537       // The internal return value temp always will have pointer-to-return-type
   1538       // type, just do a load.
   1539 
   1540       // If there is a dominating store to ReturnValue, we can elide
   1541       // the load, zap the store, and usually zap the alloca.
   1542       if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
   1543         // Get the stored value and nuke the now-dead store.
   1544         RetDbgLoc = SI->getDebugLoc();
   1545         RV = SI->getValueOperand();
   1546         SI->eraseFromParent();
   1547 
   1548         // If that was the only use of the return value, nuke it as well now.
   1549         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
   1550           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
   1551           ReturnValue = 0;
   1552         }
   1553 
   1554       // Otherwise, we have to do a simple load.
   1555       } else {
   1556         RV = Builder.CreateLoad(ReturnValue);
   1557       }
   1558     } else {
   1559       llvm::Value *V = ReturnValue;
   1560       // If the value is offset in memory, apply the offset now.
   1561       if (unsigned Offs = RetAI.getDirectOffset()) {
   1562         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
   1563         V = Builder.CreateConstGEP1_32(V, Offs);
   1564         V = Builder.CreateBitCast(V,
   1565                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
   1566       }
   1567 
   1568       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
   1569     }
   1570 
   1571     // In ARC, end functions that return a retainable type with a call
   1572     // to objc_autoreleaseReturnValue.
   1573     if (AutoreleaseResult) {
   1574       assert(getLangOpts().ObjCAutoRefCount &&
   1575              !FI.isReturnsRetained() &&
   1576              RetTy->isObjCRetainableType());
   1577       RV = emitAutoreleaseOfResult(*this, RV);
   1578     }
   1579 
   1580     break;
   1581 
   1582   case ABIArgInfo::Ignore:
   1583     break;
   1584 
   1585   case ABIArgInfo::Expand:
   1586     llvm_unreachable("Invalid ABI kind for return argument");
   1587   }
   1588 
   1589   llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
   1590   if (!RetDbgLoc.isUnknown())
   1591     Ret->setDebugLoc(RetDbgLoc);
   1592 }
   1593 
   1594 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
   1595                                           const VarDecl *param) {
   1596   // StartFunction converted the ABI-lowered parameter(s) into a
   1597   // local alloca.  We need to turn that into an r-value suitable
   1598   // for EmitCall.
   1599   llvm::Value *local = GetAddrOfLocalVar(param);
   1600 
   1601   QualType type = param->getType();
   1602 
   1603   // For the most part, we just need to load the alloca, except:
   1604   // 1) aggregate r-values are actually pointers to temporaries, and
   1605   // 2) references to aggregates are pointers directly to the aggregate.
   1606   // I don't know why references to non-aggregates are different here.
   1607   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
   1608     if (hasAggregateLLVMType(ref->getPointeeType()))
   1609       return args.add(RValue::getAggregate(local), type);
   1610 
   1611     // Locals which are references to scalars are represented
   1612     // with allocas holding the pointer.
   1613     return args.add(RValue::get(Builder.CreateLoad(local)), type);
   1614   }
   1615 
   1616   if (type->isAnyComplexType()) {
   1617     ComplexPairTy complex = LoadComplexFromAddr(local, /*volatile*/ false);
   1618     return args.add(RValue::getComplex(complex), type);
   1619   }
   1620 
   1621   if (hasAggregateLLVMType(type))
   1622     return args.add(RValue::getAggregate(local), type);
   1623 
   1624   unsigned alignment = getContext().getDeclAlign(param).getQuantity();
   1625   llvm::Value *value = EmitLoadOfScalar(local, false, alignment, type);
   1626   return args.add(RValue::get(value), type);
   1627 }
   1628 
   1629 static bool isProvablyNull(llvm::Value *addr) {
   1630   return isa<llvm::ConstantPointerNull>(addr);
   1631 }
   1632 
   1633 static bool isProvablyNonNull(llvm::Value *addr) {
   1634   return isa<llvm::AllocaInst>(addr);
   1635 }
   1636 
   1637 /// Emit the actual writing-back of a writeback.
   1638 static void emitWriteback(CodeGenFunction &CGF,
   1639                           const CallArgList::Writeback &writeback) {
   1640   llvm::Value *srcAddr = writeback.Address;
   1641   assert(!isProvablyNull(srcAddr) &&
   1642          "shouldn't have writeback for provably null argument");
   1643 
   1644   llvm::BasicBlock *contBB = 0;
   1645 
   1646   // If the argument wasn't provably non-null, we need to null check
   1647   // before doing the store.
   1648   bool provablyNonNull = isProvablyNonNull(srcAddr);
   1649   if (!provablyNonNull) {
   1650     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
   1651     contBB = CGF.createBasicBlock("icr.done");
   1652 
   1653     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
   1654     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
   1655     CGF.EmitBlock(writebackBB);
   1656   }
   1657 
   1658   // Load the value to writeback.
   1659   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
   1660 
   1661   // Cast it back, in case we're writing an id to a Foo* or something.
   1662   value = CGF.Builder.CreateBitCast(value,
   1663                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
   1664                             "icr.writeback-cast");
   1665 
   1666   // Perform the writeback.
   1667   QualType srcAddrType = writeback.AddressType;
   1668   CGF.EmitStoreThroughLValue(RValue::get(value),
   1669                              CGF.MakeAddrLValue(srcAddr, srcAddrType));
   1670 
   1671   // Jump to the continuation block.
   1672   if (!provablyNonNull)
   1673     CGF.EmitBlock(contBB);
   1674 }
   1675 
   1676 static void emitWritebacks(CodeGenFunction &CGF,
   1677                            const CallArgList &args) {
   1678   for (CallArgList::writeback_iterator
   1679          i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
   1680     emitWriteback(CGF, *i);
   1681 }
   1682 
   1683 /// Emit an argument that's being passed call-by-writeback.  That is,
   1684 /// we are passing the address of
   1685 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
   1686                              const ObjCIndirectCopyRestoreExpr *CRE) {
   1687   llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
   1688 
   1689   // The dest and src types don't necessarily match in LLVM terms
   1690   // because of the crazy ObjC compatibility rules.
   1691 
   1692   llvm::PointerType *destType =
   1693     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
   1694 
   1695   // If the address is a constant null, just pass the appropriate null.
   1696   if (isProvablyNull(srcAddr)) {
   1697     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
   1698              CRE->getType());
   1699     return;
   1700   }
   1701 
   1702   QualType srcAddrType =
   1703     CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
   1704 
   1705   // Create the temporary.
   1706   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
   1707                                            "icr.temp");
   1708 
   1709   // Zero-initialize it if we're not doing a copy-initialization.
   1710   bool shouldCopy = CRE->shouldCopy();
   1711   if (!shouldCopy) {
   1712     llvm::Value *null =
   1713       llvm::ConstantPointerNull::get(
   1714         cast<llvm::PointerType>(destType->getElementType()));
   1715     CGF.Builder.CreateStore(null, temp);
   1716   }
   1717 
   1718   llvm::BasicBlock *contBB = 0;
   1719 
   1720   // If the address is *not* known to be non-null, we need to switch.
   1721   llvm::Value *finalArgument;
   1722 
   1723   bool provablyNonNull = isProvablyNonNull(srcAddr);
   1724   if (provablyNonNull) {
   1725     finalArgument = temp;
   1726   } else {
   1727     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
   1728 
   1729     finalArgument = CGF.Builder.CreateSelect(isNull,
   1730                                    llvm::ConstantPointerNull::get(destType),
   1731                                              temp, "icr.argument");
   1732 
   1733     // If we need to copy, then the load has to be conditional, which
   1734     // means we need control flow.
   1735     if (shouldCopy) {
   1736       contBB = CGF.createBasicBlock("icr.cont");
   1737       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
   1738       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
   1739       CGF.EmitBlock(copyBB);
   1740     }
   1741   }
   1742 
   1743   // Perform a copy if necessary.
   1744   if (shouldCopy) {
   1745     LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
   1746     RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
   1747     assert(srcRV.isScalar());
   1748 
   1749     llvm::Value *src = srcRV.getScalarVal();
   1750     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
   1751                                     "icr.cast");
   1752 
   1753     // Use an ordinary store, not a store-to-lvalue.
   1754     CGF.Builder.CreateStore(src, temp);
   1755   }
   1756 
   1757   // Finish the control flow if we needed it.
   1758   if (shouldCopy && !provablyNonNull)
   1759     CGF.EmitBlock(contBB);
   1760 
   1761   args.addWriteback(srcAddr, srcAddrType, temp);
   1762   args.add(RValue::get(finalArgument), CRE->getType());
   1763 }
   1764 
   1765 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
   1766                                   QualType type) {
   1767   if (const ObjCIndirectCopyRestoreExpr *CRE
   1768         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
   1769     assert(getContext().getLangOpts().ObjCAutoRefCount);
   1770     assert(getContext().hasSameType(E->getType(), type));
   1771     return emitWritebackArg(*this, args, CRE);
   1772   }
   1773 
   1774   assert(type->isReferenceType() == E->isGLValue() &&
   1775          "reference binding to unmaterialized r-value!");
   1776 
   1777   if (E->isGLValue()) {
   1778     assert(E->getObjectKind() == OK_Ordinary);
   1779     return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0),
   1780                     type);
   1781   }
   1782 
   1783   if (hasAggregateLLVMType(type) && !E->getType()->isAnyComplexType() &&
   1784       isa<ImplicitCastExpr>(E) &&
   1785       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
   1786     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
   1787     assert(L.isSimple());
   1788     args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
   1789     return;
   1790   }
   1791 
   1792   args.add(EmitAnyExprToTemp(E), type);
   1793 }
   1794 
   1795 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
   1796 // optimizer it can aggressively ignore unwind edges.
   1797 void
   1798 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
   1799   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
   1800       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
   1801     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
   1802                       CGM.getNoObjCARCExceptionsMetadata());
   1803 }
   1804 
   1805 /// Emits a call or invoke instruction to the given function, depending
   1806 /// on the current state of the EH stack.
   1807 llvm::CallSite
   1808 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
   1809                                   ArrayRef<llvm::Value *> Args,
   1810                                   const Twine &Name) {
   1811   llvm::BasicBlock *InvokeDest = getInvokeDest();
   1812 
   1813   llvm::Instruction *Inst;
   1814   if (!InvokeDest)
   1815     Inst = Builder.CreateCall(Callee, Args, Name);
   1816   else {
   1817     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
   1818     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
   1819     EmitBlock(ContBB);
   1820   }
   1821 
   1822   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
   1823   // optimizer it can aggressively ignore unwind edges.
   1824   if (CGM.getLangOpts().ObjCAutoRefCount)
   1825     AddObjCARCExceptionMetadata(Inst);
   1826 
   1827   return Inst;
   1828 }
   1829 
   1830 llvm::CallSite
   1831 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
   1832                                   const Twine &Name) {
   1833   return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
   1834 }
   1835 
   1836 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
   1837                             llvm::FunctionType *FTy) {
   1838   if (ArgNo < FTy->getNumParams())
   1839     assert(Elt->getType() == FTy->getParamType(ArgNo));
   1840   else
   1841     assert(FTy->isVarArg());
   1842   ++ArgNo;
   1843 }
   1844 
   1845 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
   1846                                        SmallVector<llvm::Value*,16> &Args,
   1847                                        llvm::FunctionType *IRFuncTy) {
   1848   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
   1849     unsigned NumElts = AT->getSize().getZExtValue();
   1850     QualType EltTy = AT->getElementType();
   1851     llvm::Value *Addr = RV.getAggregateAddr();
   1852     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
   1853       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
   1854       LValue LV = MakeAddrLValue(EltAddr, EltTy);
   1855       RValue EltRV;
   1856       if (EltTy->isAnyComplexType())
   1857         // FIXME: Volatile?
   1858         EltRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false));
   1859       else if (CodeGenFunction::hasAggregateLLVMType(EltTy))
   1860         EltRV = LV.asAggregateRValue();
   1861       else
   1862         EltRV = EmitLoadOfLValue(LV);
   1863       ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
   1864     }
   1865   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
   1866     RecordDecl *RD = RT->getDecl();
   1867     assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
   1868     LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
   1869 
   1870     if (RD->isUnion()) {
   1871       const FieldDecl *LargestFD = 0;
   1872       CharUnits UnionSize = CharUnits::Zero();
   1873 
   1874       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
   1875            i != e; ++i) {
   1876         const FieldDecl *FD = *i;
   1877         assert(!FD->isBitField() &&
   1878                "Cannot expand structure with bit-field members.");
   1879         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
   1880         if (UnionSize < FieldSize) {
   1881           UnionSize = FieldSize;
   1882           LargestFD = FD;
   1883         }
   1884       }
   1885       if (LargestFD) {
   1886         RValue FldRV = EmitRValueForField(LV, LargestFD);
   1887         ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy);
   1888       }
   1889     } else {
   1890       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
   1891            i != e; ++i) {
   1892         FieldDecl *FD = *i;
   1893 
   1894         RValue FldRV = EmitRValueForField(LV, FD);
   1895         ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy);
   1896       }
   1897     }
   1898   } else if (Ty->isAnyComplexType()) {
   1899     ComplexPairTy CV = RV.getComplexVal();
   1900     Args.push_back(CV.first);
   1901     Args.push_back(CV.second);
   1902   } else {
   1903     assert(RV.isScalar() &&
   1904            "Unexpected non-scalar rvalue during struct expansion.");
   1905 
   1906     // Insert a bitcast as needed.
   1907     llvm::Value *V = RV.getScalarVal();
   1908     if (Args.size() < IRFuncTy->getNumParams() &&
   1909         V->getType() != IRFuncTy->getParamType(Args.size()))
   1910       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
   1911 
   1912     Args.push_back(V);
   1913   }
   1914 }
   1915 
   1916 
   1917 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
   1918                                  llvm::Value *Callee,
   1919                                  ReturnValueSlot ReturnValue,
   1920                                  const CallArgList &CallArgs,
   1921                                  const Decl *TargetDecl,
   1922                                  llvm::Instruction **callOrInvoke) {
   1923   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
   1924   SmallVector<llvm::Value*, 16> Args;
   1925 
   1926   // Handle struct-return functions by passing a pointer to the
   1927   // location that we would like to return into.
   1928   QualType RetTy = CallInfo.getReturnType();
   1929   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
   1930 
   1931   // IRArgNo - Keep track of the argument number in the callee we're looking at.
   1932   unsigned IRArgNo = 0;
   1933   llvm::FunctionType *IRFuncTy =
   1934     cast<llvm::FunctionType>(
   1935                   cast<llvm::PointerType>(Callee->getType())->getElementType());
   1936 
   1937   // If the call returns a temporary with struct return, create a temporary
   1938   // alloca to hold the result, unless one is given to us.
   1939   if (CGM.ReturnTypeUsesSRet(CallInfo)) {
   1940     llvm::Value *Value = ReturnValue.getValue();
   1941     if (!Value)
   1942       Value = CreateMemTemp(RetTy);
   1943     Args.push_back(Value);
   1944     checkArgMatches(Value, IRArgNo, IRFuncTy);
   1945   }
   1946 
   1947   assert(CallInfo.arg_size() == CallArgs.size() &&
   1948          "Mismatch between function signature & arguments.");
   1949   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
   1950   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
   1951        I != E; ++I, ++info_it) {
   1952     const ABIArgInfo &ArgInfo = info_it->info;
   1953     RValue RV = I->RV;
   1954 
   1955     unsigned TypeAlign =
   1956       getContext().getTypeAlignInChars(I->Ty).getQuantity();
   1957     switch (ArgInfo.getKind()) {
   1958     case ABIArgInfo::Indirect: {
   1959       if (RV.isScalar() || RV.isComplex()) {
   1960         // Make a temporary alloca to pass the argument.
   1961         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
   1962         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
   1963           AI->setAlignment(ArgInfo.getIndirectAlign());
   1964         Args.push_back(AI);
   1965 
   1966         if (RV.isScalar())
   1967           EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false,
   1968                             TypeAlign, I->Ty);
   1969         else
   1970           StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
   1971 
   1972         // Validate argument match.
   1973         checkArgMatches(AI, IRArgNo, IRFuncTy);
   1974       } else {
   1975         // We want to avoid creating an unnecessary temporary+copy here;
   1976         // however, we need one in two cases:
   1977         // 1. If the argument is not byval, and we are required to copy the
   1978         //    source.  (This case doesn't occur on any common architecture.)
   1979         // 2. If the argument is byval, RV is not sufficiently aligned, and
   1980         //    we cannot force it to be sufficiently aligned.
   1981         llvm::Value *Addr = RV.getAggregateAddr();
   1982         unsigned Align = ArgInfo.getIndirectAlign();
   1983         const llvm::TargetData *TD = &CGM.getTargetData();
   1984         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
   1985             (ArgInfo.getIndirectByVal() && TypeAlign < Align &&
   1986              llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align)) {
   1987           // Create an aligned temporary, and copy to it.
   1988           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
   1989           if (Align > AI->getAlignment())
   1990             AI->setAlignment(Align);
   1991           Args.push_back(AI);
   1992           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
   1993 
   1994           // Validate argument match.
   1995           checkArgMatches(AI, IRArgNo, IRFuncTy);
   1996         } else {
   1997           // Skip the extra memcpy call.
   1998           Args.push_back(Addr);
   1999 
   2000           // Validate argument match.
   2001           checkArgMatches(Addr, IRArgNo, IRFuncTy);
   2002         }
   2003       }
   2004       break;
   2005     }
   2006 
   2007     case ABIArgInfo::Ignore:
   2008       break;
   2009 
   2010     case ABIArgInfo::Extend:
   2011     case ABIArgInfo::Direct: {
   2012       // Insert a padding argument to ensure proper alignment.
   2013       if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
   2014         Args.push_back(llvm::UndefValue::get(PaddingType));
   2015         ++IRArgNo;
   2016       }
   2017 
   2018       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
   2019           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
   2020           ArgInfo.getDirectOffset() == 0) {
   2021         llvm::Value *V;
   2022         if (RV.isScalar())
   2023           V = RV.getScalarVal();
   2024         else
   2025           V = Builder.CreateLoad(RV.getAggregateAddr());
   2026 
   2027         // If the argument doesn't match, perform a bitcast to coerce it.  This
   2028         // can happen due to trivial type mismatches.
   2029         if (IRArgNo < IRFuncTy->getNumParams() &&
   2030             V->getType() != IRFuncTy->getParamType(IRArgNo))
   2031           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
   2032         Args.push_back(V);
   2033 
   2034         checkArgMatches(V, IRArgNo, IRFuncTy);
   2035         break;
   2036       }
   2037 
   2038       // FIXME: Avoid the conversion through memory if possible.
   2039       llvm::Value *SrcPtr;
   2040       if (RV.isScalar()) {
   2041         SrcPtr = CreateMemTemp(I->Ty, "coerce");
   2042         EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, TypeAlign, I->Ty);
   2043       } else if (RV.isComplex()) {
   2044         SrcPtr = CreateMemTemp(I->Ty, "coerce");
   2045         StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false);
   2046       } else
   2047         SrcPtr = RV.getAggregateAddr();
   2048 
   2049       // If the value is offset in memory, apply the offset now.
   2050       if (unsigned Offs = ArgInfo.getDirectOffset()) {
   2051         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
   2052         SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
   2053         SrcPtr = Builder.CreateBitCast(SrcPtr,
   2054                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
   2055 
   2056       }
   2057 
   2058       // If the coerce-to type is a first class aggregate, we flatten it and
   2059       // pass the elements. Either way is semantically identical, but fast-isel
   2060       // and the optimizer generally likes scalar values better than FCAs.
   2061       if (llvm::StructType *STy =
   2062             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
   2063         SrcPtr = Builder.CreateBitCast(SrcPtr,
   2064                                        llvm::PointerType::getUnqual(STy));
   2065         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
   2066           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
   2067           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
   2068           // We don't know what we're loading from.
   2069           LI->setAlignment(1);
   2070           Args.push_back(LI);
   2071 
   2072           // Validate argument match.
   2073           checkArgMatches(LI, IRArgNo, IRFuncTy);
   2074         }
   2075       } else {
   2076         // In the simple case, just pass the coerced loaded value.
   2077         Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
   2078                                          *this));
   2079 
   2080         // Validate argument match.
   2081         checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
   2082       }
   2083 
   2084       break;
   2085     }
   2086 
   2087     case ABIArgInfo::Expand:
   2088       ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
   2089       IRArgNo = Args.size();
   2090       break;
   2091     }
   2092   }
   2093 
   2094   // If the callee is a bitcast of a function to a varargs pointer to function
   2095   // type, check to see if we can remove the bitcast.  This handles some cases
   2096   // with unprototyped functions.
   2097   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
   2098     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
   2099       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
   2100       llvm::FunctionType *CurFT =
   2101         cast<llvm::FunctionType>(CurPT->getElementType());
   2102       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
   2103 
   2104       if (CE->getOpcode() == llvm::Instruction::BitCast &&
   2105           ActualFT->getReturnType() == CurFT->getReturnType() &&
   2106           ActualFT->getNumParams() == CurFT->getNumParams() &&
   2107           ActualFT->getNumParams() == Args.size() &&
   2108           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
   2109         bool ArgsMatch = true;
   2110         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
   2111           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
   2112             ArgsMatch = false;
   2113             break;
   2114           }
   2115 
   2116         // Strip the cast if we can get away with it.  This is a nice cleanup,
   2117         // but also allows us to inline the function at -O0 if it is marked
   2118         // always_inline.
   2119         if (ArgsMatch)
   2120           Callee = CalleeF;
   2121       }
   2122     }
   2123 
   2124   unsigned CallingConv;
   2125   CodeGen::AttributeListType AttributeList;
   2126   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv);
   2127   llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList);
   2128 
   2129   llvm::BasicBlock *InvokeDest = 0;
   2130   if (!(Attrs.getFnAttributes() & llvm::Attribute::NoUnwind))
   2131     InvokeDest = getInvokeDest();
   2132 
   2133   llvm::CallSite CS;
   2134   if (!InvokeDest) {
   2135     CS = Builder.CreateCall(Callee, Args);
   2136   } else {
   2137     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
   2138     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
   2139     EmitBlock(Cont);
   2140   }
   2141   if (callOrInvoke)
   2142     *callOrInvoke = CS.getInstruction();
   2143 
   2144   CS.setAttributes(Attrs);
   2145   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
   2146 
   2147   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
   2148   // optimizer it can aggressively ignore unwind edges.
   2149   if (CGM.getLangOpts().ObjCAutoRefCount)
   2150     AddObjCARCExceptionMetadata(CS.getInstruction());
   2151 
   2152   // If the call doesn't return, finish the basic block and clear the
   2153   // insertion point; this allows the rest of IRgen to discard
   2154   // unreachable code.
   2155   if (CS.doesNotReturn()) {
   2156     Builder.CreateUnreachable();
   2157     Builder.ClearInsertionPoint();
   2158 
   2159     // FIXME: For now, emit a dummy basic block because expr emitters in
   2160     // generally are not ready to handle emitting expressions at unreachable
   2161     // points.
   2162     EnsureInsertPoint();
   2163 
   2164     // Return a reasonable RValue.
   2165     return GetUndefRValue(RetTy);
   2166   }
   2167 
   2168   llvm::Instruction *CI = CS.getInstruction();
   2169   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
   2170     CI->setName("call");
   2171 
   2172   // Emit any writebacks immediately.  Arguably this should happen
   2173   // after any return-value munging.
   2174   if (CallArgs.hasWritebacks())
   2175     emitWritebacks(*this, CallArgs);
   2176 
   2177   switch (RetAI.getKind()) {
   2178   case ABIArgInfo::Indirect: {
   2179     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
   2180     if (RetTy->isAnyComplexType())
   2181       return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
   2182     if (CodeGenFunction::hasAggregateLLVMType(RetTy))
   2183       return RValue::getAggregate(Args[0]);
   2184     return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy));
   2185   }
   2186 
   2187   case ABIArgInfo::Ignore:
   2188     // If we are ignoring an argument that had a result, make sure to
   2189     // construct the appropriate return value for our caller.
   2190     return GetUndefRValue(RetTy);
   2191 
   2192   case ABIArgInfo::Extend:
   2193   case ABIArgInfo::Direct: {
   2194     llvm::Type *RetIRTy = ConvertType(RetTy);
   2195     if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
   2196       if (RetTy->isAnyComplexType()) {
   2197         llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
   2198         llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
   2199         return RValue::getComplex(std::make_pair(Real, Imag));
   2200       }
   2201       if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
   2202         llvm::Value *DestPtr = ReturnValue.getValue();
   2203         bool DestIsVolatile = ReturnValue.isVolatile();
   2204 
   2205         if (!DestPtr) {
   2206           DestPtr = CreateMemTemp(RetTy, "agg.tmp");
   2207           DestIsVolatile = false;
   2208         }
   2209         BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
   2210         return RValue::getAggregate(DestPtr);
   2211       }
   2212 
   2213       // If the argument doesn't match, perform a bitcast to coerce it.  This
   2214       // can happen due to trivial type mismatches.
   2215       llvm::Value *V = CI;
   2216       if (V->getType() != RetIRTy)
   2217         V = Builder.CreateBitCast(V, RetIRTy);
   2218       return RValue::get(V);
   2219     }
   2220 
   2221     llvm::Value *DestPtr = ReturnValue.getValue();
   2222     bool DestIsVolatile = ReturnValue.isVolatile();
   2223 
   2224     if (!DestPtr) {
   2225       DestPtr = CreateMemTemp(RetTy, "coerce");
   2226       DestIsVolatile = false;
   2227     }
   2228 
   2229     // If the value is offset in memory, apply the offset now.
   2230     llvm::Value *StorePtr = DestPtr;
   2231     if (unsigned Offs = RetAI.getDirectOffset()) {
   2232       StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
   2233       StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
   2234       StorePtr = Builder.CreateBitCast(StorePtr,
   2235                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
   2236     }
   2237     CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
   2238 
   2239     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
   2240     if (RetTy->isAnyComplexType())
   2241       return RValue::getComplex(LoadComplexFromAddr(DestPtr, false));
   2242     if (CodeGenFunction::hasAggregateLLVMType(RetTy))
   2243       return RValue::getAggregate(DestPtr);
   2244     return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy));
   2245   }
   2246 
   2247   case ABIArgInfo::Expand:
   2248     llvm_unreachable("Invalid ABI kind for return argument");
   2249   }
   2250 
   2251   llvm_unreachable("Unhandled ABIArgInfo::Kind");
   2252 }
   2253 
   2254 /* VarArg handling */
   2255 
   2256 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
   2257   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
   2258 }
   2259