Home | History | Annotate | Download | only in CodeGen
      1 //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the LiveInterval analysis pass which is used
     11 // by the Linear Scan Register allocator. This pass linearizes the
     12 // basic blocks of the function in DFS order and uses the
     13 // LiveVariables pass to conservatively compute live intervals for
     14 // each virtual and physical register.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #define DEBUG_TYPE "regalloc"
     19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     20 #include "llvm/Value.h"
     21 #include "llvm/Analysis/AliasAnalysis.h"
     22 #include "llvm/CodeGen/LiveVariables.h"
     23 #include "llvm/CodeGen/MachineDominators.h"
     24 #include "llvm/CodeGen/MachineInstr.h"
     25 #include "llvm/CodeGen/MachineRegisterInfo.h"
     26 #include "llvm/CodeGen/Passes.h"
     27 #include "llvm/Target/TargetRegisterInfo.h"
     28 #include "llvm/Target/TargetInstrInfo.h"
     29 #include "llvm/Target/TargetMachine.h"
     30 #include "llvm/Support/CommandLine.h"
     31 #include "llvm/Support/Debug.h"
     32 #include "llvm/Support/ErrorHandling.h"
     33 #include "llvm/Support/raw_ostream.h"
     34 #include "llvm/ADT/DenseSet.h"
     35 #include "llvm/ADT/STLExtras.h"
     36 #include "LiveRangeCalc.h"
     37 #include "VirtRegMap.h"
     38 #include <algorithm>
     39 #include <limits>
     40 #include <cmath>
     41 using namespace llvm;
     42 
     43 // Switch to the new experimental algorithm for computing live intervals.
     44 static cl::opt<bool>
     45 NewLiveIntervals("new-live-intervals", cl::Hidden,
     46                  cl::desc("Use new algorithm forcomputing live intervals"));
     47 
     48 char LiveIntervals::ID = 0;
     49 char &llvm::LiveIntervalsID = LiveIntervals::ID;
     50 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
     51                 "Live Interval Analysis", false, false)
     52 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
     53 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
     54 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
     55 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
     56 INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
     57                 "Live Interval Analysis", false, false)
     58 
     59 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
     60   AU.setPreservesCFG();
     61   AU.addRequired<AliasAnalysis>();
     62   AU.addPreserved<AliasAnalysis>();
     63   AU.addRequired<LiveVariables>();
     64   AU.addPreserved<LiveVariables>();
     65   AU.addPreservedID(MachineLoopInfoID);
     66   AU.addRequiredTransitiveID(MachineDominatorsID);
     67   AU.addPreservedID(MachineDominatorsID);
     68   AU.addPreserved<SlotIndexes>();
     69   AU.addRequiredTransitive<SlotIndexes>();
     70   MachineFunctionPass::getAnalysisUsage(AU);
     71 }
     72 
     73 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
     74   DomTree(0), LRCalc(0) {
     75   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
     76 }
     77 
     78 LiveIntervals::~LiveIntervals() {
     79   delete LRCalc;
     80 }
     81 
     82 void LiveIntervals::releaseMemory() {
     83   // Free the live intervals themselves.
     84   for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
     85     delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
     86   VirtRegIntervals.clear();
     87   RegMaskSlots.clear();
     88   RegMaskBits.clear();
     89   RegMaskBlocks.clear();
     90 
     91   for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
     92     delete RegUnitIntervals[i];
     93   RegUnitIntervals.clear();
     94 
     95   // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
     96   VNInfoAllocator.Reset();
     97 }
     98 
     99 /// runOnMachineFunction - Register allocate the whole function
    100 ///
    101 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
    102   MF = &fn;
    103   MRI = &MF->getRegInfo();
    104   TM = &fn.getTarget();
    105   TRI = TM->getRegisterInfo();
    106   TII = TM->getInstrInfo();
    107   AA = &getAnalysis<AliasAnalysis>();
    108   LV = &getAnalysis<LiveVariables>();
    109   Indexes = &getAnalysis<SlotIndexes>();
    110   DomTree = &getAnalysis<MachineDominatorTree>();
    111   if (!LRCalc)
    112     LRCalc = new LiveRangeCalc();
    113   AllocatableRegs = TRI->getAllocatableSet(fn);
    114   ReservedRegs = TRI->getReservedRegs(fn);
    115 
    116   // Allocate space for all virtual registers.
    117   VirtRegIntervals.resize(MRI->getNumVirtRegs());
    118 
    119   if (NewLiveIntervals) {
    120     // This is the new way of computing live intervals.
    121     // It is independent of LiveVariables, and it can run at any time.
    122     computeVirtRegs();
    123     computeRegMasks();
    124   } else {
    125     // This is the old way of computing live intervals.
    126     // It depends on LiveVariables.
    127     computeIntervals();
    128   }
    129   computeLiveInRegUnits();
    130 
    131   DEBUG(dump());
    132   return true;
    133 }
    134 
    135 /// print - Implement the dump method.
    136 void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
    137   OS << "********** INTERVALS **********\n";
    138 
    139   // Dump the regunits.
    140   for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
    141     if (LiveInterval *LI = RegUnitIntervals[i])
    142       OS << PrintRegUnit(i, TRI) << " = " << *LI << '\n';
    143 
    144   // Dump the virtregs.
    145   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    146     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    147     if (hasInterval(Reg))
    148       OS << PrintReg(Reg) << " = " << getInterval(Reg) << '\n';
    149   }
    150 
    151   printInstrs(OS);
    152 }
    153 
    154 void LiveIntervals::printInstrs(raw_ostream &OS) const {
    155   OS << "********** MACHINEINSTRS **********\n";
    156   MF->print(OS, Indexes);
    157 }
    158 
    159 #ifndef NDEBUG
    160 void LiveIntervals::dumpInstrs() const {
    161   printInstrs(dbgs());
    162 }
    163 #endif
    164 
    165 static
    166 bool MultipleDefsBySameMI(const MachineInstr &MI, unsigned MOIdx) {
    167   unsigned Reg = MI.getOperand(MOIdx).getReg();
    168   for (unsigned i = MOIdx+1, e = MI.getNumOperands(); i < e; ++i) {
    169     const MachineOperand &MO = MI.getOperand(i);
    170     if (!MO.isReg())
    171       continue;
    172     if (MO.getReg() == Reg && MO.isDef()) {
    173       assert(MI.getOperand(MOIdx).getSubReg() != MO.getSubReg() &&
    174              MI.getOperand(MOIdx).getSubReg() &&
    175              (MO.getSubReg() || MO.isImplicit()));
    176       return true;
    177     }
    178   }
    179   return false;
    180 }
    181 
    182 /// isPartialRedef - Return true if the specified def at the specific index is
    183 /// partially re-defining the specified live interval. A common case of this is
    184 /// a definition of the sub-register.
    185 bool LiveIntervals::isPartialRedef(SlotIndex MIIdx, MachineOperand &MO,
    186                                    LiveInterval &interval) {
    187   if (!MO.getSubReg() || MO.isEarlyClobber())
    188     return false;
    189 
    190   SlotIndex RedefIndex = MIIdx.getRegSlot();
    191   const LiveRange *OldLR =
    192     interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
    193   MachineInstr *DefMI = getInstructionFromIndex(OldLR->valno->def);
    194   if (DefMI != 0) {
    195     return DefMI->findRegisterDefOperandIdx(interval.reg) != -1;
    196   }
    197   return false;
    198 }
    199 
    200 void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
    201                                              MachineBasicBlock::iterator mi,
    202                                              SlotIndex MIIdx,
    203                                              MachineOperand& MO,
    204                                              unsigned MOIdx,
    205                                              LiveInterval &interval) {
    206   DEBUG(dbgs() << "\t\tregister: " << PrintReg(interval.reg, TRI));
    207 
    208   // Virtual registers may be defined multiple times (due to phi
    209   // elimination and 2-addr elimination).  Much of what we do only has to be
    210   // done once for the vreg.  We use an empty interval to detect the first
    211   // time we see a vreg.
    212   LiveVariables::VarInfo& vi = LV->getVarInfo(interval.reg);
    213   if (interval.empty()) {
    214     // Get the Idx of the defining instructions.
    215     SlotIndex defIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
    216 
    217     // Make sure the first definition is not a partial redefinition.
    218     assert(!MO.readsReg() && "First def cannot also read virtual register "
    219            "missing <undef> flag?");
    220 
    221     VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator);
    222     assert(ValNo->id == 0 && "First value in interval is not 0?");
    223 
    224     // Loop over all of the blocks that the vreg is defined in.  There are
    225     // two cases we have to handle here.  The most common case is a vreg
    226     // whose lifetime is contained within a basic block.  In this case there
    227     // will be a single kill, in MBB, which comes after the definition.
    228     if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
    229       // FIXME: what about dead vars?
    230       SlotIndex killIdx;
    231       if (vi.Kills[0] != mi)
    232         killIdx = getInstructionIndex(vi.Kills[0]).getRegSlot();
    233       else
    234         killIdx = defIndex.getDeadSlot();
    235 
    236       // If the kill happens after the definition, we have an intra-block
    237       // live range.
    238       if (killIdx > defIndex) {
    239         assert(vi.AliveBlocks.empty() &&
    240                "Shouldn't be alive across any blocks!");
    241         LiveRange LR(defIndex, killIdx, ValNo);
    242         interval.addRange(LR);
    243         DEBUG(dbgs() << " +" << LR << "\n");
    244         return;
    245       }
    246     }
    247 
    248     // The other case we handle is when a virtual register lives to the end
    249     // of the defining block, potentially live across some blocks, then is
    250     // live into some number of blocks, but gets killed.  Start by adding a
    251     // range that goes from this definition to the end of the defining block.
    252     LiveRange NewLR(defIndex, getMBBEndIdx(mbb), ValNo);
    253     DEBUG(dbgs() << " +" << NewLR);
    254     interval.addRange(NewLR);
    255 
    256     bool PHIJoin = LV->isPHIJoin(interval.reg);
    257 
    258     if (PHIJoin) {
    259       // A phi join register is killed at the end of the MBB and revived as a
    260       // new valno in the killing blocks.
    261       assert(vi.AliveBlocks.empty() && "Phi join can't pass through blocks");
    262       DEBUG(dbgs() << " phi-join");
    263     } else {
    264       // Iterate over all of the blocks that the variable is completely
    265       // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
    266       // live interval.
    267       for (SparseBitVector<>::iterator I = vi.AliveBlocks.begin(),
    268                E = vi.AliveBlocks.end(); I != E; ++I) {
    269         MachineBasicBlock *aliveBlock = MF->getBlockNumbered(*I);
    270         LiveRange LR(getMBBStartIdx(aliveBlock), getMBBEndIdx(aliveBlock),
    271                      ValNo);
    272         interval.addRange(LR);
    273         DEBUG(dbgs() << " +" << LR);
    274       }
    275     }
    276 
    277     // Finally, this virtual register is live from the start of any killing
    278     // block to the 'use' slot of the killing instruction.
    279     for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
    280       MachineInstr *Kill = vi.Kills[i];
    281       SlotIndex Start = getMBBStartIdx(Kill->getParent());
    282       SlotIndex killIdx = getInstructionIndex(Kill).getRegSlot();
    283 
    284       // Create interval with one of a NEW value number.  Note that this value
    285       // number isn't actually defined by an instruction, weird huh? :)
    286       if (PHIJoin) {
    287         assert(getInstructionFromIndex(Start) == 0 &&
    288                "PHI def index points at actual instruction.");
    289         ValNo = interval.getNextValue(Start, VNInfoAllocator);
    290       }
    291       LiveRange LR(Start, killIdx, ValNo);
    292       interval.addRange(LR);
    293       DEBUG(dbgs() << " +" << LR);
    294     }
    295 
    296   } else {
    297     if (MultipleDefsBySameMI(*mi, MOIdx))
    298       // Multiple defs of the same virtual register by the same instruction.
    299       // e.g. %reg1031:5<def>, %reg1031:6<def> = VLD1q16 %reg1024<kill>, ...
    300       // This is likely due to elimination of REG_SEQUENCE instructions. Return
    301       // here since there is nothing to do.
    302       return;
    303 
    304     // If this is the second time we see a virtual register definition, it
    305     // must be due to phi elimination or two addr elimination.  If this is
    306     // the result of two address elimination, then the vreg is one of the
    307     // def-and-use register operand.
    308 
    309     // It may also be partial redef like this:
    310     // 80  %reg1041:6<def> = VSHRNv4i16 %reg1034<kill>, 12, pred:14, pred:%reg0
    311     // 120 %reg1041:5<def> = VSHRNv4i16 %reg1039<kill>, 12, pred:14, pred:%reg0
    312     bool PartReDef = isPartialRedef(MIIdx, MO, interval);
    313     if (PartReDef || mi->isRegTiedToUseOperand(MOIdx)) {
    314       // If this is a two-address definition, then we have already processed
    315       // the live range.  The only problem is that we didn't realize there
    316       // are actually two values in the live interval.  Because of this we
    317       // need to take the LiveRegion that defines this register and split it
    318       // into two values.
    319       SlotIndex RedefIndex = MIIdx.getRegSlot(MO.isEarlyClobber());
    320 
    321       const LiveRange *OldLR =
    322         interval.getLiveRangeContaining(RedefIndex.getRegSlot(true));
    323       VNInfo *OldValNo = OldLR->valno;
    324       SlotIndex DefIndex = OldValNo->def.getRegSlot();
    325 
    326       // Delete the previous value, which should be short and continuous,
    327       // because the 2-addr copy must be in the same MBB as the redef.
    328       interval.removeRange(DefIndex, RedefIndex);
    329 
    330       // The new value number (#1) is defined by the instruction we claimed
    331       // defined value #0.
    332       VNInfo *ValNo = interval.createValueCopy(OldValNo, VNInfoAllocator);
    333 
    334       // Value#0 is now defined by the 2-addr instruction.
    335       OldValNo->def = RedefIndex;
    336 
    337       // Add the new live interval which replaces the range for the input copy.
    338       LiveRange LR(DefIndex, RedefIndex, ValNo);
    339       DEBUG(dbgs() << " replace range with " << LR);
    340       interval.addRange(LR);
    341 
    342       // If this redefinition is dead, we need to add a dummy unit live
    343       // range covering the def slot.
    344       if (MO.isDead())
    345         interval.addRange(LiveRange(RedefIndex, RedefIndex.getDeadSlot(),
    346                                     OldValNo));
    347 
    348       DEBUG(dbgs() << " RESULT: " << interval);
    349     } else if (LV->isPHIJoin(interval.reg)) {
    350       // In the case of PHI elimination, each variable definition is only
    351       // live until the end of the block.  We've already taken care of the
    352       // rest of the live range.
    353 
    354       SlotIndex defIndex = MIIdx.getRegSlot();
    355       if (MO.isEarlyClobber())
    356         defIndex = MIIdx.getRegSlot(true);
    357 
    358       VNInfo *ValNo = interval.getNextValue(defIndex, VNInfoAllocator);
    359 
    360       SlotIndex killIndex = getMBBEndIdx(mbb);
    361       LiveRange LR(defIndex, killIndex, ValNo);
    362       interval.addRange(LR);
    363       DEBUG(dbgs() << " phi-join +" << LR);
    364     } else {
    365       llvm_unreachable("Multiply defined register");
    366     }
    367   }
    368 
    369   DEBUG(dbgs() << '\n');
    370 }
    371 
    372 void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
    373                                       MachineBasicBlock::iterator MI,
    374                                       SlotIndex MIIdx,
    375                                       MachineOperand& MO,
    376                                       unsigned MOIdx) {
    377   if (TargetRegisterInfo::isVirtualRegister(MO.getReg()))
    378     handleVirtualRegisterDef(MBB, MI, MIIdx, MO, MOIdx,
    379                              getOrCreateInterval(MO.getReg()));
    380 }
    381 
    382 /// computeIntervals - computes the live intervals for virtual
    383 /// registers. for some ordering of the machine instructions [1,N] a
    384 /// live interval is an interval [i, j) where 1 <= i <= j < N for
    385 /// which a variable is live
    386 void LiveIntervals::computeIntervals() {
    387   DEBUG(dbgs() << "********** COMPUTING LIVE INTERVALS **********\n"
    388                << "********** Function: " << MF->getName() << '\n');
    389 
    390   RegMaskBlocks.resize(MF->getNumBlockIDs());
    391 
    392   SmallVector<unsigned, 8> UndefUses;
    393   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
    394        MBBI != E; ++MBBI) {
    395     MachineBasicBlock *MBB = MBBI;
    396     RegMaskBlocks[MBB->getNumber()].first = RegMaskSlots.size();
    397 
    398     if (MBB->empty())
    399       continue;
    400 
    401     // Track the index of the current machine instr.
    402     SlotIndex MIIndex = getMBBStartIdx(MBB);
    403     DEBUG(dbgs() << "BB#" << MBB->getNumber()
    404           << ":\t\t# derived from " << MBB->getName() << "\n");
    405 
    406     // Skip over empty initial indices.
    407     if (getInstructionFromIndex(MIIndex) == 0)
    408       MIIndex = Indexes->getNextNonNullIndex(MIIndex);
    409 
    410     for (MachineBasicBlock::iterator MI = MBB->begin(), miEnd = MBB->end();
    411          MI != miEnd; ++MI) {
    412       DEBUG(dbgs() << MIIndex << "\t" << *MI);
    413       if (MI->isDebugValue())
    414         continue;
    415       assert(Indexes->getInstructionFromIndex(MIIndex) == MI &&
    416              "Lost SlotIndex synchronization");
    417 
    418       // Handle defs.
    419       for (int i = MI->getNumOperands() - 1; i >= 0; --i) {
    420         MachineOperand &MO = MI->getOperand(i);
    421 
    422         // Collect register masks.
    423         if (MO.isRegMask()) {
    424           RegMaskSlots.push_back(MIIndex.getRegSlot());
    425           RegMaskBits.push_back(MO.getRegMask());
    426           continue;
    427         }
    428 
    429         if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
    430           continue;
    431 
    432         // handle register defs - build intervals
    433         if (MO.isDef())
    434           handleRegisterDef(MBB, MI, MIIndex, MO, i);
    435         else if (MO.isUndef())
    436           UndefUses.push_back(MO.getReg());
    437       }
    438 
    439       // Move to the next instr slot.
    440       MIIndex = Indexes->getNextNonNullIndex(MIIndex);
    441     }
    442 
    443     // Compute the number of register mask instructions in this block.
    444     std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
    445     RMB.second = RegMaskSlots.size() - RMB.first;
    446   }
    447 
    448   // Create empty intervals for registers defined by implicit_def's (except
    449   // for those implicit_def that define values which are liveout of their
    450   // blocks.
    451   for (unsigned i = 0, e = UndefUses.size(); i != e; ++i) {
    452     unsigned UndefReg = UndefUses[i];
    453     (void)getOrCreateInterval(UndefReg);
    454   }
    455 }
    456 
    457 LiveInterval* LiveIntervals::createInterval(unsigned reg) {
    458   float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
    459   return new LiveInterval(reg, Weight);
    460 }
    461 
    462 
    463 /// computeVirtRegInterval - Compute the live interval of a virtual register,
    464 /// based on defs and uses.
    465 void LiveIntervals::computeVirtRegInterval(LiveInterval *LI) {
    466   assert(LRCalc && "LRCalc not initialized.");
    467   assert(LI->empty() && "Should only compute empty intervals.");
    468   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
    469   LRCalc->createDeadDefs(LI);
    470   LRCalc->extendToUses(LI);
    471 }
    472 
    473 void LiveIntervals::computeVirtRegs() {
    474   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    475     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    476     if (MRI->reg_nodbg_empty(Reg))
    477       continue;
    478     LiveInterval *LI = createInterval(Reg);
    479     VirtRegIntervals[Reg] = LI;
    480     computeVirtRegInterval(LI);
    481   }
    482 }
    483 
    484 void LiveIntervals::computeRegMasks() {
    485   RegMaskBlocks.resize(MF->getNumBlockIDs());
    486 
    487   // Find all instructions with regmask operands.
    488   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
    489        MBBI != E; ++MBBI) {
    490     MachineBasicBlock *MBB = MBBI;
    491     std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
    492     RMB.first = RegMaskSlots.size();
    493     for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end();
    494          MI != ME; ++MI)
    495       for (MIOperands MO(MI); MO.isValid(); ++MO) {
    496         if (!MO->isRegMask())
    497           continue;
    498           RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
    499           RegMaskBits.push_back(MO->getRegMask());
    500       }
    501     // Compute the number of register mask instructions in this block.
    502     RMB.second = RegMaskSlots.size() - RMB.first;
    503   }
    504 }
    505 
    506 //===----------------------------------------------------------------------===//
    507 //                           Register Unit Liveness
    508 //===----------------------------------------------------------------------===//
    509 //
    510 // Fixed interference typically comes from ABI boundaries: Function arguments
    511 // and return values are passed in fixed registers, and so are exception
    512 // pointers entering landing pads. Certain instructions require values to be
    513 // present in specific registers. That is also represented through fixed
    514 // interference.
    515 //
    516 
    517 /// computeRegUnitInterval - Compute the live interval of a register unit, based
    518 /// on the uses and defs of aliasing registers.  The interval should be empty,
    519 /// or contain only dead phi-defs from ABI blocks.
    520 void LiveIntervals::computeRegUnitInterval(LiveInterval *LI) {
    521   unsigned Unit = LI->reg;
    522 
    523   assert(LRCalc && "LRCalc not initialized.");
    524   LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
    525 
    526   // The physregs aliasing Unit are the roots and their super-registers.
    527   // Create all values as dead defs before extending to uses. Note that roots
    528   // may share super-registers. That's OK because createDeadDefs() is
    529   // idempotent. It is very rare for a register unit to have multiple roots, so
    530   // uniquing super-registers is probably not worthwhile.
    531   for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
    532     unsigned Root = *Roots;
    533     if (!MRI->reg_empty(Root))
    534       LRCalc->createDeadDefs(LI, Root);
    535     for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) {
    536       if (!MRI->reg_empty(*Supers))
    537         LRCalc->createDeadDefs(LI, *Supers);
    538     }
    539   }
    540 
    541   // Now extend LI to reach all uses.
    542   // Ignore uses of reserved registers. We only track defs of those.
    543   for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
    544     unsigned Root = *Roots;
    545     if (!isReserved(Root) && !MRI->reg_empty(Root))
    546       LRCalc->extendToUses(LI, Root);
    547     for (MCSuperRegIterator Supers(Root, TRI); Supers.isValid(); ++Supers) {
    548       unsigned Reg = *Supers;
    549       if (!isReserved(Reg) && !MRI->reg_empty(Reg))
    550         LRCalc->extendToUses(LI, Reg);
    551     }
    552   }
    553 }
    554 
    555 
    556 /// computeLiveInRegUnits - Precompute the live ranges of any register units
    557 /// that are live-in to an ABI block somewhere. Register values can appear
    558 /// without a corresponding def when entering the entry block or a landing pad.
    559 ///
    560 void LiveIntervals::computeLiveInRegUnits() {
    561   RegUnitIntervals.resize(TRI->getNumRegUnits());
    562   DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
    563 
    564   // Keep track of the intervals allocated.
    565   SmallVector<LiveInterval*, 8> NewIntvs;
    566 
    567   // Check all basic blocks for live-ins.
    568   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
    569        MFI != MFE; ++MFI) {
    570     const MachineBasicBlock *MBB = MFI;
    571 
    572     // We only care about ABI blocks: Entry + landing pads.
    573     if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty())
    574       continue;
    575 
    576     // Create phi-defs at Begin for all live-in registers.
    577     SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
    578     DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
    579     for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(),
    580          LIE = MBB->livein_end(); LII != LIE; ++LII) {
    581       for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) {
    582         unsigned Unit = *Units;
    583         LiveInterval *Intv = RegUnitIntervals[Unit];
    584         if (!Intv) {
    585           Intv = RegUnitIntervals[Unit] = new LiveInterval(Unit, HUGE_VALF);
    586           NewIntvs.push_back(Intv);
    587         }
    588         VNInfo *VNI = Intv->createDeadDef(Begin, getVNInfoAllocator());
    589         (void)VNI;
    590         DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
    591       }
    592     }
    593     DEBUG(dbgs() << '\n');
    594   }
    595   DEBUG(dbgs() << "Created " << NewIntvs.size() << " new intervals.\n");
    596 
    597   // Compute the 'normal' part of the intervals.
    598   for (unsigned i = 0, e = NewIntvs.size(); i != e; ++i)
    599     computeRegUnitInterval(NewIntvs[i]);
    600 }
    601 
    602 
    603 /// shrinkToUses - After removing some uses of a register, shrink its live
    604 /// range to just the remaining uses. This method does not compute reaching
    605 /// defs for new uses, and it doesn't remove dead defs.
    606 bool LiveIntervals::shrinkToUses(LiveInterval *li,
    607                                  SmallVectorImpl<MachineInstr*> *dead) {
    608   DEBUG(dbgs() << "Shrink: " << *li << '\n');
    609   assert(TargetRegisterInfo::isVirtualRegister(li->reg)
    610          && "Can only shrink virtual registers");
    611   // Find all the values used, including PHI kills.
    612   SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;
    613 
    614   // Blocks that have already been added to WorkList as live-out.
    615   SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
    616 
    617   // Visit all instructions reading li->reg.
    618   for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(li->reg);
    619        MachineInstr *UseMI = I.skipInstruction();) {
    620     if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
    621       continue;
    622     SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
    623     LiveRangeQuery LRQ(*li, Idx);
    624     VNInfo *VNI = LRQ.valueIn();
    625     if (!VNI) {
    626       // This shouldn't happen: readsVirtualRegister returns true, but there is
    627       // no live value. It is likely caused by a target getting <undef> flags
    628       // wrong.
    629       DEBUG(dbgs() << Idx << '\t' << *UseMI
    630                    << "Warning: Instr claims to read non-existent value in "
    631                     << *li << '\n');
    632       continue;
    633     }
    634     // Special case: An early-clobber tied operand reads and writes the
    635     // register one slot early.
    636     if (VNInfo *DefVNI = LRQ.valueDefined())
    637       Idx = DefVNI->def;
    638 
    639     WorkList.push_back(std::make_pair(Idx, VNI));
    640   }
    641 
    642   // Create a new live interval with only minimal live segments per def.
    643   LiveInterval NewLI(li->reg, 0);
    644   for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
    645        I != E; ++I) {
    646     VNInfo *VNI = *I;
    647     if (VNI->isUnused())
    648       continue;
    649     NewLI.addRange(LiveRange(VNI->def, VNI->def.getDeadSlot(), VNI));
    650   }
    651 
    652   // Keep track of the PHIs that are in use.
    653   SmallPtrSet<VNInfo*, 8> UsedPHIs;
    654 
    655   // Extend intervals to reach all uses in WorkList.
    656   while (!WorkList.empty()) {
    657     SlotIndex Idx = WorkList.back().first;
    658     VNInfo *VNI = WorkList.back().second;
    659     WorkList.pop_back();
    660     const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot());
    661     SlotIndex BlockStart = getMBBStartIdx(MBB);
    662 
    663     // Extend the live range for VNI to be live at Idx.
    664     if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) {
    665       (void)ExtVNI;
    666       assert(ExtVNI == VNI && "Unexpected existing value number");
    667       // Is this a PHIDef we haven't seen before?
    668       if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
    669         continue;
    670       // The PHI is live, make sure the predecessors are live-out.
    671       for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
    672            PE = MBB->pred_end(); PI != PE; ++PI) {
    673         if (!LiveOut.insert(*PI))
    674           continue;
    675         SlotIndex Stop = getMBBEndIdx(*PI);
    676         // A predecessor is not required to have a live-out value for a PHI.
    677         if (VNInfo *PVNI = li->getVNInfoBefore(Stop))
    678           WorkList.push_back(std::make_pair(Stop, PVNI));
    679       }
    680       continue;
    681     }
    682 
    683     // VNI is live-in to MBB.
    684     DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
    685     NewLI.addRange(LiveRange(BlockStart, Idx, VNI));
    686 
    687     // Make sure VNI is live-out from the predecessors.
    688     for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
    689          PE = MBB->pred_end(); PI != PE; ++PI) {
    690       if (!LiveOut.insert(*PI))
    691         continue;
    692       SlotIndex Stop = getMBBEndIdx(*PI);
    693       assert(li->getVNInfoBefore(Stop) == VNI &&
    694              "Wrong value out of predecessor");
    695       WorkList.push_back(std::make_pair(Stop, VNI));
    696     }
    697   }
    698 
    699   // Handle dead values.
    700   bool CanSeparate = false;
    701   for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
    702        I != E; ++I) {
    703     VNInfo *VNI = *I;
    704     if (VNI->isUnused())
    705       continue;
    706     LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def);
    707     assert(LII != NewLI.end() && "Missing live range for PHI");
    708     if (LII->end != VNI->def.getDeadSlot())
    709       continue;
    710     if (VNI->isPHIDef()) {
    711       // This is a dead PHI. Remove it.
    712       VNI->markUnused();
    713       NewLI.removeRange(*LII);
    714       DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
    715       CanSeparate = true;
    716     } else {
    717       // This is a dead def. Make sure the instruction knows.
    718       MachineInstr *MI = getInstructionFromIndex(VNI->def);
    719       assert(MI && "No instruction defining live value");
    720       MI->addRegisterDead(li->reg, TRI);
    721       if (dead && MI->allDefsAreDead()) {
    722         DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
    723         dead->push_back(MI);
    724       }
    725     }
    726   }
    727 
    728   // Move the trimmed ranges back.
    729   li->ranges.swap(NewLI.ranges);
    730   DEBUG(dbgs() << "Shrunk: " << *li << '\n');
    731   return CanSeparate;
    732 }
    733 
    734 
    735 //===----------------------------------------------------------------------===//
    736 // Register allocator hooks.
    737 //
    738 
    739 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
    740   // Keep track of regunit ranges.
    741   SmallVector<std::pair<LiveInterval*, LiveInterval::iterator>, 8> RU;
    742 
    743   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    744     unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    745     if (MRI->reg_nodbg_empty(Reg))
    746       continue;
    747     LiveInterval *LI = &getInterval(Reg);
    748     if (LI->empty())
    749       continue;
    750 
    751     // Find the regunit intervals for the assigned register. They may overlap
    752     // the virtual register live range, cancelling any kills.
    753     RU.clear();
    754     for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid();
    755          ++Units) {
    756       LiveInterval *RUInt = &getRegUnit(*Units);
    757       if (RUInt->empty())
    758         continue;
    759       RU.push_back(std::make_pair(RUInt, RUInt->find(LI->begin()->end)));
    760     }
    761 
    762     // Every instruction that kills Reg corresponds to a live range end point.
    763     for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
    764          ++RI) {
    765       // A block index indicates an MBB edge.
    766       if (RI->end.isBlock())
    767         continue;
    768       MachineInstr *MI = getInstructionFromIndex(RI->end);
    769       if (!MI)
    770         continue;
    771 
    772       // Check if any of the reguints are live beyond the end of RI. That could
    773       // happen when a physreg is defined as a copy of a virtreg:
    774       //
    775       //   %EAX = COPY %vreg5
    776       //   FOO %vreg5         <--- MI, cancel kill because %EAX is live.
    777       //   BAR %EAX<kill>
    778       //
    779       // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX.
    780       bool CancelKill = false;
    781       for (unsigned u = 0, e = RU.size(); u != e; ++u) {
    782         LiveInterval *RInt = RU[u].first;
    783         LiveInterval::iterator &I = RU[u].second;
    784         if (I == RInt->end())
    785           continue;
    786         I = RInt->advanceTo(I, RI->end);
    787         if (I == RInt->end() || I->start >= RI->end)
    788           continue;
    789         // I is overlapping RI.
    790         CancelKill = true;
    791         break;
    792       }
    793       if (CancelKill)
    794         MI->clearRegisterKills(Reg, NULL);
    795       else
    796         MI->addRegisterKilled(Reg, NULL);
    797     }
    798   }
    799 }
    800 
    801 MachineBasicBlock*
    802 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
    803   // A local live range must be fully contained inside the block, meaning it is
    804   // defined and killed at instructions, not at block boundaries. It is not
    805   // live in or or out of any block.
    806   //
    807   // It is technically possible to have a PHI-defined live range identical to a
    808   // single block, but we are going to return false in that case.
    809 
    810   SlotIndex Start = LI.beginIndex();
    811   if (Start.isBlock())
    812     return NULL;
    813 
    814   SlotIndex Stop = LI.endIndex();
    815   if (Stop.isBlock())
    816     return NULL;
    817 
    818   // getMBBFromIndex doesn't need to search the MBB table when both indexes
    819   // belong to proper instructions.
    820   MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
    821   MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
    822   return MBB1 == MBB2 ? MBB1 : NULL;
    823 }
    824 
    825 bool
    826 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
    827   for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
    828        I != E; ++I) {
    829     const VNInfo *PHI = *I;
    830     if (PHI->isUnused() || !PHI->isPHIDef())
    831       continue;
    832     const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
    833     // Conservatively return true instead of scanning huge predecessor lists.
    834     if (PHIMBB->pred_size() > 100)
    835       return true;
    836     for (MachineBasicBlock::const_pred_iterator
    837          PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI)
    838       if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI)))
    839         return true;
    840   }
    841   return false;
    842 }
    843 
    844 float
    845 LiveIntervals::getSpillWeight(bool isDef, bool isUse, unsigned loopDepth) {
    846   // Limit the loop depth ridiculousness.
    847   if (loopDepth > 200)
    848     loopDepth = 200;
    849 
    850   // The loop depth is used to roughly estimate the number of times the
    851   // instruction is executed. Something like 10^d is simple, but will quickly
    852   // overflow a float. This expression behaves like 10^d for small d, but is
    853   // more tempered for large d. At d=200 we get 6.7e33 which leaves a bit of
    854   // headroom before overflow.
    855   // By the way, powf() might be unavailable here. For consistency,
    856   // We may take pow(double,double).
    857   float lc = std::pow(1 + (100.0 / (loopDepth + 10)), (double)loopDepth);
    858 
    859   return (isDef + isUse) * lc;
    860 }
    861 
    862 LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
    863                                                   MachineInstr* startInst) {
    864   LiveInterval& Interval = getOrCreateInterval(reg);
    865   VNInfo* VN = Interval.getNextValue(
    866     SlotIndex(getInstructionIndex(startInst).getRegSlot()),
    867     getVNInfoAllocator());
    868   LiveRange LR(
    869      SlotIndex(getInstructionIndex(startInst).getRegSlot()),
    870      getMBBEndIdx(startInst->getParent()), VN);
    871   Interval.addRange(LR);
    872 
    873   return LR;
    874 }
    875 
    876 
    877 //===----------------------------------------------------------------------===//
    878 //                          Register mask functions
    879 //===----------------------------------------------------------------------===//
    880 
    881 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
    882                                              BitVector &UsableRegs) {
    883   if (LI.empty())
    884     return false;
    885   LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
    886 
    887   // Use a smaller arrays for local live ranges.
    888   ArrayRef<SlotIndex> Slots;
    889   ArrayRef<const uint32_t*> Bits;
    890   if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
    891     Slots = getRegMaskSlotsInBlock(MBB->getNumber());
    892     Bits = getRegMaskBitsInBlock(MBB->getNumber());
    893   } else {
    894     Slots = getRegMaskSlots();
    895     Bits = getRegMaskBits();
    896   }
    897 
    898   // We are going to enumerate all the register mask slots contained in LI.
    899   // Start with a binary search of RegMaskSlots to find a starting point.
    900   ArrayRef<SlotIndex>::iterator SlotI =
    901     std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
    902   ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
    903 
    904   // No slots in range, LI begins after the last call.
    905   if (SlotI == SlotE)
    906     return false;
    907 
    908   bool Found = false;
    909   for (;;) {
    910     assert(*SlotI >= LiveI->start);
    911     // Loop over all slots overlapping this segment.
    912     while (*SlotI < LiveI->end) {
    913       // *SlotI overlaps LI. Collect mask bits.
    914       if (!Found) {
    915         // This is the first overlap. Initialize UsableRegs to all ones.
    916         UsableRegs.clear();
    917         UsableRegs.resize(TRI->getNumRegs(), true);
    918         Found = true;
    919       }
    920       // Remove usable registers clobbered by this mask.
    921       UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
    922       if (++SlotI == SlotE)
    923         return Found;
    924     }
    925     // *SlotI is beyond the current LI segment.
    926     LiveI = LI.advanceTo(LiveI, *SlotI);
    927     if (LiveI == LiveE)
    928       return Found;
    929     // Advance SlotI until it overlaps.
    930     while (*SlotI < LiveI->start)
    931       if (++SlotI == SlotE)
    932         return Found;
    933   }
    934 }
    935 
    936 //===----------------------------------------------------------------------===//
    937 //                         IntervalUpdate class.
    938 //===----------------------------------------------------------------------===//
    939 
    940 // HMEditor is a toolkit used by handleMove to trim or extend live intervals.
    941 class LiveIntervals::HMEditor {
    942 private:
    943   LiveIntervals& LIS;
    944   const MachineRegisterInfo& MRI;
    945   const TargetRegisterInfo& TRI;
    946   SlotIndex NewIdx;
    947 
    948   typedef std::pair<LiveInterval*, LiveRange*> IntRangePair;
    949   typedef DenseSet<IntRangePair> RangeSet;
    950 
    951   struct RegRanges {
    952     LiveRange* Use;
    953     LiveRange* EC;
    954     LiveRange* Dead;
    955     LiveRange* Def;
    956     RegRanges() : Use(0), EC(0), Dead(0), Def(0) {}
    957   };
    958   typedef DenseMap<unsigned, RegRanges> BundleRanges;
    959 
    960 public:
    961   HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
    962            const TargetRegisterInfo& TRI, SlotIndex NewIdx)
    963     : LIS(LIS), MRI(MRI), TRI(TRI), NewIdx(NewIdx) {}
    964 
    965   // Update intervals for all operands of MI from OldIdx to NewIdx.
    966   // This assumes that MI used to be at OldIdx, and now resides at
    967   // NewIdx.
    968   void moveAllRangesFrom(MachineInstr* MI, SlotIndex OldIdx) {
    969     assert(NewIdx != OldIdx && "No-op move? That's a bit strange.");
    970 
    971     // Collect the operands.
    972     RangeSet Entering, Internal, Exiting;
    973     bool hasRegMaskOp = false;
    974     collectRanges(MI, Entering, Internal, Exiting, hasRegMaskOp, OldIdx);
    975 
    976     // To keep the LiveRanges valid within an interval, move the ranges closest
    977     // to the destination first. This prevents ranges from overlapping, to that
    978     // APIs like removeRange still work.
    979     if (NewIdx < OldIdx) {
    980       moveAllEnteringFrom(OldIdx, Entering);
    981       moveAllInternalFrom(OldIdx, Internal);
    982       moveAllExitingFrom(OldIdx, Exiting);
    983     }
    984     else {
    985       moveAllExitingFrom(OldIdx, Exiting);
    986       moveAllInternalFrom(OldIdx, Internal);
    987       moveAllEnteringFrom(OldIdx, Entering);
    988     }
    989 
    990     if (hasRegMaskOp)
    991       updateRegMaskSlots(OldIdx);
    992 
    993 #ifndef NDEBUG
    994     LIValidator validator;
    995     validator = std::for_each(Entering.begin(), Entering.end(), validator);
    996     validator = std::for_each(Internal.begin(), Internal.end(), validator);
    997     validator = std::for_each(Exiting.begin(), Exiting.end(), validator);
    998     assert(validator.rangesOk() && "moveAllOperandsFrom broke liveness.");
    999 #endif
   1000 
   1001   }
   1002 
   1003   // Update intervals for all operands of MI to refer to BundleStart's
   1004   // SlotIndex.
   1005   void moveAllRangesInto(MachineInstr* MI, MachineInstr* BundleStart) {
   1006     if (MI == BundleStart)
   1007       return; // Bundling instr with itself - nothing to do.
   1008 
   1009     SlotIndex OldIdx = LIS.getSlotIndexes()->getInstructionIndex(MI);
   1010     assert(LIS.getSlotIndexes()->getInstructionFromIndex(OldIdx) == MI &&
   1011            "SlotIndex <-> Instruction mapping broken for MI");
   1012 
   1013     // Collect all ranges already in the bundle.
   1014     MachineBasicBlock::instr_iterator BII(BundleStart);
   1015     RangeSet Entering, Internal, Exiting;
   1016     bool hasRegMaskOp = false;
   1017     collectRanges(BII, Entering, Internal, Exiting, hasRegMaskOp, NewIdx);
   1018     assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
   1019     for (++BII; &*BII == MI || BII->isInsideBundle(); ++BII) {
   1020       if (&*BII == MI)
   1021         continue;
   1022       collectRanges(BII, Entering, Internal, Exiting, hasRegMaskOp, NewIdx);
   1023       assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
   1024     }
   1025 
   1026     BundleRanges BR = createBundleRanges(Entering, Internal, Exiting);
   1027 
   1028     Entering.clear();
   1029     Internal.clear();
   1030     Exiting.clear();
   1031     collectRanges(MI, Entering, Internal, Exiting, hasRegMaskOp, OldIdx);
   1032     assert(!hasRegMaskOp && "Can't have RegMask operand in bundle.");
   1033 
   1034     DEBUG(dbgs() << "Entering: " << Entering.size() << "\n");
   1035     DEBUG(dbgs() << "Internal: " << Internal.size() << "\n");
   1036     DEBUG(dbgs() << "Exiting: " << Exiting.size() << "\n");
   1037 
   1038     moveAllEnteringFromInto(OldIdx, Entering, BR);
   1039     moveAllInternalFromInto(OldIdx, Internal, BR);
   1040     moveAllExitingFromInto(OldIdx, Exiting, BR);
   1041 
   1042 
   1043 #ifndef NDEBUG
   1044     LIValidator validator;
   1045     validator = std::for_each(Entering.begin(), Entering.end(), validator);
   1046     validator = std::for_each(Internal.begin(), Internal.end(), validator);
   1047     validator = std::for_each(Exiting.begin(), Exiting.end(), validator);
   1048     assert(validator.rangesOk() && "moveAllOperandsInto broke liveness.");
   1049 #endif
   1050   }
   1051 
   1052 private:
   1053 
   1054 #ifndef NDEBUG
   1055   class LIValidator {
   1056   private:
   1057     DenseSet<const LiveInterval*> Checked, Bogus;
   1058   public:
   1059     void operator()(const IntRangePair& P) {
   1060       const LiveInterval* LI = P.first;
   1061       if (Checked.count(LI))
   1062         return;
   1063       Checked.insert(LI);
   1064       if (LI->empty())
   1065         return;
   1066       SlotIndex LastEnd = LI->begin()->start;
   1067       for (LiveInterval::const_iterator LRI = LI->begin(), LRE = LI->end();
   1068            LRI != LRE; ++LRI) {
   1069         const LiveRange& LR = *LRI;
   1070         if (LastEnd > LR.start || LR.start >= LR.end)
   1071           Bogus.insert(LI);
   1072         LastEnd = LR.end;
   1073       }
   1074     }
   1075 
   1076     bool rangesOk() const {
   1077       return Bogus.empty();
   1078     }
   1079   };
   1080 #endif
   1081 
   1082   // Collect IntRangePairs for all operands of MI that may need fixing.
   1083   // Treat's MI's index as OldIdx (regardless of what it is in SlotIndexes'
   1084   // maps).
   1085   void collectRanges(MachineInstr* MI, RangeSet& Entering, RangeSet& Internal,
   1086                      RangeSet& Exiting, bool& hasRegMaskOp, SlotIndex OldIdx) {
   1087     hasRegMaskOp = false;
   1088     for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
   1089                                     MOE = MI->operands_end();
   1090          MOI != MOE; ++MOI) {
   1091       const MachineOperand& MO = *MOI;
   1092 
   1093       if (MO.isRegMask()) {
   1094         hasRegMaskOp = true;
   1095         continue;
   1096       }
   1097 
   1098       if (!MO.isReg() || MO.getReg() == 0)
   1099         continue;
   1100 
   1101       unsigned Reg = MO.getReg();
   1102 
   1103       // TODO: Currently we're skipping uses that are reserved or have no
   1104       // interval, but we're not updating their kills. This should be
   1105       // fixed.
   1106       if (TargetRegisterInfo::isPhysicalRegister(Reg) && LIS.isReserved(Reg))
   1107         continue;
   1108 
   1109       // Collect ranges for register units. These live ranges are computed on
   1110       // demand, so just skip any that haven't been computed yet.
   1111       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
   1112         for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
   1113           if (LiveInterval *LI = LIS.getCachedRegUnit(*Units))
   1114             collectRanges(MO, LI, Entering, Internal, Exiting, OldIdx);
   1115       } else {
   1116         // Collect ranges for individual virtual registers.
   1117         collectRanges(MO, &LIS.getInterval(Reg),
   1118                       Entering, Internal, Exiting, OldIdx);
   1119       }
   1120     }
   1121   }
   1122 
   1123   void collectRanges(const MachineOperand &MO, LiveInterval *LI,
   1124                      RangeSet &Entering, RangeSet &Internal, RangeSet &Exiting,
   1125                      SlotIndex OldIdx) {
   1126     if (MO.readsReg()) {
   1127       LiveRange* LR = LI->getLiveRangeContaining(OldIdx);
   1128       if (LR != 0)
   1129         Entering.insert(std::make_pair(LI, LR));
   1130     }
   1131     if (MO.isDef()) {
   1132       LiveRange* LR = LI->getLiveRangeContaining(OldIdx.getRegSlot());
   1133       assert(LR != 0 && "No live range for def?");
   1134       if (LR->end > OldIdx.getDeadSlot())
   1135         Exiting.insert(std::make_pair(LI, LR));
   1136       else
   1137         Internal.insert(std::make_pair(LI, LR));
   1138     }
   1139   }
   1140 
   1141   BundleRanges createBundleRanges(RangeSet& Entering,
   1142                                   RangeSet& Internal,
   1143                                   RangeSet& Exiting) {
   1144     BundleRanges BR;
   1145 
   1146     for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
   1147          EI != EE; ++EI) {
   1148       LiveInterval* LI = EI->first;
   1149       LiveRange* LR = EI->second;
   1150       BR[LI->reg].Use = LR;
   1151     }
   1152 
   1153     for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
   1154          II != IE; ++II) {
   1155       LiveInterval* LI = II->first;
   1156       LiveRange* LR = II->second;
   1157       if (LR->end.isDead()) {
   1158         BR[LI->reg].Dead = LR;
   1159       } else {
   1160         BR[LI->reg].EC = LR;
   1161       }
   1162     }
   1163 
   1164     for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
   1165          EI != EE; ++EI) {
   1166       LiveInterval* LI = EI->first;
   1167       LiveRange* LR = EI->second;
   1168       BR[LI->reg].Def = LR;
   1169     }
   1170 
   1171     return BR;
   1172   }
   1173 
   1174   void moveKillFlags(unsigned reg, SlotIndex OldIdx, SlotIndex newKillIdx) {
   1175     MachineInstr* OldKillMI = LIS.getInstructionFromIndex(OldIdx);
   1176     if (!OldKillMI->killsRegister(reg))
   1177       return; // Bail out if we don't have kill flags on the old register.
   1178     MachineInstr* NewKillMI = LIS.getInstructionFromIndex(newKillIdx);
   1179     assert(OldKillMI->killsRegister(reg) && "Old 'kill' instr isn't a kill.");
   1180     assert(!NewKillMI->killsRegister(reg) &&
   1181            "New kill instr is already a kill.");
   1182     OldKillMI->clearRegisterKills(reg, &TRI);
   1183     NewKillMI->addRegisterKilled(reg, &TRI);
   1184   }
   1185 
   1186   void updateRegMaskSlots(SlotIndex OldIdx) {
   1187     SmallVectorImpl<SlotIndex>::iterator RI =
   1188       std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
   1189                        OldIdx);
   1190     assert(*RI == OldIdx && "No RegMask at OldIdx.");
   1191     *RI = NewIdx;
   1192     assert(*prior(RI) < *RI && *RI < *next(RI) &&
   1193            "RegSlots out of order. Did you move one call across another?");
   1194   }
   1195 
   1196   // Return the last use of reg between NewIdx and OldIdx.
   1197   SlotIndex findLastUseBefore(unsigned Reg, SlotIndex OldIdx) {
   1198     SlotIndex LastUse = NewIdx;
   1199     for (MachineRegisterInfo::use_nodbg_iterator
   1200            UI = MRI.use_nodbg_begin(Reg),
   1201            UE = MRI.use_nodbg_end();
   1202          UI != UE; UI.skipInstruction()) {
   1203       const MachineInstr* MI = &*UI;
   1204       SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
   1205       if (InstSlot > LastUse && InstSlot < OldIdx)
   1206         LastUse = InstSlot;
   1207     }
   1208     return LastUse;
   1209   }
   1210 
   1211   void moveEnteringUpFrom(SlotIndex OldIdx, IntRangePair& P) {
   1212     LiveInterval* LI = P.first;
   1213     LiveRange* LR = P.second;
   1214     bool LiveThrough = LR->end > OldIdx.getRegSlot();
   1215     if (LiveThrough)
   1216       return;
   1217     SlotIndex LastUse = findLastUseBefore(LI->reg, OldIdx);
   1218     if (LastUse != NewIdx)
   1219       moveKillFlags(LI->reg, NewIdx, LastUse);
   1220     LR->end = LastUse.getRegSlot(LR->end.isEarlyClobber());
   1221   }
   1222 
   1223   void moveEnteringDownFrom(SlotIndex OldIdx, IntRangePair& P) {
   1224     LiveInterval* LI = P.first;
   1225     LiveRange* LR = P.second;
   1226     // Extend the LiveRange if NewIdx is past the end.
   1227     if (NewIdx > LR->end) {
   1228       // Move kill flags if OldIdx was not originally the end
   1229       // (otherwise LR->end points to an invalid slot).
   1230       if (LR->end.getRegSlot() != OldIdx.getRegSlot()) {
   1231         assert(LR->end > OldIdx && "LiveRange does not cover original slot");
   1232         moveKillFlags(LI->reg, LR->end, NewIdx);
   1233       }
   1234       LR->end = NewIdx.getRegSlot(LR->end.isEarlyClobber());
   1235     }
   1236   }
   1237 
   1238   void moveAllEnteringFrom(SlotIndex OldIdx, RangeSet& Entering) {
   1239     bool GoingUp = NewIdx < OldIdx;
   1240 
   1241     if (GoingUp) {
   1242       for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
   1243            EI != EE; ++EI)
   1244         moveEnteringUpFrom(OldIdx, *EI);
   1245     } else {
   1246       for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
   1247            EI != EE; ++EI)
   1248         moveEnteringDownFrom(OldIdx, *EI);
   1249     }
   1250   }
   1251 
   1252   void moveInternalFrom(SlotIndex OldIdx, IntRangePair& P) {
   1253     LiveInterval* LI = P.first;
   1254     LiveRange* LR = P.second;
   1255     assert(OldIdx < LR->start && LR->start < OldIdx.getDeadSlot() &&
   1256            LR->end <= OldIdx.getDeadSlot() &&
   1257            "Range should be internal to OldIdx.");
   1258     LiveRange Tmp(*LR);
   1259     Tmp.start = NewIdx.getRegSlot(LR->start.isEarlyClobber());
   1260     Tmp.valno->def = Tmp.start;
   1261     Tmp.end = LR->end.isDead() ? NewIdx.getDeadSlot() : NewIdx.getRegSlot();
   1262     LI->removeRange(*LR);
   1263     LI->addRange(Tmp);
   1264   }
   1265 
   1266   void moveAllInternalFrom(SlotIndex OldIdx, RangeSet& Internal) {
   1267     for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
   1268          II != IE; ++II)
   1269       moveInternalFrom(OldIdx, *II);
   1270   }
   1271 
   1272   void moveExitingFrom(SlotIndex OldIdx, IntRangePair& P) {
   1273     LiveRange* LR = P.second;
   1274     assert(OldIdx < LR->start && LR->start < OldIdx.getDeadSlot() &&
   1275            "Range should start in OldIdx.");
   1276     assert(LR->end > OldIdx.getDeadSlot() && "Range should exit OldIdx.");
   1277     SlotIndex NewStart = NewIdx.getRegSlot(LR->start.isEarlyClobber());
   1278     LR->start = NewStart;
   1279     LR->valno->def = NewStart;
   1280   }
   1281 
   1282   void moveAllExitingFrom(SlotIndex OldIdx, RangeSet& Exiting) {
   1283     for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
   1284          EI != EE; ++EI)
   1285       moveExitingFrom(OldIdx, *EI);
   1286   }
   1287 
   1288   void moveEnteringUpFromInto(SlotIndex OldIdx, IntRangePair& P,
   1289                               BundleRanges& BR) {
   1290     LiveInterval* LI = P.first;
   1291     LiveRange* LR = P.second;
   1292     bool LiveThrough = LR->end > OldIdx.getRegSlot();
   1293     if (LiveThrough) {
   1294       assert((LR->start < NewIdx || BR[LI->reg].Def == LR) &&
   1295              "Def in bundle should be def range.");
   1296       assert((BR[LI->reg].Use == 0 || BR[LI->reg].Use == LR) &&
   1297              "If bundle has use for this reg it should be LR.");
   1298       BR[LI->reg].Use = LR;
   1299       return;
   1300     }
   1301 
   1302     SlotIndex LastUse = findLastUseBefore(LI->reg, OldIdx);
   1303     moveKillFlags(LI->reg, OldIdx, LastUse);
   1304 
   1305     if (LR->start < NewIdx) {
   1306       // Becoming a new entering range.
   1307       assert(BR[LI->reg].Dead == 0 && BR[LI->reg].Def == 0 &&
   1308              "Bundle shouldn't be re-defining reg mid-range.");
   1309       assert((BR[LI->reg].Use == 0 || BR[LI->reg].Use == LR) &&
   1310              "Bundle shouldn't have different use range for same reg.");
   1311       LR->end = LastUse.getRegSlot();
   1312       BR[LI->reg].Use = LR;
   1313     } else {
   1314       // Becoming a new Dead-def.
   1315       assert(LR->start == NewIdx.getRegSlot(LR->start.isEarlyClobber()) &&
   1316              "Live range starting at unexpected slot.");
   1317       assert(BR[LI->reg].Def == LR && "Reg should have def range.");
   1318       assert(BR[LI->reg].Dead == 0 &&
   1319                "Can't have def and dead def of same reg in a bundle.");
   1320       LR->end = LastUse.getDeadSlot();
   1321       BR[LI->reg].Dead = BR[LI->reg].Def;
   1322       BR[LI->reg].Def = 0;
   1323     }
   1324   }
   1325 
   1326   void moveEnteringDownFromInto(SlotIndex OldIdx, IntRangePair& P,
   1327                                 BundleRanges& BR) {
   1328     LiveInterval* LI = P.first;
   1329     LiveRange* LR = P.second;
   1330     if (NewIdx > LR->end) {
   1331       // Range extended to bundle. Add to bundle uses.
   1332       // Note: Currently adds kill flags to bundle start.
   1333       assert(BR[LI->reg].Use == 0 &&
   1334              "Bundle already has use range for reg.");
   1335       moveKillFlags(LI->reg, LR->end, NewIdx);
   1336       LR->end = NewIdx.getRegSlot();
   1337       BR[LI->reg].Use = LR;
   1338     } else {
   1339       assert(BR[LI->reg].Use != 0 &&
   1340              "Bundle should already have a use range for reg.");
   1341     }
   1342   }
   1343 
   1344   void moveAllEnteringFromInto(SlotIndex OldIdx, RangeSet& Entering,
   1345                                BundleRanges& BR) {
   1346     bool GoingUp = NewIdx < OldIdx;
   1347 
   1348     if (GoingUp) {
   1349       for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
   1350            EI != EE; ++EI)
   1351         moveEnteringUpFromInto(OldIdx, *EI, BR);
   1352     } else {
   1353       for (RangeSet::iterator EI = Entering.begin(), EE = Entering.end();
   1354            EI != EE; ++EI)
   1355         moveEnteringDownFromInto(OldIdx, *EI, BR);
   1356     }
   1357   }
   1358 
   1359   void moveInternalFromInto(SlotIndex OldIdx, IntRangePair& P,
   1360                             BundleRanges& BR) {
   1361     // TODO: Sane rules for moving ranges into bundles.
   1362   }
   1363 
   1364   void moveAllInternalFromInto(SlotIndex OldIdx, RangeSet& Internal,
   1365                                BundleRanges& BR) {
   1366     for (RangeSet::iterator II = Internal.begin(), IE = Internal.end();
   1367          II != IE; ++II)
   1368       moveInternalFromInto(OldIdx, *II, BR);
   1369   }
   1370 
   1371   void moveExitingFromInto(SlotIndex OldIdx, IntRangePair& P,
   1372                            BundleRanges& BR) {
   1373     LiveInterval* LI = P.first;
   1374     LiveRange* LR = P.second;
   1375 
   1376     assert(LR->start.isRegister() &&
   1377            "Don't know how to merge exiting ECs into bundles yet.");
   1378 
   1379     if (LR->end > NewIdx.getDeadSlot()) {
   1380       // This range is becoming an exiting range on the bundle.
   1381       // If there was an old dead-def of this reg, delete it.
   1382       if (BR[LI->reg].Dead != 0) {
   1383         LI->removeRange(*BR[LI->reg].Dead);
   1384         BR[LI->reg].Dead = 0;
   1385       }
   1386       assert(BR[LI->reg].Def == 0 &&
   1387              "Can't have two defs for the same variable exiting a bundle.");
   1388       LR->start = NewIdx.getRegSlot();
   1389       LR->valno->def = LR->start;
   1390       BR[LI->reg].Def = LR;
   1391     } else {
   1392       // This range is becoming internal to the bundle.
   1393       assert(LR->end == NewIdx.getRegSlot() &&
   1394              "Can't bundle def whose kill is before the bundle");
   1395       if (BR[LI->reg].Dead || BR[LI->reg].Def) {
   1396         // Already have a def for this. Just delete range.
   1397         LI->removeRange(*LR);
   1398       } else {
   1399         // Make range dead, record.
   1400         LR->end = NewIdx.getDeadSlot();
   1401         BR[LI->reg].Dead = LR;
   1402         assert(BR[LI->reg].Use == LR &&
   1403                "Range becoming dead should currently be use.");
   1404       }
   1405       // In both cases the range is no longer a use on the bundle.
   1406       BR[LI->reg].Use = 0;
   1407     }
   1408   }
   1409 
   1410   void moveAllExitingFromInto(SlotIndex OldIdx, RangeSet& Exiting,
   1411                               BundleRanges& BR) {
   1412     for (RangeSet::iterator EI = Exiting.begin(), EE = Exiting.end();
   1413          EI != EE; ++EI)
   1414       moveExitingFromInto(OldIdx, *EI, BR);
   1415   }
   1416 
   1417 };
   1418 
   1419 void LiveIntervals::handleMove(MachineInstr* MI) {
   1420   SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
   1421   Indexes->removeMachineInstrFromMaps(MI);
   1422   SlotIndex NewIndex = MI->isInsideBundle() ?
   1423                         Indexes->getInstructionIndex(MI) :
   1424                         Indexes->insertMachineInstrInMaps(MI);
   1425   assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
   1426          OldIndex < getMBBEndIdx(MI->getParent()) &&
   1427          "Cannot handle moves across basic block boundaries.");
   1428   assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
   1429 
   1430   HMEditor HME(*this, *MRI, *TRI, NewIndex);
   1431   HME.moveAllRangesFrom(MI, OldIndex);
   1432 }
   1433 
   1434 void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
   1435                                          MachineInstr* BundleStart) {
   1436   SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
   1437   HMEditor HME(*this, *MRI, *TRI, NewIndex);
   1438   HME.moveAllRangesInto(MI, BundleStart);
   1439 }
   1440