Home | History | Annotate | Download | only in CodeGen
      1 //===-- llvm/CodeGen/MachineRegisterInfo.h ----------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the MachineRegisterInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CODEGEN_MACHINEREGISTERINFO_H
     15 #define LLVM_CODEGEN_MACHINEREGISTERINFO_H
     16 
     17 #include "llvm/Target/TargetRegisterInfo.h"
     18 #include "llvm/CodeGen/MachineInstrBundle.h"
     19 #include "llvm/ADT/BitVector.h"
     20 #include "llvm/ADT/IndexedMap.h"
     21 #include <vector>
     22 
     23 namespace llvm {
     24 
     25 /// MachineRegisterInfo - Keep track of information for virtual and physical
     26 /// registers, including vreg register classes, use/def chains for registers,
     27 /// etc.
     28 class MachineRegisterInfo {
     29   const TargetRegisterInfo *const TRI;
     30 
     31   /// IsSSA - True when the machine function is in SSA form and virtual
     32   /// registers have a single def.
     33   bool IsSSA;
     34 
     35   /// TracksLiveness - True while register liveness is being tracked accurately.
     36   /// Basic block live-in lists, kill flags, and implicit defs may not be
     37   /// accurate when after this flag is cleared.
     38   bool TracksLiveness;
     39 
     40   /// VRegInfo - Information we keep for each virtual register.
     41   ///
     42   /// Each element in this list contains the register class of the vreg and the
     43   /// start of the use/def list for the register.
     44   IndexedMap<std::pair<const TargetRegisterClass*, MachineOperand*>,
     45              VirtReg2IndexFunctor> VRegInfo;
     46 
     47   /// RegAllocHints - This vector records register allocation hints for virtual
     48   /// registers. For each virtual register, it keeps a register and hint type
     49   /// pair making up the allocation hint. Hint type is target specific except
     50   /// for the value 0 which means the second value of the pair is the preferred
     51   /// register for allocation. For example, if the hint is <0, 1024>, it means
     52   /// the allocator should prefer the physical register allocated to the virtual
     53   /// register of the hint.
     54   IndexedMap<std::pair<unsigned, unsigned>, VirtReg2IndexFunctor> RegAllocHints;
     55 
     56   /// PhysRegUseDefLists - This is an array of the head of the use/def list for
     57   /// physical registers.
     58   MachineOperand **PhysRegUseDefLists;
     59 
     60   /// getRegUseDefListHead - Return the head pointer for the register use/def
     61   /// list for the specified virtual or physical register.
     62   MachineOperand *&getRegUseDefListHead(unsigned RegNo) {
     63     if (TargetRegisterInfo::isVirtualRegister(RegNo))
     64       return VRegInfo[RegNo].second;
     65     return PhysRegUseDefLists[RegNo];
     66   }
     67 
     68   MachineOperand *getRegUseDefListHead(unsigned RegNo) const {
     69     if (TargetRegisterInfo::isVirtualRegister(RegNo))
     70       return VRegInfo[RegNo].second;
     71     return PhysRegUseDefLists[RegNo];
     72   }
     73 
     74   /// Get the next element in the use-def chain.
     75   static MachineOperand *getNextOperandForReg(const MachineOperand *MO) {
     76     assert(MO && MO->isReg() && "This is not a register operand!");
     77     return MO->Contents.Reg.Next;
     78   }
     79 
     80   /// UsedPhysRegs - This is a bit vector that is computed and set by the
     81   /// register allocator, and must be kept up to date by passes that run after
     82   /// register allocation (though most don't modify this).  This is used
     83   /// so that the code generator knows which callee save registers to save and
     84   /// for other target specific uses.
     85   /// This vector only has bits set for registers explicitly used, not their
     86   /// aliases.
     87   BitVector UsedPhysRegs;
     88 
     89   /// UsedPhysRegMask - Additional used physregs, but including aliases.
     90   BitVector UsedPhysRegMask;
     91 
     92   /// ReservedRegs - This is a bit vector of reserved registers.  The target
     93   /// may change its mind about which registers should be reserved.  This
     94   /// vector is the frozen set of reserved registers when register allocation
     95   /// started.
     96   BitVector ReservedRegs;
     97 
     98   /// AllocatableRegs - From TRI->getAllocatableSet.
     99   mutable BitVector AllocatableRegs;
    100 
    101   /// LiveIns/LiveOuts - Keep track of the physical registers that are
    102   /// livein/liveout of the function.  Live in values are typically arguments in
    103   /// registers, live out values are typically return values in registers.
    104   /// LiveIn values are allowed to have virtual registers associated with them,
    105   /// stored in the second element.
    106   std::vector<std::pair<unsigned, unsigned> > LiveIns;
    107   std::vector<unsigned> LiveOuts;
    108 
    109   MachineRegisterInfo(const MachineRegisterInfo&); // DO NOT IMPLEMENT
    110   void operator=(const MachineRegisterInfo&);      // DO NOT IMPLEMENT
    111 public:
    112   explicit MachineRegisterInfo(const TargetRegisterInfo &TRI);
    113   ~MachineRegisterInfo();
    114 
    115   //===--------------------------------------------------------------------===//
    116   // Function State
    117   //===--------------------------------------------------------------------===//
    118 
    119   // isSSA - Returns true when the machine function is in SSA form. Early
    120   // passes require the machine function to be in SSA form where every virtual
    121   // register has a single defining instruction.
    122   //
    123   // The TwoAddressInstructionPass and PHIElimination passes take the machine
    124   // function out of SSA form when they introduce multiple defs per virtual
    125   // register.
    126   bool isSSA() const { return IsSSA; }
    127 
    128   // leaveSSA - Indicates that the machine function is no longer in SSA form.
    129   void leaveSSA() { IsSSA = false; }
    130 
    131   /// tracksLiveness - Returns true when tracking register liveness accurately.
    132   ///
    133   /// While this flag is true, register liveness information in basic block
    134   /// live-in lists and machine instruction operands is accurate. This means it
    135   /// can be used to change the code in ways that affect the values in
    136   /// registers, for example by the register scavenger.
    137   ///
    138   /// When this flag is false, liveness is no longer reliable.
    139   bool tracksLiveness() const { return TracksLiveness; }
    140 
    141   /// invalidateLiveness - Indicates that register liveness is no longer being
    142   /// tracked accurately.
    143   ///
    144   /// This should be called by late passes that invalidate the liveness
    145   /// information.
    146   void invalidateLiveness() { TracksLiveness = false; }
    147 
    148   //===--------------------------------------------------------------------===//
    149   // Register Info
    150   //===--------------------------------------------------------------------===//
    151 
    152   // Strictly for use by MachineInstr.cpp.
    153   void addRegOperandToUseList(MachineOperand *MO);
    154 
    155   // Strictly for use by MachineInstr.cpp.
    156   void removeRegOperandFromUseList(MachineOperand *MO);
    157 
    158   /// reg_begin/reg_end - Provide iteration support to walk over all definitions
    159   /// and uses of a register within the MachineFunction that corresponds to this
    160   /// MachineRegisterInfo object.
    161   template<bool Uses, bool Defs, bool SkipDebug>
    162   class defusechain_iterator;
    163 
    164   // Make it a friend so it can access getNextOperandForReg().
    165   template<bool, bool, bool> friend class defusechain_iterator;
    166 
    167   /// reg_iterator/reg_begin/reg_end - Walk all defs and uses of the specified
    168   /// register.
    169   typedef defusechain_iterator<true,true,false> reg_iterator;
    170   reg_iterator reg_begin(unsigned RegNo) const {
    171     return reg_iterator(getRegUseDefListHead(RegNo));
    172   }
    173   static reg_iterator reg_end() { return reg_iterator(0); }
    174 
    175   /// reg_empty - Return true if there are no instructions using or defining the
    176   /// specified register (it may be live-in).
    177   bool reg_empty(unsigned RegNo) const { return reg_begin(RegNo) == reg_end(); }
    178 
    179   /// reg_nodbg_iterator/reg_nodbg_begin/reg_nodbg_end - Walk all defs and uses
    180   /// of the specified register, skipping those marked as Debug.
    181   typedef defusechain_iterator<true,true,true> reg_nodbg_iterator;
    182   reg_nodbg_iterator reg_nodbg_begin(unsigned RegNo) const {
    183     return reg_nodbg_iterator(getRegUseDefListHead(RegNo));
    184   }
    185   static reg_nodbg_iterator reg_nodbg_end() { return reg_nodbg_iterator(0); }
    186 
    187   /// reg_nodbg_empty - Return true if the only instructions using or defining
    188   /// Reg are Debug instructions.
    189   bool reg_nodbg_empty(unsigned RegNo) const {
    190     return reg_nodbg_begin(RegNo) == reg_nodbg_end();
    191   }
    192 
    193   /// def_iterator/def_begin/def_end - Walk all defs of the specified register.
    194   typedef defusechain_iterator<false,true,false> def_iterator;
    195   def_iterator def_begin(unsigned RegNo) const {
    196     return def_iterator(getRegUseDefListHead(RegNo));
    197   }
    198   static def_iterator def_end() { return def_iterator(0); }
    199 
    200   /// def_empty - Return true if there are no instructions defining the
    201   /// specified register (it may be live-in).
    202   bool def_empty(unsigned RegNo) const { return def_begin(RegNo) == def_end(); }
    203 
    204   /// hasOneDef - Return true if there is exactly one instruction defining the
    205   /// specified register.
    206   bool hasOneDef(unsigned RegNo) const {
    207     def_iterator DI = def_begin(RegNo);
    208     if (DI == def_end())
    209       return false;
    210     return ++DI == def_end();
    211   }
    212 
    213   /// use_iterator/use_begin/use_end - Walk all uses of the specified register.
    214   typedef defusechain_iterator<true,false,false> use_iterator;
    215   use_iterator use_begin(unsigned RegNo) const {
    216     return use_iterator(getRegUseDefListHead(RegNo));
    217   }
    218   static use_iterator use_end() { return use_iterator(0); }
    219 
    220   /// use_empty - Return true if there are no instructions using the specified
    221   /// register.
    222   bool use_empty(unsigned RegNo) const { return use_begin(RegNo) == use_end(); }
    223 
    224   /// hasOneUse - Return true if there is exactly one instruction using the
    225   /// specified register.
    226   bool hasOneUse(unsigned RegNo) const {
    227     use_iterator UI = use_begin(RegNo);
    228     if (UI == use_end())
    229       return false;
    230     return ++UI == use_end();
    231   }
    232 
    233   /// use_nodbg_iterator/use_nodbg_begin/use_nodbg_end - Walk all uses of the
    234   /// specified register, skipping those marked as Debug.
    235   typedef defusechain_iterator<true,false,true> use_nodbg_iterator;
    236   use_nodbg_iterator use_nodbg_begin(unsigned RegNo) const {
    237     return use_nodbg_iterator(getRegUseDefListHead(RegNo));
    238   }
    239   static use_nodbg_iterator use_nodbg_end() { return use_nodbg_iterator(0); }
    240 
    241   /// use_nodbg_empty - Return true if there are no non-Debug instructions
    242   /// using the specified register.
    243   bool use_nodbg_empty(unsigned RegNo) const {
    244     return use_nodbg_begin(RegNo) == use_nodbg_end();
    245   }
    246 
    247   /// hasOneNonDBGUse - Return true if there is exactly one non-Debug
    248   /// instruction using the specified register.
    249   bool hasOneNonDBGUse(unsigned RegNo) const;
    250 
    251   /// replaceRegWith - Replace all instances of FromReg with ToReg in the
    252   /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
    253   /// except that it also changes any definitions of the register as well.
    254   ///
    255   /// Note that it is usually necessary to first constrain ToReg's register
    256   /// class to match the FromReg constraints using:
    257   ///
    258   ///   constrainRegClass(ToReg, getRegClass(FromReg))
    259   ///
    260   /// That function will return NULL if the virtual registers have incompatible
    261   /// constraints.
    262   void replaceRegWith(unsigned FromReg, unsigned ToReg);
    263 
    264   /// getVRegDef - Return the machine instr that defines the specified virtual
    265   /// register or null if none is found.  This assumes that the code is in SSA
    266   /// form, so there should only be one definition.
    267   MachineInstr *getVRegDef(unsigned Reg) const;
    268 
    269   /// getUniqueVRegDef - Return the unique machine instr that defines the
    270   /// specified virtual register or null if none is found.  If there are
    271   /// multiple definitions or no definition, return null.
    272   MachineInstr *getUniqueVRegDef(unsigned Reg) const;
    273 
    274   /// clearKillFlags - Iterate over all the uses of the given register and
    275   /// clear the kill flag from the MachineOperand. This function is used by
    276   /// optimization passes which extend register lifetimes and need only
    277   /// preserve conservative kill flag information.
    278   void clearKillFlags(unsigned Reg) const;
    279 
    280 #ifndef NDEBUG
    281   void dumpUses(unsigned RegNo) const;
    282 #endif
    283 
    284   /// isConstantPhysReg - Returns true if PhysReg is unallocatable and constant
    285   /// throughout the function.  It is safe to move instructions that read such
    286   /// a physreg.
    287   bool isConstantPhysReg(unsigned PhysReg, const MachineFunction &MF) const;
    288 
    289   //===--------------------------------------------------------------------===//
    290   // Virtual Register Info
    291   //===--------------------------------------------------------------------===//
    292 
    293   /// getRegClass - Return the register class of the specified virtual register.
    294   ///
    295   const TargetRegisterClass *getRegClass(unsigned Reg) const {
    296     return VRegInfo[Reg].first;
    297   }
    298 
    299   /// setRegClass - Set the register class of the specified virtual register.
    300   ///
    301   void setRegClass(unsigned Reg, const TargetRegisterClass *RC);
    302 
    303   /// constrainRegClass - Constrain the register class of the specified virtual
    304   /// register to be a common subclass of RC and the current register class,
    305   /// but only if the new class has at least MinNumRegs registers.  Return the
    306   /// new register class, or NULL if no such class exists.
    307   /// This should only be used when the constraint is known to be trivial, like
    308   /// GR32 -> GR32_NOSP. Beware of increasing register pressure.
    309   ///
    310   const TargetRegisterClass *constrainRegClass(unsigned Reg,
    311                                                const TargetRegisterClass *RC,
    312                                                unsigned MinNumRegs = 0);
    313 
    314   /// recomputeRegClass - Try to find a legal super-class of Reg's register
    315   /// class that still satisfies the constraints from the instructions using
    316   /// Reg.  Returns true if Reg was upgraded.
    317   ///
    318   /// This method can be used after constraints have been removed from a
    319   /// virtual register, for example after removing instructions or splitting
    320   /// the live range.
    321   ///
    322   bool recomputeRegClass(unsigned Reg, const TargetMachine&);
    323 
    324   /// createVirtualRegister - Create and return a new virtual register in the
    325   /// function with the specified register class.
    326   ///
    327   unsigned createVirtualRegister(const TargetRegisterClass *RegClass);
    328 
    329   /// getNumVirtRegs - Return the number of virtual registers created.
    330   ///
    331   unsigned getNumVirtRegs() const { return VRegInfo.size(); }
    332 
    333   /// clearVirtRegs - Remove all virtual registers (after physreg assignment).
    334   void clearVirtRegs();
    335 
    336   /// setRegAllocationHint - Specify a register allocation hint for the
    337   /// specified virtual register.
    338   void setRegAllocationHint(unsigned Reg, unsigned Type, unsigned PrefReg) {
    339     RegAllocHints[Reg].first  = Type;
    340     RegAllocHints[Reg].second = PrefReg;
    341   }
    342 
    343   /// getRegAllocationHint - Return the register allocation hint for the
    344   /// specified virtual register.
    345   std::pair<unsigned, unsigned>
    346   getRegAllocationHint(unsigned Reg) const {
    347     return RegAllocHints[Reg];
    348   }
    349 
    350   /// getSimpleHint - Return the preferred register allocation hint, or 0 if a
    351   /// standard simple hint (Type == 0) is not set.
    352   unsigned getSimpleHint(unsigned Reg) const {
    353     std::pair<unsigned, unsigned> Hint = getRegAllocationHint(Reg);
    354     return Hint.first ? 0 : Hint.second;
    355   }
    356 
    357 
    358   //===--------------------------------------------------------------------===//
    359   // Physical Register Use Info
    360   //===--------------------------------------------------------------------===//
    361 
    362   /// isPhysRegUsed - Return true if the specified register is used in this
    363   /// function.  This only works after register allocation.
    364   bool isPhysRegUsed(unsigned Reg) const {
    365     return UsedPhysRegs.test(Reg) || UsedPhysRegMask.test(Reg);
    366   }
    367 
    368   /// isPhysRegOrOverlapUsed - Return true if Reg or any overlapping register
    369   /// is used in this function.
    370   bool isPhysRegOrOverlapUsed(unsigned Reg) const {
    371     if (UsedPhysRegMask.test(Reg))
    372       return true;
    373     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
    374       if (UsedPhysRegs.test(*AI))
    375         return true;
    376     return false;
    377   }
    378 
    379   /// setPhysRegUsed - Mark the specified register used in this function.
    380   /// This should only be called during and after register allocation.
    381   void setPhysRegUsed(unsigned Reg) { UsedPhysRegs.set(Reg); }
    382 
    383   /// addPhysRegsUsed - Mark the specified registers used in this function.
    384   /// This should only be called during and after register allocation.
    385   void addPhysRegsUsed(const BitVector &Regs) { UsedPhysRegs |= Regs; }
    386 
    387   /// addPhysRegsUsedFromRegMask - Mark any registers not in RegMask as used.
    388   /// This corresponds to the bit mask attached to register mask operands.
    389   void addPhysRegsUsedFromRegMask(const uint32_t *RegMask) {
    390     UsedPhysRegMask.setBitsNotInMask(RegMask);
    391   }
    392 
    393   /// setPhysRegUnused - Mark the specified register unused in this function.
    394   /// This should only be called during and after register allocation.
    395   void setPhysRegUnused(unsigned Reg) {
    396     UsedPhysRegs.reset(Reg);
    397     UsedPhysRegMask.reset(Reg);
    398   }
    399 
    400 
    401   //===--------------------------------------------------------------------===//
    402   // Reserved Register Info
    403   //===--------------------------------------------------------------------===//
    404   //
    405   // The set of reserved registers must be invariant during register
    406   // allocation.  For example, the target cannot suddenly decide it needs a
    407   // frame pointer when the register allocator has already used the frame
    408   // pointer register for something else.
    409   //
    410   // These methods can be used by target hooks like hasFP() to avoid changing
    411   // the reserved register set during register allocation.
    412 
    413   /// freezeReservedRegs - Called by the register allocator to freeze the set
    414   /// of reserved registers before allocation begins.
    415   void freezeReservedRegs(const MachineFunction&);
    416 
    417   /// reservedRegsFrozen - Returns true after freezeReservedRegs() was called
    418   /// to ensure the set of reserved registers stays constant.
    419   bool reservedRegsFrozen() const {
    420     return !ReservedRegs.empty();
    421   }
    422 
    423   /// canReserveReg - Returns true if PhysReg can be used as a reserved
    424   /// register.  Any register can be reserved before freezeReservedRegs() is
    425   /// called.
    426   bool canReserveReg(unsigned PhysReg) const {
    427     return !reservedRegsFrozen() || ReservedRegs.test(PhysReg);
    428   }
    429 
    430 
    431   //===--------------------------------------------------------------------===//
    432   // LiveIn/LiveOut Management
    433   //===--------------------------------------------------------------------===//
    434 
    435   /// addLiveIn/Out - Add the specified register as a live in/out.  Note that it
    436   /// is an error to add the same register to the same set more than once.
    437   void addLiveIn(unsigned Reg, unsigned vreg = 0) {
    438     LiveIns.push_back(std::make_pair(Reg, vreg));
    439   }
    440   void addLiveOut(unsigned Reg) { LiveOuts.push_back(Reg); }
    441 
    442   // Iteration support for live in/out sets.  These sets are kept in sorted
    443   // order by their register number.
    444   typedef std::vector<std::pair<unsigned,unsigned> >::const_iterator
    445   livein_iterator;
    446   typedef std::vector<unsigned>::const_iterator liveout_iterator;
    447   livein_iterator livein_begin() const { return LiveIns.begin(); }
    448   livein_iterator livein_end()   const { return LiveIns.end(); }
    449   bool            livein_empty() const { return LiveIns.empty(); }
    450   liveout_iterator liveout_begin() const { return LiveOuts.begin(); }
    451   liveout_iterator liveout_end()   const { return LiveOuts.end(); }
    452   bool             liveout_empty() const { return LiveOuts.empty(); }
    453 
    454   bool isLiveIn(unsigned Reg) const;
    455   bool isLiveOut(unsigned Reg) const;
    456 
    457   /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
    458   /// corresponding live-in physical register.
    459   unsigned getLiveInPhysReg(unsigned VReg) const;
    460 
    461   /// getLiveInVirtReg - If PReg is a live-in physical register, return the
    462   /// corresponding live-in physical register.
    463   unsigned getLiveInVirtReg(unsigned PReg) const;
    464 
    465   /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
    466   /// into the given entry block.
    467   void EmitLiveInCopies(MachineBasicBlock *EntryMBB,
    468                         const TargetRegisterInfo &TRI,
    469                         const TargetInstrInfo &TII);
    470 
    471   /// defusechain_iterator - This class provides iterator support for machine
    472   /// operands in the function that use or define a specific register.  If
    473   /// ReturnUses is true it returns uses of registers, if ReturnDefs is true it
    474   /// returns defs.  If neither are true then you are silly and it always
    475   /// returns end().  If SkipDebug is true it skips uses marked Debug
    476   /// when incrementing.
    477   template<bool ReturnUses, bool ReturnDefs, bool SkipDebug>
    478   class defusechain_iterator
    479     : public std::iterator<std::forward_iterator_tag, MachineInstr, ptrdiff_t> {
    480     MachineOperand *Op;
    481     explicit defusechain_iterator(MachineOperand *op) : Op(op) {
    482       // If the first node isn't one we're interested in, advance to one that
    483       // we are interested in.
    484       if (op) {
    485         if ((!ReturnUses && op->isUse()) ||
    486             (!ReturnDefs && op->isDef()) ||
    487             (SkipDebug && op->isDebug()))
    488           ++*this;
    489       }
    490     }
    491     friend class MachineRegisterInfo;
    492   public:
    493     typedef std::iterator<std::forward_iterator_tag,
    494                           MachineInstr, ptrdiff_t>::reference reference;
    495     typedef std::iterator<std::forward_iterator_tag,
    496                           MachineInstr, ptrdiff_t>::pointer pointer;
    497 
    498     defusechain_iterator(const defusechain_iterator &I) : Op(I.Op) {}
    499     defusechain_iterator() : Op(0) {}
    500 
    501     bool operator==(const defusechain_iterator &x) const {
    502       return Op == x.Op;
    503     }
    504     bool operator!=(const defusechain_iterator &x) const {
    505       return !operator==(x);
    506     }
    507 
    508     /// atEnd - return true if this iterator is equal to reg_end() on the value.
    509     bool atEnd() const { return Op == 0; }
    510 
    511     // Iterator traversal: forward iteration only
    512     defusechain_iterator &operator++() {          // Preincrement
    513       assert(Op && "Cannot increment end iterator!");
    514       Op = getNextOperandForReg(Op);
    515 
    516       // All defs come before the uses, so stop def_iterator early.
    517       if (!ReturnUses) {
    518         if (Op) {
    519           if (Op->isUse())
    520             Op = 0;
    521           else
    522             assert(!Op->isDebug() && "Can't have debug defs");
    523         }
    524       } else {
    525         // If this is an operand we don't care about, skip it.
    526         while (Op && ((!ReturnDefs && Op->isDef()) ||
    527                       (SkipDebug && Op->isDebug())))
    528           Op = getNextOperandForReg(Op);
    529       }
    530 
    531       return *this;
    532     }
    533     defusechain_iterator operator++(int) {        // Postincrement
    534       defusechain_iterator tmp = *this; ++*this; return tmp;
    535     }
    536 
    537     /// skipInstruction - move forward until reaching a different instruction.
    538     /// Return the skipped instruction that is no longer pointed to, or NULL if
    539     /// already pointing to end().
    540     MachineInstr *skipInstruction() {
    541       if (!Op) return 0;
    542       MachineInstr *MI = Op->getParent();
    543       do ++*this;
    544       while (Op && Op->getParent() == MI);
    545       return MI;
    546     }
    547 
    548     MachineInstr *skipBundle() {
    549       if (!Op) return 0;
    550       MachineInstr *MI = getBundleStart(Op->getParent());
    551       do ++*this;
    552       while (Op && getBundleStart(Op->getParent()) == MI);
    553       return MI;
    554     }
    555 
    556     MachineOperand &getOperand() const {
    557       assert(Op && "Cannot dereference end iterator!");
    558       return *Op;
    559     }
    560 
    561     /// getOperandNo - Return the operand # of this MachineOperand in its
    562     /// MachineInstr.
    563     unsigned getOperandNo() const {
    564       assert(Op && "Cannot dereference end iterator!");
    565       return Op - &Op->getParent()->getOperand(0);
    566     }
    567 
    568     // Retrieve a reference to the current operand.
    569     MachineInstr &operator*() const {
    570       assert(Op && "Cannot dereference end iterator!");
    571       return *Op->getParent();
    572     }
    573 
    574     MachineInstr *operator->() const {
    575       assert(Op && "Cannot dereference end iterator!");
    576       return Op->getParent();
    577     }
    578   };
    579 
    580 };
    581 
    582 } // End llvm namespace
    583 
    584 #endif
    585