Home | History | Annotate | Download | only in CodeGen
      1 //===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This contains code dealing with code generation of C++ expressions
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Frontend/CodeGenOptions.h"
     15 #include "CodeGenFunction.h"
     16 #include "CGCUDARuntime.h"
     17 #include "CGCXXABI.h"
     18 #include "CGObjCRuntime.h"
     19 #include "CGDebugInfo.h"
     20 #include "llvm/Intrinsics.h"
     21 #include "llvm/Support/CallSite.h"
     22 
     23 using namespace clang;
     24 using namespace CodeGen;
     25 
     26 RValue CodeGenFunction::EmitCXXMemberCall(const CXXMethodDecl *MD,
     27                                           llvm::Value *Callee,
     28                                           ReturnValueSlot ReturnValue,
     29                                           llvm::Value *This,
     30                                           llvm::Value *VTT,
     31                                           CallExpr::const_arg_iterator ArgBeg,
     32                                           CallExpr::const_arg_iterator ArgEnd) {
     33   assert(MD->isInstance() &&
     34          "Trying to emit a member call expr on a static method!");
     35 
     36   // C++11 [class.mfct.non-static]p2:
     37   //   If a non-static member function of a class X is called for an object that
     38   //   is not of type X, or of a type derived from X, the behavior is undefined.
     39   EmitTypeCheck(TCK_MemberCall, This,
     40                 getContext().getRecordType(MD->getParent()));
     41 
     42   CallArgList Args;
     43 
     44   // Push the this ptr.
     45   Args.add(RValue::get(This), MD->getThisType(getContext()));
     46 
     47   // If there is a VTT parameter, emit it.
     48   if (VTT) {
     49     QualType T = getContext().getPointerType(getContext().VoidPtrTy);
     50     Args.add(RValue::get(VTT), T);
     51   }
     52 
     53   const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
     54   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
     55 
     56   // And the rest of the call args.
     57   EmitCallArgs(Args, FPT, ArgBeg, ArgEnd);
     58 
     59   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
     60                   Callee, ReturnValue, Args, MD);
     61 }
     62 
     63 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
     64 // quite what we want.
     65 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
     66   while (true) {
     67     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
     68       E = PE->getSubExpr();
     69       continue;
     70     }
     71 
     72     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
     73       if (CE->getCastKind() == CK_NoOp) {
     74         E = CE->getSubExpr();
     75         continue;
     76       }
     77     }
     78     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
     79       if (UO->getOpcode() == UO_Extension) {
     80         E = UO->getSubExpr();
     81         continue;
     82       }
     83     }
     84     return E;
     85   }
     86 }
     87 
     88 /// canDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
     89 /// expr can be devirtualized.
     90 static bool canDevirtualizeMemberFunctionCalls(ASTContext &Context,
     91                                                const Expr *Base,
     92                                                const CXXMethodDecl *MD) {
     93 
     94   // When building with -fapple-kext, all calls must go through the vtable since
     95   // the kernel linker can do runtime patching of vtables.
     96   if (Context.getLangOpts().AppleKext)
     97     return false;
     98 
     99   // If the most derived class is marked final, we know that no subclass can
    100   // override this member function and so we can devirtualize it. For example:
    101   //
    102   // struct A { virtual void f(); }
    103   // struct B final : A { };
    104   //
    105   // void f(B *b) {
    106   //   b->f();
    107   // }
    108   //
    109   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
    110   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
    111     return true;
    112 
    113   // If the member function is marked 'final', we know that it can't be
    114   // overridden and can therefore devirtualize it.
    115   if (MD->hasAttr<FinalAttr>())
    116     return true;
    117 
    118   // Similarly, if the class itself is marked 'final' it can't be overridden
    119   // and we can therefore devirtualize the member function call.
    120   if (MD->getParent()->hasAttr<FinalAttr>())
    121     return true;
    122 
    123   Base = skipNoOpCastsAndParens(Base);
    124   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
    125     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
    126       // This is a record decl. We know the type and can devirtualize it.
    127       return VD->getType()->isRecordType();
    128     }
    129 
    130     return false;
    131   }
    132 
    133   // We can devirtualize calls on an object accessed by a class member access
    134   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
    135   // a derived class object constructed in the same location.
    136   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
    137     if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
    138       return VD->getType()->isRecordType();
    139 
    140   // We can always devirtualize calls on temporary object expressions.
    141   if (isa<CXXConstructExpr>(Base))
    142     return true;
    143 
    144   // And calls on bound temporaries.
    145   if (isa<CXXBindTemporaryExpr>(Base))
    146     return true;
    147 
    148   // Check if this is a call expr that returns a record type.
    149   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
    150     return CE->getCallReturnType()->isRecordType();
    151 
    152   // We can't devirtualize the call.
    153   return false;
    154 }
    155 
    156 static CXXRecordDecl *getCXXRecord(const Expr *E) {
    157   QualType T = E->getType();
    158   if (const PointerType *PTy = T->getAs<PointerType>())
    159     T = PTy->getPointeeType();
    160   const RecordType *Ty = T->castAs<RecordType>();
    161   return cast<CXXRecordDecl>(Ty->getDecl());
    162 }
    163 
    164 // Note: This function also emit constructor calls to support a MSVC
    165 // extensions allowing explicit constructor function call.
    166 RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
    167                                               ReturnValueSlot ReturnValue) {
    168   const Expr *callee = CE->getCallee()->IgnoreParens();
    169 
    170   if (isa<BinaryOperator>(callee))
    171     return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
    172 
    173   const MemberExpr *ME = cast<MemberExpr>(callee);
    174   const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
    175 
    176   CGDebugInfo *DI = getDebugInfo();
    177   if (DI && CGM.getCodeGenOpts().DebugInfo == CodeGenOptions::LimitedDebugInfo
    178       && !isa<CallExpr>(ME->getBase())) {
    179     QualType PQTy = ME->getBase()->IgnoreParenImpCasts()->getType();
    180     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy)) {
    181       DI->getOrCreateRecordType(PTy->getPointeeType(),
    182                                 MD->getParent()->getLocation());
    183     }
    184   }
    185 
    186   if (MD->isStatic()) {
    187     // The method is static, emit it as we would a regular call.
    188     llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
    189     return EmitCall(getContext().getPointerType(MD->getType()), Callee,
    190                     ReturnValue, CE->arg_begin(), CE->arg_end());
    191   }
    192 
    193   // Compute the object pointer.
    194   const Expr *Base = ME->getBase();
    195   bool CanUseVirtualCall = MD->isVirtual() && !ME->hasQualifier();
    196 
    197   const CXXMethodDecl *DevirtualizedMethod = NULL;
    198   if (CanUseVirtualCall &&
    199       canDevirtualizeMemberFunctionCalls(getContext(), Base, MD)) {
    200     const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
    201     DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
    202     assert(DevirtualizedMethod);
    203     const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
    204     const Expr *Inner = Base->ignoreParenBaseCasts();
    205     if (getCXXRecord(Inner) == DevirtualizedClass)
    206       // If the class of the Inner expression is where the dynamic method
    207       // is defined, build the this pointer from it.
    208       Base = Inner;
    209     else if (getCXXRecord(Base) != DevirtualizedClass) {
    210       // If the method is defined in a class that is not the best dynamic
    211       // one or the one of the full expression, we would have to build
    212       // a derived-to-base cast to compute the correct this pointer, but
    213       // we don't have support for that yet, so do a virtual call.
    214       DevirtualizedMethod = NULL;
    215     }
    216     // If the return types are not the same, this might be a case where more
    217     // code needs to run to compensate for it. For example, the derived
    218     // method might return a type that inherits form from the return
    219     // type of MD and has a prefix.
    220     // For now we just avoid devirtualizing these covariant cases.
    221     if (DevirtualizedMethod &&
    222         DevirtualizedMethod->getResultType().getCanonicalType() !=
    223         MD->getResultType().getCanonicalType())
    224       DevirtualizedMethod = NULL;
    225   }
    226 
    227   llvm::Value *This;
    228   if (ME->isArrow())
    229     This = EmitScalarExpr(Base);
    230   else
    231     This = EmitLValue(Base).getAddress();
    232 
    233 
    234   if (MD->isTrivial()) {
    235     if (isa<CXXDestructorDecl>(MD)) return RValue::get(0);
    236     if (isa<CXXConstructorDecl>(MD) &&
    237         cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
    238       return RValue::get(0);
    239 
    240     if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
    241       // We don't like to generate the trivial copy/move assignment operator
    242       // when it isn't necessary; just produce the proper effect here.
    243       llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
    244       EmitAggregateCopy(This, RHS, CE->getType());
    245       return RValue::get(This);
    246     }
    247 
    248     if (isa<CXXConstructorDecl>(MD) &&
    249         cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
    250       // Trivial move and copy ctor are the same.
    251       llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
    252       EmitSynthesizedCXXCopyCtorCall(cast<CXXConstructorDecl>(MD), This, RHS,
    253                                      CE->arg_begin(), CE->arg_end());
    254       return RValue::get(This);
    255     }
    256     llvm_unreachable("unknown trivial member function");
    257   }
    258 
    259   // Compute the function type we're calling.
    260   const CGFunctionInfo *FInfo = 0;
    261   if (isa<CXXDestructorDecl>(MD))
    262     FInfo = &CGM.getTypes().arrangeCXXDestructor(cast<CXXDestructorDecl>(MD),
    263                                                  Dtor_Complete);
    264   else if (isa<CXXConstructorDecl>(MD))
    265     FInfo = &CGM.getTypes().arrangeCXXConstructorDeclaration(
    266                                                  cast<CXXConstructorDecl>(MD),
    267                                                  Ctor_Complete);
    268   else
    269     FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(MD);
    270 
    271   llvm::Type *Ty = CGM.getTypes().GetFunctionType(*FInfo);
    272 
    273   // C++ [class.virtual]p12:
    274   //   Explicit qualification with the scope operator (5.1) suppresses the
    275   //   virtual call mechanism.
    276   //
    277   // We also don't emit a virtual call if the base expression has a record type
    278   // because then we know what the type is.
    279   bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
    280 
    281   llvm::Value *Callee;
    282   if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
    283     if (UseVirtualCall) {
    284       Callee = BuildVirtualCall(Dtor, Dtor_Complete, This, Ty);
    285     } else {
    286       if (getContext().getLangOpts().AppleKext &&
    287           MD->isVirtual() &&
    288           ME->hasQualifier())
    289         Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
    290       else if (!DevirtualizedMethod)
    291         Callee = CGM.GetAddrOfFunction(GlobalDecl(Dtor, Dtor_Complete), Ty);
    292       else {
    293         const CXXDestructorDecl *DDtor =
    294           cast<CXXDestructorDecl>(DevirtualizedMethod);
    295         Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
    296       }
    297     }
    298   } else if (const CXXConstructorDecl *Ctor =
    299                dyn_cast<CXXConstructorDecl>(MD)) {
    300     Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
    301   } else if (UseVirtualCall) {
    302       Callee = BuildVirtualCall(MD, This, Ty);
    303   } else {
    304     if (getContext().getLangOpts().AppleKext &&
    305         MD->isVirtual() &&
    306         ME->hasQualifier())
    307       Callee = BuildAppleKextVirtualCall(MD, ME->getQualifier(), Ty);
    308     else if (!DevirtualizedMethod)
    309       Callee = CGM.GetAddrOfFunction(MD, Ty);
    310     else {
    311       Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
    312     }
    313   }
    314 
    315   return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
    316                            CE->arg_begin(), CE->arg_end());
    317 }
    318 
    319 RValue
    320 CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
    321                                               ReturnValueSlot ReturnValue) {
    322   const BinaryOperator *BO =
    323       cast<BinaryOperator>(E->getCallee()->IgnoreParens());
    324   const Expr *BaseExpr = BO->getLHS();
    325   const Expr *MemFnExpr = BO->getRHS();
    326 
    327   const MemberPointerType *MPT =
    328     MemFnExpr->getType()->castAs<MemberPointerType>();
    329 
    330   const FunctionProtoType *FPT =
    331     MPT->getPointeeType()->castAs<FunctionProtoType>();
    332   const CXXRecordDecl *RD =
    333     cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
    334 
    335   // Get the member function pointer.
    336   llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
    337 
    338   // Emit the 'this' pointer.
    339   llvm::Value *This;
    340 
    341   if (BO->getOpcode() == BO_PtrMemI)
    342     This = EmitScalarExpr(BaseExpr);
    343   else
    344     This = EmitLValue(BaseExpr).getAddress();
    345 
    346   EmitTypeCheck(TCK_MemberCall, This, QualType(MPT->getClass(), 0));
    347 
    348   // Ask the ABI to load the callee.  Note that This is modified.
    349   llvm::Value *Callee =
    350     CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, This, MemFnPtr, MPT);
    351 
    352   CallArgList Args;
    353 
    354   QualType ThisType =
    355     getContext().getPointerType(getContext().getTagDeclType(RD));
    356 
    357   // Push the this ptr.
    358   Args.add(RValue::get(This), ThisType);
    359 
    360   RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
    361 
    362   // And the rest of the call args
    363   EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end());
    364   return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required), Callee,
    365                   ReturnValue, Args);
    366 }
    367 
    368 RValue
    369 CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
    370                                                const CXXMethodDecl *MD,
    371                                                ReturnValueSlot ReturnValue) {
    372   assert(MD->isInstance() &&
    373          "Trying to emit a member call expr on a static method!");
    374   LValue LV = EmitLValue(E->getArg(0));
    375   llvm::Value *This = LV.getAddress();
    376 
    377   if ((MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
    378       MD->isTrivial()) {
    379     llvm::Value *Src = EmitLValue(E->getArg(1)).getAddress();
    380     QualType Ty = E->getType();
    381     EmitAggregateCopy(This, Src, Ty);
    382     return RValue::get(This);
    383   }
    384 
    385   llvm::Value *Callee = EmitCXXOperatorMemberCallee(E, MD, This);
    386   return EmitCXXMemberCall(MD, Callee, ReturnValue, This, /*VTT=*/0,
    387                            E->arg_begin() + 1, E->arg_end());
    388 }
    389 
    390 RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
    391                                                ReturnValueSlot ReturnValue) {
    392   return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
    393 }
    394 
    395 static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
    396                                             llvm::Value *DestPtr,
    397                                             const CXXRecordDecl *Base) {
    398   if (Base->isEmpty())
    399     return;
    400 
    401   DestPtr = CGF.EmitCastToVoidPtr(DestPtr);
    402 
    403   const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
    404   CharUnits Size = Layout.getNonVirtualSize();
    405   CharUnits Align = Layout.getNonVirtualAlign();
    406 
    407   llvm::Value *SizeVal = CGF.CGM.getSize(Size);
    408 
    409   // If the type contains a pointer to data member we can't memset it to zero.
    410   // Instead, create a null constant and copy it to the destination.
    411   // TODO: there are other patterns besides zero that we can usefully memset,
    412   // like -1, which happens to be the pattern used by member-pointers.
    413   // TODO: isZeroInitializable can be over-conservative in the case where a
    414   // virtual base contains a member pointer.
    415   if (!CGF.CGM.getTypes().isZeroInitializable(Base)) {
    416     llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base);
    417 
    418     llvm::GlobalVariable *NullVariable =
    419       new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(),
    420                                /*isConstant=*/true,
    421                                llvm::GlobalVariable::PrivateLinkage,
    422                                NullConstant, Twine());
    423     NullVariable->setAlignment(Align.getQuantity());
    424     llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable);
    425 
    426     // Get and call the appropriate llvm.memcpy overload.
    427     CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity());
    428     return;
    429   }
    430 
    431   // Otherwise, just memset the whole thing to zero.  This is legal
    432   // because in LLVM, all default initializers (other than the ones we just
    433   // handled above) are guaranteed to have a bit pattern of all zeros.
    434   CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal,
    435                            Align.getQuantity());
    436 }
    437 
    438 void
    439 CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
    440                                       AggValueSlot Dest) {
    441   assert(!Dest.isIgnored() && "Must have a destination!");
    442   const CXXConstructorDecl *CD = E->getConstructor();
    443 
    444   // If we require zero initialization before (or instead of) calling the
    445   // constructor, as can be the case with a non-user-provided default
    446   // constructor, emit the zero initialization now, unless destination is
    447   // already zeroed.
    448   if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
    449     switch (E->getConstructionKind()) {
    450     case CXXConstructExpr::CK_Delegating:
    451     case CXXConstructExpr::CK_Complete:
    452       EmitNullInitialization(Dest.getAddr(), E->getType());
    453       break;
    454     case CXXConstructExpr::CK_VirtualBase:
    455     case CXXConstructExpr::CK_NonVirtualBase:
    456       EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent());
    457       break;
    458     }
    459   }
    460 
    461   // If this is a call to a trivial default constructor, do nothing.
    462   if (CD->isTrivial() && CD->isDefaultConstructor())
    463     return;
    464 
    465   // Elide the constructor if we're constructing from a temporary.
    466   // The temporary check is required because Sema sets this on NRVO
    467   // returns.
    468   if (getContext().getLangOpts().ElideConstructors && E->isElidable()) {
    469     assert(getContext().hasSameUnqualifiedType(E->getType(),
    470                                                E->getArg(0)->getType()));
    471     if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
    472       EmitAggExpr(E->getArg(0), Dest);
    473       return;
    474     }
    475   }
    476 
    477   if (const ConstantArrayType *arrayType
    478         = getContext().getAsConstantArrayType(E->getType())) {
    479     EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(),
    480                                E->arg_begin(), E->arg_end());
    481   } else {
    482     CXXCtorType Type = Ctor_Complete;
    483     bool ForVirtualBase = false;
    484 
    485     switch (E->getConstructionKind()) {
    486      case CXXConstructExpr::CK_Delegating:
    487       // We should be emitting a constructor; GlobalDecl will assert this
    488       Type = CurGD.getCtorType();
    489       break;
    490 
    491      case CXXConstructExpr::CK_Complete:
    492       Type = Ctor_Complete;
    493       break;
    494 
    495      case CXXConstructExpr::CK_VirtualBase:
    496       ForVirtualBase = true;
    497       // fall-through
    498 
    499      case CXXConstructExpr::CK_NonVirtualBase:
    500       Type = Ctor_Base;
    501     }
    502 
    503     // Call the constructor.
    504     EmitCXXConstructorCall(CD, Type, ForVirtualBase, Dest.getAddr(),
    505                            E->arg_begin(), E->arg_end());
    506   }
    507 }
    508 
    509 void
    510 CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest,
    511                                             llvm::Value *Src,
    512                                             const Expr *Exp) {
    513   if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
    514     Exp = E->getSubExpr();
    515   assert(isa<CXXConstructExpr>(Exp) &&
    516          "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
    517   const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
    518   const CXXConstructorDecl *CD = E->getConstructor();
    519   RunCleanupsScope Scope(*this);
    520 
    521   // If we require zero initialization before (or instead of) calling the
    522   // constructor, as can be the case with a non-user-provided default
    523   // constructor, emit the zero initialization now.
    524   // FIXME. Do I still need this for a copy ctor synthesis?
    525   if (E->requiresZeroInitialization())
    526     EmitNullInitialization(Dest, E->getType());
    527 
    528   assert(!getContext().getAsConstantArrayType(E->getType())
    529          && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
    530   EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src,
    531                                  E->arg_begin(), E->arg_end());
    532 }
    533 
    534 static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
    535                                         const CXXNewExpr *E) {
    536   if (!E->isArray())
    537     return CharUnits::Zero();
    538 
    539   // No cookie is required if the operator new[] being used is the
    540   // reserved placement operator new[].
    541   if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
    542     return CharUnits::Zero();
    543 
    544   return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
    545 }
    546 
    547 static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
    548                                         const CXXNewExpr *e,
    549                                         unsigned minElements,
    550                                         llvm::Value *&numElements,
    551                                         llvm::Value *&sizeWithoutCookie) {
    552   QualType type = e->getAllocatedType();
    553 
    554   if (!e->isArray()) {
    555     CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
    556     sizeWithoutCookie
    557       = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
    558     return sizeWithoutCookie;
    559   }
    560 
    561   // The width of size_t.
    562   unsigned sizeWidth = CGF.SizeTy->getBitWidth();
    563 
    564   // Figure out the cookie size.
    565   llvm::APInt cookieSize(sizeWidth,
    566                          CalculateCookiePadding(CGF, e).getQuantity());
    567 
    568   // Emit the array size expression.
    569   // We multiply the size of all dimensions for NumElements.
    570   // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
    571   numElements = CGF.EmitScalarExpr(e->getArraySize());
    572   assert(isa<llvm::IntegerType>(numElements->getType()));
    573 
    574   // The number of elements can be have an arbitrary integer type;
    575   // essentially, we need to multiply it by a constant factor, add a
    576   // cookie size, and verify that the result is representable as a
    577   // size_t.  That's just a gloss, though, and it's wrong in one
    578   // important way: if the count is negative, it's an error even if
    579   // the cookie size would bring the total size >= 0.
    580   bool isSigned
    581     = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
    582   llvm::IntegerType *numElementsType
    583     = cast<llvm::IntegerType>(numElements->getType());
    584   unsigned numElementsWidth = numElementsType->getBitWidth();
    585 
    586   // Compute the constant factor.
    587   llvm::APInt arraySizeMultiplier(sizeWidth, 1);
    588   while (const ConstantArrayType *CAT
    589              = CGF.getContext().getAsConstantArrayType(type)) {
    590     type = CAT->getElementType();
    591     arraySizeMultiplier *= CAT->getSize();
    592   }
    593 
    594   CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
    595   llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
    596   typeSizeMultiplier *= arraySizeMultiplier;
    597 
    598   // This will be a size_t.
    599   llvm::Value *size;
    600 
    601   // If someone is doing 'new int[42]' there is no need to do a dynamic check.
    602   // Don't bloat the -O0 code.
    603   if (llvm::ConstantInt *numElementsC =
    604         dyn_cast<llvm::ConstantInt>(numElements)) {
    605     const llvm::APInt &count = numElementsC->getValue();
    606 
    607     bool hasAnyOverflow = false;
    608 
    609     // If 'count' was a negative number, it's an overflow.
    610     if (isSigned && count.isNegative())
    611       hasAnyOverflow = true;
    612 
    613     // We want to do all this arithmetic in size_t.  If numElements is
    614     // wider than that, check whether it's already too big, and if so,
    615     // overflow.
    616     else if (numElementsWidth > sizeWidth &&
    617              numElementsWidth - sizeWidth > count.countLeadingZeros())
    618       hasAnyOverflow = true;
    619 
    620     // Okay, compute a count at the right width.
    621     llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
    622 
    623     // If there is a brace-initializer, we cannot allocate fewer elements than
    624     // there are initializers. If we do, that's treated like an overflow.
    625     if (adjustedCount.ult(minElements))
    626       hasAnyOverflow = true;
    627 
    628     // Scale numElements by that.  This might overflow, but we don't
    629     // care because it only overflows if allocationSize does, too, and
    630     // if that overflows then we shouldn't use this.
    631     numElements = llvm::ConstantInt::get(CGF.SizeTy,
    632                                          adjustedCount * arraySizeMultiplier);
    633 
    634     // Compute the size before cookie, and track whether it overflowed.
    635     bool overflow;
    636     llvm::APInt allocationSize
    637       = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
    638     hasAnyOverflow |= overflow;
    639 
    640     // Add in the cookie, and check whether it's overflowed.
    641     if (cookieSize != 0) {
    642       // Save the current size without a cookie.  This shouldn't be
    643       // used if there was overflow.
    644       sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
    645 
    646       allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
    647       hasAnyOverflow |= overflow;
    648     }
    649 
    650     // On overflow, produce a -1 so operator new will fail.
    651     if (hasAnyOverflow) {
    652       size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
    653     } else {
    654       size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
    655     }
    656 
    657   // Otherwise, we might need to use the overflow intrinsics.
    658   } else {
    659     // There are up to five conditions we need to test for:
    660     // 1) if isSigned, we need to check whether numElements is negative;
    661     // 2) if numElementsWidth > sizeWidth, we need to check whether
    662     //   numElements is larger than something representable in size_t;
    663     // 3) if minElements > 0, we need to check whether numElements is smaller
    664     //    than that.
    665     // 4) we need to compute
    666     //      sizeWithoutCookie := numElements * typeSizeMultiplier
    667     //    and check whether it overflows; and
    668     // 5) if we need a cookie, we need to compute
    669     //      size := sizeWithoutCookie + cookieSize
    670     //    and check whether it overflows.
    671 
    672     llvm::Value *hasOverflow = 0;
    673 
    674     // If numElementsWidth > sizeWidth, then one way or another, we're
    675     // going to have to do a comparison for (2), and this happens to
    676     // take care of (1), too.
    677     if (numElementsWidth > sizeWidth) {
    678       llvm::APInt threshold(numElementsWidth, 1);
    679       threshold <<= sizeWidth;
    680 
    681       llvm::Value *thresholdV
    682         = llvm::ConstantInt::get(numElementsType, threshold);
    683 
    684       hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
    685       numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
    686 
    687     // Otherwise, if we're signed, we want to sext up to size_t.
    688     } else if (isSigned) {
    689       if (numElementsWidth < sizeWidth)
    690         numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
    691 
    692       // If there's a non-1 type size multiplier, then we can do the
    693       // signedness check at the same time as we do the multiply
    694       // because a negative number times anything will cause an
    695       // unsigned overflow.  Otherwise, we have to do it here. But at least
    696       // in this case, we can subsume the >= minElements check.
    697       if (typeSizeMultiplier == 1)
    698         hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
    699                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
    700 
    701     // Otherwise, zext up to size_t if necessary.
    702     } else if (numElementsWidth < sizeWidth) {
    703       numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
    704     }
    705 
    706     assert(numElements->getType() == CGF.SizeTy);
    707 
    708     if (minElements) {
    709       // Don't allow allocation of fewer elements than we have initializers.
    710       if (!hasOverflow) {
    711         hasOverflow = CGF.Builder.CreateICmpULT(numElements,
    712                               llvm::ConstantInt::get(CGF.SizeTy, minElements));
    713       } else if (numElementsWidth > sizeWidth) {
    714         // The other existing overflow subsumes this check.
    715         // We do an unsigned comparison, since any signed value < -1 is
    716         // taken care of either above or below.
    717         hasOverflow = CGF.Builder.CreateOr(hasOverflow,
    718                           CGF.Builder.CreateICmpULT(numElements,
    719                               llvm::ConstantInt::get(CGF.SizeTy, minElements)));
    720       }
    721     }
    722 
    723     size = numElements;
    724 
    725     // Multiply by the type size if necessary.  This multiplier
    726     // includes all the factors for nested arrays.
    727     //
    728     // This step also causes numElements to be scaled up by the
    729     // nested-array factor if necessary.  Overflow on this computation
    730     // can be ignored because the result shouldn't be used if
    731     // allocation fails.
    732     if (typeSizeMultiplier != 1) {
    733       llvm::Value *umul_with_overflow
    734         = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
    735 
    736       llvm::Value *tsmV =
    737         llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
    738       llvm::Value *result =
    739         CGF.Builder.CreateCall2(umul_with_overflow, size, tsmV);
    740 
    741       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
    742       if (hasOverflow)
    743         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
    744       else
    745         hasOverflow = overflowed;
    746 
    747       size = CGF.Builder.CreateExtractValue(result, 0);
    748 
    749       // Also scale up numElements by the array size multiplier.
    750       if (arraySizeMultiplier != 1) {
    751         // If the base element type size is 1, then we can re-use the
    752         // multiply we just did.
    753         if (typeSize.isOne()) {
    754           assert(arraySizeMultiplier == typeSizeMultiplier);
    755           numElements = size;
    756 
    757         // Otherwise we need a separate multiply.
    758         } else {
    759           llvm::Value *asmV =
    760             llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
    761           numElements = CGF.Builder.CreateMul(numElements, asmV);
    762         }
    763       }
    764     } else {
    765       // numElements doesn't need to be scaled.
    766       assert(arraySizeMultiplier == 1);
    767     }
    768 
    769     // Add in the cookie size if necessary.
    770     if (cookieSize != 0) {
    771       sizeWithoutCookie = size;
    772 
    773       llvm::Value *uadd_with_overflow
    774         = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
    775 
    776       llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
    777       llvm::Value *result =
    778         CGF.Builder.CreateCall2(uadd_with_overflow, size, cookieSizeV);
    779 
    780       llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
    781       if (hasOverflow)
    782         hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
    783       else
    784         hasOverflow = overflowed;
    785 
    786       size = CGF.Builder.CreateExtractValue(result, 0);
    787     }
    788 
    789     // If we had any possibility of dynamic overflow, make a select to
    790     // overwrite 'size' with an all-ones value, which should cause
    791     // operator new to throw.
    792     if (hasOverflow)
    793       size = CGF.Builder.CreateSelect(hasOverflow,
    794                                  llvm::Constant::getAllOnesValue(CGF.SizeTy),
    795                                       size);
    796   }
    797 
    798   if (cookieSize == 0)
    799     sizeWithoutCookie = size;
    800   else
    801     assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
    802 
    803   return size;
    804 }
    805 
    806 static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
    807                                     QualType AllocType, llvm::Value *NewPtr) {
    808 
    809   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType);
    810   if (!CGF.hasAggregateLLVMType(AllocType))
    811     CGF.EmitScalarInit(Init, 0, CGF.MakeAddrLValue(NewPtr, AllocType,
    812                                                    Alignment),
    813                        false);
    814   else if (AllocType->isAnyComplexType())
    815     CGF.EmitComplexExprIntoAddr(Init, NewPtr,
    816                                 AllocType.isVolatileQualified());
    817   else {
    818     AggValueSlot Slot
    819       = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(),
    820                               AggValueSlot::IsDestructed,
    821                               AggValueSlot::DoesNotNeedGCBarriers,
    822                               AggValueSlot::IsNotAliased);
    823     CGF.EmitAggExpr(Init, Slot);
    824 
    825     CGF.MaybeEmitStdInitializerListCleanup(NewPtr, Init);
    826   }
    827 }
    828 
    829 void
    830 CodeGenFunction::EmitNewArrayInitializer(const CXXNewExpr *E,
    831                                          QualType elementType,
    832                                          llvm::Value *beginPtr,
    833                                          llvm::Value *numElements) {
    834   if (!E->hasInitializer())
    835     return; // We have a POD type.
    836 
    837   llvm::Value *explicitPtr = beginPtr;
    838   // Find the end of the array, hoisted out of the loop.
    839   llvm::Value *endPtr =
    840     Builder.CreateInBoundsGEP(beginPtr, numElements, "array.end");
    841 
    842   unsigned initializerElements = 0;
    843 
    844   const Expr *Init = E->getInitializer();
    845   llvm::AllocaInst *endOfInit = 0;
    846   QualType::DestructionKind dtorKind = elementType.isDestructedType();
    847   EHScopeStack::stable_iterator cleanup;
    848   llvm::Instruction *cleanupDominator = 0;
    849   // If the initializer is an initializer list, first do the explicit elements.
    850   if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
    851     initializerElements = ILE->getNumInits();
    852 
    853     // Enter a partial-destruction cleanup if necessary.
    854     if (needsEHCleanup(dtorKind)) {
    855       // In principle we could tell the cleanup where we are more
    856       // directly, but the control flow can get so varied here that it
    857       // would actually be quite complex.  Therefore we go through an
    858       // alloca.
    859       endOfInit = CreateTempAlloca(beginPtr->getType(), "array.endOfInit");
    860       cleanupDominator = Builder.CreateStore(beginPtr, endOfInit);
    861       pushIrregularPartialArrayCleanup(beginPtr, endOfInit, elementType,
    862                                        getDestroyer(dtorKind));
    863       cleanup = EHStack.stable_begin();
    864     }
    865 
    866     for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
    867       // Tell the cleanup that it needs to destroy up to this
    868       // element.  TODO: some of these stores can be trivially
    869       // observed to be unnecessary.
    870       if (endOfInit) Builder.CreateStore(explicitPtr, endOfInit);
    871       StoreAnyExprIntoOneUnit(*this, ILE->getInit(i), elementType, explicitPtr);
    872       explicitPtr =Builder.CreateConstGEP1_32(explicitPtr, 1, "array.exp.next");
    873     }
    874 
    875     // The remaining elements are filled with the array filler expression.
    876     Init = ILE->getArrayFiller();
    877   }
    878 
    879   // Create the continuation block.
    880   llvm::BasicBlock *contBB = createBasicBlock("new.loop.end");
    881 
    882   // If the number of elements isn't constant, we have to now check if there is
    883   // anything left to initialize.
    884   if (llvm::ConstantInt *constNum = dyn_cast<llvm::ConstantInt>(numElements)) {
    885     // If all elements have already been initialized, skip the whole loop.
    886     if (constNum->getZExtValue() <= initializerElements) {
    887       // If there was a cleanup, deactivate it.
    888       if (cleanupDominator)
    889         DeactivateCleanupBlock(cleanup, cleanupDominator);
    890       return;
    891     }
    892   } else {
    893     llvm::BasicBlock *nonEmptyBB = createBasicBlock("new.loop.nonempty");
    894     llvm::Value *isEmpty = Builder.CreateICmpEQ(explicitPtr, endPtr,
    895                                                 "array.isempty");
    896     Builder.CreateCondBr(isEmpty, contBB, nonEmptyBB);
    897     EmitBlock(nonEmptyBB);
    898   }
    899 
    900   // Enter the loop.
    901   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
    902   llvm::BasicBlock *loopBB = createBasicBlock("new.loop");
    903 
    904   EmitBlock(loopBB);
    905 
    906   // Set up the current-element phi.
    907   llvm::PHINode *curPtr =
    908     Builder.CreatePHI(explicitPtr->getType(), 2, "array.cur");
    909   curPtr->addIncoming(explicitPtr, entryBB);
    910 
    911   // Store the new cleanup position for irregular cleanups.
    912   if (endOfInit) Builder.CreateStore(curPtr, endOfInit);
    913 
    914   // Enter a partial-destruction cleanup if necessary.
    915   if (!cleanupDominator && needsEHCleanup(dtorKind)) {
    916     pushRegularPartialArrayCleanup(beginPtr, curPtr, elementType,
    917                                    getDestroyer(dtorKind));
    918     cleanup = EHStack.stable_begin();
    919     cleanupDominator = Builder.CreateUnreachable();
    920   }
    921 
    922   // Emit the initializer into this element.
    923   StoreAnyExprIntoOneUnit(*this, Init, E->getAllocatedType(), curPtr);
    924 
    925   // Leave the cleanup if we entered one.
    926   if (cleanupDominator) {
    927     DeactivateCleanupBlock(cleanup, cleanupDominator);
    928     cleanupDominator->eraseFromParent();
    929   }
    930 
    931   // Advance to the next element.
    932   llvm::Value *nextPtr = Builder.CreateConstGEP1_32(curPtr, 1, "array.next");
    933 
    934   // Check whether we've gotten to the end of the array and, if so,
    935   // exit the loop.
    936   llvm::Value *isEnd = Builder.CreateICmpEQ(nextPtr, endPtr, "array.atend");
    937   Builder.CreateCondBr(isEnd, contBB, loopBB);
    938   curPtr->addIncoming(nextPtr, Builder.GetInsertBlock());
    939 
    940   EmitBlock(contBB);
    941 }
    942 
    943 static void EmitZeroMemSet(CodeGenFunction &CGF, QualType T,
    944                            llvm::Value *NewPtr, llvm::Value *Size) {
    945   CGF.EmitCastToVoidPtr(NewPtr);
    946   CharUnits Alignment = CGF.getContext().getTypeAlignInChars(T);
    947   CGF.Builder.CreateMemSet(NewPtr, CGF.Builder.getInt8(0), Size,
    948                            Alignment.getQuantity(), false);
    949 }
    950 
    951 static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
    952                                QualType ElementType,
    953                                llvm::Value *NewPtr,
    954                                llvm::Value *NumElements,
    955                                llvm::Value *AllocSizeWithoutCookie) {
    956   const Expr *Init = E->getInitializer();
    957   if (E->isArray()) {
    958     if (const CXXConstructExpr *CCE = dyn_cast_or_null<CXXConstructExpr>(Init)){
    959       CXXConstructorDecl *Ctor = CCE->getConstructor();
    960       if (Ctor->isTrivial()) {
    961         // If new expression did not specify value-initialization, then there
    962         // is no initialization.
    963         if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
    964           return;
    965 
    966         if (CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
    967           // Optimization: since zero initialization will just set the memory
    968           // to all zeroes, generate a single memset to do it in one shot.
    969           EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
    970           return;
    971         }
    972       }
    973 
    974       CGF.EmitCXXAggrConstructorCall(Ctor, NumElements, NewPtr,
    975                                      CCE->arg_begin(),  CCE->arg_end(),
    976                                      CCE->requiresZeroInitialization());
    977       return;
    978     } else if (Init && isa<ImplicitValueInitExpr>(Init) &&
    979                CGF.CGM.getTypes().isZeroInitializable(ElementType)) {
    980       // Optimization: since zero initialization will just set the memory
    981       // to all zeroes, generate a single memset to do it in one shot.
    982       EmitZeroMemSet(CGF, ElementType, NewPtr, AllocSizeWithoutCookie);
    983       return;
    984     }
    985     CGF.EmitNewArrayInitializer(E, ElementType, NewPtr, NumElements);
    986     return;
    987   }
    988 
    989   if (!Init)
    990     return;
    991 
    992   StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
    993 }
    994 
    995 namespace {
    996   /// A cleanup to call the given 'operator delete' function upon
    997   /// abnormal exit from a new expression.
    998   class CallDeleteDuringNew : public EHScopeStack::Cleanup {
    999     size_t NumPlacementArgs;
   1000     const FunctionDecl *OperatorDelete;
   1001     llvm::Value *Ptr;
   1002     llvm::Value *AllocSize;
   1003 
   1004     RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
   1005 
   1006   public:
   1007     static size_t getExtraSize(size_t NumPlacementArgs) {
   1008       return NumPlacementArgs * sizeof(RValue);
   1009     }
   1010 
   1011     CallDeleteDuringNew(size_t NumPlacementArgs,
   1012                         const FunctionDecl *OperatorDelete,
   1013                         llvm::Value *Ptr,
   1014                         llvm::Value *AllocSize)
   1015       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
   1016         Ptr(Ptr), AllocSize(AllocSize) {}
   1017 
   1018     void setPlacementArg(unsigned I, RValue Arg) {
   1019       assert(I < NumPlacementArgs && "index out of range");
   1020       getPlacementArgs()[I] = Arg;
   1021     }
   1022 
   1023     void Emit(CodeGenFunction &CGF, Flags flags) {
   1024       const FunctionProtoType *FPT
   1025         = OperatorDelete->getType()->getAs<FunctionProtoType>();
   1026       assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
   1027              (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
   1028 
   1029       CallArgList DeleteArgs;
   1030 
   1031       // The first argument is always a void*.
   1032       FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
   1033       DeleteArgs.add(RValue::get(Ptr), *AI++);
   1034 
   1035       // A member 'operator delete' can take an extra 'size_t' argument.
   1036       if (FPT->getNumArgs() == NumPlacementArgs + 2)
   1037         DeleteArgs.add(RValue::get(AllocSize), *AI++);
   1038 
   1039       // Pass the rest of the arguments, which must match exactly.
   1040       for (unsigned I = 0; I != NumPlacementArgs; ++I)
   1041         DeleteArgs.add(getPlacementArgs()[I], *AI++);
   1042 
   1043       // Call 'operator delete'.
   1044       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, FPT),
   1045                    CGF.CGM.GetAddrOfFunction(OperatorDelete),
   1046                    ReturnValueSlot(), DeleteArgs, OperatorDelete);
   1047     }
   1048   };
   1049 
   1050   /// A cleanup to call the given 'operator delete' function upon
   1051   /// abnormal exit from a new expression when the new expression is
   1052   /// conditional.
   1053   class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
   1054     size_t NumPlacementArgs;
   1055     const FunctionDecl *OperatorDelete;
   1056     DominatingValue<RValue>::saved_type Ptr;
   1057     DominatingValue<RValue>::saved_type AllocSize;
   1058 
   1059     DominatingValue<RValue>::saved_type *getPlacementArgs() {
   1060       return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
   1061     }
   1062 
   1063   public:
   1064     static size_t getExtraSize(size_t NumPlacementArgs) {
   1065       return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
   1066     }
   1067 
   1068     CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
   1069                                    const FunctionDecl *OperatorDelete,
   1070                                    DominatingValue<RValue>::saved_type Ptr,
   1071                               DominatingValue<RValue>::saved_type AllocSize)
   1072       : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
   1073         Ptr(Ptr), AllocSize(AllocSize) {}
   1074 
   1075     void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
   1076       assert(I < NumPlacementArgs && "index out of range");
   1077       getPlacementArgs()[I] = Arg;
   1078     }
   1079 
   1080     void Emit(CodeGenFunction &CGF, Flags flags) {
   1081       const FunctionProtoType *FPT
   1082         = OperatorDelete->getType()->getAs<FunctionProtoType>();
   1083       assert(FPT->getNumArgs() == NumPlacementArgs + 1 ||
   1084              (FPT->getNumArgs() == 2 && NumPlacementArgs == 0));
   1085 
   1086       CallArgList DeleteArgs;
   1087 
   1088       // The first argument is always a void*.
   1089       FunctionProtoType::arg_type_iterator AI = FPT->arg_type_begin();
   1090       DeleteArgs.add(Ptr.restore(CGF), *AI++);
   1091 
   1092       // A member 'operator delete' can take an extra 'size_t' argument.
   1093       if (FPT->getNumArgs() == NumPlacementArgs + 2) {
   1094         RValue RV = AllocSize.restore(CGF);
   1095         DeleteArgs.add(RV, *AI++);
   1096       }
   1097 
   1098       // Pass the rest of the arguments, which must match exactly.
   1099       for (unsigned I = 0; I != NumPlacementArgs; ++I) {
   1100         RValue RV = getPlacementArgs()[I].restore(CGF);
   1101         DeleteArgs.add(RV, *AI++);
   1102       }
   1103 
   1104       // Call 'operator delete'.
   1105       CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, FPT),
   1106                    CGF.CGM.GetAddrOfFunction(OperatorDelete),
   1107                    ReturnValueSlot(), DeleteArgs, OperatorDelete);
   1108     }
   1109   };
   1110 }
   1111 
   1112 /// Enter a cleanup to call 'operator delete' if the initializer in a
   1113 /// new-expression throws.
   1114 static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
   1115                                   const CXXNewExpr *E,
   1116                                   llvm::Value *NewPtr,
   1117                                   llvm::Value *AllocSize,
   1118                                   const CallArgList &NewArgs) {
   1119   // If we're not inside a conditional branch, then the cleanup will
   1120   // dominate and we can do the easier (and more efficient) thing.
   1121   if (!CGF.isInConditionalBranch()) {
   1122     CallDeleteDuringNew *Cleanup = CGF.EHStack
   1123       .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
   1124                                                  E->getNumPlacementArgs(),
   1125                                                  E->getOperatorDelete(),
   1126                                                  NewPtr, AllocSize);
   1127     for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
   1128       Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
   1129 
   1130     return;
   1131   }
   1132 
   1133   // Otherwise, we need to save all this stuff.
   1134   DominatingValue<RValue>::saved_type SavedNewPtr =
   1135     DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
   1136   DominatingValue<RValue>::saved_type SavedAllocSize =
   1137     DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
   1138 
   1139   CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
   1140     .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
   1141                                                  E->getNumPlacementArgs(),
   1142                                                  E->getOperatorDelete(),
   1143                                                  SavedNewPtr,
   1144                                                  SavedAllocSize);
   1145   for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
   1146     Cleanup->setPlacementArg(I,
   1147                      DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
   1148 
   1149   CGF.initFullExprCleanup();
   1150 }
   1151 
   1152 llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
   1153   // The element type being allocated.
   1154   QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
   1155 
   1156   // 1. Build a call to the allocation function.
   1157   FunctionDecl *allocator = E->getOperatorNew();
   1158   const FunctionProtoType *allocatorType =
   1159     allocator->getType()->castAs<FunctionProtoType>();
   1160 
   1161   CallArgList allocatorArgs;
   1162 
   1163   // The allocation size is the first argument.
   1164   QualType sizeType = getContext().getSizeType();
   1165 
   1166   // If there is a brace-initializer, cannot allocate fewer elements than inits.
   1167   unsigned minElements = 0;
   1168   if (E->isArray() && E->hasInitializer()) {
   1169     if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
   1170       minElements = ILE->getNumInits();
   1171   }
   1172 
   1173   llvm::Value *numElements = 0;
   1174   llvm::Value *allocSizeWithoutCookie = 0;
   1175   llvm::Value *allocSize =
   1176     EmitCXXNewAllocSize(*this, E, minElements, numElements,
   1177                         allocSizeWithoutCookie);
   1178 
   1179   allocatorArgs.add(RValue::get(allocSize), sizeType);
   1180 
   1181   // Emit the rest of the arguments.
   1182   // FIXME: Ideally, this should just use EmitCallArgs.
   1183   CXXNewExpr::const_arg_iterator placementArg = E->placement_arg_begin();
   1184 
   1185   // First, use the types from the function type.
   1186   // We start at 1 here because the first argument (the allocation size)
   1187   // has already been emitted.
   1188   for (unsigned i = 1, e = allocatorType->getNumArgs(); i != e;
   1189        ++i, ++placementArg) {
   1190     QualType argType = allocatorType->getArgType(i);
   1191 
   1192     assert(getContext().hasSameUnqualifiedType(argType.getNonReferenceType(),
   1193                                                placementArg->getType()) &&
   1194            "type mismatch in call argument!");
   1195 
   1196     EmitCallArg(allocatorArgs, *placementArg, argType);
   1197   }
   1198 
   1199   // Either we've emitted all the call args, or we have a call to a
   1200   // variadic function.
   1201   assert((placementArg == E->placement_arg_end() ||
   1202           allocatorType->isVariadic()) &&
   1203          "Extra arguments to non-variadic function!");
   1204 
   1205   // If we still have any arguments, emit them using the type of the argument.
   1206   for (CXXNewExpr::const_arg_iterator placementArgsEnd = E->placement_arg_end();
   1207        placementArg != placementArgsEnd; ++placementArg) {
   1208     EmitCallArg(allocatorArgs, *placementArg, placementArg->getType());
   1209   }
   1210 
   1211   // Emit the allocation call.  If the allocator is a global placement
   1212   // operator, just "inline" it directly.
   1213   RValue RV;
   1214   if (allocator->isReservedGlobalPlacementOperator()) {
   1215     assert(allocatorArgs.size() == 2);
   1216     RV = allocatorArgs[1].RV;
   1217     // TODO: kill any unnecessary computations done for the size
   1218     // argument.
   1219   } else {
   1220     RV = EmitCall(CGM.getTypes().arrangeFreeFunctionCall(allocatorArgs,
   1221                                                          allocatorType),
   1222                   CGM.GetAddrOfFunction(allocator), ReturnValueSlot(),
   1223                   allocatorArgs, allocator);
   1224   }
   1225 
   1226   // Emit a null check on the allocation result if the allocation
   1227   // function is allowed to return null (because it has a non-throwing
   1228   // exception spec; for this part, we inline
   1229   // CXXNewExpr::shouldNullCheckAllocation()) and we have an
   1230   // interesting initializer.
   1231   bool nullCheck = allocatorType->isNothrow(getContext()) &&
   1232     (!allocType.isPODType(getContext()) || E->hasInitializer());
   1233 
   1234   llvm::BasicBlock *nullCheckBB = 0;
   1235   llvm::BasicBlock *contBB = 0;
   1236 
   1237   llvm::Value *allocation = RV.getScalarVal();
   1238   unsigned AS =
   1239     cast<llvm::PointerType>(allocation->getType())->getAddressSpace();
   1240 
   1241   // The null-check means that the initializer is conditionally
   1242   // evaluated.
   1243   ConditionalEvaluation conditional(*this);
   1244 
   1245   if (nullCheck) {
   1246     conditional.begin(*this);
   1247 
   1248     nullCheckBB = Builder.GetInsertBlock();
   1249     llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
   1250     contBB = createBasicBlock("new.cont");
   1251 
   1252     llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
   1253     Builder.CreateCondBr(isNull, contBB, notNullBB);
   1254     EmitBlock(notNullBB);
   1255   }
   1256 
   1257   // If there's an operator delete, enter a cleanup to call it if an
   1258   // exception is thrown.
   1259   EHScopeStack::stable_iterator operatorDeleteCleanup;
   1260   llvm::Instruction *cleanupDominator = 0;
   1261   if (E->getOperatorDelete() &&
   1262       !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
   1263     EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
   1264     operatorDeleteCleanup = EHStack.stable_begin();
   1265     cleanupDominator = Builder.CreateUnreachable();
   1266   }
   1267 
   1268   assert((allocSize == allocSizeWithoutCookie) ==
   1269          CalculateCookiePadding(*this, E).isZero());
   1270   if (allocSize != allocSizeWithoutCookie) {
   1271     assert(E->isArray());
   1272     allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
   1273                                                        numElements,
   1274                                                        E, allocType);
   1275   }
   1276 
   1277   llvm::Type *elementPtrTy
   1278     = ConvertTypeForMem(allocType)->getPointerTo(AS);
   1279   llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
   1280 
   1281   EmitNewInitializer(*this, E, allocType, result, numElements,
   1282                      allocSizeWithoutCookie);
   1283   if (E->isArray()) {
   1284     // NewPtr is a pointer to the base element type.  If we're
   1285     // allocating an array of arrays, we'll need to cast back to the
   1286     // array pointer type.
   1287     llvm::Type *resultType = ConvertTypeForMem(E->getType());
   1288     if (result->getType() != resultType)
   1289       result = Builder.CreateBitCast(result, resultType);
   1290   }
   1291 
   1292   // Deactivate the 'operator delete' cleanup if we finished
   1293   // initialization.
   1294   if (operatorDeleteCleanup.isValid()) {
   1295     DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
   1296     cleanupDominator->eraseFromParent();
   1297   }
   1298 
   1299   if (nullCheck) {
   1300     conditional.end(*this);
   1301 
   1302     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
   1303     EmitBlock(contBB);
   1304 
   1305     llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
   1306     PHI->addIncoming(result, notNullBB);
   1307     PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
   1308                      nullCheckBB);
   1309 
   1310     result = PHI;
   1311   }
   1312 
   1313   return result;
   1314 }
   1315 
   1316 void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
   1317                                      llvm::Value *Ptr,
   1318                                      QualType DeleteTy) {
   1319   assert(DeleteFD->getOverloadedOperator() == OO_Delete);
   1320 
   1321   const FunctionProtoType *DeleteFTy =
   1322     DeleteFD->getType()->getAs<FunctionProtoType>();
   1323 
   1324   CallArgList DeleteArgs;
   1325 
   1326   // Check if we need to pass the size to the delete operator.
   1327   llvm::Value *Size = 0;
   1328   QualType SizeTy;
   1329   if (DeleteFTy->getNumArgs() == 2) {
   1330     SizeTy = DeleteFTy->getArgType(1);
   1331     CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
   1332     Size = llvm::ConstantInt::get(ConvertType(SizeTy),
   1333                                   DeleteTypeSize.getQuantity());
   1334   }
   1335 
   1336   QualType ArgTy = DeleteFTy->getArgType(0);
   1337   llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
   1338   DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
   1339 
   1340   if (Size)
   1341     DeleteArgs.add(RValue::get(Size), SizeTy);
   1342 
   1343   // Emit the call to delete.
   1344   EmitCall(CGM.getTypes().arrangeFreeFunctionCall(DeleteArgs, DeleteFTy),
   1345            CGM.GetAddrOfFunction(DeleteFD), ReturnValueSlot(),
   1346            DeleteArgs, DeleteFD);
   1347 }
   1348 
   1349 namespace {
   1350   /// Calls the given 'operator delete' on a single object.
   1351   struct CallObjectDelete : EHScopeStack::Cleanup {
   1352     llvm::Value *Ptr;
   1353     const FunctionDecl *OperatorDelete;
   1354     QualType ElementType;
   1355 
   1356     CallObjectDelete(llvm::Value *Ptr,
   1357                      const FunctionDecl *OperatorDelete,
   1358                      QualType ElementType)
   1359       : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
   1360 
   1361     void Emit(CodeGenFunction &CGF, Flags flags) {
   1362       CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
   1363     }
   1364   };
   1365 }
   1366 
   1367 /// Emit the code for deleting a single object.
   1368 static void EmitObjectDelete(CodeGenFunction &CGF,
   1369                              const FunctionDecl *OperatorDelete,
   1370                              llvm::Value *Ptr,
   1371                              QualType ElementType,
   1372                              bool UseGlobalDelete) {
   1373   // Find the destructor for the type, if applicable.  If the
   1374   // destructor is virtual, we'll just emit the vcall and return.
   1375   const CXXDestructorDecl *Dtor = 0;
   1376   if (const RecordType *RT = ElementType->getAs<RecordType>()) {
   1377     CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
   1378     if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
   1379       Dtor = RD->getDestructor();
   1380 
   1381       if (Dtor->isVirtual()) {
   1382         if (UseGlobalDelete) {
   1383           // If we're supposed to call the global delete, make sure we do so
   1384           // even if the destructor throws.
   1385           CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
   1386                                                     Ptr, OperatorDelete,
   1387                                                     ElementType);
   1388         }
   1389 
   1390         llvm::Type *Ty =
   1391           CGF.getTypes().GetFunctionType(
   1392                          CGF.getTypes().arrangeCXXDestructor(Dtor, Dtor_Complete));
   1393 
   1394         llvm::Value *Callee
   1395           = CGF.BuildVirtualCall(Dtor,
   1396                                  UseGlobalDelete? Dtor_Complete : Dtor_Deleting,
   1397                                  Ptr, Ty);
   1398         CGF.EmitCXXMemberCall(Dtor, Callee, ReturnValueSlot(), Ptr, /*VTT=*/0,
   1399                               0, 0);
   1400 
   1401         if (UseGlobalDelete) {
   1402           CGF.PopCleanupBlock();
   1403         }
   1404 
   1405         return;
   1406       }
   1407     }
   1408   }
   1409 
   1410   // Make sure that we call delete even if the dtor throws.
   1411   // This doesn't have to a conditional cleanup because we're going
   1412   // to pop it off in a second.
   1413   CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
   1414                                             Ptr, OperatorDelete, ElementType);
   1415 
   1416   if (Dtor)
   1417     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
   1418                               /*ForVirtualBase=*/false, Ptr);
   1419   else if (CGF.getLangOpts().ObjCAutoRefCount &&
   1420            ElementType->isObjCLifetimeType()) {
   1421     switch (ElementType.getObjCLifetime()) {
   1422     case Qualifiers::OCL_None:
   1423     case Qualifiers::OCL_ExplicitNone:
   1424     case Qualifiers::OCL_Autoreleasing:
   1425       break;
   1426 
   1427     case Qualifiers::OCL_Strong: {
   1428       // Load the pointer value.
   1429       llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr,
   1430                                              ElementType.isVolatileQualified());
   1431 
   1432       CGF.EmitARCRelease(PtrValue, /*precise*/ true);
   1433       break;
   1434     }
   1435 
   1436     case Qualifiers::OCL_Weak:
   1437       CGF.EmitARCDestroyWeak(Ptr);
   1438       break;
   1439     }
   1440   }
   1441 
   1442   CGF.PopCleanupBlock();
   1443 }
   1444 
   1445 namespace {
   1446   /// Calls the given 'operator delete' on an array of objects.
   1447   struct CallArrayDelete : EHScopeStack::Cleanup {
   1448     llvm::Value *Ptr;
   1449     const FunctionDecl *OperatorDelete;
   1450     llvm::Value *NumElements;
   1451     QualType ElementType;
   1452     CharUnits CookieSize;
   1453 
   1454     CallArrayDelete(llvm::Value *Ptr,
   1455                     const FunctionDecl *OperatorDelete,
   1456                     llvm::Value *NumElements,
   1457                     QualType ElementType,
   1458                     CharUnits CookieSize)
   1459       : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
   1460         ElementType(ElementType), CookieSize(CookieSize) {}
   1461 
   1462     void Emit(CodeGenFunction &CGF, Flags flags) {
   1463       const FunctionProtoType *DeleteFTy =
   1464         OperatorDelete->getType()->getAs<FunctionProtoType>();
   1465       assert(DeleteFTy->getNumArgs() == 1 || DeleteFTy->getNumArgs() == 2);
   1466 
   1467       CallArgList Args;
   1468 
   1469       // Pass the pointer as the first argument.
   1470       QualType VoidPtrTy = DeleteFTy->getArgType(0);
   1471       llvm::Value *DeletePtr
   1472         = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
   1473       Args.add(RValue::get(DeletePtr), VoidPtrTy);
   1474 
   1475       // Pass the original requested size as the second argument.
   1476       if (DeleteFTy->getNumArgs() == 2) {
   1477         QualType size_t = DeleteFTy->getArgType(1);
   1478         llvm::IntegerType *SizeTy
   1479           = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
   1480 
   1481         CharUnits ElementTypeSize =
   1482           CGF.CGM.getContext().getTypeSizeInChars(ElementType);
   1483 
   1484         // The size of an element, multiplied by the number of elements.
   1485         llvm::Value *Size
   1486           = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
   1487         Size = CGF.Builder.CreateMul(Size, NumElements);
   1488 
   1489         // Plus the size of the cookie if applicable.
   1490         if (!CookieSize.isZero()) {
   1491           llvm::Value *CookieSizeV
   1492             = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
   1493           Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
   1494         }
   1495 
   1496         Args.add(RValue::get(Size), size_t);
   1497       }
   1498 
   1499       // Emit the call to delete.
   1500       CGF.EmitCall(CGF.getTypes().arrangeFreeFunctionCall(Args, DeleteFTy),
   1501                    CGF.CGM.GetAddrOfFunction(OperatorDelete),
   1502                    ReturnValueSlot(), Args, OperatorDelete);
   1503     }
   1504   };
   1505 }
   1506 
   1507 /// Emit the code for deleting an array of objects.
   1508 static void EmitArrayDelete(CodeGenFunction &CGF,
   1509                             const CXXDeleteExpr *E,
   1510                             llvm::Value *deletedPtr,
   1511                             QualType elementType) {
   1512   llvm::Value *numElements = 0;
   1513   llvm::Value *allocatedPtr = 0;
   1514   CharUnits cookieSize;
   1515   CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
   1516                                       numElements, allocatedPtr, cookieSize);
   1517 
   1518   assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
   1519 
   1520   // Make sure that we call delete even if one of the dtors throws.
   1521   const FunctionDecl *operatorDelete = E->getOperatorDelete();
   1522   CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
   1523                                            allocatedPtr, operatorDelete,
   1524                                            numElements, elementType,
   1525                                            cookieSize);
   1526 
   1527   // Destroy the elements.
   1528   if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
   1529     assert(numElements && "no element count for a type with a destructor!");
   1530 
   1531     llvm::Value *arrayEnd =
   1532       CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");
   1533 
   1534     // Note that it is legal to allocate a zero-length array, and we
   1535     // can never fold the check away because the length should always
   1536     // come from a cookie.
   1537     CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
   1538                          CGF.getDestroyer(dtorKind),
   1539                          /*checkZeroLength*/ true,
   1540                          CGF.needsEHCleanup(dtorKind));
   1541   }
   1542 
   1543   // Pop the cleanup block.
   1544   CGF.PopCleanupBlock();
   1545 }
   1546 
   1547 void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
   1548   const Expr *Arg = E->getArgument();
   1549   llvm::Value *Ptr = EmitScalarExpr(Arg);
   1550 
   1551   // Null check the pointer.
   1552   llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
   1553   llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
   1554 
   1555   llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
   1556 
   1557   Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
   1558   EmitBlock(DeleteNotNull);
   1559 
   1560   // We might be deleting a pointer to array.  If so, GEP down to the
   1561   // first non-array element.
   1562   // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
   1563   QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
   1564   if (DeleteTy->isConstantArrayType()) {
   1565     llvm::Value *Zero = Builder.getInt32(0);
   1566     SmallVector<llvm::Value*,8> GEP;
   1567 
   1568     GEP.push_back(Zero); // point at the outermost array
   1569 
   1570     // For each layer of array type we're pointing at:
   1571     while (const ConstantArrayType *Arr
   1572              = getContext().getAsConstantArrayType(DeleteTy)) {
   1573       // 1. Unpeel the array type.
   1574       DeleteTy = Arr->getElementType();
   1575 
   1576       // 2. GEP to the first element of the array.
   1577       GEP.push_back(Zero);
   1578     }
   1579 
   1580     Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first");
   1581   }
   1582 
   1583   assert(ConvertTypeForMem(DeleteTy) ==
   1584          cast<llvm::PointerType>(Ptr->getType())->getElementType());
   1585 
   1586   if (E->isArrayForm()) {
   1587     EmitArrayDelete(*this, E, Ptr, DeleteTy);
   1588   } else {
   1589     EmitObjectDelete(*this, E->getOperatorDelete(), Ptr, DeleteTy,
   1590                      E->isGlobalDelete());
   1591   }
   1592 
   1593   EmitBlock(DeleteEnd);
   1594 }
   1595 
   1596 static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) {
   1597   // void __cxa_bad_typeid();
   1598   llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
   1599 
   1600   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid");
   1601 }
   1602 
   1603 static void EmitBadTypeidCall(CodeGenFunction &CGF) {
   1604   llvm::Value *Fn = getBadTypeidFn(CGF);
   1605   CGF.EmitCallOrInvoke(Fn).setDoesNotReturn();
   1606   CGF.Builder.CreateUnreachable();
   1607 }
   1608 
   1609 static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF,
   1610                                          const Expr *E,
   1611                                          llvm::Type *StdTypeInfoPtrTy) {
   1612   // Get the vtable pointer.
   1613   llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
   1614 
   1615   // C++ [expr.typeid]p2:
   1616   //   If the glvalue expression is obtained by applying the unary * operator to
   1617   //   a pointer and the pointer is a null pointer value, the typeid expression
   1618   //   throws the std::bad_typeid exception.
   1619   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
   1620     if (UO->getOpcode() == UO_Deref) {
   1621       llvm::BasicBlock *BadTypeidBlock =
   1622         CGF.createBasicBlock("typeid.bad_typeid");
   1623       llvm::BasicBlock *EndBlock =
   1624         CGF.createBasicBlock("typeid.end");
   1625 
   1626       llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
   1627       CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
   1628 
   1629       CGF.EmitBlock(BadTypeidBlock);
   1630       EmitBadTypeidCall(CGF);
   1631       CGF.EmitBlock(EndBlock);
   1632     }
   1633   }
   1634 
   1635   llvm::Value *Value = CGF.GetVTablePtr(ThisPtr,
   1636                                         StdTypeInfoPtrTy->getPointerTo());
   1637 
   1638   // Load the type info.
   1639   Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL);
   1640   return CGF.Builder.CreateLoad(Value);
   1641 }
   1642 
   1643 llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
   1644   llvm::Type *StdTypeInfoPtrTy =
   1645     ConvertType(E->getType())->getPointerTo();
   1646 
   1647   if (E->isTypeOperand()) {
   1648     llvm::Constant *TypeInfo =
   1649       CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand());
   1650     return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
   1651   }
   1652 
   1653   // C++ [expr.typeid]p2:
   1654   //   When typeid is applied to a glvalue expression whose type is a
   1655   //   polymorphic class type, the result refers to a std::type_info object
   1656   //   representing the type of the most derived object (that is, the dynamic
   1657   //   type) to which the glvalue refers.
   1658   if (E->isPotentiallyEvaluated())
   1659     return EmitTypeidFromVTable(*this, E->getExprOperand(),
   1660                                 StdTypeInfoPtrTy);
   1661 
   1662   QualType OperandTy = E->getExprOperand()->getType();
   1663   return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
   1664                                StdTypeInfoPtrTy);
   1665 }
   1666 
   1667 static llvm::Constant *getDynamicCastFn(CodeGenFunction &CGF) {
   1668   // void *__dynamic_cast(const void *sub,
   1669   //                      const abi::__class_type_info *src,
   1670   //                      const abi::__class_type_info *dst,
   1671   //                      std::ptrdiff_t src2dst_offset);
   1672 
   1673   llvm::Type *Int8PtrTy = CGF.Int8PtrTy;
   1674   llvm::Type *PtrDiffTy =
   1675     CGF.ConvertType(CGF.getContext().getPointerDiffType());
   1676 
   1677   llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy };
   1678 
   1679   llvm::FunctionType *FTy =
   1680     llvm::FunctionType::get(Int8PtrTy, Args, false);
   1681 
   1682   return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast");
   1683 }
   1684 
   1685 static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) {
   1686   // void __cxa_bad_cast();
   1687   llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
   1688   return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast");
   1689 }
   1690 
   1691 static void EmitBadCastCall(CodeGenFunction &CGF) {
   1692   llvm::Value *Fn = getBadCastFn(CGF);
   1693   CGF.EmitCallOrInvoke(Fn).setDoesNotReturn();
   1694   CGF.Builder.CreateUnreachable();
   1695 }
   1696 
   1697 static llvm::Value *
   1698 EmitDynamicCastCall(CodeGenFunction &CGF, llvm::Value *Value,
   1699                     QualType SrcTy, QualType DestTy,
   1700                     llvm::BasicBlock *CastEnd) {
   1701   llvm::Type *PtrDiffLTy =
   1702     CGF.ConvertType(CGF.getContext().getPointerDiffType());
   1703   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
   1704 
   1705   if (const PointerType *PTy = DestTy->getAs<PointerType>()) {
   1706     if (PTy->getPointeeType()->isVoidType()) {
   1707       // C++ [expr.dynamic.cast]p7:
   1708       //   If T is "pointer to cv void," then the result is a pointer to the
   1709       //   most derived object pointed to by v.
   1710 
   1711       // Get the vtable pointer.
   1712       llvm::Value *VTable = CGF.GetVTablePtr(Value, PtrDiffLTy->getPointerTo());
   1713 
   1714       // Get the offset-to-top from the vtable.
   1715       llvm::Value *OffsetToTop =
   1716         CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL);
   1717       OffsetToTop = CGF.Builder.CreateLoad(OffsetToTop, "offset.to.top");
   1718 
   1719       // Finally, add the offset to the pointer.
   1720       Value = CGF.EmitCastToVoidPtr(Value);
   1721       Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop);
   1722 
   1723       return CGF.Builder.CreateBitCast(Value, DestLTy);
   1724     }
   1725   }
   1726 
   1727   QualType SrcRecordTy;
   1728   QualType DestRecordTy;
   1729 
   1730   if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) {
   1731     SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
   1732     DestRecordTy = DestPTy->getPointeeType();
   1733   } else {
   1734     SrcRecordTy = SrcTy;
   1735     DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
   1736   }
   1737 
   1738   assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
   1739   assert(DestRecordTy->isRecordType() && "dest type must be a record type!");
   1740 
   1741   llvm::Value *SrcRTTI =
   1742     CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
   1743   llvm::Value *DestRTTI =
   1744     CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
   1745 
   1746   // FIXME: Actually compute a hint here.
   1747   llvm::Value *OffsetHint = llvm::ConstantInt::get(PtrDiffLTy, -1ULL);
   1748 
   1749   // Emit the call to __dynamic_cast.
   1750   Value = CGF.EmitCastToVoidPtr(Value);
   1751   Value = CGF.Builder.CreateCall4(getDynamicCastFn(CGF), Value,
   1752                                   SrcRTTI, DestRTTI, OffsetHint);
   1753   Value = CGF.Builder.CreateBitCast(Value, DestLTy);
   1754 
   1755   /// C++ [expr.dynamic.cast]p9:
   1756   ///   A failed cast to reference type throws std::bad_cast
   1757   if (DestTy->isReferenceType()) {
   1758     llvm::BasicBlock *BadCastBlock =
   1759       CGF.createBasicBlock("dynamic_cast.bad_cast");
   1760 
   1761     llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value);
   1762     CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd);
   1763 
   1764     CGF.EmitBlock(BadCastBlock);
   1765     EmitBadCastCall(CGF);
   1766   }
   1767 
   1768   return Value;
   1769 }
   1770 
   1771 static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
   1772                                           QualType DestTy) {
   1773   llvm::Type *DestLTy = CGF.ConvertType(DestTy);
   1774   if (DestTy->isPointerType())
   1775     return llvm::Constant::getNullValue(DestLTy);
   1776 
   1777   /// C++ [expr.dynamic.cast]p9:
   1778   ///   A failed cast to reference type throws std::bad_cast
   1779   EmitBadCastCall(CGF);
   1780 
   1781   CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
   1782   return llvm::UndefValue::get(DestLTy);
   1783 }
   1784 
   1785 llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
   1786                                               const CXXDynamicCastExpr *DCE) {
   1787   QualType DestTy = DCE->getTypeAsWritten();
   1788 
   1789   if (DCE->isAlwaysNull())
   1790     return EmitDynamicCastToNull(*this, DestTy);
   1791 
   1792   QualType SrcTy = DCE->getSubExpr()->getType();
   1793 
   1794   // C++ [expr.dynamic.cast]p4:
   1795   //   If the value of v is a null pointer value in the pointer case, the result
   1796   //   is the null pointer value of type T.
   1797   bool ShouldNullCheckSrcValue = SrcTy->isPointerType();
   1798 
   1799   llvm::BasicBlock *CastNull = 0;
   1800   llvm::BasicBlock *CastNotNull = 0;
   1801   llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
   1802 
   1803   if (ShouldNullCheckSrcValue) {
   1804     CastNull = createBasicBlock("dynamic_cast.null");
   1805     CastNotNull = createBasicBlock("dynamic_cast.notnull");
   1806 
   1807     llvm::Value *IsNull = Builder.CreateIsNull(Value);
   1808     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
   1809     EmitBlock(CastNotNull);
   1810   }
   1811 
   1812   Value = EmitDynamicCastCall(*this, Value, SrcTy, DestTy, CastEnd);
   1813 
   1814   if (ShouldNullCheckSrcValue) {
   1815     EmitBranch(CastEnd);
   1816 
   1817     EmitBlock(CastNull);
   1818     EmitBranch(CastEnd);
   1819   }
   1820 
   1821   EmitBlock(CastEnd);
   1822 
   1823   if (ShouldNullCheckSrcValue) {
   1824     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
   1825     PHI->addIncoming(Value, CastNotNull);
   1826     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
   1827 
   1828     Value = PHI;
   1829   }
   1830 
   1831   return Value;
   1832 }
   1833 
   1834 void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
   1835   RunCleanupsScope Scope(*this);
   1836   LValue SlotLV = MakeAddrLValue(Slot.getAddr(), E->getType(),
   1837                                  Slot.getAlignment());
   1838 
   1839   CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
   1840   for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(),
   1841                                          e = E->capture_init_end();
   1842        i != e; ++i, ++CurField) {
   1843     // Emit initialization
   1844 
   1845     LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
   1846     ArrayRef<VarDecl *> ArrayIndexes;
   1847     if (CurField->getType()->isArrayType())
   1848       ArrayIndexes = E->getCaptureInitIndexVars(i);
   1849     EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
   1850   }
   1851 }
   1852