Home | History | Annotate | Download | only in CodeGen
      1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass eliminates machine instruction PHI nodes by inserting copy
     11 // instructions.  This destroys SSA information, but is the desired input for
     12 // some register allocators.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "phielim"
     17 #include "PHIEliminationUtils.h"
     18 #include "llvm/CodeGen/LiveVariables.h"
     19 #include "llvm/CodeGen/Passes.h"
     20 #include "llvm/CodeGen/MachineDominators.h"
     21 #include "llvm/CodeGen/MachineInstr.h"
     22 #include "llvm/CodeGen/MachineInstrBuilder.h"
     23 #include "llvm/CodeGen/MachineLoopInfo.h"
     24 #include "llvm/CodeGen/MachineRegisterInfo.h"
     25 #include "llvm/Target/TargetInstrInfo.h"
     26 #include "llvm/Function.h"
     27 #include "llvm/Target/TargetMachine.h"
     28 #include "llvm/ADT/SmallPtrSet.h"
     29 #include "llvm/ADT/STLExtras.h"
     30 #include "llvm/ADT/Statistic.h"
     31 #include "llvm/Support/CommandLine.h"
     32 #include "llvm/Support/Compiler.h"
     33 #include "llvm/Support/Debug.h"
     34 #include <algorithm>
     35 using namespace llvm;
     36 
     37 static cl::opt<bool>
     38 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
     39                      cl::Hidden, cl::desc("Disable critical edge splitting "
     40                                           "during PHI elimination"));
     41 
     42 namespace {
     43   class PHIElimination : public MachineFunctionPass {
     44     MachineRegisterInfo *MRI; // Machine register information
     45 
     46   public:
     47     static char ID; // Pass identification, replacement for typeid
     48     PHIElimination() : MachineFunctionPass(ID) {
     49       initializePHIEliminationPass(*PassRegistry::getPassRegistry());
     50     }
     51 
     52     virtual bool runOnMachineFunction(MachineFunction &Fn);
     53     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
     54 
     55   private:
     56     /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
     57     /// in predecessor basic blocks.
     58     ///
     59     bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
     60     void LowerAtomicPHINode(MachineBasicBlock &MBB,
     61                             MachineBasicBlock::iterator AfterPHIsIt);
     62 
     63     /// analyzePHINodes - Gather information about the PHI nodes in
     64     /// here. In particular, we want to map the number of uses of a virtual
     65     /// register which is used in a PHI node. We map that to the BB the
     66     /// vreg is coming from. This is used later to determine when the vreg
     67     /// is killed in the BB.
     68     ///
     69     void analyzePHINodes(const MachineFunction& Fn);
     70 
     71     /// Split critical edges where necessary for good coalescer performance.
     72     bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
     73                        LiveVariables &LV, MachineLoopInfo *MLI);
     74 
     75     typedef std::pair<unsigned, unsigned> BBVRegPair;
     76     typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
     77 
     78     VRegPHIUse VRegPHIUseCount;
     79 
     80     // Defs of PHI sources which are implicit_def.
     81     SmallPtrSet<MachineInstr*, 4> ImpDefs;
     82 
     83     // Map reusable lowered PHI node -> incoming join register.
     84     typedef DenseMap<MachineInstr*, unsigned,
     85                      MachineInstrExpressionTrait> LoweredPHIMap;
     86     LoweredPHIMap LoweredPHIs;
     87   };
     88 }
     89 
     90 STATISTIC(NumAtomic, "Number of atomic phis lowered");
     91 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
     92 STATISTIC(NumReused, "Number of reused lowered phis");
     93 
     94 char PHIElimination::ID = 0;
     95 char& llvm::PHIEliminationID = PHIElimination::ID;
     96 
     97 INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
     98                       "Eliminate PHI nodes for register allocation",
     99                       false, false)
    100 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
    101 INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
    102                     "Eliminate PHI nodes for register allocation", false, false)
    103 
    104 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
    105   AU.addPreserved<LiveVariables>();
    106   AU.addPreserved<MachineDominatorTree>();
    107   AU.addPreserved<MachineLoopInfo>();
    108   MachineFunctionPass::getAnalysisUsage(AU);
    109 }
    110 
    111 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
    112   MRI = &MF.getRegInfo();
    113 
    114   bool Changed = false;
    115 
    116   // This pass takes the function out of SSA form.
    117   MRI->leaveSSA();
    118 
    119   // Split critical edges to help the coalescer
    120   if (!DisableEdgeSplitting) {
    121     if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>()) {
    122       MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
    123       for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
    124         Changed |= SplitPHIEdges(MF, *I, *LV, MLI);
    125     }
    126   }
    127 
    128   // Populate VRegPHIUseCount
    129   analyzePHINodes(MF);
    130 
    131   // Eliminate PHI instructions by inserting copies into predecessor blocks.
    132   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
    133     Changed |= EliminatePHINodes(MF, *I);
    134 
    135   // Remove dead IMPLICIT_DEF instructions.
    136   for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
    137          E = ImpDefs.end(); I != E; ++I) {
    138     MachineInstr *DefMI = *I;
    139     unsigned DefReg = DefMI->getOperand(0).getReg();
    140     if (MRI->use_nodbg_empty(DefReg))
    141       DefMI->eraseFromParent();
    142   }
    143 
    144   // Clean up the lowered PHI instructions.
    145   for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
    146        I != E; ++I)
    147     MF.DeleteMachineInstr(I->first);
    148 
    149   LoweredPHIs.clear();
    150   ImpDefs.clear();
    151   VRegPHIUseCount.clear();
    152 
    153   return Changed;
    154 }
    155 
    156 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
    157 /// predecessor basic blocks.
    158 ///
    159 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
    160                                              MachineBasicBlock &MBB) {
    161   if (MBB.empty() || !MBB.front().isPHI())
    162     return false;   // Quick exit for basic blocks without PHIs.
    163 
    164   // Get an iterator to the first instruction after the last PHI node (this may
    165   // also be the end of the basic block).
    166   MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin());
    167 
    168   while (MBB.front().isPHI())
    169     LowerAtomicPHINode(MBB, AfterPHIsIt);
    170 
    171   return true;
    172 }
    173 
    174 /// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs.
    175 /// This includes registers with no defs.
    176 static bool isImplicitlyDefined(unsigned VirtReg,
    177                                 const MachineRegisterInfo *MRI) {
    178   for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(VirtReg),
    179        DE = MRI->def_end(); DI != DE; ++DI)
    180     if (!DI->isImplicitDef())
    181       return false;
    182   return true;
    183 }
    184 
    185 /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
    186 /// are implicit_def's.
    187 static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
    188                                          const MachineRegisterInfo *MRI) {
    189   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
    190     if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI))
    191       return false;
    192   return true;
    193 }
    194 
    195 
    196 /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
    197 /// under the assumption that it needs to be lowered in a way that supports
    198 /// atomic execution of PHIs.  This lowering method is always correct all of the
    199 /// time.
    200 ///
    201 void PHIElimination::LowerAtomicPHINode(
    202                                       MachineBasicBlock &MBB,
    203                                       MachineBasicBlock::iterator AfterPHIsIt) {
    204   ++NumAtomic;
    205   // Unlink the PHI node from the basic block, but don't delete the PHI yet.
    206   MachineInstr *MPhi = MBB.remove(MBB.begin());
    207 
    208   unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
    209   unsigned DestReg = MPhi->getOperand(0).getReg();
    210   assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
    211   bool isDead = MPhi->getOperand(0).isDead();
    212 
    213   // Create a new register for the incoming PHI arguments.
    214   MachineFunction &MF = *MBB.getParent();
    215   unsigned IncomingReg = 0;
    216   bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?
    217 
    218   // Insert a register to register copy at the top of the current block (but
    219   // after any remaining phi nodes) which copies the new incoming register
    220   // into the phi node destination.
    221   const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
    222   if (isSourceDefinedByImplicitDef(MPhi, MRI))
    223     // If all sources of a PHI node are implicit_def, just emit an
    224     // implicit_def instead of a copy.
    225     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
    226             TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
    227   else {
    228     // Can we reuse an earlier PHI node? This only happens for critical edges,
    229     // typically those created by tail duplication.
    230     unsigned &entry = LoweredPHIs[MPhi];
    231     if (entry) {
    232       // An identical PHI node was already lowered. Reuse the incoming register.
    233       IncomingReg = entry;
    234       reusedIncoming = true;
    235       ++NumReused;
    236       DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
    237     } else {
    238       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
    239       entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
    240     }
    241     BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
    242             TII->get(TargetOpcode::COPY), DestReg)
    243       .addReg(IncomingReg);
    244   }
    245 
    246   // Update live variable information if there is any.
    247   LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
    248   if (LV) {
    249     MachineInstr *PHICopy = prior(AfterPHIsIt);
    250 
    251     if (IncomingReg) {
    252       LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
    253 
    254       // Increment use count of the newly created virtual register.
    255       LV->setPHIJoin(IncomingReg);
    256 
    257       // When we are reusing the incoming register, it may already have been
    258       // killed in this block. The old kill will also have been inserted at
    259       // AfterPHIsIt, so it appears before the current PHICopy.
    260       if (reusedIncoming)
    261         if (MachineInstr *OldKill = VI.findKill(&MBB)) {
    262           DEBUG(dbgs() << "Remove old kill from " << *OldKill);
    263           LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
    264           DEBUG(MBB.dump());
    265         }
    266 
    267       // Add information to LiveVariables to know that the incoming value is
    268       // killed.  Note that because the value is defined in several places (once
    269       // each for each incoming block), the "def" block and instruction fields
    270       // for the VarInfo is not filled in.
    271       LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
    272     }
    273 
    274     // Since we are going to be deleting the PHI node, if it is the last use of
    275     // any registers, or if the value itself is dead, we need to move this
    276     // information over to the new copy we just inserted.
    277     LV->removeVirtualRegistersKilled(MPhi);
    278 
    279     // If the result is dead, update LV.
    280     if (isDead) {
    281       LV->addVirtualRegisterDead(DestReg, PHICopy);
    282       LV->removeVirtualRegisterDead(DestReg, MPhi);
    283     }
    284   }
    285 
    286   // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
    287   for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
    288     --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
    289                                  MPhi->getOperand(i).getReg())];
    290 
    291   // Now loop over all of the incoming arguments, changing them to copy into the
    292   // IncomingReg register in the corresponding predecessor basic block.
    293   SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
    294   for (int i = NumSrcs - 1; i >= 0; --i) {
    295     unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
    296     unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
    297     bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
    298       isImplicitlyDefined(SrcReg, MRI);
    299     assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
    300            "Machine PHI Operands must all be virtual registers!");
    301 
    302     // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
    303     // path the PHI.
    304     MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
    305 
    306     // Check to make sure we haven't already emitted the copy for this block.
    307     // This can happen because PHI nodes may have multiple entries for the same
    308     // basic block.
    309     if (!MBBsInsertedInto.insert(&opBlock))
    310       continue;  // If the copy has already been emitted, we're done.
    311 
    312     // Find a safe location to insert the copy, this may be the first terminator
    313     // in the block (or end()).
    314     MachineBasicBlock::iterator InsertPos =
    315       findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
    316 
    317     // Insert the copy.
    318     if (!reusedIncoming && IncomingReg) {
    319       if (SrcUndef) {
    320         // The source register is undefined, so there is no need for a real
    321         // COPY, but we still need to ensure joint dominance by defs.
    322         // Insert an IMPLICIT_DEF instruction.
    323         BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
    324                 TII->get(TargetOpcode::IMPLICIT_DEF), IncomingReg);
    325 
    326         // Clean up the old implicit-def, if there even was one.
    327         if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
    328           if (DefMI->isImplicitDef())
    329             ImpDefs.insert(DefMI);
    330       } else {
    331         BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
    332                 TII->get(TargetOpcode::COPY), IncomingReg)
    333           .addReg(SrcReg, 0, SrcSubReg);
    334       }
    335     }
    336 
    337     // Now update live variable information if we have it.  Otherwise we're done
    338     if (SrcUndef || !LV) continue;
    339 
    340     // We want to be able to insert a kill of the register if this PHI (aka, the
    341     // copy we just inserted) is the last use of the source value.  Live
    342     // variable analysis conservatively handles this by saying that the value is
    343     // live until the end of the block the PHI entry lives in.  If the value
    344     // really is dead at the PHI copy, there will be no successor blocks which
    345     // have the value live-in.
    346 
    347     // Also check to see if this register is in use by another PHI node which
    348     // has not yet been eliminated.  If so, it will be killed at an appropriate
    349     // point later.
    350 
    351     // Is it used by any PHI instructions in this block?
    352     bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)];
    353 
    354     // Okay, if we now know that the value is not live out of the block, we can
    355     // add a kill marker in this block saying that it kills the incoming value!
    356     if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) {
    357       // In our final twist, we have to decide which instruction kills the
    358       // register.  In most cases this is the copy, however, terminator
    359       // instructions at the end of the block may also use the value. In this
    360       // case, we should mark the last such terminator as being the killing
    361       // block, not the copy.
    362       MachineBasicBlock::iterator KillInst = opBlock.end();
    363       MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
    364       for (MachineBasicBlock::iterator Term = FirstTerm;
    365           Term != opBlock.end(); ++Term) {
    366         if (Term->readsRegister(SrcReg))
    367           KillInst = Term;
    368       }
    369 
    370       if (KillInst == opBlock.end()) {
    371         // No terminator uses the register.
    372 
    373         if (reusedIncoming || !IncomingReg) {
    374           // We may have to rewind a bit if we didn't insert a copy this time.
    375           KillInst = FirstTerm;
    376           while (KillInst != opBlock.begin()) {
    377             --KillInst;
    378             if (KillInst->isDebugValue())
    379               continue;
    380             if (KillInst->readsRegister(SrcReg))
    381               break;
    382           }
    383         } else {
    384           // We just inserted this copy.
    385           KillInst = prior(InsertPos);
    386         }
    387       }
    388       assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
    389 
    390       // Finally, mark it killed.
    391       LV->addVirtualRegisterKilled(SrcReg, KillInst);
    392 
    393       // This vreg no longer lives all of the way through opBlock.
    394       unsigned opBlockNum = opBlock.getNumber();
    395       LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
    396     }
    397   }
    398 
    399   // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
    400   if (reusedIncoming || !IncomingReg)
    401     MF.DeleteMachineInstr(MPhi);
    402 }
    403 
    404 /// analyzePHINodes - Gather information about the PHI nodes in here. In
    405 /// particular, we want to map the number of uses of a virtual register which is
    406 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
    407 /// used later to determine when the vreg is killed in the BB.
    408 ///
    409 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
    410   for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
    411        I != E; ++I)
    412     for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
    413          BBI != BBE && BBI->isPHI(); ++BBI)
    414       for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
    415         ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
    416                                      BBI->getOperand(i).getReg())];
    417 }
    418 
    419 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
    420                                    MachineBasicBlock &MBB,
    421                                    LiveVariables &LV,
    422                                    MachineLoopInfo *MLI) {
    423   if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
    424     return false;   // Quick exit for basic blocks without PHIs.
    425 
    426   const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : 0;
    427   bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
    428 
    429   bool Changed = false;
    430   for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
    431        BBI != BBE && BBI->isPHI(); ++BBI) {
    432     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
    433       unsigned Reg = BBI->getOperand(i).getReg();
    434       MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
    435       // Is there a critical edge from PreMBB to MBB?
    436       if (PreMBB->succ_size() == 1)
    437         continue;
    438 
    439       // Avoid splitting backedges of loops. It would introduce small
    440       // out-of-line blocks into the loop which is very bad for code placement.
    441       if (PreMBB == &MBB)
    442         continue;
    443       const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : 0;
    444       if (IsLoopHeader && PreLoop == CurLoop)
    445         continue;
    446 
    447       // LV doesn't consider a phi use live-out, so isLiveOut only returns true
    448       // when the source register is live-out for some other reason than a phi
    449       // use. That means the copy we will insert in PreMBB won't be a kill, and
    450       // there is a risk it may not be coalesced away.
    451       //
    452       // If the copy would be a kill, there is no need to split the edge.
    453       if (!LV.isLiveOut(Reg, *PreMBB))
    454         continue;
    455 
    456       DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#"
    457                    << PreMBB->getNumber() << " -> BB#" << MBB.getNumber()
    458                    << ": " << *BBI);
    459 
    460       // If Reg is not live-in to MBB, it means it must be live-in to some
    461       // other PreMBB successor, and we can avoid the interference by splitting
    462       // the edge.
    463       //
    464       // If Reg *is* live-in to MBB, the interference is inevitable and a copy
    465       // is likely to be left after coalescing. If we are looking at a loop
    466       // exiting edge, split it so we won't insert code in the loop, otherwise
    467       // don't bother.
    468       bool ShouldSplit = !LV.isLiveIn(Reg, MBB);
    469 
    470       // Check for a loop exiting edge.
    471       if (!ShouldSplit && CurLoop != PreLoop) {
    472         DEBUG({
    473           dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
    474           if (PreLoop) dbgs() << "PreLoop: " << *PreLoop;
    475           if (CurLoop) dbgs() << "CurLoop: " << *CurLoop;
    476         });
    477         // This edge could be entering a loop, exiting a loop, or it could be
    478         // both: Jumping directly form one loop to the header of a sibling
    479         // loop.
    480         // Split unless this edge is entering CurLoop from an outer loop.
    481         ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
    482       }
    483       if (!ShouldSplit)
    484         continue;
    485       if (!PreMBB->SplitCriticalEdge(&MBB, this)) {
    486         DEBUG(dbgs() << "Failed to split ciritcal edge.\n");
    487         continue;
    488       }
    489       Changed = true;
    490       ++NumCriticalEdgesSplit;
    491     }
    492   }
    493   return Changed;
    494 }
    495