1 //===- InstCombineAddSub.cpp ----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for add, fadd, sub, and fsub. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombine.h" 15 #include "llvm/Analysis/InstructionSimplify.h" 16 #include "llvm/Target/TargetData.h" 17 #include "llvm/Support/GetElementPtrTypeIterator.h" 18 #include "llvm/Support/PatternMatch.h" 19 using namespace llvm; 20 using namespace PatternMatch; 21 22 /// AddOne - Add one to a ConstantInt. 23 static Constant *AddOne(Constant *C) { 24 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1)); 25 } 26 /// SubOne - Subtract one from a ConstantInt. 27 static Constant *SubOne(ConstantInt *C) { 28 return ConstantInt::get(C->getContext(), C->getValue()-1); 29 } 30 31 32 // dyn_castFoldableMul - If this value is a multiply that can be folded into 33 // other computations (because it has a constant operand), return the 34 // non-constant operand of the multiply, and set CST to point to the multiplier. 35 // Otherwise, return null. 36 // 37 static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) { 38 if (!V->hasOneUse() || !V->getType()->isIntegerTy()) 39 return 0; 40 41 Instruction *I = dyn_cast<Instruction>(V); 42 if (I == 0) return 0; 43 44 if (I->getOpcode() == Instruction::Mul) 45 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) 46 return I->getOperand(0); 47 if (I->getOpcode() == Instruction::Shl) 48 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) { 49 // The multiplier is really 1 << CST. 50 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); 51 uint32_t CSTVal = CST->getLimitedValue(BitWidth); 52 CST = ConstantInt::get(V->getType()->getContext(), 53 APInt(BitWidth, 1).shl(CSTVal)); 54 return I->getOperand(0); 55 } 56 return 0; 57 } 58 59 60 /// WillNotOverflowSignedAdd - Return true if we can prove that: 61 /// (sext (add LHS, RHS)) === (add (sext LHS), (sext RHS)) 62 /// This basically requires proving that the add in the original type would not 63 /// overflow to change the sign bit or have a carry out. 64 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) { 65 // There are different heuristics we can use for this. Here are some simple 66 // ones. 67 68 // Add has the property that adding any two 2's complement numbers can only 69 // have one carry bit which can change a sign. As such, if LHS and RHS each 70 // have at least two sign bits, we know that the addition of the two values 71 // will sign extend fine. 72 if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1) 73 return true; 74 75 76 // If one of the operands only has one non-zero bit, and if the other operand 77 // has a known-zero bit in a more significant place than it (not including the 78 // sign bit) the ripple may go up to and fill the zero, but won't change the 79 // sign. For example, (X & ~4) + 1. 80 81 // TODO: Implement. 82 83 return false; 84 } 85 86 Instruction *InstCombiner::visitAdd(BinaryOperator &I) { 87 bool Changed = SimplifyAssociativeOrCommutative(I); 88 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 89 90 if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(), 91 I.hasNoUnsignedWrap(), TD)) 92 return ReplaceInstUsesWith(I, V); 93 94 // (A*B)+(A*C) -> A*(B+C) etc 95 if (Value *V = SimplifyUsingDistributiveLaws(I)) 96 return ReplaceInstUsesWith(I, V); 97 98 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 99 // X + (signbit) --> X ^ signbit 100 const APInt &Val = CI->getValue(); 101 if (Val.isSignBit()) 102 return BinaryOperator::CreateXor(LHS, RHS); 103 104 // See if SimplifyDemandedBits can simplify this. This handles stuff like 105 // (X & 254)+1 -> (X&254)|1 106 if (SimplifyDemandedInstructionBits(I)) 107 return &I; 108 109 // zext(bool) + C -> bool ? C + 1 : C 110 if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS)) 111 if (ZI->getSrcTy()->isIntegerTy(1)) 112 return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI); 113 114 Value *XorLHS = 0; ConstantInt *XorRHS = 0; 115 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) { 116 uint32_t TySizeBits = I.getType()->getScalarSizeInBits(); 117 const APInt &RHSVal = CI->getValue(); 118 unsigned ExtendAmt = 0; 119 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext. 120 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext. 121 if (XorRHS->getValue() == -RHSVal) { 122 if (RHSVal.isPowerOf2()) 123 ExtendAmt = TySizeBits - RHSVal.logBase2() - 1; 124 else if (XorRHS->getValue().isPowerOf2()) 125 ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1; 126 } 127 128 if (ExtendAmt) { 129 APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt); 130 if (!MaskedValueIsZero(XorLHS, Mask)) 131 ExtendAmt = 0; 132 } 133 134 if (ExtendAmt) { 135 Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt); 136 Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext"); 137 return BinaryOperator::CreateAShr(NewShl, ShAmt); 138 } 139 140 // If this is a xor that was canonicalized from a sub, turn it back into 141 // a sub and fuse this add with it. 142 if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) { 143 IntegerType *IT = cast<IntegerType>(I.getType()); 144 APInt LHSKnownOne(IT->getBitWidth(), 0); 145 APInt LHSKnownZero(IT->getBitWidth(), 0); 146 ComputeMaskedBits(XorLHS, LHSKnownZero, LHSKnownOne); 147 if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue()) 148 return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI), 149 XorLHS); 150 } 151 } 152 } 153 154 if (isa<Constant>(RHS) && isa<PHINode>(LHS)) 155 if (Instruction *NV = FoldOpIntoPhi(I)) 156 return NV; 157 158 if (I.getType()->isIntegerTy(1)) 159 return BinaryOperator::CreateXor(LHS, RHS); 160 161 // X + X --> X << 1 162 if (LHS == RHS) { 163 BinaryOperator *New = 164 BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1)); 165 New->setHasNoSignedWrap(I.hasNoSignedWrap()); 166 New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 167 return New; 168 } 169 170 // -A + B --> B - A 171 // -A + -B --> -(A + B) 172 if (Value *LHSV = dyn_castNegVal(LHS)) { 173 if (!isa<Constant>(RHS)) 174 if (Value *RHSV = dyn_castNegVal(RHS)) { 175 Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum"); 176 return BinaryOperator::CreateNeg(NewAdd); 177 } 178 179 return BinaryOperator::CreateSub(RHS, LHSV); 180 } 181 182 // A + -B --> A - B 183 if (!isa<Constant>(RHS)) 184 if (Value *V = dyn_castNegVal(RHS)) 185 return BinaryOperator::CreateSub(LHS, V); 186 187 188 ConstantInt *C2; 189 if (Value *X = dyn_castFoldableMul(LHS, C2)) { 190 if (X == RHS) // X*C + X --> X * (C+1) 191 return BinaryOperator::CreateMul(RHS, AddOne(C2)); 192 193 // X*C1 + X*C2 --> X * (C1+C2) 194 ConstantInt *C1; 195 if (X == dyn_castFoldableMul(RHS, C1)) 196 return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2)); 197 } 198 199 // X + X*C --> X * (C+1) 200 if (dyn_castFoldableMul(RHS, C2) == LHS) 201 return BinaryOperator::CreateMul(LHS, AddOne(C2)); 202 203 // A+B --> A|B iff A and B have no bits set in common. 204 if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) { 205 APInt LHSKnownOne(IT->getBitWidth(), 0); 206 APInt LHSKnownZero(IT->getBitWidth(), 0); 207 ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne); 208 if (LHSKnownZero != 0) { 209 APInt RHSKnownOne(IT->getBitWidth(), 0); 210 APInt RHSKnownZero(IT->getBitWidth(), 0); 211 ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne); 212 213 // No bits in common -> bitwise or. 214 if ((LHSKnownZero|RHSKnownZero).isAllOnesValue()) 215 return BinaryOperator::CreateOr(LHS, RHS); 216 } 217 } 218 219 // W*X + Y*Z --> W * (X+Z) iff W == Y 220 { 221 Value *W, *X, *Y, *Z; 222 if (match(LHS, m_Mul(m_Value(W), m_Value(X))) && 223 match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) { 224 if (W != Y) { 225 if (W == Z) { 226 std::swap(Y, Z); 227 } else if (Y == X) { 228 std::swap(W, X); 229 } else if (X == Z) { 230 std::swap(Y, Z); 231 std::swap(W, X); 232 } 233 } 234 235 if (W == Y) { 236 Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName()); 237 return BinaryOperator::CreateMul(W, NewAdd); 238 } 239 } 240 } 241 242 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) { 243 Value *X = 0; 244 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X 245 return BinaryOperator::CreateSub(SubOne(CRHS), X); 246 247 // (X & FF00) + xx00 -> (X+xx00) & FF00 248 if (LHS->hasOneUse() && 249 match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) && 250 CRHS->getValue() == (CRHS->getValue() & C2->getValue())) { 251 // See if all bits from the first bit set in the Add RHS up are included 252 // in the mask. First, get the rightmost bit. 253 const APInt &AddRHSV = CRHS->getValue(); 254 255 // Form a mask of all bits from the lowest bit added through the top. 256 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1)); 257 258 // See if the and mask includes all of these bits. 259 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue()); 260 261 if (AddRHSHighBits == AddRHSHighBitsAnd) { 262 // Okay, the xform is safe. Insert the new add pronto. 263 Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName()); 264 return BinaryOperator::CreateAnd(NewAdd, C2); 265 } 266 } 267 268 // Try to fold constant add into select arguments. 269 if (SelectInst *SI = dyn_cast<SelectInst>(LHS)) 270 if (Instruction *R = FoldOpIntoSelect(I, SI)) 271 return R; 272 } 273 274 // add (select X 0 (sub n A)) A --> select X A n 275 { 276 SelectInst *SI = dyn_cast<SelectInst>(LHS); 277 Value *A = RHS; 278 if (!SI) { 279 SI = dyn_cast<SelectInst>(RHS); 280 A = LHS; 281 } 282 if (SI && SI->hasOneUse()) { 283 Value *TV = SI->getTrueValue(); 284 Value *FV = SI->getFalseValue(); 285 Value *N; 286 287 // Can we fold the add into the argument of the select? 288 // We check both true and false select arguments for a matching subtract. 289 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A)))) 290 // Fold the add into the true select value. 291 return SelectInst::Create(SI->getCondition(), N, A); 292 293 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A)))) 294 // Fold the add into the false select value. 295 return SelectInst::Create(SI->getCondition(), A, N); 296 } 297 } 298 299 // Check for (add (sext x), y), see if we can merge this into an 300 // integer add followed by a sext. 301 if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) { 302 // (add (sext x), cst) --> (sext (add x, cst')) 303 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) { 304 Constant *CI = 305 ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType()); 306 if (LHSConv->hasOneUse() && 307 ConstantExpr::getSExt(CI, I.getType()) == RHSC && 308 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) { 309 // Insert the new, smaller add. 310 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 311 CI, "addconv"); 312 return new SExtInst(NewAdd, I.getType()); 313 } 314 } 315 316 // (add (sext x), (sext y)) --> (sext (add int x, y)) 317 if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) { 318 // Only do this if x/y have the same type, if at last one of them has a 319 // single use (so we don't increase the number of sexts), and if the 320 // integer add will not overflow. 321 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&& 322 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 323 WillNotOverflowSignedAdd(LHSConv->getOperand(0), 324 RHSConv->getOperand(0))) { 325 // Insert the new integer add. 326 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 327 RHSConv->getOperand(0), "addconv"); 328 return new SExtInst(NewAdd, I.getType()); 329 } 330 } 331 } 332 333 // Check for (x & y) + (x ^ y) 334 { 335 Value *A = 0, *B = 0; 336 if (match(RHS, m_Xor(m_Value(A), m_Value(B))) && 337 (match(LHS, m_And(m_Specific(A), m_Specific(B))) || 338 match(LHS, m_And(m_Specific(B), m_Specific(A))))) 339 return BinaryOperator::CreateOr(A, B); 340 341 if (match(LHS, m_Xor(m_Value(A), m_Value(B))) && 342 (match(RHS, m_And(m_Specific(A), m_Specific(B))) || 343 match(RHS, m_And(m_Specific(B), m_Specific(A))))) 344 return BinaryOperator::CreateOr(A, B); 345 } 346 347 return Changed ? &I : 0; 348 } 349 350 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) { 351 bool Changed = SimplifyAssociativeOrCommutative(I); 352 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); 353 354 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 355 // X + 0 --> X 356 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) { 357 if (CFP->isExactlyValue(ConstantFP::getNegativeZero 358 (I.getType())->getValueAPF())) 359 return ReplaceInstUsesWith(I, LHS); 360 } 361 362 if (isa<PHINode>(LHS)) 363 if (Instruction *NV = FoldOpIntoPhi(I)) 364 return NV; 365 } 366 367 // -A + B --> B - A 368 // -A + -B --> -(A + B) 369 if (Value *LHSV = dyn_castFNegVal(LHS)) 370 return BinaryOperator::CreateFSub(RHS, LHSV); 371 372 // A + -B --> A - B 373 if (!isa<Constant>(RHS)) 374 if (Value *V = dyn_castFNegVal(RHS)) 375 return BinaryOperator::CreateFSub(LHS, V); 376 377 // Check for X+0.0. Simplify it to X if we know X is not -0.0. 378 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) 379 if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS)) 380 return ReplaceInstUsesWith(I, LHS); 381 382 // Check for (fadd double (sitofp x), y), see if we can merge this into an 383 // integer add followed by a promotion. 384 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) { 385 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst)) 386 // ... if the constant fits in the integer value. This is useful for things 387 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer 388 // requires a constant pool load, and generally allows the add to be better 389 // instcombined. 390 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) { 391 Constant *CI = 392 ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType()); 393 if (LHSConv->hasOneUse() && 394 ConstantExpr::getSIToFP(CI, I.getType()) == CFP && 395 WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) { 396 // Insert the new integer add. 397 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 398 CI, "addconv"); 399 return new SIToFPInst(NewAdd, I.getType()); 400 } 401 } 402 403 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y)) 404 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) { 405 // Only do this if x/y have the same type, if at last one of them has a 406 // single use (so we don't increase the number of int->fp conversions), 407 // and if the integer add will not overflow. 408 if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&& 409 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) && 410 WillNotOverflowSignedAdd(LHSConv->getOperand(0), 411 RHSConv->getOperand(0))) { 412 // Insert the new integer add. 413 Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0), 414 RHSConv->getOperand(0),"addconv"); 415 return new SIToFPInst(NewAdd, I.getType()); 416 } 417 } 418 } 419 420 return Changed ? &I : 0; 421 } 422 423 424 /// Optimize pointer differences into the same array into a size. Consider: 425 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer 426 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract. 427 /// 428 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS, 429 Type *Ty) { 430 assert(TD && "Must have target data info for this"); 431 432 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize 433 // this. 434 bool Swapped = false; 435 GEPOperator *GEP1 = 0, *GEP2 = 0; 436 437 // For now we require one side to be the base pointer "A" or a constant 438 // GEP derived from it. 439 if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 440 // (gep X, ...) - X 441 if (LHSGEP->getOperand(0) == RHS) { 442 GEP1 = LHSGEP; 443 Swapped = false; 444 } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 445 // (gep X, ...) - (gep X, ...) 446 if (LHSGEP->getOperand(0)->stripPointerCasts() == 447 RHSGEP->getOperand(0)->stripPointerCasts()) { 448 GEP2 = RHSGEP; 449 GEP1 = LHSGEP; 450 Swapped = false; 451 } 452 } 453 } 454 455 if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) { 456 // X - (gep X, ...) 457 if (RHSGEP->getOperand(0) == LHS) { 458 GEP1 = RHSGEP; 459 Swapped = true; 460 } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) { 461 // (gep X, ...) - (gep X, ...) 462 if (RHSGEP->getOperand(0)->stripPointerCasts() == 463 LHSGEP->getOperand(0)->stripPointerCasts()) { 464 GEP2 = LHSGEP; 465 GEP1 = RHSGEP; 466 Swapped = true; 467 } 468 } 469 } 470 471 // Avoid duplicating the arithmetic if GEP2 has non-constant indices and 472 // multiple users. 473 if (GEP1 == 0 || 474 (GEP2 != 0 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse())) 475 return 0; 476 477 // Emit the offset of the GEP and an intptr_t. 478 Value *Result = EmitGEPOffset(GEP1); 479 480 // If we had a constant expression GEP on the other side offsetting the 481 // pointer, subtract it from the offset we have. 482 if (GEP2) { 483 Value *Offset = EmitGEPOffset(GEP2); 484 Result = Builder->CreateSub(Result, Offset); 485 } 486 487 // If we have p - gep(p, ...) then we have to negate the result. 488 if (Swapped) 489 Result = Builder->CreateNeg(Result, "diff.neg"); 490 491 return Builder->CreateIntCast(Result, Ty, true); 492 } 493 494 495 Instruction *InstCombiner::visitSub(BinaryOperator &I) { 496 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 497 498 if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(), 499 I.hasNoUnsignedWrap(), TD)) 500 return ReplaceInstUsesWith(I, V); 501 502 // (A*B)-(A*C) -> A*(B-C) etc 503 if (Value *V = SimplifyUsingDistributiveLaws(I)) 504 return ReplaceInstUsesWith(I, V); 505 506 // If this is a 'B = x-(-A)', change to B = x+A. This preserves NSW/NUW. 507 if (Value *V = dyn_castNegVal(Op1)) { 508 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V); 509 Res->setHasNoSignedWrap(I.hasNoSignedWrap()); 510 Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); 511 return Res; 512 } 513 514 if (I.getType()->isIntegerTy(1)) 515 return BinaryOperator::CreateXor(Op0, Op1); 516 517 // Replace (-1 - A) with (~A). 518 if (match(Op0, m_AllOnes())) 519 return BinaryOperator::CreateNot(Op1); 520 521 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) { 522 // C - ~X == X + (1+C) 523 Value *X = 0; 524 if (match(Op1, m_Not(m_Value(X)))) 525 return BinaryOperator::CreateAdd(X, AddOne(C)); 526 527 // -(X >>u 31) -> (X >>s 31) 528 // -(X >>s 31) -> (X >>u 31) 529 if (C->isZero()) { 530 Value *X; ConstantInt *CI; 531 if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) && 532 // Verify we are shifting out everything but the sign bit. 533 CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1) 534 return BinaryOperator::CreateAShr(X, CI); 535 536 if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) && 537 // Verify we are shifting out everything but the sign bit. 538 CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1) 539 return BinaryOperator::CreateLShr(X, CI); 540 } 541 542 // Try to fold constant sub into select arguments. 543 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) 544 if (Instruction *R = FoldOpIntoSelect(I, SI)) 545 return R; 546 547 // C-(X+C2) --> (C-C2)-X 548 ConstantInt *C2; 549 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(C2)))) 550 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X); 551 552 if (SimplifyDemandedInstructionBits(I)) 553 return &I; 554 } 555 556 557 { Value *Y; 558 // X-(X+Y) == -Y X-(Y+X) == -Y 559 if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) || 560 match(Op1, m_Add(m_Value(Y), m_Specific(Op0)))) 561 return BinaryOperator::CreateNeg(Y); 562 563 // (X-Y)-X == -Y 564 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y)))) 565 return BinaryOperator::CreateNeg(Y); 566 } 567 568 if (Op1->hasOneUse()) { 569 Value *X = 0, *Y = 0, *Z = 0; 570 Constant *C = 0; 571 ConstantInt *CI = 0; 572 573 // (X - (Y - Z)) --> (X + (Z - Y)). 574 if (match(Op1, m_Sub(m_Value(Y), m_Value(Z)))) 575 return BinaryOperator::CreateAdd(Op0, 576 Builder->CreateSub(Z, Y, Op1->getName())); 577 578 // (X - (X & Y)) --> (X & ~Y) 579 // 580 if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) || 581 match(Op1, m_And(m_Specific(Op0), m_Value(Y)))) 582 return BinaryOperator::CreateAnd(Op0, 583 Builder->CreateNot(Y, Y->getName() + ".not")); 584 585 // 0 - (X sdiv C) -> (X sdiv -C) 586 if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && 587 match(Op0, m_Zero())) 588 return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C)); 589 590 // 0 - (X << Y) -> (-X << Y) when X is freely negatable. 591 if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero())) 592 if (Value *XNeg = dyn_castNegVal(X)) 593 return BinaryOperator::CreateShl(XNeg, Y); 594 595 // X - X*C --> X * (1-C) 596 if (match(Op1, m_Mul(m_Specific(Op0), m_ConstantInt(CI)))) { 597 Constant *CP1 = ConstantExpr::getSub(ConstantInt::get(I.getType(),1), CI); 598 return BinaryOperator::CreateMul(Op0, CP1); 599 } 600 601 // X - X<<C --> X * (1-(1<<C)) 602 if (match(Op1, m_Shl(m_Specific(Op0), m_ConstantInt(CI)))) { 603 Constant *One = ConstantInt::get(I.getType(), 1); 604 C = ConstantExpr::getSub(One, ConstantExpr::getShl(One, CI)); 605 return BinaryOperator::CreateMul(Op0, C); 606 } 607 608 // X - A*-B -> X + A*B 609 // X - -A*B -> X + A*B 610 Value *A, *B; 611 if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) || 612 match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B)))) 613 return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B)); 614 615 // X - A*CI -> X + A*-CI 616 // X - CI*A -> X + A*-CI 617 if (match(Op1, m_Mul(m_Value(A), m_ConstantInt(CI))) || 618 match(Op1, m_Mul(m_ConstantInt(CI), m_Value(A)))) { 619 Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI)); 620 return BinaryOperator::CreateAdd(Op0, NewMul); 621 } 622 } 623 624 ConstantInt *C1; 625 if (Value *X = dyn_castFoldableMul(Op0, C1)) { 626 if (X == Op1) // X*C - X --> X * (C-1) 627 return BinaryOperator::CreateMul(Op1, SubOne(C1)); 628 629 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2) 630 if (X == dyn_castFoldableMul(Op1, C2)) 631 return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2)); 632 } 633 634 // Optimize pointer differences into the same array into a size. Consider: 635 // &A[10] - &A[0]: we should compile this to "10". 636 if (TD) { 637 Value *LHSOp, *RHSOp; 638 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) && 639 match(Op1, m_PtrToInt(m_Value(RHSOp)))) 640 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 641 return ReplaceInstUsesWith(I, Res); 642 643 // trunc(p)-trunc(q) -> trunc(p-q) 644 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) && 645 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp))))) 646 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType())) 647 return ReplaceInstUsesWith(I, Res); 648 } 649 650 return 0; 651 } 652 653 Instruction *InstCombiner::visitFSub(BinaryOperator &I) { 654 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); 655 656 // If this is a 'B = x-(-A)', change to B = x+A... 657 if (Value *V = dyn_castFNegVal(Op1)) 658 return BinaryOperator::CreateFAdd(Op0, V); 659 660 return 0; 661 } 662