Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineAddSub.cpp ----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visit functions for add, fadd, sub, and fsub.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Analysis/InstructionSimplify.h"
     16 #include "llvm/Target/TargetData.h"
     17 #include "llvm/Support/GetElementPtrTypeIterator.h"
     18 #include "llvm/Support/PatternMatch.h"
     19 using namespace llvm;
     20 using namespace PatternMatch;
     21 
     22 /// AddOne - Add one to a ConstantInt.
     23 static Constant *AddOne(Constant *C) {
     24   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
     25 }
     26 /// SubOne - Subtract one from a ConstantInt.
     27 static Constant *SubOne(ConstantInt *C) {
     28   return ConstantInt::get(C->getContext(), C->getValue()-1);
     29 }
     30 
     31 
     32 // dyn_castFoldableMul - If this value is a multiply that can be folded into
     33 // other computations (because it has a constant operand), return the
     34 // non-constant operand of the multiply, and set CST to point to the multiplier.
     35 // Otherwise, return null.
     36 //
     37 static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
     38   if (!V->hasOneUse() || !V->getType()->isIntegerTy())
     39     return 0;
     40 
     41   Instruction *I = dyn_cast<Instruction>(V);
     42   if (I == 0) return 0;
     43 
     44   if (I->getOpcode() == Instruction::Mul)
     45     if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
     46       return I->getOperand(0);
     47   if (I->getOpcode() == Instruction::Shl)
     48     if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
     49       // The multiplier is really 1 << CST.
     50       uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
     51       uint32_t CSTVal = CST->getLimitedValue(BitWidth);
     52       CST = ConstantInt::get(V->getType()->getContext(),
     53                              APInt(BitWidth, 1).shl(CSTVal));
     54       return I->getOperand(0);
     55     }
     56   return 0;
     57 }
     58 
     59 
     60 /// WillNotOverflowSignedAdd - Return true if we can prove that:
     61 ///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS))
     62 /// This basically requires proving that the add in the original type would not
     63 /// overflow to change the sign bit or have a carry out.
     64 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS) {
     65   // There are different heuristics we can use for this.  Here are some simple
     66   // ones.
     67 
     68   // Add has the property that adding any two 2's complement numbers can only
     69   // have one carry bit which can change a sign.  As such, if LHS and RHS each
     70   // have at least two sign bits, we know that the addition of the two values
     71   // will sign extend fine.
     72   if (ComputeNumSignBits(LHS) > 1 && ComputeNumSignBits(RHS) > 1)
     73     return true;
     74 
     75 
     76   // If one of the operands only has one non-zero bit, and if the other operand
     77   // has a known-zero bit in a more significant place than it (not including the
     78   // sign bit) the ripple may go up to and fill the zero, but won't change the
     79   // sign.  For example, (X & ~4) + 1.
     80 
     81   // TODO: Implement.
     82 
     83   return false;
     84 }
     85 
     86 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
     87   bool Changed = SimplifyAssociativeOrCommutative(I);
     88   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
     89 
     90   if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
     91                                  I.hasNoUnsignedWrap(), TD))
     92     return ReplaceInstUsesWith(I, V);
     93 
     94   // (A*B)+(A*C) -> A*(B+C) etc
     95   if (Value *V = SimplifyUsingDistributiveLaws(I))
     96     return ReplaceInstUsesWith(I, V);
     97 
     98   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
     99     // X + (signbit) --> X ^ signbit
    100     const APInt &Val = CI->getValue();
    101     if (Val.isSignBit())
    102       return BinaryOperator::CreateXor(LHS, RHS);
    103 
    104     // See if SimplifyDemandedBits can simplify this.  This handles stuff like
    105     // (X & 254)+1 -> (X&254)|1
    106     if (SimplifyDemandedInstructionBits(I))
    107       return &I;
    108 
    109     // zext(bool) + C -> bool ? C + 1 : C
    110     if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
    111       if (ZI->getSrcTy()->isIntegerTy(1))
    112         return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
    113 
    114     Value *XorLHS = 0; ConstantInt *XorRHS = 0;
    115     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
    116       uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
    117       const APInt &RHSVal = CI->getValue();
    118       unsigned ExtendAmt = 0;
    119       // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
    120       // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
    121       if (XorRHS->getValue() == -RHSVal) {
    122         if (RHSVal.isPowerOf2())
    123           ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
    124         else if (XorRHS->getValue().isPowerOf2())
    125           ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
    126       }
    127 
    128       if (ExtendAmt) {
    129         APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
    130         if (!MaskedValueIsZero(XorLHS, Mask))
    131           ExtendAmt = 0;
    132       }
    133 
    134       if (ExtendAmt) {
    135         Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
    136         Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
    137         return BinaryOperator::CreateAShr(NewShl, ShAmt);
    138       }
    139 
    140       // If this is a xor that was canonicalized from a sub, turn it back into
    141       // a sub and fuse this add with it.
    142       if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
    143         IntegerType *IT = cast<IntegerType>(I.getType());
    144         APInt LHSKnownOne(IT->getBitWidth(), 0);
    145         APInt LHSKnownZero(IT->getBitWidth(), 0);
    146         ComputeMaskedBits(XorLHS, LHSKnownZero, LHSKnownOne);
    147         if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
    148           return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
    149                                            XorLHS);
    150       }
    151     }
    152   }
    153 
    154   if (isa<Constant>(RHS) && isa<PHINode>(LHS))
    155     if (Instruction *NV = FoldOpIntoPhi(I))
    156       return NV;
    157 
    158   if (I.getType()->isIntegerTy(1))
    159     return BinaryOperator::CreateXor(LHS, RHS);
    160 
    161   // X + X --> X << 1
    162   if (LHS == RHS) {
    163     BinaryOperator *New =
    164       BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
    165     New->setHasNoSignedWrap(I.hasNoSignedWrap());
    166     New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
    167     return New;
    168   }
    169 
    170   // -A + B  -->  B - A
    171   // -A + -B  -->  -(A + B)
    172   if (Value *LHSV = dyn_castNegVal(LHS)) {
    173     if (!isa<Constant>(RHS))
    174       if (Value *RHSV = dyn_castNegVal(RHS)) {
    175         Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
    176         return BinaryOperator::CreateNeg(NewAdd);
    177       }
    178 
    179     return BinaryOperator::CreateSub(RHS, LHSV);
    180   }
    181 
    182   // A + -B  -->  A - B
    183   if (!isa<Constant>(RHS))
    184     if (Value *V = dyn_castNegVal(RHS))
    185       return BinaryOperator::CreateSub(LHS, V);
    186 
    187 
    188   ConstantInt *C2;
    189   if (Value *X = dyn_castFoldableMul(LHS, C2)) {
    190     if (X == RHS)   // X*C + X --> X * (C+1)
    191       return BinaryOperator::CreateMul(RHS, AddOne(C2));
    192 
    193     // X*C1 + X*C2 --> X * (C1+C2)
    194     ConstantInt *C1;
    195     if (X == dyn_castFoldableMul(RHS, C1))
    196       return BinaryOperator::CreateMul(X, ConstantExpr::getAdd(C1, C2));
    197   }
    198 
    199   // X + X*C --> X * (C+1)
    200   if (dyn_castFoldableMul(RHS, C2) == LHS)
    201     return BinaryOperator::CreateMul(LHS, AddOne(C2));
    202 
    203   // A+B --> A|B iff A and B have no bits set in common.
    204   if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
    205     APInt LHSKnownOne(IT->getBitWidth(), 0);
    206     APInt LHSKnownZero(IT->getBitWidth(), 0);
    207     ComputeMaskedBits(LHS, LHSKnownZero, LHSKnownOne);
    208     if (LHSKnownZero != 0) {
    209       APInt RHSKnownOne(IT->getBitWidth(), 0);
    210       APInt RHSKnownZero(IT->getBitWidth(), 0);
    211       ComputeMaskedBits(RHS, RHSKnownZero, RHSKnownOne);
    212 
    213       // No bits in common -> bitwise or.
    214       if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
    215         return BinaryOperator::CreateOr(LHS, RHS);
    216     }
    217   }
    218 
    219   // W*X + Y*Z --> W * (X+Z)  iff W == Y
    220   {
    221     Value *W, *X, *Y, *Z;
    222     if (match(LHS, m_Mul(m_Value(W), m_Value(X))) &&
    223         match(RHS, m_Mul(m_Value(Y), m_Value(Z)))) {
    224       if (W != Y) {
    225         if (W == Z) {
    226           std::swap(Y, Z);
    227         } else if (Y == X) {
    228           std::swap(W, X);
    229         } else if (X == Z) {
    230           std::swap(Y, Z);
    231           std::swap(W, X);
    232         }
    233       }
    234 
    235       if (W == Y) {
    236         Value *NewAdd = Builder->CreateAdd(X, Z, LHS->getName());
    237         return BinaryOperator::CreateMul(W, NewAdd);
    238       }
    239     }
    240   }
    241 
    242   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
    243     Value *X = 0;
    244     if (match(LHS, m_Not(m_Value(X))))    // ~X + C --> (C-1) - X
    245       return BinaryOperator::CreateSub(SubOne(CRHS), X);
    246 
    247     // (X & FF00) + xx00  -> (X+xx00) & FF00
    248     if (LHS->hasOneUse() &&
    249         match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
    250         CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
    251       // See if all bits from the first bit set in the Add RHS up are included
    252       // in the mask.  First, get the rightmost bit.
    253       const APInt &AddRHSV = CRHS->getValue();
    254 
    255       // Form a mask of all bits from the lowest bit added through the top.
    256       APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
    257 
    258       // See if the and mask includes all of these bits.
    259       APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
    260 
    261       if (AddRHSHighBits == AddRHSHighBitsAnd) {
    262         // Okay, the xform is safe.  Insert the new add pronto.
    263         Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
    264         return BinaryOperator::CreateAnd(NewAdd, C2);
    265       }
    266     }
    267 
    268     // Try to fold constant add into select arguments.
    269     if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
    270       if (Instruction *R = FoldOpIntoSelect(I, SI))
    271         return R;
    272   }
    273 
    274   // add (select X 0 (sub n A)) A  -->  select X A n
    275   {
    276     SelectInst *SI = dyn_cast<SelectInst>(LHS);
    277     Value *A = RHS;
    278     if (!SI) {
    279       SI = dyn_cast<SelectInst>(RHS);
    280       A = LHS;
    281     }
    282     if (SI && SI->hasOneUse()) {
    283       Value *TV = SI->getTrueValue();
    284       Value *FV = SI->getFalseValue();
    285       Value *N;
    286 
    287       // Can we fold the add into the argument of the select?
    288       // We check both true and false select arguments for a matching subtract.
    289       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
    290         // Fold the add into the true select value.
    291         return SelectInst::Create(SI->getCondition(), N, A);
    292 
    293       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
    294         // Fold the add into the false select value.
    295         return SelectInst::Create(SI->getCondition(), A, N);
    296     }
    297   }
    298 
    299   // Check for (add (sext x), y), see if we can merge this into an
    300   // integer add followed by a sext.
    301   if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
    302     // (add (sext x), cst) --> (sext (add x, cst'))
    303     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
    304       Constant *CI =
    305         ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
    306       if (LHSConv->hasOneUse() &&
    307           ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
    308           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
    309         // Insert the new, smaller add.
    310         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
    311                                               CI, "addconv");
    312         return new SExtInst(NewAdd, I.getType());
    313       }
    314     }
    315 
    316     // (add (sext x), (sext y)) --> (sext (add int x, y))
    317     if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
    318       // Only do this if x/y have the same type, if at last one of them has a
    319       // single use (so we don't increase the number of sexts), and if the
    320       // integer add will not overflow.
    321       if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
    322           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
    323           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
    324                                    RHSConv->getOperand(0))) {
    325         // Insert the new integer add.
    326         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
    327                                              RHSConv->getOperand(0), "addconv");
    328         return new SExtInst(NewAdd, I.getType());
    329       }
    330     }
    331   }
    332 
    333   // Check for (x & y) + (x ^ y)
    334   {
    335     Value *A = 0, *B = 0;
    336     if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
    337         (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
    338          match(LHS, m_And(m_Specific(B), m_Specific(A)))))
    339       return BinaryOperator::CreateOr(A, B);
    340 
    341     if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
    342         (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
    343          match(RHS, m_And(m_Specific(B), m_Specific(A)))))
    344       return BinaryOperator::CreateOr(A, B);
    345   }
    346 
    347   return Changed ? &I : 0;
    348 }
    349 
    350 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
    351   bool Changed = SimplifyAssociativeOrCommutative(I);
    352   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    353 
    354   if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
    355     // X + 0 --> X
    356     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
    357       if (CFP->isExactlyValue(ConstantFP::getNegativeZero
    358                               (I.getType())->getValueAPF()))
    359         return ReplaceInstUsesWith(I, LHS);
    360     }
    361 
    362     if (isa<PHINode>(LHS))
    363       if (Instruction *NV = FoldOpIntoPhi(I))
    364         return NV;
    365   }
    366 
    367   // -A + B  -->  B - A
    368   // -A + -B  -->  -(A + B)
    369   if (Value *LHSV = dyn_castFNegVal(LHS))
    370     return BinaryOperator::CreateFSub(RHS, LHSV);
    371 
    372   // A + -B  -->  A - B
    373   if (!isa<Constant>(RHS))
    374     if (Value *V = dyn_castFNegVal(RHS))
    375       return BinaryOperator::CreateFSub(LHS, V);
    376 
    377   // Check for X+0.0.  Simplify it to X if we know X is not -0.0.
    378   if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
    379     if (CFP->getValueAPF().isPosZero() && CannotBeNegativeZero(LHS))
    380       return ReplaceInstUsesWith(I, LHS);
    381 
    382   // Check for (fadd double (sitofp x), y), see if we can merge this into an
    383   // integer add followed by a promotion.
    384   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
    385     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
    386     // ... if the constant fits in the integer value.  This is useful for things
    387     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
    388     // requires a constant pool load, and generally allows the add to be better
    389     // instcombined.
    390     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
    391       Constant *CI =
    392       ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
    393       if (LHSConv->hasOneUse() &&
    394           ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
    395           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI)) {
    396         // Insert the new integer add.
    397         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
    398                                               CI, "addconv");
    399         return new SIToFPInst(NewAdd, I.getType());
    400       }
    401     }
    402 
    403     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
    404     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
    405       // Only do this if x/y have the same type, if at last one of them has a
    406       // single use (so we don't increase the number of int->fp conversions),
    407       // and if the integer add will not overflow.
    408       if (LHSConv->getOperand(0)->getType()==RHSConv->getOperand(0)->getType()&&
    409           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
    410           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
    411                                    RHSConv->getOperand(0))) {
    412         // Insert the new integer add.
    413         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
    414                                               RHSConv->getOperand(0),"addconv");
    415         return new SIToFPInst(NewAdd, I.getType());
    416       }
    417     }
    418   }
    419 
    420   return Changed ? &I : 0;
    421 }
    422 
    423 
    424 /// Optimize pointer differences into the same array into a size.  Consider:
    425 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
    426 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
    427 ///
    428 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
    429                                                Type *Ty) {
    430   assert(TD && "Must have target data info for this");
    431 
    432   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
    433   // this.
    434   bool Swapped = false;
    435   GEPOperator *GEP1 = 0, *GEP2 = 0;
    436 
    437   // For now we require one side to be the base pointer "A" or a constant
    438   // GEP derived from it.
    439   if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
    440     // (gep X, ...) - X
    441     if (LHSGEP->getOperand(0) == RHS) {
    442       GEP1 = LHSGEP;
    443       Swapped = false;
    444     } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
    445       // (gep X, ...) - (gep X, ...)
    446       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
    447             RHSGEP->getOperand(0)->stripPointerCasts()) {
    448         GEP2 = RHSGEP;
    449         GEP1 = LHSGEP;
    450         Swapped = false;
    451       }
    452     }
    453   }
    454 
    455   if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
    456     // X - (gep X, ...)
    457     if (RHSGEP->getOperand(0) == LHS) {
    458       GEP1 = RHSGEP;
    459       Swapped = true;
    460     } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
    461       // (gep X, ...) - (gep X, ...)
    462       if (RHSGEP->getOperand(0)->stripPointerCasts() ==
    463             LHSGEP->getOperand(0)->stripPointerCasts()) {
    464         GEP2 = LHSGEP;
    465         GEP1 = RHSGEP;
    466         Swapped = true;
    467       }
    468     }
    469   }
    470 
    471   // Avoid duplicating the arithmetic if GEP2 has non-constant indices and
    472   // multiple users.
    473   if (GEP1 == 0 ||
    474       (GEP2 != 0 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
    475     return 0;
    476 
    477   // Emit the offset of the GEP and an intptr_t.
    478   Value *Result = EmitGEPOffset(GEP1);
    479 
    480   // If we had a constant expression GEP on the other side offsetting the
    481   // pointer, subtract it from the offset we have.
    482   if (GEP2) {
    483     Value *Offset = EmitGEPOffset(GEP2);
    484     Result = Builder->CreateSub(Result, Offset);
    485   }
    486 
    487   // If we have p - gep(p, ...)  then we have to negate the result.
    488   if (Swapped)
    489     Result = Builder->CreateNeg(Result, "diff.neg");
    490 
    491   return Builder->CreateIntCast(Result, Ty, true);
    492 }
    493 
    494 
    495 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
    496   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    497 
    498   if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
    499                                  I.hasNoUnsignedWrap(), TD))
    500     return ReplaceInstUsesWith(I, V);
    501 
    502   // (A*B)-(A*C) -> A*(B-C) etc
    503   if (Value *V = SimplifyUsingDistributiveLaws(I))
    504     return ReplaceInstUsesWith(I, V);
    505 
    506   // If this is a 'B = x-(-A)', change to B = x+A.  This preserves NSW/NUW.
    507   if (Value *V = dyn_castNegVal(Op1)) {
    508     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
    509     Res->setHasNoSignedWrap(I.hasNoSignedWrap());
    510     Res->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
    511     return Res;
    512   }
    513 
    514   if (I.getType()->isIntegerTy(1))
    515     return BinaryOperator::CreateXor(Op0, Op1);
    516 
    517   // Replace (-1 - A) with (~A).
    518   if (match(Op0, m_AllOnes()))
    519     return BinaryOperator::CreateNot(Op1);
    520 
    521   if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
    522     // C - ~X == X + (1+C)
    523     Value *X = 0;
    524     if (match(Op1, m_Not(m_Value(X))))
    525       return BinaryOperator::CreateAdd(X, AddOne(C));
    526 
    527     // -(X >>u 31) -> (X >>s 31)
    528     // -(X >>s 31) -> (X >>u 31)
    529     if (C->isZero()) {
    530       Value *X; ConstantInt *CI;
    531       if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
    532           // Verify we are shifting out everything but the sign bit.
    533           CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
    534         return BinaryOperator::CreateAShr(X, CI);
    535 
    536       if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
    537           // Verify we are shifting out everything but the sign bit.
    538           CI->getValue() == I.getType()->getPrimitiveSizeInBits()-1)
    539         return BinaryOperator::CreateLShr(X, CI);
    540     }
    541 
    542     // Try to fold constant sub into select arguments.
    543     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
    544       if (Instruction *R = FoldOpIntoSelect(I, SI))
    545         return R;
    546 
    547     // C-(X+C2) --> (C-C2)-X
    548     ConstantInt *C2;
    549     if (match(Op1, m_Add(m_Value(X), m_ConstantInt(C2))))
    550       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
    551 
    552     if (SimplifyDemandedInstructionBits(I))
    553       return &I;
    554   }
    555 
    556 
    557   { Value *Y;
    558     // X-(X+Y) == -Y    X-(Y+X) == -Y
    559     if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
    560         match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
    561       return BinaryOperator::CreateNeg(Y);
    562 
    563     // (X-Y)-X == -Y
    564     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
    565       return BinaryOperator::CreateNeg(Y);
    566   }
    567 
    568   if (Op1->hasOneUse()) {
    569     Value *X = 0, *Y = 0, *Z = 0;
    570     Constant *C = 0;
    571     ConstantInt *CI = 0;
    572 
    573     // (X - (Y - Z))  -->  (X + (Z - Y)).
    574     if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
    575       return BinaryOperator::CreateAdd(Op0,
    576                                       Builder->CreateSub(Z, Y, Op1->getName()));
    577 
    578     // (X - (X & Y))   -->   (X & ~Y)
    579     //
    580     if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
    581         match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
    582       return BinaryOperator::CreateAnd(Op0,
    583                                   Builder->CreateNot(Y, Y->getName() + ".not"));
    584 
    585     // 0 - (X sdiv C)  -> (X sdiv -C)
    586     if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) &&
    587         match(Op0, m_Zero()))
    588       return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
    589 
    590     // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
    591     if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
    592       if (Value *XNeg = dyn_castNegVal(X))
    593         return BinaryOperator::CreateShl(XNeg, Y);
    594 
    595     // X - X*C --> X * (1-C)
    596     if (match(Op1, m_Mul(m_Specific(Op0), m_ConstantInt(CI)))) {
    597       Constant *CP1 = ConstantExpr::getSub(ConstantInt::get(I.getType(),1), CI);
    598       return BinaryOperator::CreateMul(Op0, CP1);
    599     }
    600 
    601     // X - X<<C --> X * (1-(1<<C))
    602     if (match(Op1, m_Shl(m_Specific(Op0), m_ConstantInt(CI)))) {
    603       Constant *One = ConstantInt::get(I.getType(), 1);
    604       C = ConstantExpr::getSub(One, ConstantExpr::getShl(One, CI));
    605       return BinaryOperator::CreateMul(Op0, C);
    606     }
    607 
    608     // X - A*-B -> X + A*B
    609     // X - -A*B -> X + A*B
    610     Value *A, *B;
    611     if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
    612         match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
    613       return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
    614 
    615     // X - A*CI -> X + A*-CI
    616     // X - CI*A -> X + A*-CI
    617     if (match(Op1, m_Mul(m_Value(A), m_ConstantInt(CI))) ||
    618         match(Op1, m_Mul(m_ConstantInt(CI), m_Value(A)))) {
    619       Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
    620       return BinaryOperator::CreateAdd(Op0, NewMul);
    621     }
    622   }
    623 
    624   ConstantInt *C1;
    625   if (Value *X = dyn_castFoldableMul(Op0, C1)) {
    626     if (X == Op1)  // X*C - X --> X * (C-1)
    627       return BinaryOperator::CreateMul(Op1, SubOne(C1));
    628 
    629     ConstantInt *C2;   // X*C1 - X*C2 -> X * (C1-C2)
    630     if (X == dyn_castFoldableMul(Op1, C2))
    631       return BinaryOperator::CreateMul(X, ConstantExpr::getSub(C1, C2));
    632   }
    633 
    634   // Optimize pointer differences into the same array into a size.  Consider:
    635   //  &A[10] - &A[0]: we should compile this to "10".
    636   if (TD) {
    637     Value *LHSOp, *RHSOp;
    638     if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
    639         match(Op1, m_PtrToInt(m_Value(RHSOp))))
    640       if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
    641         return ReplaceInstUsesWith(I, Res);
    642 
    643     // trunc(p)-trunc(q) -> trunc(p-q)
    644     if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
    645         match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
    646       if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
    647         return ReplaceInstUsesWith(I, Res);
    648   }
    649 
    650   return 0;
    651 }
    652 
    653 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
    654   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    655 
    656   // If this is a 'B = x-(-A)', change to B = x+A...
    657   if (Value *V = dyn_castFNegVal(Op1))
    658     return BinaryOperator::CreateFAdd(Op0, V);
    659 
    660   return 0;
    661 }
    662