Home | History | Annotate | Download | only in Sema
      1 //===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for Objective C declarations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "clang/Sema/Lookup.h"
     16 #include "clang/Sema/ExternalSemaSource.h"
     17 #include "clang/Sema/Scope.h"
     18 #include "clang/Sema/ScopeInfo.h"
     19 #include "clang/AST/ASTConsumer.h"
     20 #include "clang/AST/Expr.h"
     21 #include "clang/AST/ExprObjC.h"
     22 #include "clang/AST/ASTContext.h"
     23 #include "clang/AST/DeclObjC.h"
     24 #include "clang/AST/ASTMutationListener.h"
     25 #include "clang/Basic/SourceManager.h"
     26 #include "clang/Sema/DeclSpec.h"
     27 #include "clang/Lex/Preprocessor.h"
     28 #include "llvm/ADT/DenseSet.h"
     29 
     30 using namespace clang;
     31 
     32 /// Check whether the given method, which must be in the 'init'
     33 /// family, is a valid member of that family.
     34 ///
     35 /// \param receiverTypeIfCall - if null, check this as if declaring it;
     36 ///   if non-null, check this as if making a call to it with the given
     37 ///   receiver type
     38 ///
     39 /// \return true to indicate that there was an error and appropriate
     40 ///   actions were taken
     41 bool Sema::checkInitMethod(ObjCMethodDecl *method,
     42                            QualType receiverTypeIfCall) {
     43   if (method->isInvalidDecl()) return true;
     44 
     45   // This castAs is safe: methods that don't return an object
     46   // pointer won't be inferred as inits and will reject an explicit
     47   // objc_method_family(init).
     48 
     49   // We ignore protocols here.  Should we?  What about Class?
     50 
     51   const ObjCObjectType *result = method->getResultType()
     52     ->castAs<ObjCObjectPointerType>()->getObjectType();
     53 
     54   if (result->isObjCId()) {
     55     return false;
     56   } else if (result->isObjCClass()) {
     57     // fall through: always an error
     58   } else {
     59     ObjCInterfaceDecl *resultClass = result->getInterface();
     60     assert(resultClass && "unexpected object type!");
     61 
     62     // It's okay for the result type to still be a forward declaration
     63     // if we're checking an interface declaration.
     64     if (!resultClass->hasDefinition()) {
     65       if (receiverTypeIfCall.isNull() &&
     66           !isa<ObjCImplementationDecl>(method->getDeclContext()))
     67         return false;
     68 
     69     // Otherwise, we try to compare class types.
     70     } else {
     71       // If this method was declared in a protocol, we can't check
     72       // anything unless we have a receiver type that's an interface.
     73       const ObjCInterfaceDecl *receiverClass = 0;
     74       if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
     75         if (receiverTypeIfCall.isNull())
     76           return false;
     77 
     78         receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
     79           ->getInterfaceDecl();
     80 
     81         // This can be null for calls to e.g. id<Foo>.
     82         if (!receiverClass) return false;
     83       } else {
     84         receiverClass = method->getClassInterface();
     85         assert(receiverClass && "method not associated with a class!");
     86       }
     87 
     88       // If either class is a subclass of the other, it's fine.
     89       if (receiverClass->isSuperClassOf(resultClass) ||
     90           resultClass->isSuperClassOf(receiverClass))
     91         return false;
     92     }
     93   }
     94 
     95   SourceLocation loc = method->getLocation();
     96 
     97   // If we're in a system header, and this is not a call, just make
     98   // the method unusable.
     99   if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
    100     method->addAttr(new (Context) UnavailableAttr(loc, Context,
    101                 "init method returns a type unrelated to its receiver type"));
    102     return true;
    103   }
    104 
    105   // Otherwise, it's an error.
    106   Diag(loc, diag::err_arc_init_method_unrelated_result_type);
    107   method->setInvalidDecl();
    108   return true;
    109 }
    110 
    111 void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
    112                                    const ObjCMethodDecl *Overridden,
    113                                    bool IsImplementation) {
    114   if (Overridden->hasRelatedResultType() &&
    115       !NewMethod->hasRelatedResultType()) {
    116     // This can only happen when the method follows a naming convention that
    117     // implies a related result type, and the original (overridden) method has
    118     // a suitable return type, but the new (overriding) method does not have
    119     // a suitable return type.
    120     QualType ResultType = NewMethod->getResultType();
    121     SourceRange ResultTypeRange;
    122     if (const TypeSourceInfo *ResultTypeInfo
    123                                         = NewMethod->getResultTypeSourceInfo())
    124       ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
    125 
    126     // Figure out which class this method is part of, if any.
    127     ObjCInterfaceDecl *CurrentClass
    128       = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
    129     if (!CurrentClass) {
    130       DeclContext *DC = NewMethod->getDeclContext();
    131       if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
    132         CurrentClass = Cat->getClassInterface();
    133       else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
    134         CurrentClass = Impl->getClassInterface();
    135       else if (ObjCCategoryImplDecl *CatImpl
    136                = dyn_cast<ObjCCategoryImplDecl>(DC))
    137         CurrentClass = CatImpl->getClassInterface();
    138     }
    139 
    140     if (CurrentClass) {
    141       Diag(NewMethod->getLocation(),
    142            diag::warn_related_result_type_compatibility_class)
    143         << Context.getObjCInterfaceType(CurrentClass)
    144         << ResultType
    145         << ResultTypeRange;
    146     } else {
    147       Diag(NewMethod->getLocation(),
    148            diag::warn_related_result_type_compatibility_protocol)
    149         << ResultType
    150         << ResultTypeRange;
    151     }
    152 
    153     if (ObjCMethodFamily Family = Overridden->getMethodFamily())
    154       Diag(Overridden->getLocation(),
    155            diag::note_related_result_type_overridden_family)
    156         << Family;
    157     else
    158       Diag(Overridden->getLocation(),
    159            diag::note_related_result_type_overridden);
    160   }
    161   if (getLangOpts().ObjCAutoRefCount) {
    162     if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
    163          Overridden->hasAttr<NSReturnsRetainedAttr>())) {
    164         Diag(NewMethod->getLocation(),
    165              diag::err_nsreturns_retained_attribute_mismatch) << 1;
    166         Diag(Overridden->getLocation(), diag::note_previous_decl)
    167         << "method";
    168     }
    169     if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
    170               Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
    171         Diag(NewMethod->getLocation(),
    172              diag::err_nsreturns_retained_attribute_mismatch) << 0;
    173         Diag(Overridden->getLocation(), diag::note_previous_decl)
    174         << "method";
    175     }
    176     ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
    177                                          oe = Overridden->param_end();
    178     for (ObjCMethodDecl::param_iterator
    179            ni = NewMethod->param_begin(), ne = NewMethod->param_end();
    180          ni != ne && oi != oe; ++ni, ++oi) {
    181       const ParmVarDecl *oldDecl = (*oi);
    182       ParmVarDecl *newDecl = (*ni);
    183       if (newDecl->hasAttr<NSConsumedAttr>() !=
    184           oldDecl->hasAttr<NSConsumedAttr>()) {
    185         Diag(newDecl->getLocation(),
    186              diag::err_nsconsumed_attribute_mismatch);
    187         Diag(oldDecl->getLocation(), diag::note_previous_decl)
    188           << "parameter";
    189       }
    190     }
    191   }
    192 }
    193 
    194 /// \brief Check a method declaration for compatibility with the Objective-C
    195 /// ARC conventions.
    196 static bool CheckARCMethodDecl(Sema &S, ObjCMethodDecl *method) {
    197   ObjCMethodFamily family = method->getMethodFamily();
    198   switch (family) {
    199   case OMF_None:
    200   case OMF_finalize:
    201   case OMF_retain:
    202   case OMF_release:
    203   case OMF_autorelease:
    204   case OMF_retainCount:
    205   case OMF_self:
    206   case OMF_performSelector:
    207     return false;
    208 
    209   case OMF_dealloc:
    210     if (!S.Context.hasSameType(method->getResultType(), S.Context.VoidTy)) {
    211       SourceRange ResultTypeRange;
    212       if (const TypeSourceInfo *ResultTypeInfo
    213           = method->getResultTypeSourceInfo())
    214         ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
    215       if (ResultTypeRange.isInvalid())
    216         S.Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
    217           << method->getResultType()
    218           << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
    219       else
    220         S.Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
    221           << method->getResultType()
    222           << FixItHint::CreateReplacement(ResultTypeRange, "void");
    223       return true;
    224     }
    225     return false;
    226 
    227   case OMF_init:
    228     // If the method doesn't obey the init rules, don't bother annotating it.
    229     if (S.checkInitMethod(method, QualType()))
    230       return true;
    231 
    232     method->addAttr(new (S.Context) NSConsumesSelfAttr(SourceLocation(),
    233                                                        S.Context));
    234 
    235     // Don't add a second copy of this attribute, but otherwise don't
    236     // let it be suppressed.
    237     if (method->hasAttr<NSReturnsRetainedAttr>())
    238       return false;
    239     break;
    240 
    241   case OMF_alloc:
    242   case OMF_copy:
    243   case OMF_mutableCopy:
    244   case OMF_new:
    245     if (method->hasAttr<NSReturnsRetainedAttr>() ||
    246         method->hasAttr<NSReturnsNotRetainedAttr>() ||
    247         method->hasAttr<NSReturnsAutoreleasedAttr>())
    248       return false;
    249     break;
    250   }
    251 
    252   method->addAttr(new (S.Context) NSReturnsRetainedAttr(SourceLocation(),
    253                                                         S.Context));
    254   return false;
    255 }
    256 
    257 static void DiagnoseObjCImplementedDeprecations(Sema &S,
    258                                                 NamedDecl *ND,
    259                                                 SourceLocation ImplLoc,
    260                                                 int select) {
    261   if (ND && ND->isDeprecated()) {
    262     S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
    263     if (select == 0)
    264       S.Diag(ND->getLocation(), diag::note_method_declared_at)
    265         << ND->getDeclName();
    266     else
    267       S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
    268   }
    269 }
    270 
    271 /// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
    272 /// pool.
    273 void Sema::AddAnyMethodToGlobalPool(Decl *D) {
    274   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
    275 
    276   // If we don't have a valid method decl, simply return.
    277   if (!MDecl)
    278     return;
    279   if (MDecl->isInstanceMethod())
    280     AddInstanceMethodToGlobalPool(MDecl, true);
    281   else
    282     AddFactoryMethodToGlobalPool(MDecl, true);
    283 }
    284 
    285 /// StrongPointerToObjCPointer - returns true when pointer to ObjC pointer
    286 /// is __strong, or when it is any other type. It returns false when
    287 /// pointer to ObjC pointer is not __strong.
    288 static bool
    289 StrongPointerToObjCPointer(Sema &S, ParmVarDecl *Param) {
    290   QualType T = Param->getType();
    291   if (!T->isObjCIndirectLifetimeType())
    292     return true;
    293   if (!T->isPointerType() && !T->isReferenceType())
    294     return true;
    295   T = T->isPointerType()
    296         ? T->getAs<PointerType>()->getPointeeType()
    297         : T->getAs<ReferenceType>()->getPointeeType();
    298   if (T->isObjCLifetimeType()) {
    299     Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
    300     return lifetime == Qualifiers::OCL_Strong;
    301   }
    302   return true;
    303 }
    304 
    305 /// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
    306 /// and user declared, in the method definition's AST.
    307 void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
    308   assert((getCurMethodDecl() == 0) && "Methodparsing confused");
    309   ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
    310 
    311   // If we don't have a valid method decl, simply return.
    312   if (!MDecl)
    313     return;
    314 
    315   // Allow all of Sema to see that we are entering a method definition.
    316   PushDeclContext(FnBodyScope, MDecl);
    317   PushFunctionScope();
    318 
    319   // Create Decl objects for each parameter, entrring them in the scope for
    320   // binding to their use.
    321 
    322   // Insert the invisible arguments, self and _cmd!
    323   MDecl->createImplicitParams(Context, MDecl->getClassInterface());
    324 
    325   PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
    326   PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
    327 
    328   // Introduce all of the other parameters into this scope.
    329   for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
    330        E = MDecl->param_end(); PI != E; ++PI) {
    331     ParmVarDecl *Param = (*PI);
    332     if (!Param->isInvalidDecl() &&
    333         RequireCompleteType(Param->getLocation(), Param->getType(),
    334                             diag::err_typecheck_decl_incomplete_type))
    335           Param->setInvalidDecl();
    336     if (!Param->isInvalidDecl() &&
    337         getLangOpts().ObjCAutoRefCount &&
    338         !StrongPointerToObjCPointer(*this, Param))
    339       Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
    340             Param->getType();
    341 
    342     if ((*PI)->getIdentifier())
    343       PushOnScopeChains(*PI, FnBodyScope);
    344   }
    345 
    346   // In ARC, disallow definition of retain/release/autorelease/retainCount
    347   if (getLangOpts().ObjCAutoRefCount) {
    348     switch (MDecl->getMethodFamily()) {
    349     case OMF_retain:
    350     case OMF_retainCount:
    351     case OMF_release:
    352     case OMF_autorelease:
    353       Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
    354         << MDecl->getSelector();
    355       break;
    356 
    357     case OMF_None:
    358     case OMF_dealloc:
    359     case OMF_finalize:
    360     case OMF_alloc:
    361     case OMF_init:
    362     case OMF_mutableCopy:
    363     case OMF_copy:
    364     case OMF_new:
    365     case OMF_self:
    366     case OMF_performSelector:
    367       break;
    368     }
    369   }
    370 
    371   // Warn on deprecated methods under -Wdeprecated-implementations,
    372   // and prepare for warning on missing super calls.
    373   if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
    374     ObjCMethodDecl *IMD =
    375       IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
    376 
    377     if (IMD)
    378       DiagnoseObjCImplementedDeprecations(*this,
    379                                           dyn_cast<NamedDecl>(IMD),
    380                                           MDecl->getLocation(), 0);
    381 
    382     // If this is "dealloc" or "finalize", set some bit here.
    383     // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
    384     // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
    385     // Only do this if the current class actually has a superclass.
    386     if (IC->getSuperClass()) {
    387       getCurFunction()->ObjCShouldCallSuperDealloc =
    388         !(Context.getLangOpts().ObjCAutoRefCount ||
    389           Context.getLangOpts().getGC() == LangOptions::GCOnly) &&
    390           MDecl->getMethodFamily() == OMF_dealloc;
    391       if (!getCurFunction()->ObjCShouldCallSuperDealloc) {
    392         IMD = IC->getSuperClass()->lookupMethod(MDecl->getSelector(),
    393                                                 MDecl->isInstanceMethod());
    394         getCurFunction()->ObjCShouldCallSuperDealloc =
    395           (IMD && IMD->hasAttr<ObjCRequiresSuperAttr>());
    396       }
    397       getCurFunction()->ObjCShouldCallSuperFinalize =
    398         Context.getLangOpts().getGC() != LangOptions::NonGC &&
    399         MDecl->getMethodFamily() == OMF_finalize;
    400     }
    401   }
    402 }
    403 
    404 namespace {
    405 
    406 // Callback to only accept typo corrections that are Objective-C classes.
    407 // If an ObjCInterfaceDecl* is given to the constructor, then the validation
    408 // function will reject corrections to that class.
    409 class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
    410  public:
    411   ObjCInterfaceValidatorCCC() : CurrentIDecl(0) {}
    412   explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
    413       : CurrentIDecl(IDecl) {}
    414 
    415   virtual bool ValidateCandidate(const TypoCorrection &candidate) {
    416     ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
    417     return ID && !declaresSameEntity(ID, CurrentIDecl);
    418   }
    419 
    420  private:
    421   ObjCInterfaceDecl *CurrentIDecl;
    422 };
    423 
    424 }
    425 
    426 Decl *Sema::
    427 ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
    428                          IdentifierInfo *ClassName, SourceLocation ClassLoc,
    429                          IdentifierInfo *SuperName, SourceLocation SuperLoc,
    430                          Decl * const *ProtoRefs, unsigned NumProtoRefs,
    431                          const SourceLocation *ProtoLocs,
    432                          SourceLocation EndProtoLoc, AttributeList *AttrList) {
    433   assert(ClassName && "Missing class identifier");
    434 
    435   // Check for another declaration kind with the same name.
    436   NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
    437                                          LookupOrdinaryName, ForRedeclaration);
    438 
    439   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
    440     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
    441     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    442   }
    443 
    444   // Create a declaration to describe this @interface.
    445   ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
    446   ObjCInterfaceDecl *IDecl
    447     = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
    448                                 PrevIDecl, ClassLoc);
    449 
    450   if (PrevIDecl) {
    451     // Class already seen. Was it a definition?
    452     if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
    453       Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
    454         << PrevIDecl->getDeclName();
    455       Diag(Def->getLocation(), diag::note_previous_definition);
    456       IDecl->setInvalidDecl();
    457     }
    458   }
    459 
    460   if (AttrList)
    461     ProcessDeclAttributeList(TUScope, IDecl, AttrList);
    462   PushOnScopeChains(IDecl, TUScope);
    463 
    464   // Start the definition of this class. If we're in a redefinition case, there
    465   // may already be a definition, so we'll end up adding to it.
    466   if (!IDecl->hasDefinition())
    467     IDecl->startDefinition();
    468 
    469   if (SuperName) {
    470     // Check if a different kind of symbol declared in this scope.
    471     PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
    472                                 LookupOrdinaryName);
    473 
    474     if (!PrevDecl) {
    475       // Try to correct for a typo in the superclass name without correcting
    476       // to the class we're defining.
    477       ObjCInterfaceValidatorCCC Validator(IDecl);
    478       if (TypoCorrection Corrected = CorrectTypo(
    479           DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope,
    480           NULL, Validator)) {
    481         PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
    482         Diag(SuperLoc, diag::err_undef_superclass_suggest)
    483           << SuperName << ClassName << PrevDecl->getDeclName();
    484         Diag(PrevDecl->getLocation(), diag::note_previous_decl)
    485           << PrevDecl->getDeclName();
    486       }
    487     }
    488 
    489     if (declaresSameEntity(PrevDecl, IDecl)) {
    490       Diag(SuperLoc, diag::err_recursive_superclass)
    491         << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
    492       IDecl->setEndOfDefinitionLoc(ClassLoc);
    493     } else {
    494       ObjCInterfaceDecl *SuperClassDecl =
    495                                 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
    496 
    497       // Diagnose classes that inherit from deprecated classes.
    498       if (SuperClassDecl)
    499         (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
    500 
    501       if (PrevDecl && SuperClassDecl == 0) {
    502         // The previous declaration was not a class decl. Check if we have a
    503         // typedef. If we do, get the underlying class type.
    504         if (const TypedefNameDecl *TDecl =
    505               dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
    506           QualType T = TDecl->getUnderlyingType();
    507           if (T->isObjCObjectType()) {
    508             if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface())
    509               SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
    510           }
    511         }
    512 
    513         // This handles the following case:
    514         //
    515         // typedef int SuperClass;
    516         // @interface MyClass : SuperClass {} @end
    517         //
    518         if (!SuperClassDecl) {
    519           Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
    520           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    521         }
    522       }
    523 
    524       if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
    525         if (!SuperClassDecl)
    526           Diag(SuperLoc, diag::err_undef_superclass)
    527             << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
    528         else if (RequireCompleteType(SuperLoc,
    529                                   Context.getObjCInterfaceType(SuperClassDecl),
    530                                      diag::err_forward_superclass,
    531                                      SuperClassDecl->getDeclName(),
    532                                      ClassName,
    533                                      SourceRange(AtInterfaceLoc, ClassLoc))) {
    534           SuperClassDecl = 0;
    535         }
    536       }
    537       IDecl->setSuperClass(SuperClassDecl);
    538       IDecl->setSuperClassLoc(SuperLoc);
    539       IDecl->setEndOfDefinitionLoc(SuperLoc);
    540     }
    541   } else { // we have a root class.
    542     IDecl->setEndOfDefinitionLoc(ClassLoc);
    543   }
    544 
    545   // Check then save referenced protocols.
    546   if (NumProtoRefs) {
    547     IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
    548                            ProtoLocs, Context);
    549     IDecl->setEndOfDefinitionLoc(EndProtoLoc);
    550   }
    551 
    552   CheckObjCDeclScope(IDecl);
    553   return ActOnObjCContainerStartDefinition(IDecl);
    554 }
    555 
    556 /// ActOnCompatibilityAlias - this action is called after complete parsing of
    557 /// a \@compatibility_alias declaration. It sets up the alias relationships.
    558 Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
    559                                     IdentifierInfo *AliasName,
    560                                     SourceLocation AliasLocation,
    561                                     IdentifierInfo *ClassName,
    562                                     SourceLocation ClassLocation) {
    563   // Look for previous declaration of alias name
    564   NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
    565                                       LookupOrdinaryName, ForRedeclaration);
    566   if (ADecl) {
    567     if (isa<ObjCCompatibleAliasDecl>(ADecl))
    568       Diag(AliasLocation, diag::warn_previous_alias_decl);
    569     else
    570       Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
    571     Diag(ADecl->getLocation(), diag::note_previous_declaration);
    572     return 0;
    573   }
    574   // Check for class declaration
    575   NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
    576                                        LookupOrdinaryName, ForRedeclaration);
    577   if (const TypedefNameDecl *TDecl =
    578         dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
    579     QualType T = TDecl->getUnderlyingType();
    580     if (T->isObjCObjectType()) {
    581       if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
    582         ClassName = IDecl->getIdentifier();
    583         CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
    584                                   LookupOrdinaryName, ForRedeclaration);
    585       }
    586     }
    587   }
    588   ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
    589   if (CDecl == 0) {
    590     Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
    591     if (CDeclU)
    592       Diag(CDeclU->getLocation(), diag::note_previous_declaration);
    593     return 0;
    594   }
    595 
    596   // Everything checked out, instantiate a new alias declaration AST.
    597   ObjCCompatibleAliasDecl *AliasDecl =
    598     ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
    599 
    600   if (!CheckObjCDeclScope(AliasDecl))
    601     PushOnScopeChains(AliasDecl, TUScope);
    602 
    603   return AliasDecl;
    604 }
    605 
    606 bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
    607   IdentifierInfo *PName,
    608   SourceLocation &Ploc, SourceLocation PrevLoc,
    609   const ObjCList<ObjCProtocolDecl> &PList) {
    610 
    611   bool res = false;
    612   for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
    613        E = PList.end(); I != E; ++I) {
    614     if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
    615                                                  Ploc)) {
    616       if (PDecl->getIdentifier() == PName) {
    617         Diag(Ploc, diag::err_protocol_has_circular_dependency);
    618         Diag(PrevLoc, diag::note_previous_definition);
    619         res = true;
    620       }
    621 
    622       if (!PDecl->hasDefinition())
    623         continue;
    624 
    625       if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
    626             PDecl->getLocation(), PDecl->getReferencedProtocols()))
    627         res = true;
    628     }
    629   }
    630   return res;
    631 }
    632 
    633 Decl *
    634 Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
    635                                   IdentifierInfo *ProtocolName,
    636                                   SourceLocation ProtocolLoc,
    637                                   Decl * const *ProtoRefs,
    638                                   unsigned NumProtoRefs,
    639                                   const SourceLocation *ProtoLocs,
    640                                   SourceLocation EndProtoLoc,
    641                                   AttributeList *AttrList) {
    642   bool err = false;
    643   // FIXME: Deal with AttrList.
    644   assert(ProtocolName && "Missing protocol identifier");
    645   ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
    646                                               ForRedeclaration);
    647   ObjCProtocolDecl *PDecl = 0;
    648   if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : 0) {
    649     // If we already have a definition, complain.
    650     Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
    651     Diag(Def->getLocation(), diag::note_previous_definition);
    652 
    653     // Create a new protocol that is completely distinct from previous
    654     // declarations, and do not make this protocol available for name lookup.
    655     // That way, we'll end up completely ignoring the duplicate.
    656     // FIXME: Can we turn this into an error?
    657     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
    658                                      ProtocolLoc, AtProtoInterfaceLoc,
    659                                      /*PrevDecl=*/0);
    660     PDecl->startDefinition();
    661   } else {
    662     if (PrevDecl) {
    663       // Check for circular dependencies among protocol declarations. This can
    664       // only happen if this protocol was forward-declared.
    665       ObjCList<ObjCProtocolDecl> PList;
    666       PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
    667       err = CheckForwardProtocolDeclarationForCircularDependency(
    668               ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
    669     }
    670 
    671     // Create the new declaration.
    672     PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
    673                                      ProtocolLoc, AtProtoInterfaceLoc,
    674                                      /*PrevDecl=*/PrevDecl);
    675 
    676     PushOnScopeChains(PDecl, TUScope);
    677     PDecl->startDefinition();
    678   }
    679 
    680   if (AttrList)
    681     ProcessDeclAttributeList(TUScope, PDecl, AttrList);
    682 
    683   // Merge attributes from previous declarations.
    684   if (PrevDecl)
    685     mergeDeclAttributes(PDecl, PrevDecl);
    686 
    687   if (!err && NumProtoRefs ) {
    688     /// Check then save referenced protocols.
    689     PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
    690                            ProtoLocs, Context);
    691   }
    692 
    693   CheckObjCDeclScope(PDecl);
    694   return ActOnObjCContainerStartDefinition(PDecl);
    695 }
    696 
    697 /// FindProtocolDeclaration - This routine looks up protocols and
    698 /// issues an error if they are not declared. It returns list of
    699 /// protocol declarations in its 'Protocols' argument.
    700 void
    701 Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
    702                               const IdentifierLocPair *ProtocolId,
    703                               unsigned NumProtocols,
    704                               SmallVectorImpl<Decl *> &Protocols) {
    705   for (unsigned i = 0; i != NumProtocols; ++i) {
    706     ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
    707                                              ProtocolId[i].second);
    708     if (!PDecl) {
    709       DeclFilterCCC<ObjCProtocolDecl> Validator;
    710       TypoCorrection Corrected = CorrectTypo(
    711           DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
    712           LookupObjCProtocolName, TUScope, NULL, Validator);
    713       if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>())) {
    714         Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
    715           << ProtocolId[i].first << Corrected.getCorrection();
    716         Diag(PDecl->getLocation(), diag::note_previous_decl)
    717           << PDecl->getDeclName();
    718       }
    719     }
    720 
    721     if (!PDecl) {
    722       Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
    723         << ProtocolId[i].first;
    724       continue;
    725     }
    726 
    727     (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
    728 
    729     // If this is a forward declaration and we are supposed to warn in this
    730     // case, do it.
    731     if (WarnOnDeclarations && !PDecl->hasDefinition())
    732       Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
    733         << ProtocolId[i].first;
    734     Protocols.push_back(PDecl);
    735   }
    736 }
    737 
    738 /// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
    739 /// a class method in its extension.
    740 ///
    741 void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
    742                                             ObjCInterfaceDecl *ID) {
    743   if (!ID)
    744     return;  // Possibly due to previous error
    745 
    746   llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
    747   for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
    748        e =  ID->meth_end(); i != e; ++i) {
    749     ObjCMethodDecl *MD = *i;
    750     MethodMap[MD->getSelector()] = MD;
    751   }
    752 
    753   if (MethodMap.empty())
    754     return;
    755   for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
    756        e =  CAT->meth_end(); i != e; ++i) {
    757     ObjCMethodDecl *Method = *i;
    758     const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
    759     if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
    760       Diag(Method->getLocation(), diag::err_duplicate_method_decl)
    761             << Method->getDeclName();
    762       Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
    763     }
    764   }
    765 }
    766 
    767 /// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
    768 Sema::DeclGroupPtrTy
    769 Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
    770                                       const IdentifierLocPair *IdentList,
    771                                       unsigned NumElts,
    772                                       AttributeList *attrList) {
    773   SmallVector<Decl *, 8> DeclsInGroup;
    774   for (unsigned i = 0; i != NumElts; ++i) {
    775     IdentifierInfo *Ident = IdentList[i].first;
    776     ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second,
    777                                                 ForRedeclaration);
    778     ObjCProtocolDecl *PDecl
    779       = ObjCProtocolDecl::Create(Context, CurContext, Ident,
    780                                  IdentList[i].second, AtProtocolLoc,
    781                                  PrevDecl);
    782 
    783     PushOnScopeChains(PDecl, TUScope);
    784     CheckObjCDeclScope(PDecl);
    785 
    786     if (attrList)
    787       ProcessDeclAttributeList(TUScope, PDecl, attrList);
    788 
    789     if (PrevDecl)
    790       mergeDeclAttributes(PDecl, PrevDecl);
    791 
    792     DeclsInGroup.push_back(PDecl);
    793   }
    794 
    795   return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
    796 }
    797 
    798 Decl *Sema::
    799 ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
    800                             IdentifierInfo *ClassName, SourceLocation ClassLoc,
    801                             IdentifierInfo *CategoryName,
    802                             SourceLocation CategoryLoc,
    803                             Decl * const *ProtoRefs,
    804                             unsigned NumProtoRefs,
    805                             const SourceLocation *ProtoLocs,
    806                             SourceLocation EndProtoLoc) {
    807   ObjCCategoryDecl *CDecl;
    808   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
    809 
    810   /// Check that class of this category is already completely declared.
    811 
    812   if (!IDecl
    813       || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
    814                              diag::err_category_forward_interface,
    815                              CategoryName == 0)) {
    816     // Create an invalid ObjCCategoryDecl to serve as context for
    817     // the enclosing method declarations.  We mark the decl invalid
    818     // to make it clear that this isn't a valid AST.
    819     CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
    820                                      ClassLoc, CategoryLoc, CategoryName,IDecl);
    821     CDecl->setInvalidDecl();
    822     CurContext->addDecl(CDecl);
    823 
    824     if (!IDecl)
    825       Diag(ClassLoc, diag::err_undef_interface) << ClassName;
    826     return ActOnObjCContainerStartDefinition(CDecl);
    827   }
    828 
    829   if (!CategoryName && IDecl->getImplementation()) {
    830     Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
    831     Diag(IDecl->getImplementation()->getLocation(),
    832           diag::note_implementation_declared);
    833   }
    834 
    835   if (CategoryName) {
    836     /// Check for duplicate interface declaration for this category
    837     ObjCCategoryDecl *CDeclChain;
    838     for (CDeclChain = IDecl->getCategoryList(); CDeclChain;
    839          CDeclChain = CDeclChain->getNextClassCategory()) {
    840       if (CDeclChain->getIdentifier() == CategoryName) {
    841         // Class extensions can be declared multiple times.
    842         Diag(CategoryLoc, diag::warn_dup_category_def)
    843           << ClassName << CategoryName;
    844         Diag(CDeclChain->getLocation(), diag::note_previous_definition);
    845         break;
    846       }
    847     }
    848   }
    849 
    850   CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
    851                                    ClassLoc, CategoryLoc, CategoryName, IDecl);
    852   // FIXME: PushOnScopeChains?
    853   CurContext->addDecl(CDecl);
    854 
    855   if (NumProtoRefs) {
    856     CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
    857                            ProtoLocs, Context);
    858     // Protocols in the class extension belong to the class.
    859     if (CDecl->IsClassExtension())
    860      IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
    861                                             NumProtoRefs, Context);
    862   }
    863 
    864   CheckObjCDeclScope(CDecl);
    865   return ActOnObjCContainerStartDefinition(CDecl);
    866 }
    867 
    868 /// ActOnStartCategoryImplementation - Perform semantic checks on the
    869 /// category implementation declaration and build an ObjCCategoryImplDecl
    870 /// object.
    871 Decl *Sema::ActOnStartCategoryImplementation(
    872                       SourceLocation AtCatImplLoc,
    873                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
    874                       IdentifierInfo *CatName, SourceLocation CatLoc) {
    875   ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
    876   ObjCCategoryDecl *CatIDecl = 0;
    877   if (IDecl && IDecl->hasDefinition()) {
    878     CatIDecl = IDecl->FindCategoryDeclaration(CatName);
    879     if (!CatIDecl) {
    880       // Category @implementation with no corresponding @interface.
    881       // Create and install one.
    882       CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
    883                                           ClassLoc, CatLoc,
    884                                           CatName, IDecl);
    885       CatIDecl->setImplicit();
    886     }
    887   }
    888 
    889   ObjCCategoryImplDecl *CDecl =
    890     ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
    891                                  ClassLoc, AtCatImplLoc, CatLoc);
    892   /// Check that class of this category is already completely declared.
    893   if (!IDecl) {
    894     Diag(ClassLoc, diag::err_undef_interface) << ClassName;
    895     CDecl->setInvalidDecl();
    896   } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
    897                                  diag::err_undef_interface)) {
    898     CDecl->setInvalidDecl();
    899   }
    900 
    901   // FIXME: PushOnScopeChains?
    902   CurContext->addDecl(CDecl);
    903 
    904   // If the interface is deprecated/unavailable, warn/error about it.
    905   if (IDecl)
    906     DiagnoseUseOfDecl(IDecl, ClassLoc);
    907 
    908   /// Check that CatName, category name, is not used in another implementation.
    909   if (CatIDecl) {
    910     if (CatIDecl->getImplementation()) {
    911       Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
    912         << CatName;
    913       Diag(CatIDecl->getImplementation()->getLocation(),
    914            diag::note_previous_definition);
    915     } else {
    916       CatIDecl->setImplementation(CDecl);
    917       // Warn on implementating category of deprecated class under
    918       // -Wdeprecated-implementations flag.
    919       DiagnoseObjCImplementedDeprecations(*this,
    920                                           dyn_cast<NamedDecl>(IDecl),
    921                                           CDecl->getLocation(), 2);
    922     }
    923   }
    924 
    925   CheckObjCDeclScope(CDecl);
    926   return ActOnObjCContainerStartDefinition(CDecl);
    927 }
    928 
    929 Decl *Sema::ActOnStartClassImplementation(
    930                       SourceLocation AtClassImplLoc,
    931                       IdentifierInfo *ClassName, SourceLocation ClassLoc,
    932                       IdentifierInfo *SuperClassname,
    933                       SourceLocation SuperClassLoc) {
    934   ObjCInterfaceDecl* IDecl = 0;
    935   // Check for another declaration kind with the same name.
    936   NamedDecl *PrevDecl
    937     = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
    938                        ForRedeclaration);
    939   if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
    940     Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
    941     Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    942   } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
    943     RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
    944                         diag::warn_undef_interface);
    945   } else {
    946     // We did not find anything with the name ClassName; try to correct for
    947     // typos in the class name.
    948     ObjCInterfaceValidatorCCC Validator;
    949     if (TypoCorrection Corrected = CorrectTypo(
    950         DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
    951         NULL, Validator)) {
    952       // Suggest the (potentially) correct interface name. However, put the
    953       // fix-it hint itself in a separate note, since changing the name in
    954       // the warning would make the fix-it change semantics.However, don't
    955       // provide a code-modification hint or use the typo name for recovery,
    956       // because this is just a warning. The program may actually be correct.
    957       IDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
    958       DeclarationName CorrectedName = Corrected.getCorrection();
    959       Diag(ClassLoc, diag::warn_undef_interface_suggest)
    960         << ClassName << CorrectedName;
    961       Diag(IDecl->getLocation(), diag::note_previous_decl) << CorrectedName
    962         << FixItHint::CreateReplacement(ClassLoc, CorrectedName.getAsString());
    963       IDecl = 0;
    964     } else {
    965       Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
    966     }
    967   }
    968 
    969   // Check that super class name is valid class name
    970   ObjCInterfaceDecl* SDecl = 0;
    971   if (SuperClassname) {
    972     // Check if a different kind of symbol declared in this scope.
    973     PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
    974                                 LookupOrdinaryName);
    975     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
    976       Diag(SuperClassLoc, diag::err_redefinition_different_kind)
    977         << SuperClassname;
    978       Diag(PrevDecl->getLocation(), diag::note_previous_definition);
    979     } else {
    980       SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
    981       if (SDecl && !SDecl->hasDefinition())
    982         SDecl = 0;
    983       if (!SDecl)
    984         Diag(SuperClassLoc, diag::err_undef_superclass)
    985           << SuperClassname << ClassName;
    986       else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
    987         // This implementation and its interface do not have the same
    988         // super class.
    989         Diag(SuperClassLoc, diag::err_conflicting_super_class)
    990           << SDecl->getDeclName();
    991         Diag(SDecl->getLocation(), diag::note_previous_definition);
    992       }
    993     }
    994   }
    995 
    996   if (!IDecl) {
    997     // Legacy case of @implementation with no corresponding @interface.
    998     // Build, chain & install the interface decl into the identifier.
    999 
   1000     // FIXME: Do we support attributes on the @implementation? If so we should
   1001     // copy them over.
   1002     IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
   1003                                       ClassName, /*PrevDecl=*/0, ClassLoc,
   1004                                       true);
   1005     IDecl->startDefinition();
   1006     if (SDecl) {
   1007       IDecl->setSuperClass(SDecl);
   1008       IDecl->setSuperClassLoc(SuperClassLoc);
   1009       IDecl->setEndOfDefinitionLoc(SuperClassLoc);
   1010     } else {
   1011       IDecl->setEndOfDefinitionLoc(ClassLoc);
   1012     }
   1013 
   1014     PushOnScopeChains(IDecl, TUScope);
   1015   } else {
   1016     // Mark the interface as being completed, even if it was just as
   1017     //   @class ....;
   1018     // declaration; the user cannot reopen it.
   1019     if (!IDecl->hasDefinition())
   1020       IDecl->startDefinition();
   1021   }
   1022 
   1023   ObjCImplementationDecl* IMPDecl =
   1024     ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
   1025                                    ClassLoc, AtClassImplLoc);
   1026 
   1027   if (CheckObjCDeclScope(IMPDecl))
   1028     return ActOnObjCContainerStartDefinition(IMPDecl);
   1029 
   1030   // Check that there is no duplicate implementation of this class.
   1031   if (IDecl->getImplementation()) {
   1032     // FIXME: Don't leak everything!
   1033     Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
   1034     Diag(IDecl->getImplementation()->getLocation(),
   1035          diag::note_previous_definition);
   1036   } else { // add it to the list.
   1037     IDecl->setImplementation(IMPDecl);
   1038     PushOnScopeChains(IMPDecl, TUScope);
   1039     // Warn on implementating deprecated class under
   1040     // -Wdeprecated-implementations flag.
   1041     DiagnoseObjCImplementedDeprecations(*this,
   1042                                         dyn_cast<NamedDecl>(IDecl),
   1043                                         IMPDecl->getLocation(), 1);
   1044   }
   1045   return ActOnObjCContainerStartDefinition(IMPDecl);
   1046 }
   1047 
   1048 Sema::DeclGroupPtrTy
   1049 Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
   1050   SmallVector<Decl *, 64> DeclsInGroup;
   1051   DeclsInGroup.reserve(Decls.size() + 1);
   1052 
   1053   for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
   1054     Decl *Dcl = Decls[i];
   1055     if (!Dcl)
   1056       continue;
   1057     if (Dcl->getDeclContext()->isFileContext())
   1058       Dcl->setTopLevelDeclInObjCContainer();
   1059     DeclsInGroup.push_back(Dcl);
   1060   }
   1061 
   1062   DeclsInGroup.push_back(ObjCImpDecl);
   1063 
   1064   return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
   1065 }
   1066 
   1067 void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
   1068                                     ObjCIvarDecl **ivars, unsigned numIvars,
   1069                                     SourceLocation RBrace) {
   1070   assert(ImpDecl && "missing implementation decl");
   1071   ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
   1072   if (!IDecl)
   1073     return;
   1074   /// Check case of non-existing \@interface decl.
   1075   /// (legacy objective-c \@implementation decl without an \@interface decl).
   1076   /// Add implementations's ivar to the synthesize class's ivar list.
   1077   if (IDecl->isImplicitInterfaceDecl()) {
   1078     IDecl->setEndOfDefinitionLoc(RBrace);
   1079     // Add ivar's to class's DeclContext.
   1080     for (unsigned i = 0, e = numIvars; i != e; ++i) {
   1081       ivars[i]->setLexicalDeclContext(ImpDecl);
   1082       IDecl->makeDeclVisibleInContext(ivars[i]);
   1083       ImpDecl->addDecl(ivars[i]);
   1084     }
   1085 
   1086     return;
   1087   }
   1088   // If implementation has empty ivar list, just return.
   1089   if (numIvars == 0)
   1090     return;
   1091 
   1092   assert(ivars && "missing @implementation ivars");
   1093   if (LangOpts.ObjCRuntime.isNonFragile()) {
   1094     if (ImpDecl->getSuperClass())
   1095       Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
   1096     for (unsigned i = 0; i < numIvars; i++) {
   1097       ObjCIvarDecl* ImplIvar = ivars[i];
   1098       if (const ObjCIvarDecl *ClsIvar =
   1099             IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
   1100         Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
   1101         Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   1102         continue;
   1103       }
   1104       // Instance ivar to Implementation's DeclContext.
   1105       ImplIvar->setLexicalDeclContext(ImpDecl);
   1106       IDecl->makeDeclVisibleInContext(ImplIvar);
   1107       ImpDecl->addDecl(ImplIvar);
   1108     }
   1109     return;
   1110   }
   1111   // Check interface's Ivar list against those in the implementation.
   1112   // names and types must match.
   1113   //
   1114   unsigned j = 0;
   1115   ObjCInterfaceDecl::ivar_iterator
   1116     IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
   1117   for (; numIvars > 0 && IVI != IVE; ++IVI) {
   1118     ObjCIvarDecl* ImplIvar = ivars[j++];
   1119     ObjCIvarDecl* ClsIvar = *IVI;
   1120     assert (ImplIvar && "missing implementation ivar");
   1121     assert (ClsIvar && "missing class ivar");
   1122 
   1123     // First, make sure the types match.
   1124     if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
   1125       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
   1126         << ImplIvar->getIdentifier()
   1127         << ImplIvar->getType() << ClsIvar->getType();
   1128       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   1129     } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
   1130                ImplIvar->getBitWidthValue(Context) !=
   1131                ClsIvar->getBitWidthValue(Context)) {
   1132       Diag(ImplIvar->getBitWidth()->getLocStart(),
   1133            diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
   1134       Diag(ClsIvar->getBitWidth()->getLocStart(),
   1135            diag::note_previous_definition);
   1136     }
   1137     // Make sure the names are identical.
   1138     if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
   1139       Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
   1140         << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
   1141       Diag(ClsIvar->getLocation(), diag::note_previous_definition);
   1142     }
   1143     --numIvars;
   1144   }
   1145 
   1146   if (numIvars > 0)
   1147     Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
   1148   else if (IVI != IVE)
   1149     Diag(IVI->getLocation(), diag::err_inconsistant_ivar_count);
   1150 }
   1151 
   1152 void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
   1153                                bool &IncompleteImpl, unsigned DiagID) {
   1154   // No point warning no definition of method which is 'unavailable'.
   1155   if (method->hasAttr<UnavailableAttr>())
   1156     return;
   1157   if (!IncompleteImpl) {
   1158     Diag(ImpLoc, diag::warn_incomplete_impl);
   1159     IncompleteImpl = true;
   1160   }
   1161   if (DiagID == diag::warn_unimplemented_protocol_method)
   1162     Diag(ImpLoc, DiagID) << method->getDeclName();
   1163   else
   1164     Diag(method->getLocation(), DiagID) << method->getDeclName();
   1165 }
   1166 
   1167 /// Determines if type B can be substituted for type A.  Returns true if we can
   1168 /// guarantee that anything that the user will do to an object of type A can
   1169 /// also be done to an object of type B.  This is trivially true if the two
   1170 /// types are the same, or if B is a subclass of A.  It becomes more complex
   1171 /// in cases where protocols are involved.
   1172 ///
   1173 /// Object types in Objective-C describe the minimum requirements for an
   1174 /// object, rather than providing a complete description of a type.  For
   1175 /// example, if A is a subclass of B, then B* may refer to an instance of A.
   1176 /// The principle of substitutability means that we may use an instance of A
   1177 /// anywhere that we may use an instance of B - it will implement all of the
   1178 /// ivars of B and all of the methods of B.
   1179 ///
   1180 /// This substitutability is important when type checking methods, because
   1181 /// the implementation may have stricter type definitions than the interface.
   1182 /// The interface specifies minimum requirements, but the implementation may
   1183 /// have more accurate ones.  For example, a method may privately accept
   1184 /// instances of B, but only publish that it accepts instances of A.  Any
   1185 /// object passed to it will be type checked against B, and so will implicitly
   1186 /// by a valid A*.  Similarly, a method may return a subclass of the class that
   1187 /// it is declared as returning.
   1188 ///
   1189 /// This is most important when considering subclassing.  A method in a
   1190 /// subclass must accept any object as an argument that its superclass's
   1191 /// implementation accepts.  It may, however, accept a more general type
   1192 /// without breaking substitutability (i.e. you can still use the subclass
   1193 /// anywhere that you can use the superclass, but not vice versa).  The
   1194 /// converse requirement applies to return types: the return type for a
   1195 /// subclass method must be a valid object of the kind that the superclass
   1196 /// advertises, but it may be specified more accurately.  This avoids the need
   1197 /// for explicit down-casting by callers.
   1198 ///
   1199 /// Note: This is a stricter requirement than for assignment.
   1200 static bool isObjCTypeSubstitutable(ASTContext &Context,
   1201                                     const ObjCObjectPointerType *A,
   1202                                     const ObjCObjectPointerType *B,
   1203                                     bool rejectId) {
   1204   // Reject a protocol-unqualified id.
   1205   if (rejectId && B->isObjCIdType()) return false;
   1206 
   1207   // If B is a qualified id, then A must also be a qualified id and it must
   1208   // implement all of the protocols in B.  It may not be a qualified class.
   1209   // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
   1210   // stricter definition so it is not substitutable for id<A>.
   1211   if (B->isObjCQualifiedIdType()) {
   1212     return A->isObjCQualifiedIdType() &&
   1213            Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
   1214                                                      QualType(B,0),
   1215                                                      false);
   1216   }
   1217 
   1218   /*
   1219   // id is a special type that bypasses type checking completely.  We want a
   1220   // warning when it is used in one place but not another.
   1221   if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
   1222 
   1223 
   1224   // If B is a qualified id, then A must also be a qualified id (which it isn't
   1225   // if we've got this far)
   1226   if (B->isObjCQualifiedIdType()) return false;
   1227   */
   1228 
   1229   // Now we know that A and B are (potentially-qualified) class types.  The
   1230   // normal rules for assignment apply.
   1231   return Context.canAssignObjCInterfaces(A, B);
   1232 }
   1233 
   1234 static SourceRange getTypeRange(TypeSourceInfo *TSI) {
   1235   return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
   1236 }
   1237 
   1238 static bool CheckMethodOverrideReturn(Sema &S,
   1239                                       ObjCMethodDecl *MethodImpl,
   1240                                       ObjCMethodDecl *MethodDecl,
   1241                                       bool IsProtocolMethodDecl,
   1242                                       bool IsOverridingMode,
   1243                                       bool Warn) {
   1244   if (IsProtocolMethodDecl &&
   1245       (MethodDecl->getObjCDeclQualifier() !=
   1246        MethodImpl->getObjCDeclQualifier())) {
   1247     if (Warn) {
   1248         S.Diag(MethodImpl->getLocation(),
   1249                (IsOverridingMode ?
   1250                  diag::warn_conflicting_overriding_ret_type_modifiers
   1251                  : diag::warn_conflicting_ret_type_modifiers))
   1252           << MethodImpl->getDeclName()
   1253           << getTypeRange(MethodImpl->getResultTypeSourceInfo());
   1254         S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
   1255           << getTypeRange(MethodDecl->getResultTypeSourceInfo());
   1256     }
   1257     else
   1258       return false;
   1259   }
   1260 
   1261   if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
   1262                                        MethodDecl->getResultType()))
   1263     return true;
   1264   if (!Warn)
   1265     return false;
   1266 
   1267   unsigned DiagID =
   1268     IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
   1269                      : diag::warn_conflicting_ret_types;
   1270 
   1271   // Mismatches between ObjC pointers go into a different warning
   1272   // category, and sometimes they're even completely whitelisted.
   1273   if (const ObjCObjectPointerType *ImplPtrTy =
   1274         MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
   1275     if (const ObjCObjectPointerType *IfacePtrTy =
   1276           MethodDecl->getResultType()->getAs<ObjCObjectPointerType>()) {
   1277       // Allow non-matching return types as long as they don't violate
   1278       // the principle of substitutability.  Specifically, we permit
   1279       // return types that are subclasses of the declared return type,
   1280       // or that are more-qualified versions of the declared type.
   1281       if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
   1282         return false;
   1283 
   1284       DiagID =
   1285         IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
   1286                           : diag::warn_non_covariant_ret_types;
   1287     }
   1288   }
   1289 
   1290   S.Diag(MethodImpl->getLocation(), DiagID)
   1291     << MethodImpl->getDeclName()
   1292     << MethodDecl->getResultType()
   1293     << MethodImpl->getResultType()
   1294     << getTypeRange(MethodImpl->getResultTypeSourceInfo());
   1295   S.Diag(MethodDecl->getLocation(),
   1296          IsOverridingMode ? diag::note_previous_declaration
   1297                           : diag::note_previous_definition)
   1298     << getTypeRange(MethodDecl->getResultTypeSourceInfo());
   1299   return false;
   1300 }
   1301 
   1302 static bool CheckMethodOverrideParam(Sema &S,
   1303                                      ObjCMethodDecl *MethodImpl,
   1304                                      ObjCMethodDecl *MethodDecl,
   1305                                      ParmVarDecl *ImplVar,
   1306                                      ParmVarDecl *IfaceVar,
   1307                                      bool IsProtocolMethodDecl,
   1308                                      bool IsOverridingMode,
   1309                                      bool Warn) {
   1310   if (IsProtocolMethodDecl &&
   1311       (ImplVar->getObjCDeclQualifier() !=
   1312        IfaceVar->getObjCDeclQualifier())) {
   1313     if (Warn) {
   1314       if (IsOverridingMode)
   1315         S.Diag(ImplVar->getLocation(),
   1316                diag::warn_conflicting_overriding_param_modifiers)
   1317             << getTypeRange(ImplVar->getTypeSourceInfo())
   1318             << MethodImpl->getDeclName();
   1319       else S.Diag(ImplVar->getLocation(),
   1320              diag::warn_conflicting_param_modifiers)
   1321           << getTypeRange(ImplVar->getTypeSourceInfo())
   1322           << MethodImpl->getDeclName();
   1323       S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
   1324           << getTypeRange(IfaceVar->getTypeSourceInfo());
   1325     }
   1326     else
   1327       return false;
   1328   }
   1329 
   1330   QualType ImplTy = ImplVar->getType();
   1331   QualType IfaceTy = IfaceVar->getType();
   1332 
   1333   if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
   1334     return true;
   1335 
   1336   if (!Warn)
   1337     return false;
   1338   unsigned DiagID =
   1339     IsOverridingMode ? diag::warn_conflicting_overriding_param_types
   1340                      : diag::warn_conflicting_param_types;
   1341 
   1342   // Mismatches between ObjC pointers go into a different warning
   1343   // category, and sometimes they're even completely whitelisted.
   1344   if (const ObjCObjectPointerType *ImplPtrTy =
   1345         ImplTy->getAs<ObjCObjectPointerType>()) {
   1346     if (const ObjCObjectPointerType *IfacePtrTy =
   1347           IfaceTy->getAs<ObjCObjectPointerType>()) {
   1348       // Allow non-matching argument types as long as they don't
   1349       // violate the principle of substitutability.  Specifically, the
   1350       // implementation must accept any objects that the superclass
   1351       // accepts, however it may also accept others.
   1352       if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
   1353         return false;
   1354 
   1355       DiagID =
   1356       IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
   1357                        :  diag::warn_non_contravariant_param_types;
   1358     }
   1359   }
   1360 
   1361   S.Diag(ImplVar->getLocation(), DiagID)
   1362     << getTypeRange(ImplVar->getTypeSourceInfo())
   1363     << MethodImpl->getDeclName() << IfaceTy << ImplTy;
   1364   S.Diag(IfaceVar->getLocation(),
   1365          (IsOverridingMode ? diag::note_previous_declaration
   1366                         : diag::note_previous_definition))
   1367     << getTypeRange(IfaceVar->getTypeSourceInfo());
   1368   return false;
   1369 }
   1370 
   1371 /// In ARC, check whether the conventional meanings of the two methods
   1372 /// match.  If they don't, it's a hard error.
   1373 static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
   1374                                       ObjCMethodDecl *decl) {
   1375   ObjCMethodFamily implFamily = impl->getMethodFamily();
   1376   ObjCMethodFamily declFamily = decl->getMethodFamily();
   1377   if (implFamily == declFamily) return false;
   1378 
   1379   // Since conventions are sorted by selector, the only possibility is
   1380   // that the types differ enough to cause one selector or the other
   1381   // to fall out of the family.
   1382   assert(implFamily == OMF_None || declFamily == OMF_None);
   1383 
   1384   // No further diagnostics required on invalid declarations.
   1385   if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
   1386 
   1387   const ObjCMethodDecl *unmatched = impl;
   1388   ObjCMethodFamily family = declFamily;
   1389   unsigned errorID = diag::err_arc_lost_method_convention;
   1390   unsigned noteID = diag::note_arc_lost_method_convention;
   1391   if (declFamily == OMF_None) {
   1392     unmatched = decl;
   1393     family = implFamily;
   1394     errorID = diag::err_arc_gained_method_convention;
   1395     noteID = diag::note_arc_gained_method_convention;
   1396   }
   1397 
   1398   // Indexes into a %select clause in the diagnostic.
   1399   enum FamilySelector {
   1400     F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
   1401   };
   1402   FamilySelector familySelector = FamilySelector();
   1403 
   1404   switch (family) {
   1405   case OMF_None: llvm_unreachable("logic error, no method convention");
   1406   case OMF_retain:
   1407   case OMF_release:
   1408   case OMF_autorelease:
   1409   case OMF_dealloc:
   1410   case OMF_finalize:
   1411   case OMF_retainCount:
   1412   case OMF_self:
   1413   case OMF_performSelector:
   1414     // Mismatches for these methods don't change ownership
   1415     // conventions, so we don't care.
   1416     return false;
   1417 
   1418   case OMF_init: familySelector = F_init; break;
   1419   case OMF_alloc: familySelector = F_alloc; break;
   1420   case OMF_copy: familySelector = F_copy; break;
   1421   case OMF_mutableCopy: familySelector = F_mutableCopy; break;
   1422   case OMF_new: familySelector = F_new; break;
   1423   }
   1424 
   1425   enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
   1426   ReasonSelector reasonSelector;
   1427 
   1428   // The only reason these methods don't fall within their families is
   1429   // due to unusual result types.
   1430   if (unmatched->getResultType()->isObjCObjectPointerType()) {
   1431     reasonSelector = R_UnrelatedReturn;
   1432   } else {
   1433     reasonSelector = R_NonObjectReturn;
   1434   }
   1435 
   1436   S.Diag(impl->getLocation(), errorID) << familySelector << reasonSelector;
   1437   S.Diag(decl->getLocation(), noteID) << familySelector << reasonSelector;
   1438 
   1439   return true;
   1440 }
   1441 
   1442 void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
   1443                                        ObjCMethodDecl *MethodDecl,
   1444                                        bool IsProtocolMethodDecl) {
   1445   if (getLangOpts().ObjCAutoRefCount &&
   1446       checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
   1447     return;
   1448 
   1449   CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
   1450                             IsProtocolMethodDecl, false,
   1451                             true);
   1452 
   1453   for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
   1454        IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
   1455        EF = MethodDecl->param_end();
   1456        IM != EM && IF != EF; ++IM, ++IF) {
   1457     CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
   1458                              IsProtocolMethodDecl, false, true);
   1459   }
   1460 
   1461   if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
   1462     Diag(ImpMethodDecl->getLocation(),
   1463          diag::warn_conflicting_variadic);
   1464     Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
   1465   }
   1466 }
   1467 
   1468 void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
   1469                                        ObjCMethodDecl *Overridden,
   1470                                        bool IsProtocolMethodDecl) {
   1471 
   1472   CheckMethodOverrideReturn(*this, Method, Overridden,
   1473                             IsProtocolMethodDecl, true,
   1474                             true);
   1475 
   1476   for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
   1477        IF = Overridden->param_begin(), EM = Method->param_end(),
   1478        EF = Overridden->param_end();
   1479        IM != EM && IF != EF; ++IM, ++IF) {
   1480     CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
   1481                              IsProtocolMethodDecl, true, true);
   1482   }
   1483 
   1484   if (Method->isVariadic() != Overridden->isVariadic()) {
   1485     Diag(Method->getLocation(),
   1486          diag::warn_conflicting_overriding_variadic);
   1487     Diag(Overridden->getLocation(), diag::note_previous_declaration);
   1488   }
   1489 }
   1490 
   1491 /// WarnExactTypedMethods - This routine issues a warning if method
   1492 /// implementation declaration matches exactly that of its declaration.
   1493 void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
   1494                                  ObjCMethodDecl *MethodDecl,
   1495                                  bool IsProtocolMethodDecl) {
   1496   // don't issue warning when protocol method is optional because primary
   1497   // class is not required to implement it and it is safe for protocol
   1498   // to implement it.
   1499   if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
   1500     return;
   1501   // don't issue warning when primary class's method is
   1502   // depecated/unavailable.
   1503   if (MethodDecl->hasAttr<UnavailableAttr>() ||
   1504       MethodDecl->hasAttr<DeprecatedAttr>())
   1505     return;
   1506 
   1507   bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
   1508                                       IsProtocolMethodDecl, false, false);
   1509   if (match)
   1510     for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
   1511          IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
   1512          EF = MethodDecl->param_end();
   1513          IM != EM && IF != EF; ++IM, ++IF) {
   1514       match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
   1515                                        *IM, *IF,
   1516                                        IsProtocolMethodDecl, false, false);
   1517       if (!match)
   1518         break;
   1519     }
   1520   if (match)
   1521     match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
   1522   if (match)
   1523     match = !(MethodDecl->isClassMethod() &&
   1524               MethodDecl->getSelector() == GetNullarySelector("load", Context));
   1525 
   1526   if (match) {
   1527     Diag(ImpMethodDecl->getLocation(),
   1528          diag::warn_category_method_impl_match);
   1529     Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
   1530       << MethodDecl->getDeclName();
   1531   }
   1532 }
   1533 
   1534 /// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
   1535 /// improve the efficiency of selector lookups and type checking by associating
   1536 /// with each protocol / interface / category the flattened instance tables. If
   1537 /// we used an immutable set to keep the table then it wouldn't add significant
   1538 /// memory cost and it would be handy for lookups.
   1539 
   1540 /// CheckProtocolMethodDefs - This routine checks unimplemented methods
   1541 /// Declared in protocol, and those referenced by it.
   1542 void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
   1543                                    ObjCProtocolDecl *PDecl,
   1544                                    bool& IncompleteImpl,
   1545                                    const SelectorSet &InsMap,
   1546                                    const SelectorSet &ClsMap,
   1547                                    ObjCContainerDecl *CDecl) {
   1548   ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
   1549   ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
   1550                                : dyn_cast<ObjCInterfaceDecl>(CDecl);
   1551   assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
   1552 
   1553   ObjCInterfaceDecl *Super = IDecl->getSuperClass();
   1554   ObjCInterfaceDecl *NSIDecl = 0;
   1555   if (getLangOpts().ObjCRuntime.isNeXTFamily()) {
   1556     // check to see if class implements forwardInvocation method and objects
   1557     // of this class are derived from 'NSProxy' so that to forward requests
   1558     // from one object to another.
   1559     // Under such conditions, which means that every method possible is
   1560     // implemented in the class, we should not issue "Method definition not
   1561     // found" warnings.
   1562     // FIXME: Use a general GetUnarySelector method for this.
   1563     IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
   1564     Selector fISelector = Context.Selectors.getSelector(1, &II);
   1565     if (InsMap.count(fISelector))
   1566       // Is IDecl derived from 'NSProxy'? If so, no instance methods
   1567       // need be implemented in the implementation.
   1568       NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
   1569   }
   1570 
   1571   // If a method lookup fails locally we still need to look and see if
   1572   // the method was implemented by a base class or an inherited
   1573   // protocol. This lookup is slow, but occurs rarely in correct code
   1574   // and otherwise would terminate in a warning.
   1575 
   1576   // check unimplemented instance methods.
   1577   if (!NSIDecl)
   1578     for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
   1579          E = PDecl->instmeth_end(); I != E; ++I) {
   1580       ObjCMethodDecl *method = *I;
   1581       if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
   1582           !method->isSynthesized() && !InsMap.count(method->getSelector()) &&
   1583           (!Super ||
   1584            !Super->lookupInstanceMethod(method->getSelector()))) {
   1585             // If a method is not implemented in the category implementation but
   1586             // has been declared in its primary class, superclass,
   1587             // or in one of their protocols, no need to issue the warning.
   1588             // This is because method will be implemented in the primary class
   1589             // or one of its super class implementation.
   1590 
   1591             // Ugly, but necessary. Method declared in protcol might have
   1592             // have been synthesized due to a property declared in the class which
   1593             // uses the protocol.
   1594             if (ObjCMethodDecl *MethodInClass =
   1595                   IDecl->lookupInstanceMethod(method->getSelector(),
   1596                                               true /*shallowCategoryLookup*/))
   1597               if (C || MethodInClass->isSynthesized())
   1598                 continue;
   1599             unsigned DIAG = diag::warn_unimplemented_protocol_method;
   1600             if (Diags.getDiagnosticLevel(DIAG, ImpLoc)
   1601                 != DiagnosticsEngine::Ignored) {
   1602               WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
   1603               Diag(method->getLocation(), diag::note_method_declared_at)
   1604                 << method->getDeclName();
   1605               Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
   1606                 << PDecl->getDeclName();
   1607             }
   1608           }
   1609     }
   1610   // check unimplemented class methods
   1611   for (ObjCProtocolDecl::classmeth_iterator
   1612          I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
   1613        I != E; ++I) {
   1614     ObjCMethodDecl *method = *I;
   1615     if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
   1616         !ClsMap.count(method->getSelector()) &&
   1617         (!Super || !Super->lookupClassMethod(method->getSelector()))) {
   1618       // See above comment for instance method lookups.
   1619       if (C && IDecl->lookupClassMethod(method->getSelector(),
   1620                                         true /*shallowCategoryLookup*/))
   1621         continue;
   1622       unsigned DIAG = diag::warn_unimplemented_protocol_method;
   1623       if (Diags.getDiagnosticLevel(DIAG, ImpLoc) !=
   1624             DiagnosticsEngine::Ignored) {
   1625         WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
   1626         Diag(method->getLocation(), diag::note_method_declared_at)
   1627           << method->getDeclName();
   1628         Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
   1629           PDecl->getDeclName();
   1630       }
   1631     }
   1632   }
   1633   // Check on this protocols's referenced protocols, recursively.
   1634   for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
   1635        E = PDecl->protocol_end(); PI != E; ++PI)
   1636     CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, CDecl);
   1637 }
   1638 
   1639 /// MatchAllMethodDeclarations - Check methods declared in interface
   1640 /// or protocol against those declared in their implementations.
   1641 ///
   1642 void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
   1643                                       const SelectorSet &ClsMap,
   1644                                       SelectorSet &InsMapSeen,
   1645                                       SelectorSet &ClsMapSeen,
   1646                                       ObjCImplDecl* IMPDecl,
   1647                                       ObjCContainerDecl* CDecl,
   1648                                       bool &IncompleteImpl,
   1649                                       bool ImmediateClass,
   1650                                       bool WarnCategoryMethodImpl) {
   1651   // Check and see if instance methods in class interface have been
   1652   // implemented in the implementation class. If so, their types match.
   1653   for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
   1654        E = CDecl->instmeth_end(); I != E; ++I) {
   1655     if (InsMapSeen.count((*I)->getSelector()))
   1656         continue;
   1657     InsMapSeen.insert((*I)->getSelector());
   1658     if (!(*I)->isSynthesized() &&
   1659         !InsMap.count((*I)->getSelector())) {
   1660       if (ImmediateClass)
   1661         WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
   1662                             diag::note_undef_method_impl);
   1663       continue;
   1664     } else {
   1665       ObjCMethodDecl *ImpMethodDecl =
   1666         IMPDecl->getInstanceMethod((*I)->getSelector());
   1667       assert(CDecl->getInstanceMethod((*I)->getSelector()) &&
   1668              "Expected to find the method through lookup as well");
   1669       ObjCMethodDecl *MethodDecl = *I;
   1670       // ImpMethodDecl may be null as in a @dynamic property.
   1671       if (ImpMethodDecl) {
   1672         if (!WarnCategoryMethodImpl)
   1673           WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
   1674                                       isa<ObjCProtocolDecl>(CDecl));
   1675         else if (!MethodDecl->isSynthesized())
   1676           WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
   1677                                 isa<ObjCProtocolDecl>(CDecl));
   1678       }
   1679     }
   1680   }
   1681 
   1682   // Check and see if class methods in class interface have been
   1683   // implemented in the implementation class. If so, their types match.
   1684    for (ObjCInterfaceDecl::classmeth_iterator
   1685        I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
   1686      if (ClsMapSeen.count((*I)->getSelector()))
   1687        continue;
   1688      ClsMapSeen.insert((*I)->getSelector());
   1689     if (!ClsMap.count((*I)->getSelector())) {
   1690       if (ImmediateClass)
   1691         WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
   1692                             diag::note_undef_method_impl);
   1693     } else {
   1694       ObjCMethodDecl *ImpMethodDecl =
   1695         IMPDecl->getClassMethod((*I)->getSelector());
   1696       assert(CDecl->getClassMethod((*I)->getSelector()) &&
   1697              "Expected to find the method through lookup as well");
   1698       ObjCMethodDecl *MethodDecl = *I;
   1699       if (!WarnCategoryMethodImpl)
   1700         WarnConflictingTypedMethods(ImpMethodDecl, MethodDecl,
   1701                                     isa<ObjCProtocolDecl>(CDecl));
   1702       else
   1703         WarnExactTypedMethods(ImpMethodDecl, MethodDecl,
   1704                               isa<ObjCProtocolDecl>(CDecl));
   1705     }
   1706   }
   1707 
   1708   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
   1709     // Also methods in class extensions need be looked at next.
   1710     for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension();
   1711          ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension())
   1712       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1713                                  IMPDecl,
   1714                                  const_cast<ObjCCategoryDecl *>(ClsExtDecl),
   1715                                  IncompleteImpl, false,
   1716                                  WarnCategoryMethodImpl);
   1717 
   1718     // Check for any implementation of a methods declared in protocol.
   1719     for (ObjCInterfaceDecl::all_protocol_iterator
   1720           PI = I->all_referenced_protocol_begin(),
   1721           E = I->all_referenced_protocol_end(); PI != E; ++PI)
   1722       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1723                                  IMPDecl,
   1724                                  (*PI), IncompleteImpl, false,
   1725                                  WarnCategoryMethodImpl);
   1726 
   1727     // FIXME. For now, we are not checking for extact match of methods
   1728     // in category implementation and its primary class's super class.
   1729     if (!WarnCategoryMethodImpl && I->getSuperClass())
   1730       MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1731                                  IMPDecl,
   1732                                  I->getSuperClass(), IncompleteImpl, false);
   1733   }
   1734 }
   1735 
   1736 /// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
   1737 /// category matches with those implemented in its primary class and
   1738 /// warns each time an exact match is found.
   1739 void Sema::CheckCategoryVsClassMethodMatches(
   1740                                   ObjCCategoryImplDecl *CatIMPDecl) {
   1741   SelectorSet InsMap, ClsMap;
   1742 
   1743   for (ObjCImplementationDecl::instmeth_iterator
   1744        I = CatIMPDecl->instmeth_begin(),
   1745        E = CatIMPDecl->instmeth_end(); I!=E; ++I)
   1746     InsMap.insert((*I)->getSelector());
   1747 
   1748   for (ObjCImplementationDecl::classmeth_iterator
   1749        I = CatIMPDecl->classmeth_begin(),
   1750        E = CatIMPDecl->classmeth_end(); I != E; ++I)
   1751     ClsMap.insert((*I)->getSelector());
   1752   if (InsMap.empty() && ClsMap.empty())
   1753     return;
   1754 
   1755   // Get category's primary class.
   1756   ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
   1757   if (!CatDecl)
   1758     return;
   1759   ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
   1760   if (!IDecl)
   1761     return;
   1762   SelectorSet InsMapSeen, ClsMapSeen;
   1763   bool IncompleteImpl = false;
   1764   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1765                              CatIMPDecl, IDecl,
   1766                              IncompleteImpl, false,
   1767                              true /*WarnCategoryMethodImpl*/);
   1768 }
   1769 
   1770 void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
   1771                                      ObjCContainerDecl* CDecl,
   1772                                      bool IncompleteImpl) {
   1773   SelectorSet InsMap;
   1774   // Check and see if instance methods in class interface have been
   1775   // implemented in the implementation class.
   1776   for (ObjCImplementationDecl::instmeth_iterator
   1777          I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
   1778     InsMap.insert((*I)->getSelector());
   1779 
   1780   // Check and see if properties declared in the interface have either 1)
   1781   // an implementation or 2) there is a @synthesize/@dynamic implementation
   1782   // of the property in the @implementation.
   1783   if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl))
   1784     if  (!(LangOpts.ObjCDefaultSynthProperties &&
   1785            LangOpts.ObjCRuntime.isNonFragile()) ||
   1786          IDecl->isObjCRequiresPropertyDefs())
   1787       DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
   1788 
   1789   SelectorSet ClsMap;
   1790   for (ObjCImplementationDecl::classmeth_iterator
   1791        I = IMPDecl->classmeth_begin(),
   1792        E = IMPDecl->classmeth_end(); I != E; ++I)
   1793     ClsMap.insert((*I)->getSelector());
   1794 
   1795   // Check for type conflict of methods declared in a class/protocol and
   1796   // its implementation; if any.
   1797   SelectorSet InsMapSeen, ClsMapSeen;
   1798   MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
   1799                              IMPDecl, CDecl,
   1800                              IncompleteImpl, true);
   1801 
   1802   // check all methods implemented in category against those declared
   1803   // in its primary class.
   1804   if (ObjCCategoryImplDecl *CatDecl =
   1805         dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
   1806     CheckCategoryVsClassMethodMatches(CatDecl);
   1807 
   1808   // Check the protocol list for unimplemented methods in the @implementation
   1809   // class.
   1810   // Check and see if class methods in class interface have been
   1811   // implemented in the implementation class.
   1812 
   1813   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
   1814     for (ObjCInterfaceDecl::all_protocol_iterator
   1815           PI = I->all_referenced_protocol_begin(),
   1816           E = I->all_referenced_protocol_end(); PI != E; ++PI)
   1817       CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
   1818                               InsMap, ClsMap, I);
   1819     // Check class extensions (unnamed categories)
   1820     for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension();
   1821          Categories; Categories = Categories->getNextClassExtension())
   1822       ImplMethodsVsClassMethods(S, IMPDecl,
   1823                                 const_cast<ObjCCategoryDecl*>(Categories),
   1824                                 IncompleteImpl);
   1825   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
   1826     // For extended class, unimplemented methods in its protocols will
   1827     // be reported in the primary class.
   1828     if (!C->IsClassExtension()) {
   1829       for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
   1830            E = C->protocol_end(); PI != E; ++PI)
   1831         CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
   1832                                 InsMap, ClsMap, CDecl);
   1833       // Report unimplemented properties in the category as well.
   1834       // When reporting on missing setter/getters, do not report when
   1835       // setter/getter is implemented in category's primary class
   1836       // implementation.
   1837       if (ObjCInterfaceDecl *ID = C->getClassInterface())
   1838         if (ObjCImplDecl *IMP = ID->getImplementation()) {
   1839           for (ObjCImplementationDecl::instmeth_iterator
   1840                I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I)
   1841             InsMap.insert((*I)->getSelector());
   1842         }
   1843       DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
   1844     }
   1845   } else
   1846     llvm_unreachable("invalid ObjCContainerDecl type.");
   1847 }
   1848 
   1849 /// ActOnForwardClassDeclaration -
   1850 Sema::DeclGroupPtrTy
   1851 Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
   1852                                    IdentifierInfo **IdentList,
   1853                                    SourceLocation *IdentLocs,
   1854                                    unsigned NumElts) {
   1855   SmallVector<Decl *, 8> DeclsInGroup;
   1856   for (unsigned i = 0; i != NumElts; ++i) {
   1857     // Check for another declaration kind with the same name.
   1858     NamedDecl *PrevDecl
   1859       = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
   1860                          LookupOrdinaryName, ForRedeclaration);
   1861     if (PrevDecl && PrevDecl->isTemplateParameter()) {
   1862       // Maybe we will complain about the shadowed template parameter.
   1863       DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
   1864       // Just pretend that we didn't see the previous declaration.
   1865       PrevDecl = 0;
   1866     }
   1867 
   1868     if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
   1869       // GCC apparently allows the following idiom:
   1870       //
   1871       // typedef NSObject < XCElementTogglerP > XCElementToggler;
   1872       // @class XCElementToggler;
   1873       //
   1874       // Here we have chosen to ignore the forward class declaration
   1875       // with a warning. Since this is the implied behavior.
   1876       TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
   1877       if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
   1878         Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
   1879         Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   1880       } else {
   1881         // a forward class declaration matching a typedef name of a class refers
   1882         // to the underlying class. Just ignore the forward class with a warning
   1883         // as this will force the intended behavior which is to lookup the typedef
   1884         // name.
   1885         if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
   1886           Diag(AtClassLoc, diag::warn_forward_class_redefinition) << IdentList[i];
   1887           Diag(PrevDecl->getLocation(), diag::note_previous_definition);
   1888           continue;
   1889         }
   1890       }
   1891     }
   1892 
   1893     // Create a declaration to describe this forward declaration.
   1894     ObjCInterfaceDecl *PrevIDecl
   1895       = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
   1896     ObjCInterfaceDecl *IDecl
   1897       = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
   1898                                   IdentList[i], PrevIDecl, IdentLocs[i]);
   1899     IDecl->setAtEndRange(IdentLocs[i]);
   1900 
   1901     PushOnScopeChains(IDecl, TUScope);
   1902     CheckObjCDeclScope(IDecl);
   1903     DeclsInGroup.push_back(IDecl);
   1904   }
   1905 
   1906   return BuildDeclaratorGroup(DeclsInGroup.data(), DeclsInGroup.size(), false);
   1907 }
   1908 
   1909 static bool tryMatchRecordTypes(ASTContext &Context,
   1910                                 Sema::MethodMatchStrategy strategy,
   1911                                 const Type *left, const Type *right);
   1912 
   1913 static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
   1914                        QualType leftQT, QualType rightQT) {
   1915   const Type *left =
   1916     Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
   1917   const Type *right =
   1918     Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
   1919 
   1920   if (left == right) return true;
   1921 
   1922   // If we're doing a strict match, the types have to match exactly.
   1923   if (strategy == Sema::MMS_strict) return false;
   1924 
   1925   if (left->isIncompleteType() || right->isIncompleteType()) return false;
   1926 
   1927   // Otherwise, use this absurdly complicated algorithm to try to
   1928   // validate the basic, low-level compatibility of the two types.
   1929 
   1930   // As a minimum, require the sizes and alignments to match.
   1931   if (Context.getTypeInfo(left) != Context.getTypeInfo(right))
   1932     return false;
   1933 
   1934   // Consider all the kinds of non-dependent canonical types:
   1935   // - functions and arrays aren't possible as return and parameter types
   1936 
   1937   // - vector types of equal size can be arbitrarily mixed
   1938   if (isa<VectorType>(left)) return isa<VectorType>(right);
   1939   if (isa<VectorType>(right)) return false;
   1940 
   1941   // - references should only match references of identical type
   1942   // - structs, unions, and Objective-C objects must match more-or-less
   1943   //   exactly
   1944   // - everything else should be a scalar
   1945   if (!left->isScalarType() || !right->isScalarType())
   1946     return tryMatchRecordTypes(Context, strategy, left, right);
   1947 
   1948   // Make scalars agree in kind, except count bools as chars, and group
   1949   // all non-member pointers together.
   1950   Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
   1951   Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
   1952   if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
   1953   if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
   1954   if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
   1955     leftSK = Type::STK_ObjCObjectPointer;
   1956   if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
   1957     rightSK = Type::STK_ObjCObjectPointer;
   1958 
   1959   // Note that data member pointers and function member pointers don't
   1960   // intermix because of the size differences.
   1961 
   1962   return (leftSK == rightSK);
   1963 }
   1964 
   1965 static bool tryMatchRecordTypes(ASTContext &Context,
   1966                                 Sema::MethodMatchStrategy strategy,
   1967                                 const Type *lt, const Type *rt) {
   1968   assert(lt && rt && lt != rt);
   1969 
   1970   if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
   1971   RecordDecl *left = cast<RecordType>(lt)->getDecl();
   1972   RecordDecl *right = cast<RecordType>(rt)->getDecl();
   1973 
   1974   // Require union-hood to match.
   1975   if (left->isUnion() != right->isUnion()) return false;
   1976 
   1977   // Require an exact match if either is non-POD.
   1978   if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
   1979       (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
   1980     return false;
   1981 
   1982   // Require size and alignment to match.
   1983   if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false;
   1984 
   1985   // Require fields to match.
   1986   RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
   1987   RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
   1988   for (; li != le && ri != re; ++li, ++ri) {
   1989     if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
   1990       return false;
   1991   }
   1992   return (li == le && ri == re);
   1993 }
   1994 
   1995 /// MatchTwoMethodDeclarations - Checks that two methods have matching type and
   1996 /// returns true, or false, accordingly.
   1997 /// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
   1998 bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
   1999                                       const ObjCMethodDecl *right,
   2000                                       MethodMatchStrategy strategy) {
   2001   if (!matchTypes(Context, strategy,
   2002                   left->getResultType(), right->getResultType()))
   2003     return false;
   2004 
   2005   if (getLangOpts().ObjCAutoRefCount &&
   2006       (left->hasAttr<NSReturnsRetainedAttr>()
   2007          != right->hasAttr<NSReturnsRetainedAttr>() ||
   2008        left->hasAttr<NSConsumesSelfAttr>()
   2009          != right->hasAttr<NSConsumesSelfAttr>()))
   2010     return false;
   2011 
   2012   ObjCMethodDecl::param_const_iterator
   2013     li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
   2014     re = right->param_end();
   2015 
   2016   for (; li != le && ri != re; ++li, ++ri) {
   2017     assert(ri != right->param_end() && "Param mismatch");
   2018     const ParmVarDecl *lparm = *li, *rparm = *ri;
   2019 
   2020     if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
   2021       return false;
   2022 
   2023     if (getLangOpts().ObjCAutoRefCount &&
   2024         lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
   2025       return false;
   2026   }
   2027   return true;
   2028 }
   2029 
   2030 void Sema::addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method) {
   2031   // If the list is empty, make it a singleton list.
   2032   if (List->Method == 0) {
   2033     List->Method = Method;
   2034     List->Next = 0;
   2035     return;
   2036   }
   2037 
   2038   // We've seen a method with this name, see if we have already seen this type
   2039   // signature.
   2040   ObjCMethodList *Previous = List;
   2041   for (; List; Previous = List, List = List->Next) {
   2042     if (!MatchTwoMethodDeclarations(Method, List->Method))
   2043       continue;
   2044 
   2045     ObjCMethodDecl *PrevObjCMethod = List->Method;
   2046 
   2047     // Propagate the 'defined' bit.
   2048     if (Method->isDefined())
   2049       PrevObjCMethod->setDefined(true);
   2050 
   2051     // If a method is deprecated, push it in the global pool.
   2052     // This is used for better diagnostics.
   2053     if (Method->isDeprecated()) {
   2054       if (!PrevObjCMethod->isDeprecated())
   2055         List->Method = Method;
   2056     }
   2057     // If new method is unavailable, push it into global pool
   2058     // unless previous one is deprecated.
   2059     if (Method->isUnavailable()) {
   2060       if (PrevObjCMethod->getAvailability() < AR_Deprecated)
   2061         List->Method = Method;
   2062     }
   2063 
   2064     return;
   2065   }
   2066 
   2067   // We have a new signature for an existing method - add it.
   2068   // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
   2069   ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
   2070   Previous->Next = new (Mem) ObjCMethodList(Method, 0);
   2071 }
   2072 
   2073 /// \brief Read the contents of the method pool for a given selector from
   2074 /// external storage.
   2075 void Sema::ReadMethodPool(Selector Sel) {
   2076   assert(ExternalSource && "We need an external AST source");
   2077   ExternalSource->ReadMethodPool(Sel);
   2078 }
   2079 
   2080 void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
   2081                                  bool instance) {
   2082   // Ignore methods of invalid containers.
   2083   if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
   2084     return;
   2085 
   2086   if (ExternalSource)
   2087     ReadMethodPool(Method->getSelector());
   2088 
   2089   GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
   2090   if (Pos == MethodPool.end())
   2091     Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
   2092                                            GlobalMethods())).first;
   2093 
   2094   Method->setDefined(impl);
   2095 
   2096   ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
   2097   addMethodToGlobalList(&Entry, Method);
   2098 }
   2099 
   2100 /// Determines if this is an "acceptable" loose mismatch in the global
   2101 /// method pool.  This exists mostly as a hack to get around certain
   2102 /// global mismatches which we can't afford to make warnings / errors.
   2103 /// Really, what we want is a way to take a method out of the global
   2104 /// method pool.
   2105 static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
   2106                                        ObjCMethodDecl *other) {
   2107   if (!chosen->isInstanceMethod())
   2108     return false;
   2109 
   2110   Selector sel = chosen->getSelector();
   2111   if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
   2112     return false;
   2113 
   2114   // Don't complain about mismatches for -length if the method we
   2115   // chose has an integral result type.
   2116   return (chosen->getResultType()->isIntegerType());
   2117 }
   2118 
   2119 ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
   2120                                                bool receiverIdOrClass,
   2121                                                bool warn, bool instance) {
   2122   if (ExternalSource)
   2123     ReadMethodPool(Sel);
   2124 
   2125   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
   2126   if (Pos == MethodPool.end())
   2127     return 0;
   2128 
   2129   ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
   2130 
   2131   if (warn && MethList.Method && MethList.Next) {
   2132     bool issueDiagnostic = false, issueError = false;
   2133 
   2134     // We support a warning which complains about *any* difference in
   2135     // method signature.
   2136     bool strictSelectorMatch =
   2137       (receiverIdOrClass && warn &&
   2138        (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl,
   2139                                  R.getBegin()) !=
   2140       DiagnosticsEngine::Ignored));
   2141     if (strictSelectorMatch)
   2142       for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
   2143         if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
   2144                                         MMS_strict)) {
   2145           issueDiagnostic = true;
   2146           break;
   2147         }
   2148       }
   2149 
   2150     // If we didn't see any strict differences, we won't see any loose
   2151     // differences.  In ARC, however, we also need to check for loose
   2152     // mismatches, because most of them are errors.
   2153     if (!strictSelectorMatch ||
   2154         (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
   2155       for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
   2156         // This checks if the methods differ in type mismatch.
   2157         if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method,
   2158                                         MMS_loose) &&
   2159             !isAcceptableMethodMismatch(MethList.Method, Next->Method)) {
   2160           issueDiagnostic = true;
   2161           if (getLangOpts().ObjCAutoRefCount)
   2162             issueError = true;
   2163           break;
   2164         }
   2165       }
   2166 
   2167     if (issueDiagnostic) {
   2168       if (issueError)
   2169         Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
   2170       else if (strictSelectorMatch)
   2171         Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
   2172       else
   2173         Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
   2174 
   2175       Diag(MethList.Method->getLocStart(),
   2176            issueError ? diag::note_possibility : diag::note_using)
   2177         << MethList.Method->getSourceRange();
   2178       for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
   2179         Diag(Next->Method->getLocStart(), diag::note_also_found)
   2180           << Next->Method->getSourceRange();
   2181     }
   2182   }
   2183   return MethList.Method;
   2184 }
   2185 
   2186 ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
   2187   GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
   2188   if (Pos == MethodPool.end())
   2189     return 0;
   2190 
   2191   GlobalMethods &Methods = Pos->second;
   2192 
   2193   if (Methods.first.Method && Methods.first.Method->isDefined())
   2194     return Methods.first.Method;
   2195   if (Methods.second.Method && Methods.second.Method->isDefined())
   2196     return Methods.second.Method;
   2197   return 0;
   2198 }
   2199 
   2200 /// DiagnoseDuplicateIvars -
   2201 /// Check for duplicate ivars in the entire class at the start of
   2202 /// \@implementation. This becomes necesssary because class extension can
   2203 /// add ivars to a class in random order which will not be known until
   2204 /// class's \@implementation is seen.
   2205 void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
   2206                                   ObjCInterfaceDecl *SID) {
   2207   for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
   2208        IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
   2209     ObjCIvarDecl* Ivar = *IVI;
   2210     if (Ivar->isInvalidDecl())
   2211       continue;
   2212     if (IdentifierInfo *II = Ivar->getIdentifier()) {
   2213       ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
   2214       if (prevIvar) {
   2215         Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
   2216         Diag(prevIvar->getLocation(), diag::note_previous_declaration);
   2217         Ivar->setInvalidDecl();
   2218       }
   2219     }
   2220   }
   2221 }
   2222 
   2223 Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
   2224   switch (CurContext->getDeclKind()) {
   2225     case Decl::ObjCInterface:
   2226       return Sema::OCK_Interface;
   2227     case Decl::ObjCProtocol:
   2228       return Sema::OCK_Protocol;
   2229     case Decl::ObjCCategory:
   2230       if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
   2231         return Sema::OCK_ClassExtension;
   2232       else
   2233         return Sema::OCK_Category;
   2234     case Decl::ObjCImplementation:
   2235       return Sema::OCK_Implementation;
   2236     case Decl::ObjCCategoryImpl:
   2237       return Sema::OCK_CategoryImplementation;
   2238 
   2239     default:
   2240       return Sema::OCK_None;
   2241   }
   2242 }
   2243 
   2244 // Note: For class/category implemenations, allMethods/allProperties is
   2245 // always null.
   2246 Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
   2247                        Decl **allMethods, unsigned allNum,
   2248                        Decl **allProperties, unsigned pNum,
   2249                        DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
   2250 
   2251   if (getObjCContainerKind() == Sema::OCK_None)
   2252     return 0;
   2253 
   2254   assert(AtEnd.isValid() && "Invalid location for '@end'");
   2255 
   2256   ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
   2257   Decl *ClassDecl = cast<Decl>(OCD);
   2258 
   2259   bool isInterfaceDeclKind =
   2260         isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
   2261          || isa<ObjCProtocolDecl>(ClassDecl);
   2262   bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
   2263 
   2264   // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
   2265   llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
   2266   llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
   2267 
   2268   for (unsigned i = 0; i < allNum; i++ ) {
   2269     ObjCMethodDecl *Method =
   2270       cast_or_null<ObjCMethodDecl>(allMethods[i]);
   2271 
   2272     if (!Method) continue;  // Already issued a diagnostic.
   2273     if (Method->isInstanceMethod()) {
   2274       /// Check for instance method of the same name with incompatible types
   2275       const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
   2276       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
   2277                               : false;
   2278       if ((isInterfaceDeclKind && PrevMethod && !match)
   2279           || (checkIdenticalMethods && match)) {
   2280           Diag(Method->getLocation(), diag::err_duplicate_method_decl)
   2281             << Method->getDeclName();
   2282           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2283         Method->setInvalidDecl();
   2284       } else {
   2285         if (PrevMethod) {
   2286           Method->setAsRedeclaration(PrevMethod);
   2287           if (!Context.getSourceManager().isInSystemHeader(
   2288                  Method->getLocation()))
   2289             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
   2290               << Method->getDeclName();
   2291           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2292         }
   2293         InsMap[Method->getSelector()] = Method;
   2294         /// The following allows us to typecheck messages to "id".
   2295         AddInstanceMethodToGlobalPool(Method);
   2296       }
   2297     } else {
   2298       /// Check for class method of the same name with incompatible types
   2299       const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
   2300       bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
   2301                               : false;
   2302       if ((isInterfaceDeclKind && PrevMethod && !match)
   2303           || (checkIdenticalMethods && match)) {
   2304         Diag(Method->getLocation(), diag::err_duplicate_method_decl)
   2305           << Method->getDeclName();
   2306         Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2307         Method->setInvalidDecl();
   2308       } else {
   2309         if (PrevMethod) {
   2310           Method->setAsRedeclaration(PrevMethod);
   2311           if (!Context.getSourceManager().isInSystemHeader(
   2312                  Method->getLocation()))
   2313             Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
   2314               << Method->getDeclName();
   2315           Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2316         }
   2317         ClsMap[Method->getSelector()] = Method;
   2318         AddFactoryMethodToGlobalPool(Method);
   2319       }
   2320     }
   2321   }
   2322   if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
   2323     // Compares properties declared in this class to those of its
   2324     // super class.
   2325     ComparePropertiesInBaseAndSuper(I);
   2326     CompareProperties(I, I);
   2327   } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
   2328     // Categories are used to extend the class by declaring new methods.
   2329     // By the same token, they are also used to add new properties. No
   2330     // need to compare the added property to those in the class.
   2331 
   2332     // Compare protocol properties with those in category
   2333     CompareProperties(C, C);
   2334     if (C->IsClassExtension()) {
   2335       ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
   2336       DiagnoseClassExtensionDupMethods(C, CCPrimary);
   2337     }
   2338   }
   2339   if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
   2340     if (CDecl->getIdentifier())
   2341       // ProcessPropertyDecl is responsible for diagnosing conflicts with any
   2342       // user-defined setter/getter. It also synthesizes setter/getter methods
   2343       // and adds them to the DeclContext and global method pools.
   2344       for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
   2345                                             E = CDecl->prop_end();
   2346            I != E; ++I)
   2347         ProcessPropertyDecl(*I, CDecl);
   2348     CDecl->setAtEndRange(AtEnd);
   2349   }
   2350   if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
   2351     IC->setAtEndRange(AtEnd);
   2352     if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
   2353       // Any property declared in a class extension might have user
   2354       // declared setter or getter in current class extension or one
   2355       // of the other class extensions. Mark them as synthesized as
   2356       // property will be synthesized when property with same name is
   2357       // seen in the @implementation.
   2358       for (const ObjCCategoryDecl *ClsExtDecl =
   2359            IDecl->getFirstClassExtension();
   2360            ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
   2361         for (ObjCContainerDecl::prop_iterator I = ClsExtDecl->prop_begin(),
   2362              E = ClsExtDecl->prop_end(); I != E; ++I) {
   2363           ObjCPropertyDecl *Property = *I;
   2364           // Skip over properties declared @dynamic
   2365           if (const ObjCPropertyImplDecl *PIDecl
   2366               = IC->FindPropertyImplDecl(Property->getIdentifier()))
   2367             if (PIDecl->getPropertyImplementation()
   2368                   == ObjCPropertyImplDecl::Dynamic)
   2369               continue;
   2370 
   2371           for (const ObjCCategoryDecl *CExtDecl =
   2372                IDecl->getFirstClassExtension();
   2373                CExtDecl; CExtDecl = CExtDecl->getNextClassExtension()) {
   2374             if (ObjCMethodDecl *GetterMethod =
   2375                 CExtDecl->getInstanceMethod(Property->getGetterName()))
   2376               GetterMethod->setSynthesized(true);
   2377             if (!Property->isReadOnly())
   2378               if (ObjCMethodDecl *SetterMethod =
   2379                   CExtDecl->getInstanceMethod(Property->getSetterName()))
   2380                 SetterMethod->setSynthesized(true);
   2381           }
   2382         }
   2383       }
   2384       ImplMethodsVsClassMethods(S, IC, IDecl);
   2385       AtomicPropertySetterGetterRules(IC, IDecl);
   2386       DiagnoseOwningPropertyGetterSynthesis(IC);
   2387 
   2388       bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
   2389       if (IDecl->getSuperClass() == NULL) {
   2390         // This class has no superclass, so check that it has been marked with
   2391         // __attribute((objc_root_class)).
   2392         if (!HasRootClassAttr) {
   2393           SourceLocation DeclLoc(IDecl->getLocation());
   2394           SourceLocation SuperClassLoc(PP.getLocForEndOfToken(DeclLoc));
   2395           Diag(DeclLoc, diag::warn_objc_root_class_missing)
   2396             << IDecl->getIdentifier();
   2397           // See if NSObject is in the current scope, and if it is, suggest
   2398           // adding " : NSObject " to the class declaration.
   2399           NamedDecl *IF = LookupSingleName(TUScope,
   2400                                            NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
   2401                                            DeclLoc, LookupOrdinaryName);
   2402           ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
   2403           if (NSObjectDecl && NSObjectDecl->getDefinition()) {
   2404             Diag(SuperClassLoc, diag::note_objc_needs_superclass)
   2405               << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
   2406           } else {
   2407             Diag(SuperClassLoc, diag::note_objc_needs_superclass);
   2408           }
   2409         }
   2410       } else if (HasRootClassAttr) {
   2411         // Complain that only root classes may have this attribute.
   2412         Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
   2413       }
   2414 
   2415       if (LangOpts.ObjCRuntime.isNonFragile()) {
   2416         while (IDecl->getSuperClass()) {
   2417           DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
   2418           IDecl = IDecl->getSuperClass();
   2419         }
   2420       }
   2421     }
   2422     SetIvarInitializers(IC);
   2423   } else if (ObjCCategoryImplDecl* CatImplClass =
   2424                                    dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
   2425     CatImplClass->setAtEndRange(AtEnd);
   2426 
   2427     // Find category interface decl and then check that all methods declared
   2428     // in this interface are implemented in the category @implementation.
   2429     if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
   2430       for (ObjCCategoryDecl *Categories = IDecl->getCategoryList();
   2431            Categories; Categories = Categories->getNextClassCategory()) {
   2432         if (Categories->getIdentifier() == CatImplClass->getIdentifier()) {
   2433           ImplMethodsVsClassMethods(S, CatImplClass, Categories);
   2434           break;
   2435         }
   2436       }
   2437     }
   2438   }
   2439   if (isInterfaceDeclKind) {
   2440     // Reject invalid vardecls.
   2441     for (unsigned i = 0; i != tuvNum; i++) {
   2442       DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
   2443       for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
   2444         if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
   2445           if (!VDecl->hasExternalStorage())
   2446             Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
   2447         }
   2448     }
   2449   }
   2450   ActOnObjCContainerFinishDefinition();
   2451 
   2452   for (unsigned i = 0; i != tuvNum; i++) {
   2453     DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
   2454     for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
   2455       (*I)->setTopLevelDeclInObjCContainer();
   2456     Consumer.HandleTopLevelDeclInObjCContainer(DG);
   2457   }
   2458 
   2459   ActOnDocumentableDecl(ClassDecl);
   2460   return ClassDecl;
   2461 }
   2462 
   2463 
   2464 /// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
   2465 /// objective-c's type qualifier from the parser version of the same info.
   2466 static Decl::ObjCDeclQualifier
   2467 CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
   2468   return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
   2469 }
   2470 
   2471 static inline
   2472 unsigned countAlignAttr(const AttrVec &A) {
   2473   unsigned count=0;
   2474   for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i)
   2475     if ((*i)->getKind() == attr::Aligned)
   2476       ++count;
   2477   return count;
   2478 }
   2479 
   2480 static inline
   2481 bool containsInvalidMethodImplAttribute(ObjCMethodDecl *IMD,
   2482                                         const AttrVec &A) {
   2483   // If method is only declared in implementation (private method),
   2484   // No need to issue any diagnostics on method definition with attributes.
   2485   if (!IMD)
   2486     return false;
   2487 
   2488   // method declared in interface has no attribute.
   2489   // But implementation has attributes. This is invalid.
   2490   // Except when implementation has 'Align' attribute which is
   2491   // immaterial to method declared in interface.
   2492   if (!IMD->hasAttrs())
   2493     return (A.size() > countAlignAttr(A));
   2494 
   2495   const AttrVec &D = IMD->getAttrs();
   2496 
   2497   unsigned countAlignOnImpl = countAlignAttr(A);
   2498   if (!countAlignOnImpl && (A.size() != D.size()))
   2499     return true;
   2500   else if (countAlignOnImpl) {
   2501     unsigned countAlignOnDecl = countAlignAttr(D);
   2502     if (countAlignOnDecl && (A.size() != D.size()))
   2503       return true;
   2504     else if (!countAlignOnDecl &&
   2505              ((A.size()-countAlignOnImpl) != D.size()))
   2506       return true;
   2507   }
   2508 
   2509   // attributes on method declaration and definition must match exactly.
   2510   // Note that we have at most a couple of attributes on methods, so this
   2511   // n*n search is good enough.
   2512   for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i) {
   2513     if ((*i)->getKind() == attr::Aligned)
   2514       continue;
   2515     bool match = false;
   2516     for (AttrVec::const_iterator i1 = D.begin(), e1 = D.end(); i1 != e1; ++i1) {
   2517       if ((*i)->getKind() == (*i1)->getKind()) {
   2518         match = true;
   2519         break;
   2520       }
   2521     }
   2522     if (!match)
   2523       return true;
   2524   }
   2525 
   2526   return false;
   2527 }
   2528 
   2529 /// \brief Check whether the declared result type of the given Objective-C
   2530 /// method declaration is compatible with the method's class.
   2531 ///
   2532 static Sema::ResultTypeCompatibilityKind
   2533 CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
   2534                                     ObjCInterfaceDecl *CurrentClass) {
   2535   QualType ResultType = Method->getResultType();
   2536 
   2537   // If an Objective-C method inherits its related result type, then its
   2538   // declared result type must be compatible with its own class type. The
   2539   // declared result type is compatible if:
   2540   if (const ObjCObjectPointerType *ResultObjectType
   2541                                 = ResultType->getAs<ObjCObjectPointerType>()) {
   2542     //   - it is id or qualified id, or
   2543     if (ResultObjectType->isObjCIdType() ||
   2544         ResultObjectType->isObjCQualifiedIdType())
   2545       return Sema::RTC_Compatible;
   2546 
   2547     if (CurrentClass) {
   2548       if (ObjCInterfaceDecl *ResultClass
   2549                                       = ResultObjectType->getInterfaceDecl()) {
   2550         //   - it is the same as the method's class type, or
   2551         if (declaresSameEntity(CurrentClass, ResultClass))
   2552           return Sema::RTC_Compatible;
   2553 
   2554         //   - it is a superclass of the method's class type
   2555         if (ResultClass->isSuperClassOf(CurrentClass))
   2556           return Sema::RTC_Compatible;
   2557       }
   2558     } else {
   2559       // Any Objective-C pointer type might be acceptable for a protocol
   2560       // method; we just don't know.
   2561       return Sema::RTC_Unknown;
   2562     }
   2563   }
   2564 
   2565   return Sema::RTC_Incompatible;
   2566 }
   2567 
   2568 namespace {
   2569 /// A helper class for searching for methods which a particular method
   2570 /// overrides.
   2571 class OverrideSearch {
   2572 public:
   2573   Sema &S;
   2574   ObjCMethodDecl *Method;
   2575   llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
   2576   bool Recursive;
   2577 
   2578 public:
   2579   OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
   2580     Selector selector = method->getSelector();
   2581 
   2582     // Bypass this search if we've never seen an instance/class method
   2583     // with this selector before.
   2584     Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
   2585     if (it == S.MethodPool.end()) {
   2586       if (!S.ExternalSource) return;
   2587       S.ReadMethodPool(selector);
   2588 
   2589       it = S.MethodPool.find(selector);
   2590       if (it == S.MethodPool.end())
   2591         return;
   2592     }
   2593     ObjCMethodList &list =
   2594       method->isInstanceMethod() ? it->second.first : it->second.second;
   2595     if (!list.Method) return;
   2596 
   2597     ObjCContainerDecl *container
   2598       = cast<ObjCContainerDecl>(method->getDeclContext());
   2599 
   2600     // Prevent the search from reaching this container again.  This is
   2601     // important with categories, which override methods from the
   2602     // interface and each other.
   2603     if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
   2604       searchFromContainer(container);
   2605       if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
   2606         searchFromContainer(Interface);
   2607     } else {
   2608       searchFromContainer(container);
   2609     }
   2610   }
   2611 
   2612   typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
   2613   iterator begin() const { return Overridden.begin(); }
   2614   iterator end() const { return Overridden.end(); }
   2615 
   2616 private:
   2617   void searchFromContainer(ObjCContainerDecl *container) {
   2618     if (container->isInvalidDecl()) return;
   2619 
   2620     switch (container->getDeclKind()) {
   2621 #define OBJCCONTAINER(type, base) \
   2622     case Decl::type: \
   2623       searchFrom(cast<type##Decl>(container)); \
   2624       break;
   2625 #define ABSTRACT_DECL(expansion)
   2626 #define DECL(type, base) \
   2627     case Decl::type:
   2628 #include "clang/AST/DeclNodes.inc"
   2629       llvm_unreachable("not an ObjC container!");
   2630     }
   2631   }
   2632 
   2633   void searchFrom(ObjCProtocolDecl *protocol) {
   2634     if (!protocol->hasDefinition())
   2635       return;
   2636 
   2637     // A method in a protocol declaration overrides declarations from
   2638     // referenced ("parent") protocols.
   2639     search(protocol->getReferencedProtocols());
   2640   }
   2641 
   2642   void searchFrom(ObjCCategoryDecl *category) {
   2643     // A method in a category declaration overrides declarations from
   2644     // the main class and from protocols the category references.
   2645     // The main class is handled in the constructor.
   2646     search(category->getReferencedProtocols());
   2647   }
   2648 
   2649   void searchFrom(ObjCCategoryImplDecl *impl) {
   2650     // A method in a category definition that has a category
   2651     // declaration overrides declarations from the category
   2652     // declaration.
   2653     if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
   2654       search(category);
   2655       if (ObjCInterfaceDecl *Interface = category->getClassInterface())
   2656         search(Interface);
   2657 
   2658     // Otherwise it overrides declarations from the class.
   2659     } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
   2660       search(Interface);
   2661     }
   2662   }
   2663 
   2664   void searchFrom(ObjCInterfaceDecl *iface) {
   2665     // A method in a class declaration overrides declarations from
   2666     if (!iface->hasDefinition())
   2667       return;
   2668 
   2669     //   - categories,
   2670     for (ObjCCategoryDecl *category = iface->getCategoryList();
   2671            category; category = category->getNextClassCategory())
   2672       search(category);
   2673 
   2674     //   - the super class, and
   2675     if (ObjCInterfaceDecl *super = iface->getSuperClass())
   2676       search(super);
   2677 
   2678     //   - any referenced protocols.
   2679     search(iface->getReferencedProtocols());
   2680   }
   2681 
   2682   void searchFrom(ObjCImplementationDecl *impl) {
   2683     // A method in a class implementation overrides declarations from
   2684     // the class interface.
   2685     if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
   2686       search(Interface);
   2687   }
   2688 
   2689 
   2690   void search(const ObjCProtocolList &protocols) {
   2691     for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
   2692          i != e; ++i)
   2693       search(*i);
   2694   }
   2695 
   2696   void search(ObjCContainerDecl *container) {
   2697     // Check for a method in this container which matches this selector.
   2698     ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
   2699                                                 Method->isInstanceMethod());
   2700 
   2701     // If we find one, record it and bail out.
   2702     if (meth) {
   2703       Overridden.insert(meth);
   2704       return;
   2705     }
   2706 
   2707     // Otherwise, search for methods that a hypothetical method here
   2708     // would have overridden.
   2709 
   2710     // Note that we're now in a recursive case.
   2711     Recursive = true;
   2712 
   2713     searchFromContainer(container);
   2714   }
   2715 };
   2716 }
   2717 
   2718 void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
   2719                                     ObjCInterfaceDecl *CurrentClass,
   2720                                     ResultTypeCompatibilityKind RTC) {
   2721   // Search for overridden methods and merge information down from them.
   2722   OverrideSearch overrides(*this, ObjCMethod);
   2723   // Keep track if the method overrides any method in the class's base classes,
   2724   // its protocols, or its categories' protocols; we will keep that info
   2725   // in the ObjCMethodDecl.
   2726   // For this info, a method in an implementation is not considered as
   2727   // overriding the same method in the interface or its categories.
   2728   bool hasOverriddenMethodsInBaseOrProtocol = false;
   2729   for (OverrideSearch::iterator
   2730          i = overrides.begin(), e = overrides.end(); i != e; ++i) {
   2731     ObjCMethodDecl *overridden = *i;
   2732 
   2733     if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
   2734         CurrentClass != overridden->getClassInterface() ||
   2735         overridden->isOverriding())
   2736       hasOverriddenMethodsInBaseOrProtocol = true;
   2737 
   2738     // Propagate down the 'related result type' bit from overridden methods.
   2739     if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
   2740       ObjCMethod->SetRelatedResultType();
   2741 
   2742     // Then merge the declarations.
   2743     mergeObjCMethodDecls(ObjCMethod, overridden);
   2744 
   2745     if (ObjCMethod->isImplicit() && overridden->isImplicit())
   2746       continue; // Conflicting properties are detected elsewhere.
   2747 
   2748     // Check for overriding methods
   2749     if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
   2750         isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
   2751       CheckConflictingOverridingMethod(ObjCMethod, overridden,
   2752               isa<ObjCProtocolDecl>(overridden->getDeclContext()));
   2753 
   2754     if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
   2755         isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
   2756         !overridden->isImplicit() /* not meant for properties */) {
   2757       ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
   2758                                           E = ObjCMethod->param_end();
   2759       ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
   2760                                      PrevE = overridden->param_end();
   2761       for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
   2762         assert(PrevI != overridden->param_end() && "Param mismatch");
   2763         QualType T1 = Context.getCanonicalType((*ParamI)->getType());
   2764         QualType T2 = Context.getCanonicalType((*PrevI)->getType());
   2765         // If type of argument of method in this class does not match its
   2766         // respective argument type in the super class method, issue warning;
   2767         if (!Context.typesAreCompatible(T1, T2)) {
   2768           Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
   2769             << T1 << T2;
   2770           Diag(overridden->getLocation(), diag::note_previous_declaration);
   2771           break;
   2772         }
   2773       }
   2774     }
   2775   }
   2776 
   2777   ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
   2778 }
   2779 
   2780 Decl *Sema::ActOnMethodDeclaration(
   2781     Scope *S,
   2782     SourceLocation MethodLoc, SourceLocation EndLoc,
   2783     tok::TokenKind MethodType,
   2784     ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
   2785     ArrayRef<SourceLocation> SelectorLocs,
   2786     Selector Sel,
   2787     // optional arguments. The number of types/arguments is obtained
   2788     // from the Sel.getNumArgs().
   2789     ObjCArgInfo *ArgInfo,
   2790     DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
   2791     AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
   2792     bool isVariadic, bool MethodDefinition) {
   2793   // Make sure we can establish a context for the method.
   2794   if (!CurContext->isObjCContainer()) {
   2795     Diag(MethodLoc, diag::error_missing_method_context);
   2796     return 0;
   2797   }
   2798   ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
   2799   Decl *ClassDecl = cast<Decl>(OCD);
   2800   QualType resultDeclType;
   2801 
   2802   bool HasRelatedResultType = false;
   2803   TypeSourceInfo *ResultTInfo = 0;
   2804   if (ReturnType) {
   2805     resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
   2806 
   2807     // Methods cannot return interface types. All ObjC objects are
   2808     // passed by reference.
   2809     if (resultDeclType->isObjCObjectType()) {
   2810       Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
   2811         << 0 << resultDeclType;
   2812       return 0;
   2813     }
   2814 
   2815     HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
   2816   } else { // get the type for "id".
   2817     resultDeclType = Context.getObjCIdType();
   2818     Diag(MethodLoc, diag::warn_missing_method_return_type)
   2819       << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
   2820   }
   2821 
   2822   ObjCMethodDecl* ObjCMethod =
   2823     ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel,
   2824                            resultDeclType,
   2825                            ResultTInfo,
   2826                            CurContext,
   2827                            MethodType == tok::minus, isVariadic,
   2828                            /*isSynthesized=*/false,
   2829                            /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
   2830                            MethodDeclKind == tok::objc_optional
   2831                              ? ObjCMethodDecl::Optional
   2832                              : ObjCMethodDecl::Required,
   2833                            HasRelatedResultType);
   2834 
   2835   SmallVector<ParmVarDecl*, 16> Params;
   2836 
   2837   for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
   2838     QualType ArgType;
   2839     TypeSourceInfo *DI;
   2840 
   2841     if (ArgInfo[i].Type == 0) {
   2842       ArgType = Context.getObjCIdType();
   2843       DI = 0;
   2844     } else {
   2845       ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
   2846       // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
   2847       ArgType = Context.getAdjustedParameterType(ArgType);
   2848     }
   2849 
   2850     LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
   2851                    LookupOrdinaryName, ForRedeclaration);
   2852     LookupName(R, S);
   2853     if (R.isSingleResult()) {
   2854       NamedDecl *PrevDecl = R.getFoundDecl();
   2855       if (S->isDeclScope(PrevDecl)) {
   2856         Diag(ArgInfo[i].NameLoc,
   2857              (MethodDefinition ? diag::warn_method_param_redefinition
   2858                                : diag::warn_method_param_declaration))
   2859           << ArgInfo[i].Name;
   2860         Diag(PrevDecl->getLocation(),
   2861              diag::note_previous_declaration);
   2862       }
   2863     }
   2864 
   2865     SourceLocation StartLoc = DI
   2866       ? DI->getTypeLoc().getBeginLoc()
   2867       : ArgInfo[i].NameLoc;
   2868 
   2869     ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
   2870                                         ArgInfo[i].NameLoc, ArgInfo[i].Name,
   2871                                         ArgType, DI, SC_None, SC_None);
   2872 
   2873     Param->setObjCMethodScopeInfo(i);
   2874 
   2875     Param->setObjCDeclQualifier(
   2876       CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
   2877 
   2878     // Apply the attributes to the parameter.
   2879     ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
   2880 
   2881     if (Param->hasAttr<BlocksAttr>()) {
   2882       Diag(Param->getLocation(), diag::err_block_on_nonlocal);
   2883       Param->setInvalidDecl();
   2884     }
   2885     S->AddDecl(Param);
   2886     IdResolver.AddDecl(Param);
   2887 
   2888     Params.push_back(Param);
   2889   }
   2890 
   2891   for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
   2892     ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
   2893     QualType ArgType = Param->getType();
   2894     if (ArgType.isNull())
   2895       ArgType = Context.getObjCIdType();
   2896     else
   2897       // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
   2898       ArgType = Context.getAdjustedParameterType(ArgType);
   2899     if (ArgType->isObjCObjectType()) {
   2900       Diag(Param->getLocation(),
   2901            diag::err_object_cannot_be_passed_returned_by_value)
   2902       << 1 << ArgType;
   2903       Param->setInvalidDecl();
   2904     }
   2905     Param->setDeclContext(ObjCMethod);
   2906 
   2907     Params.push_back(Param);
   2908   }
   2909 
   2910   ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
   2911   ObjCMethod->setObjCDeclQualifier(
   2912     CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
   2913 
   2914   if (AttrList)
   2915     ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
   2916 
   2917   // Add the method now.
   2918   const ObjCMethodDecl *PrevMethod = 0;
   2919   if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
   2920     if (MethodType == tok::minus) {
   2921       PrevMethod = ImpDecl->getInstanceMethod(Sel);
   2922       ImpDecl->addInstanceMethod(ObjCMethod);
   2923     } else {
   2924       PrevMethod = ImpDecl->getClassMethod(Sel);
   2925       ImpDecl->addClassMethod(ObjCMethod);
   2926     }
   2927 
   2928     ObjCMethodDecl *IMD = 0;
   2929     if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface())
   2930       IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
   2931                                 ObjCMethod->isInstanceMethod());
   2932     if (ObjCMethod->hasAttrs() &&
   2933         containsInvalidMethodImplAttribute(IMD, ObjCMethod->getAttrs())) {
   2934       SourceLocation MethodLoc = IMD->getLocation();
   2935       if (!getSourceManager().isInSystemHeader(MethodLoc)) {
   2936         Diag(EndLoc, diag::warn_attribute_method_def);
   2937         Diag(MethodLoc, diag::note_method_declared_at)
   2938           << ObjCMethod->getDeclName();
   2939       }
   2940     }
   2941   } else {
   2942     cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
   2943   }
   2944 
   2945   if (PrevMethod) {
   2946     // You can never have two method definitions with the same name.
   2947     Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
   2948       << ObjCMethod->getDeclName();
   2949     Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
   2950   }
   2951 
   2952   // If this Objective-C method does not have a related result type, but we
   2953   // are allowed to infer related result types, try to do so based on the
   2954   // method family.
   2955   ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
   2956   if (!CurrentClass) {
   2957     if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
   2958       CurrentClass = Cat->getClassInterface();
   2959     else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
   2960       CurrentClass = Impl->getClassInterface();
   2961     else if (ObjCCategoryImplDecl *CatImpl
   2962                                    = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
   2963       CurrentClass = CatImpl->getClassInterface();
   2964   }
   2965 
   2966   ResultTypeCompatibilityKind RTC
   2967     = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
   2968 
   2969   CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
   2970 
   2971   bool ARCError = false;
   2972   if (getLangOpts().ObjCAutoRefCount)
   2973     ARCError = CheckARCMethodDecl(*this, ObjCMethod);
   2974 
   2975   // Infer the related result type when possible.
   2976   if (!ARCError && RTC == Sema::RTC_Compatible &&
   2977       !ObjCMethod->hasRelatedResultType() &&
   2978       LangOpts.ObjCInferRelatedResultType) {
   2979     bool InferRelatedResultType = false;
   2980     switch (ObjCMethod->getMethodFamily()) {
   2981     case OMF_None:
   2982     case OMF_copy:
   2983     case OMF_dealloc:
   2984     case OMF_finalize:
   2985     case OMF_mutableCopy:
   2986     case OMF_release:
   2987     case OMF_retainCount:
   2988     case OMF_performSelector:
   2989       break;
   2990 
   2991     case OMF_alloc:
   2992     case OMF_new:
   2993       InferRelatedResultType = ObjCMethod->isClassMethod();
   2994       break;
   2995 
   2996     case OMF_init:
   2997     case OMF_autorelease:
   2998     case OMF_retain:
   2999     case OMF_self:
   3000       InferRelatedResultType = ObjCMethod->isInstanceMethod();
   3001       break;
   3002     }
   3003 
   3004     if (InferRelatedResultType)
   3005       ObjCMethod->SetRelatedResultType();
   3006   }
   3007 
   3008   ActOnDocumentableDecl(ObjCMethod);
   3009 
   3010   return ObjCMethod;
   3011 }
   3012 
   3013 bool Sema::CheckObjCDeclScope(Decl *D) {
   3014   // Following is also an error. But it is caused by a missing @end
   3015   // and diagnostic is issued elsewhere.
   3016   if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
   3017     return false;
   3018 
   3019   // If we switched context to translation unit while we are still lexically in
   3020   // an objc container, it means the parser missed emitting an error.
   3021   if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
   3022     return false;
   3023 
   3024   Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
   3025   D->setInvalidDecl();
   3026 
   3027   return true;
   3028 }
   3029 
   3030 /// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
   3031 /// instance variables of ClassName into Decls.
   3032 void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
   3033                      IdentifierInfo *ClassName,
   3034                      SmallVectorImpl<Decl*> &Decls) {
   3035   // Check that ClassName is a valid class
   3036   ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
   3037   if (!Class) {
   3038     Diag(DeclStart, diag::err_undef_interface) << ClassName;
   3039     return;
   3040   }
   3041   if (LangOpts.ObjCRuntime.isNonFragile()) {
   3042     Diag(DeclStart, diag::err_atdef_nonfragile_interface);
   3043     return;
   3044   }
   3045 
   3046   // Collect the instance variables
   3047   SmallVector<const ObjCIvarDecl*, 32> Ivars;
   3048   Context.DeepCollectObjCIvars(Class, true, Ivars);
   3049   // For each ivar, create a fresh ObjCAtDefsFieldDecl.
   3050   for (unsigned i = 0; i < Ivars.size(); i++) {
   3051     const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
   3052     RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
   3053     Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
   3054                                            /*FIXME: StartL=*/ID->getLocation(),
   3055                                            ID->getLocation(),
   3056                                            ID->getIdentifier(), ID->getType(),
   3057                                            ID->getBitWidth());
   3058     Decls.push_back(FD);
   3059   }
   3060 
   3061   // Introduce all of these fields into the appropriate scope.
   3062   for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
   3063        D != Decls.end(); ++D) {
   3064     FieldDecl *FD = cast<FieldDecl>(*D);
   3065     if (getLangOpts().CPlusPlus)
   3066       PushOnScopeChains(cast<FieldDecl>(FD), S);
   3067     else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
   3068       Record->addDecl(FD);
   3069   }
   3070 }
   3071 
   3072 /// \brief Build a type-check a new Objective-C exception variable declaration.
   3073 VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
   3074                                       SourceLocation StartLoc,
   3075                                       SourceLocation IdLoc,
   3076                                       IdentifierInfo *Id,
   3077                                       bool Invalid) {
   3078   // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
   3079   // duration shall not be qualified by an address-space qualifier."
   3080   // Since all parameters have automatic store duration, they can not have
   3081   // an address space.
   3082   if (T.getAddressSpace() != 0) {
   3083     Diag(IdLoc, diag::err_arg_with_address_space);
   3084     Invalid = true;
   3085   }
   3086 
   3087   // An @catch parameter must be an unqualified object pointer type;
   3088   // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
   3089   if (Invalid) {
   3090     // Don't do any further checking.
   3091   } else if (T->isDependentType()) {
   3092     // Okay: we don't know what this type will instantiate to.
   3093   } else if (!T->isObjCObjectPointerType()) {
   3094     Invalid = true;
   3095     Diag(IdLoc ,diag::err_catch_param_not_objc_type);
   3096   } else if (T->isObjCQualifiedIdType()) {
   3097     Invalid = true;
   3098     Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
   3099   }
   3100 
   3101   VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
   3102                                  T, TInfo, SC_None, SC_None);
   3103   New->setExceptionVariable(true);
   3104 
   3105   // In ARC, infer 'retaining' for variables of retainable type.
   3106   if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
   3107     Invalid = true;
   3108 
   3109   if (Invalid)
   3110     New->setInvalidDecl();
   3111   return New;
   3112 }
   3113 
   3114 Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
   3115   const DeclSpec &DS = D.getDeclSpec();
   3116 
   3117   // We allow the "register" storage class on exception variables because
   3118   // GCC did, but we drop it completely. Any other storage class is an error.
   3119   if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
   3120     Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
   3121       << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
   3122   } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
   3123     Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
   3124       << DS.getStorageClassSpec();
   3125   }
   3126   if (D.getDeclSpec().isThreadSpecified())
   3127     Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
   3128   D.getMutableDeclSpec().ClearStorageClassSpecs();
   3129 
   3130   DiagnoseFunctionSpecifiers(D);
   3131 
   3132   // Check that there are no default arguments inside the type of this
   3133   // exception object (C++ only).
   3134   if (getLangOpts().CPlusPlus)
   3135     CheckExtraCXXDefaultArguments(D);
   3136 
   3137   TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
   3138   QualType ExceptionType = TInfo->getType();
   3139 
   3140   VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
   3141                                         D.getSourceRange().getBegin(),
   3142                                         D.getIdentifierLoc(),
   3143                                         D.getIdentifier(),
   3144                                         D.isInvalidType());
   3145 
   3146   // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
   3147   if (D.getCXXScopeSpec().isSet()) {
   3148     Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
   3149       << D.getCXXScopeSpec().getRange();
   3150     New->setInvalidDecl();
   3151   }
   3152 
   3153   // Add the parameter declaration into this scope.
   3154   S->AddDecl(New);
   3155   if (D.getIdentifier())
   3156     IdResolver.AddDecl(New);
   3157 
   3158   ProcessDeclAttributes(S, New, D);
   3159 
   3160   if (New->hasAttr<BlocksAttr>())
   3161     Diag(New->getLocation(), diag::err_block_on_nonlocal);
   3162   return New;
   3163 }
   3164 
   3165 /// CollectIvarsToConstructOrDestruct - Collect those ivars which require
   3166 /// initialization.
   3167 void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
   3168                                 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
   3169   for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
   3170        Iv= Iv->getNextIvar()) {
   3171     QualType QT = Context.getBaseElementType(Iv->getType());
   3172     if (QT->isRecordType())
   3173       Ivars.push_back(Iv);
   3174   }
   3175 }
   3176 
   3177 void Sema::DiagnoseUseOfUnimplementedSelectors() {
   3178   // Load referenced selectors from the external source.
   3179   if (ExternalSource) {
   3180     SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
   3181     ExternalSource->ReadReferencedSelectors(Sels);
   3182     for (unsigned I = 0, N = Sels.size(); I != N; ++I)
   3183       ReferencedSelectors[Sels[I].first] = Sels[I].second;
   3184   }
   3185 
   3186   // Warning will be issued only when selector table is
   3187   // generated (which means there is at lease one implementation
   3188   // in the TU). This is to match gcc's behavior.
   3189   if (ReferencedSelectors.empty() ||
   3190       !Context.AnyObjCImplementation())
   3191     return;
   3192   for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
   3193         ReferencedSelectors.begin(),
   3194        E = ReferencedSelectors.end(); S != E; ++S) {
   3195     Selector Sel = (*S).first;
   3196     if (!LookupImplementedMethodInGlobalPool(Sel))
   3197       Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
   3198   }
   3199   return;
   3200 }
   3201