Home | History | Annotate | Download | only in arm
      1 /*
      2  * Copyright (C) 2009 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 /*
     18  * This file contains codegen and support common to all supported
     19  * ARM variants.  It is included by:
     20  *
     21  *        Codegen-$(TARGET_ARCH_VARIANT).c
     22  *
     23  * which combines this common code with specific support found in the
     24  * applicable directory below this one.
     25  */
     26 
     27 /*
     28  * Mark garbage collection card. Skip if the value we're storing is null.
     29  */
     30 static void markCard(CompilationUnit *cUnit, int valReg, int tgtAddrReg)
     31 {
     32     int regCardBase = dvmCompilerAllocTemp(cUnit);
     33     int regCardNo = dvmCompilerAllocTemp(cUnit);
     34     ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondEq, valReg, 0);
     35     loadWordDisp(cUnit, r6SELF, offsetof(Thread, cardTable),
     36                  regCardBase);
     37     opRegRegImm(cUnit, kOpLsr, regCardNo, tgtAddrReg, GC_CARD_SHIFT);
     38     storeBaseIndexed(cUnit, regCardBase, regCardNo, regCardBase, 0,
     39                      kUnsignedByte);
     40     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
     41     target->defMask = ENCODE_ALL;
     42     branchOver->generic.target = (LIR *)target;
     43     dvmCompilerFreeTemp(cUnit, regCardBase);
     44     dvmCompilerFreeTemp(cUnit, regCardNo);
     45 }
     46 
     47 static bool genConversionCall(CompilationUnit *cUnit, MIR *mir, void *funct,
     48                                      int srcSize, int tgtSize)
     49 {
     50     /*
     51      * Don't optimize the register usage since it calls out to template
     52      * functions
     53      */
     54     RegLocation rlSrc;
     55     RegLocation rlDest;
     56     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
     57     if (srcSize == 1) {
     58         rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
     59         loadValueDirectFixed(cUnit, rlSrc, r0);
     60     } else {
     61         rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
     62         loadValueDirectWideFixed(cUnit, rlSrc, r0, r1);
     63     }
     64     LOAD_FUNC_ADDR(cUnit, r2, (int)funct);
     65     opReg(cUnit, kOpBlx, r2);
     66     dvmCompilerClobberCallRegs(cUnit);
     67     if (tgtSize == 1) {
     68         RegLocation rlResult;
     69         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
     70         rlResult = dvmCompilerGetReturn(cUnit);
     71         storeValue(cUnit, rlDest, rlResult);
     72     } else {
     73         RegLocation rlResult;
     74         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
     75         rlResult = dvmCompilerGetReturnWide(cUnit);
     76         storeValueWide(cUnit, rlDest, rlResult);
     77     }
     78     return false;
     79 }
     80 
     81 static bool genArithOpFloatPortable(CompilationUnit *cUnit, MIR *mir,
     82                                     RegLocation rlDest, RegLocation rlSrc1,
     83                                     RegLocation rlSrc2)
     84 {
     85     RegLocation rlResult;
     86     void* funct;
     87 
     88     switch (mir->dalvikInsn.opcode) {
     89         case OP_ADD_FLOAT_2ADDR:
     90         case OP_ADD_FLOAT:
     91             funct = (void*) __aeabi_fadd;
     92             break;
     93         case OP_SUB_FLOAT_2ADDR:
     94         case OP_SUB_FLOAT:
     95             funct = (void*) __aeabi_fsub;
     96             break;
     97         case OP_DIV_FLOAT_2ADDR:
     98         case OP_DIV_FLOAT:
     99             funct = (void*) __aeabi_fdiv;
    100             break;
    101         case OP_MUL_FLOAT_2ADDR:
    102         case OP_MUL_FLOAT:
    103             funct = (void*) __aeabi_fmul;
    104             break;
    105         case OP_REM_FLOAT_2ADDR:
    106         case OP_REM_FLOAT:
    107             funct = (void*) fmodf;
    108             break;
    109         case OP_NEG_FLOAT: {
    110             genNegFloat(cUnit, rlDest, rlSrc1);
    111             return false;
    112         }
    113         default:
    114             return true;
    115     }
    116     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
    117     loadValueDirectFixed(cUnit, rlSrc1, r0);
    118     loadValueDirectFixed(cUnit, rlSrc2, r1);
    119     LOAD_FUNC_ADDR(cUnit, r2, (int)funct);
    120     opReg(cUnit, kOpBlx, r2);
    121     dvmCompilerClobberCallRegs(cUnit);
    122     rlResult = dvmCompilerGetReturn(cUnit);
    123     storeValue(cUnit, rlDest, rlResult);
    124     return false;
    125 }
    126 
    127 static bool genArithOpDoublePortable(CompilationUnit *cUnit, MIR *mir,
    128                                      RegLocation rlDest, RegLocation rlSrc1,
    129                                      RegLocation rlSrc2)
    130 {
    131     RegLocation rlResult;
    132     void* funct;
    133 
    134     switch (mir->dalvikInsn.opcode) {
    135         case OP_ADD_DOUBLE_2ADDR:
    136         case OP_ADD_DOUBLE:
    137             funct = (void*) __aeabi_dadd;
    138             break;
    139         case OP_SUB_DOUBLE_2ADDR:
    140         case OP_SUB_DOUBLE:
    141             funct = (void*) __aeabi_dsub;
    142             break;
    143         case OP_DIV_DOUBLE_2ADDR:
    144         case OP_DIV_DOUBLE:
    145             funct = (void*) __aeabi_ddiv;
    146             break;
    147         case OP_MUL_DOUBLE_2ADDR:
    148         case OP_MUL_DOUBLE:
    149             funct = (void*) __aeabi_dmul;
    150             break;
    151         case OP_REM_DOUBLE_2ADDR:
    152         case OP_REM_DOUBLE:
    153             funct = (void*) (double (*)(double, double)) fmod;
    154             break;
    155         case OP_NEG_DOUBLE: {
    156             genNegDouble(cUnit, rlDest, rlSrc1);
    157             return false;
    158         }
    159         default:
    160             return true;
    161     }
    162     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
    163     LOAD_FUNC_ADDR(cUnit, r14lr, (int)funct);
    164     loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
    165     loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
    166     opReg(cUnit, kOpBlx, r14lr);
    167     dvmCompilerClobberCallRegs(cUnit);
    168     rlResult = dvmCompilerGetReturnWide(cUnit);
    169     storeValueWide(cUnit, rlDest, rlResult);
    170 #if defined(WITH_SELF_VERIFICATION)
    171     cUnit->usesLinkRegister = true;
    172 #endif
    173     return false;
    174 }
    175 
    176 static bool genConversionPortable(CompilationUnit *cUnit, MIR *mir)
    177 {
    178     Opcode opcode = mir->dalvikInsn.opcode;
    179 
    180     switch (opcode) {
    181         case OP_INT_TO_FLOAT:
    182             return genConversionCall(cUnit, mir, (void*)__aeabi_i2f, 1, 1);
    183         case OP_FLOAT_TO_INT:
    184             return genConversionCall(cUnit, mir, (void*)__aeabi_f2iz, 1, 1);
    185         case OP_DOUBLE_TO_FLOAT:
    186             return genConversionCall(cUnit, mir, (void*)__aeabi_d2f, 2, 1);
    187         case OP_FLOAT_TO_DOUBLE:
    188             return genConversionCall(cUnit, mir, (void*)__aeabi_f2d, 1, 2);
    189         case OP_INT_TO_DOUBLE:
    190             return genConversionCall(cUnit, mir, (void*)__aeabi_i2d, 1, 2);
    191         case OP_DOUBLE_TO_INT:
    192             return genConversionCall(cUnit, mir, (void*)__aeabi_d2iz, 2, 1);
    193         case OP_FLOAT_TO_LONG:
    194             return genConversionCall(cUnit, mir, (void*)dvmJitf2l, 1, 2);
    195         case OP_LONG_TO_FLOAT:
    196             return genConversionCall(cUnit, mir, (void*)__aeabi_l2f, 2, 1);
    197         case OP_DOUBLE_TO_LONG:
    198             return genConversionCall(cUnit, mir, (void*)dvmJitd2l, 2, 2);
    199         case OP_LONG_TO_DOUBLE:
    200             return genConversionCall(cUnit, mir, (void*)__aeabi_l2d, 2, 2);
    201         default:
    202             return true;
    203     }
    204     return false;
    205 }
    206 
    207 #if defined(WITH_SELF_VERIFICATION)
    208 static void selfVerificationBranchInsert(LIR *currentLIR, ArmOpcode opcode,
    209                           int dest, int src1)
    210 {
    211      ArmLIR *insn = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
    212      insn->opcode = opcode;
    213      insn->operands[0] = dest;
    214      insn->operands[1] = src1;
    215      setupResourceMasks(insn);
    216      dvmCompilerInsertLIRBefore(currentLIR, (LIR *) insn);
    217 }
    218 
    219 /*
    220  * Example where r14 (LR) is preserved around a heap access under
    221  * self-verification mode in Thumb2:
    222  *
    223  * D/dalvikvm( 1538): 0x59414c5e (0026): ldr     r14, [r15pc, #220] <-hoisted
    224  * D/dalvikvm( 1538): 0x59414c62 (002a): mla     r4, r0, r8, r4
    225  * D/dalvikvm( 1538): 0x59414c66 (002e): adds    r3, r4, r3
    226  * D/dalvikvm( 1538): 0x59414c6a (0032): push    <r5, r14>    ---+
    227  * D/dalvikvm( 1538): 0x59414c6c (0034): blx_1   0x5940f494      |
    228  * D/dalvikvm( 1538): 0x59414c6e (0036): blx_2   see above       <-MEM_OP_DECODE
    229  * D/dalvikvm( 1538): 0x59414c70 (0038): ldr     r10, [r9, #0]   |
    230  * D/dalvikvm( 1538): 0x59414c74 (003c): pop     <r5, r14>    ---+
    231  * D/dalvikvm( 1538): 0x59414c78 (0040): mov     r11, r10
    232  * D/dalvikvm( 1538): 0x59414c7a (0042): asr     r12, r11, #31
    233  * D/dalvikvm( 1538): 0x59414c7e (0046): movs    r0, r2
    234  * D/dalvikvm( 1538): 0x59414c80 (0048): movs    r1, r3
    235  * D/dalvikvm( 1538): 0x59414c82 (004a): str     r2, [r5, #16]
    236  * D/dalvikvm( 1538): 0x59414c84 (004c): mov     r2, r11
    237  * D/dalvikvm( 1538): 0x59414c86 (004e): str     r3, [r5, #20]
    238  * D/dalvikvm( 1538): 0x59414c88 (0050): mov     r3, r12
    239  * D/dalvikvm( 1538): 0x59414c8a (0052): str     r11, [r5, #24]
    240  * D/dalvikvm( 1538): 0x59414c8e (0056): str     r12, [r5, #28]
    241  * D/dalvikvm( 1538): 0x59414c92 (005a): blx     r14             <-use of LR
    242  *
    243  */
    244 static void selfVerificationBranchInsertPass(CompilationUnit *cUnit)
    245 {
    246     ArmLIR *thisLIR;
    247     TemplateOpcode opcode = TEMPLATE_MEM_OP_DECODE;
    248 
    249     for (thisLIR = (ArmLIR *) cUnit->firstLIRInsn;
    250          thisLIR != (ArmLIR *) cUnit->lastLIRInsn;
    251          thisLIR = NEXT_LIR(thisLIR)) {
    252         if (!thisLIR->flags.isNop && thisLIR->flags.insertWrapper) {
    253             /*
    254              * Push r5(FP) and r14(LR) onto stack. We need to make sure that
    255              * SP is 8-byte aligned, and we use r5 as a temp to restore LR
    256              * for Thumb-only target since LR cannot be directly accessed in
    257              * Thumb mode. Another reason to choose r5 here is it is the Dalvik
    258              * frame pointer and cannot be the target of the emulated heap
    259              * load.
    260              */
    261             if (cUnit->usesLinkRegister) {
    262                 genSelfVerificationPreBranch(cUnit, thisLIR);
    263             }
    264 
    265             /* Branch to mem op decode template */
    266             selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx1,
    267                        (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
    268                        (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
    269             selfVerificationBranchInsert((LIR *) thisLIR, kThumbBlx2,
    270                        (int) gDvmJit.codeCache + templateEntryOffsets[opcode],
    271                        (int) gDvmJit.codeCache + templateEntryOffsets[opcode]);
    272 
    273             /* Restore LR */
    274             if (cUnit->usesLinkRegister) {
    275                 genSelfVerificationPostBranch(cUnit, thisLIR);
    276             }
    277         }
    278     }
    279 }
    280 #endif
    281 
    282 /* Generate conditional branch instructions */
    283 static ArmLIR *genConditionalBranch(CompilationUnit *cUnit,
    284                                     ArmConditionCode cond,
    285                                     ArmLIR *target)
    286 {
    287     ArmLIR *branch = opCondBranch(cUnit, cond);
    288     branch->generic.target = (LIR *) target;
    289     return branch;
    290 }
    291 
    292 /* Generate a unconditional branch to go to the interpreter */
    293 static inline ArmLIR *genTrap(CompilationUnit *cUnit, int dOffset,
    294                                   ArmLIR *pcrLabel)
    295 {
    296     ArmLIR *branch = opNone(cUnit, kOpUncondBr);
    297     return genCheckCommon(cUnit, dOffset, branch, pcrLabel);
    298 }
    299 
    300 /* Load a wide field from an object instance */
    301 static void genIGetWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
    302 {
    303     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
    304     RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
    305     RegLocation rlResult;
    306     rlObj = loadValue(cUnit, rlObj, kCoreReg);
    307     int regPtr = dvmCompilerAllocTemp(cUnit);
    308 
    309     assert(rlDest.wide);
    310 
    311     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
    312                  NULL);/* null object? */
    313     opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
    314     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
    315 
    316     HEAP_ACCESS_SHADOW(true);
    317     loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
    318     HEAP_ACCESS_SHADOW(false);
    319 
    320     dvmCompilerFreeTemp(cUnit, regPtr);
    321     storeValueWide(cUnit, rlDest, rlResult);
    322 }
    323 
    324 /* Store a wide field to an object instance */
    325 static void genIPutWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
    326 {
    327     RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
    328     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 2);
    329     rlObj = loadValue(cUnit, rlObj, kCoreReg);
    330     int regPtr;
    331     rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
    332     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
    333                  NULL);/* null object? */
    334     regPtr = dvmCompilerAllocTemp(cUnit);
    335     opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
    336 
    337     HEAP_ACCESS_SHADOW(true);
    338     storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
    339     HEAP_ACCESS_SHADOW(false);
    340 
    341     dvmCompilerFreeTemp(cUnit, regPtr);
    342 }
    343 
    344 /*
    345  * Load a field from an object instance
    346  *
    347  */
    348 static void genIGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
    349                     int fieldOffset, bool isVolatile)
    350 {
    351     RegLocation rlResult;
    352     RegisterClass regClass = dvmCompilerRegClassBySize(size);
    353     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
    354     RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
    355     rlObj = loadValue(cUnit, rlObj, kCoreReg);
    356     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
    357     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
    358                  NULL);/* null object? */
    359 
    360     HEAP_ACCESS_SHADOW(true);
    361     loadBaseDisp(cUnit, mir, rlObj.lowReg, fieldOffset, rlResult.lowReg,
    362                  size, rlObj.sRegLow);
    363     HEAP_ACCESS_SHADOW(false);
    364     if (isVolatile) {
    365         dvmCompilerGenMemBarrier(cUnit, kSY);
    366     }
    367 
    368     storeValue(cUnit, rlDest, rlResult);
    369 }
    370 
    371 /*
    372  * Store a field to an object instance
    373  *
    374  */
    375 static void genIPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
    376                     int fieldOffset, bool isObject, bool isVolatile)
    377 {
    378     RegisterClass regClass = dvmCompilerRegClassBySize(size);
    379     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
    380     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 1);
    381     rlObj = loadValue(cUnit, rlObj, kCoreReg);
    382     rlSrc = loadValue(cUnit, rlSrc, regClass);
    383     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
    384                  NULL);/* null object? */
    385 
    386     if (isVolatile) {
    387         dvmCompilerGenMemBarrier(cUnit, kST);
    388     }
    389     HEAP_ACCESS_SHADOW(true);
    390     storeBaseDisp(cUnit, rlObj.lowReg, fieldOffset, rlSrc.lowReg, size);
    391     HEAP_ACCESS_SHADOW(false);
    392     if (isVolatile) {
    393         dvmCompilerGenMemBarrier(cUnit, kSY);
    394     }
    395     if (isObject) {
    396         /* NOTE: marking card based on object head */
    397         markCard(cUnit, rlSrc.lowReg, rlObj.lowReg);
    398     }
    399 }
    400 
    401 
    402 /*
    403  * Generate array load
    404  */
    405 static void genArrayGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
    406                         RegLocation rlArray, RegLocation rlIndex,
    407                         RegLocation rlDest, int scale)
    408 {
    409     RegisterClass regClass = dvmCompilerRegClassBySize(size);
    410     int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
    411     int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
    412     RegLocation rlResult;
    413     rlArray = loadValue(cUnit, rlArray, kCoreReg);
    414     rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
    415     int regPtr;
    416 
    417     /* null object? */
    418     ArmLIR * pcrLabel = NULL;
    419 
    420     if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
    421         pcrLabel = genNullCheck(cUnit, rlArray.sRegLow,
    422                                 rlArray.lowReg, mir->offset, NULL);
    423     }
    424 
    425     regPtr = dvmCompilerAllocTemp(cUnit);
    426 
    427     if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
    428         int regLen = dvmCompilerAllocTemp(cUnit);
    429         /* Get len */
    430         loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
    431         /* regPtr -> array data */
    432         opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
    433         genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
    434                        pcrLabel);
    435         dvmCompilerFreeTemp(cUnit, regLen);
    436     } else {
    437         /* regPtr -> array data */
    438         opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
    439     }
    440     if ((size == kLong) || (size == kDouble)) {
    441         if (scale) {
    442             int rNewIndex = dvmCompilerAllocTemp(cUnit);
    443             opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
    444             opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
    445             dvmCompilerFreeTemp(cUnit, rNewIndex);
    446         } else {
    447             opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
    448         }
    449         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
    450 
    451         HEAP_ACCESS_SHADOW(true);
    452         loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
    453         HEAP_ACCESS_SHADOW(false);
    454 
    455         dvmCompilerFreeTemp(cUnit, regPtr);
    456         storeValueWide(cUnit, rlDest, rlResult);
    457     } else {
    458         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, regClass, true);
    459 
    460         HEAP_ACCESS_SHADOW(true);
    461         loadBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlResult.lowReg,
    462                         scale, size);
    463         HEAP_ACCESS_SHADOW(false);
    464 
    465         dvmCompilerFreeTemp(cUnit, regPtr);
    466         storeValue(cUnit, rlDest, rlResult);
    467     }
    468 }
    469 
    470 /*
    471  * Generate array store
    472  *
    473  */
    474 static void genArrayPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
    475                         RegLocation rlArray, RegLocation rlIndex,
    476                         RegLocation rlSrc, int scale)
    477 {
    478     RegisterClass regClass = dvmCompilerRegClassBySize(size);
    479     int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
    480     int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
    481 
    482     int regPtr;
    483     rlArray = loadValue(cUnit, rlArray, kCoreReg);
    484     rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
    485 
    486     if (dvmCompilerIsTemp(cUnit, rlArray.lowReg)) {
    487         dvmCompilerClobber(cUnit, rlArray.lowReg);
    488         regPtr = rlArray.lowReg;
    489     } else {
    490         regPtr = dvmCompilerAllocTemp(cUnit);
    491         genRegCopy(cUnit, regPtr, rlArray.lowReg);
    492     }
    493 
    494     /* null object? */
    495     ArmLIR * pcrLabel = NULL;
    496 
    497     if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
    498         pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, rlArray.lowReg,
    499                                 mir->offset, NULL);
    500     }
    501 
    502     if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
    503         int regLen = dvmCompilerAllocTemp(cUnit);
    504         //NOTE: max live temps(4) here.
    505         /* Get len */
    506         loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
    507         /* regPtr -> array data */
    508         opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
    509         genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
    510                        pcrLabel);
    511         dvmCompilerFreeTemp(cUnit, regLen);
    512     } else {
    513         /* regPtr -> array data */
    514         opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
    515     }
    516     /* at this point, regPtr points to array, 2 live temps */
    517     if ((size == kLong) || (size == kDouble)) {
    518         //TODO: need specific wide routine that can handle fp regs
    519         if (scale) {
    520             int rNewIndex = dvmCompilerAllocTemp(cUnit);
    521             opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
    522             opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
    523             dvmCompilerFreeTemp(cUnit, rNewIndex);
    524         } else {
    525             opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
    526         }
    527         rlSrc = loadValueWide(cUnit, rlSrc, regClass);
    528 
    529         HEAP_ACCESS_SHADOW(true);
    530         storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
    531         HEAP_ACCESS_SHADOW(false);
    532 
    533         dvmCompilerFreeTemp(cUnit, regPtr);
    534     } else {
    535         rlSrc = loadValue(cUnit, rlSrc, regClass);
    536 
    537         HEAP_ACCESS_SHADOW(true);
    538         storeBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlSrc.lowReg,
    539                          scale, size);
    540         HEAP_ACCESS_SHADOW(false);
    541     }
    542 }
    543 
    544 /*
    545  * Generate array object store
    546  * Must use explicit register allocation here because of
    547  * call-out to dvmCanPutArrayElement
    548  */
    549 static void genArrayObjectPut(CompilationUnit *cUnit, MIR *mir,
    550                               RegLocation rlArray, RegLocation rlIndex,
    551                               RegLocation rlSrc, int scale)
    552 {
    553     int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
    554     int dataOffset = OFFSETOF_MEMBER(ArrayObject, contents);
    555 
    556     dvmCompilerFlushAllRegs(cUnit);
    557 
    558     int regLen = r0;
    559     int regPtr = r4PC;  /* Preserved across call */
    560     int regArray = r1;
    561     int regIndex = r7;  /* Preserved across call */
    562 
    563     loadValueDirectFixed(cUnit, rlArray, regArray);
    564     loadValueDirectFixed(cUnit, rlIndex, regIndex);
    565 
    566     /* null object? */
    567     ArmLIR * pcrLabel = NULL;
    568 
    569     if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
    570         pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, regArray,
    571                                 mir->offset, NULL);
    572     }
    573 
    574     if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
    575         /* Get len */
    576         loadWordDisp(cUnit, regArray, lenOffset, regLen);
    577         /* regPtr -> array data */
    578         opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
    579         genBoundsCheck(cUnit, regIndex, regLen, mir->offset,
    580                        pcrLabel);
    581     } else {
    582         /* regPtr -> array data */
    583         opRegRegImm(cUnit, kOpAdd, regPtr, regArray, dataOffset);
    584     }
    585 
    586     /* Get object to store */
    587     loadValueDirectFixed(cUnit, rlSrc, r0);
    588     LOAD_FUNC_ADDR(cUnit, r2, (int)dvmCanPutArrayElement);
    589 
    590     /* Are we storing null?  If so, avoid check */
    591     ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondEq, r0, 0);
    592 
    593     /* Make sure the types are compatible */
    594     loadWordDisp(cUnit, regArray, offsetof(Object, clazz), r1);
    595     loadWordDisp(cUnit, r0, offsetof(Object, clazz), r0);
    596     opReg(cUnit, kOpBlx, r2);
    597     dvmCompilerClobberCallRegs(cUnit);
    598 
    599     /*
    600      * Using fixed registers here, and counting on r4 and r7 being
    601      * preserved across the above call.  Tell the register allocation
    602      * utilities about the regs we are using directly
    603      */
    604     dvmCompilerLockTemp(cUnit, regPtr);   // r4PC
    605     dvmCompilerLockTemp(cUnit, regIndex); // r7
    606     dvmCompilerLockTemp(cUnit, r0);
    607     dvmCompilerLockTemp(cUnit, r1);
    608 
    609     /* Bad? - roll back and re-execute if so */
    610     genRegImmCheck(cUnit, kArmCondEq, r0, 0, mir->offset, pcrLabel);
    611 
    612     /* Resume here - must reload element & array, regPtr & index preserved */
    613     loadValueDirectFixed(cUnit, rlSrc, r0);
    614     loadValueDirectFixed(cUnit, rlArray, r1);
    615 
    616     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
    617     target->defMask = ENCODE_ALL;
    618     branchOver->generic.target = (LIR *) target;
    619 
    620     HEAP_ACCESS_SHADOW(true);
    621     storeBaseIndexed(cUnit, regPtr, regIndex, r0,
    622                      scale, kWord);
    623     HEAP_ACCESS_SHADOW(false);
    624 
    625     dvmCompilerFreeTemp(cUnit, regPtr);
    626     dvmCompilerFreeTemp(cUnit, regIndex);
    627 
    628     /* NOTE: marking card here based on object head */
    629     markCard(cUnit, r0, r1);
    630 }
    631 
    632 static bool genShiftOpLong(CompilationUnit *cUnit, MIR *mir,
    633                            RegLocation rlDest, RegLocation rlSrc1,
    634                            RegLocation rlShift)
    635 {
    636     /*
    637      * Don't mess with the regsiters here as there is a particular calling
    638      * convention to the out-of-line handler.
    639      */
    640     RegLocation rlResult;
    641 
    642     loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
    643     loadValueDirect(cUnit, rlShift, r2);
    644     switch( mir->dalvikInsn.opcode) {
    645         case OP_SHL_LONG:
    646         case OP_SHL_LONG_2ADDR:
    647             genDispatchToHandler(cUnit, TEMPLATE_SHL_LONG);
    648             break;
    649         case OP_SHR_LONG:
    650         case OP_SHR_LONG_2ADDR:
    651             genDispatchToHandler(cUnit, TEMPLATE_SHR_LONG);
    652             break;
    653         case OP_USHR_LONG:
    654         case OP_USHR_LONG_2ADDR:
    655             genDispatchToHandler(cUnit, TEMPLATE_USHR_LONG);
    656             break;
    657         default:
    658             return true;
    659     }
    660     rlResult = dvmCompilerGetReturnWide(cUnit);
    661     storeValueWide(cUnit, rlDest, rlResult);
    662     return false;
    663 }
    664 
    665 static bool genArithOpLong(CompilationUnit *cUnit, MIR *mir,
    666                            RegLocation rlDest, RegLocation rlSrc1,
    667                            RegLocation rlSrc2)
    668 {
    669     RegLocation rlResult;
    670     OpKind firstOp = kOpBkpt;
    671     OpKind secondOp = kOpBkpt;
    672     bool callOut = false;
    673     bool checkZero = false;
    674     void *callTgt;
    675     int retReg = r0;
    676 
    677     switch (mir->dalvikInsn.opcode) {
    678         case OP_NOT_LONG:
    679             rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
    680             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    681             opRegReg(cUnit, kOpMvn, rlResult.lowReg, rlSrc2.lowReg);
    682             opRegReg(cUnit, kOpMvn, rlResult.highReg, rlSrc2.highReg);
    683             storeValueWide(cUnit, rlDest, rlResult);
    684             return false;
    685             break;
    686         case OP_ADD_LONG:
    687         case OP_ADD_LONG_2ADDR:
    688             firstOp = kOpAdd;
    689             secondOp = kOpAdc;
    690             break;
    691         case OP_SUB_LONG:
    692         case OP_SUB_LONG_2ADDR:
    693             firstOp = kOpSub;
    694             secondOp = kOpSbc;
    695             break;
    696         case OP_MUL_LONG:
    697         case OP_MUL_LONG_2ADDR:
    698             genMulLong(cUnit, rlDest, rlSrc1, rlSrc2);
    699             return false;
    700         case OP_DIV_LONG:
    701         case OP_DIV_LONG_2ADDR:
    702             callOut = true;
    703             retReg = r0;
    704             checkZero = true;
    705             callTgt = (void*)__aeabi_ldivmod;
    706             break;
    707         /* NOTE - result is in r2/r3 instead of r0/r1 */
    708         case OP_REM_LONG:
    709         case OP_REM_LONG_2ADDR:
    710             callOut = true;
    711             callTgt = (void*)__aeabi_ldivmod;
    712             retReg = r2;
    713             checkZero = true;
    714             break;
    715         case OP_AND_LONG_2ADDR:
    716         case OP_AND_LONG:
    717             firstOp = kOpAnd;
    718             secondOp = kOpAnd;
    719             break;
    720         case OP_OR_LONG:
    721         case OP_OR_LONG_2ADDR:
    722             firstOp = kOpOr;
    723             secondOp = kOpOr;
    724             break;
    725         case OP_XOR_LONG:
    726         case OP_XOR_LONG_2ADDR:
    727             firstOp = kOpXor;
    728             secondOp = kOpXor;
    729             break;
    730         case OP_NEG_LONG: {
    731             //TUNING: can improve this using Thumb2 code
    732             int tReg = dvmCompilerAllocTemp(cUnit);
    733             rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
    734             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    735             loadConstantNoClobber(cUnit, tReg, 0);
    736             opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
    737                         tReg, rlSrc2.lowReg);
    738             opRegReg(cUnit, kOpSbc, tReg, rlSrc2.highReg);
    739             genRegCopy(cUnit, rlResult.highReg, tReg);
    740             storeValueWide(cUnit, rlDest, rlResult);
    741             return false;
    742         }
    743         default:
    744             ALOGE("Invalid long arith op");
    745             dvmCompilerAbort(cUnit);
    746     }
    747     if (!callOut) {
    748         genLong3Addr(cUnit, mir, firstOp, secondOp, rlDest, rlSrc1, rlSrc2);
    749     } else {
    750         // Adjust return regs in to handle case of rem returning r2/r3
    751         dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
    752         loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
    753         loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
    754         LOAD_FUNC_ADDR(cUnit, r14lr, (int) callTgt);
    755         if (checkZero) {
    756             int tReg = r12; // Using fixed registers during call sequence
    757             opRegRegReg(cUnit, kOpOr, tReg, r2, r3);
    758             genRegImmCheck(cUnit, kArmCondEq, tReg, 0, mir->offset, NULL);
    759         }
    760         opReg(cUnit, kOpBlx, r14lr);
    761         dvmCompilerClobberCallRegs(cUnit);
    762         if (retReg == r0)
    763             rlResult = dvmCompilerGetReturnWide(cUnit);
    764         else
    765             rlResult = dvmCompilerGetReturnWideAlt(cUnit);
    766         storeValueWide(cUnit, rlDest, rlResult);
    767 #if defined(WITH_SELF_VERIFICATION)
    768         cUnit->usesLinkRegister = true;
    769 #endif
    770     }
    771     return false;
    772 }
    773 
    774 static bool genArithOpInt(CompilationUnit *cUnit, MIR *mir,
    775                           RegLocation rlDest, RegLocation rlSrc1,
    776                           RegLocation rlSrc2)
    777 {
    778     OpKind op = kOpBkpt;
    779     bool callOut = false;
    780     bool checkZero = false;
    781     bool unary = false;
    782     int retReg = r0;
    783     int (*callTgt)(int, int);
    784     RegLocation rlResult;
    785     bool shiftOp = false;
    786 
    787     switch (mir->dalvikInsn.opcode) {
    788         case OP_NEG_INT:
    789             op = kOpNeg;
    790             unary = true;
    791             break;
    792         case OP_NOT_INT:
    793             op = kOpMvn;
    794             unary = true;
    795             break;
    796         case OP_ADD_INT:
    797         case OP_ADD_INT_2ADDR:
    798             op = kOpAdd;
    799             break;
    800         case OP_SUB_INT:
    801         case OP_SUB_INT_2ADDR:
    802             op = kOpSub;
    803             break;
    804         case OP_MUL_INT:
    805         case OP_MUL_INT_2ADDR:
    806             op = kOpMul;
    807             break;
    808         case OP_DIV_INT:
    809         case OP_DIV_INT_2ADDR:
    810             callOut = true;
    811             checkZero = true;
    812             callTgt = __aeabi_idiv;
    813             retReg = r0;
    814             break;
    815         /* NOTE: returns in r1 */
    816         case OP_REM_INT:
    817         case OP_REM_INT_2ADDR:
    818             callOut = true;
    819             checkZero = true;
    820             callTgt = __aeabi_idivmod;
    821             retReg = r1;
    822             break;
    823         case OP_AND_INT:
    824         case OP_AND_INT_2ADDR:
    825             op = kOpAnd;
    826             break;
    827         case OP_OR_INT:
    828         case OP_OR_INT_2ADDR:
    829             op = kOpOr;
    830             break;
    831         case OP_XOR_INT:
    832         case OP_XOR_INT_2ADDR:
    833             op = kOpXor;
    834             break;
    835         case OP_SHL_INT:
    836         case OP_SHL_INT_2ADDR:
    837             shiftOp = true;
    838             op = kOpLsl;
    839             break;
    840         case OP_SHR_INT:
    841         case OP_SHR_INT_2ADDR:
    842             shiftOp = true;
    843             op = kOpAsr;
    844             break;
    845         case OP_USHR_INT:
    846         case OP_USHR_INT_2ADDR:
    847             shiftOp = true;
    848             op = kOpLsr;
    849             break;
    850         default:
    851             ALOGE("Invalid word arith op: %#x(%d)",
    852                  mir->dalvikInsn.opcode, mir->dalvikInsn.opcode);
    853             dvmCompilerAbort(cUnit);
    854     }
    855     if (!callOut) {
    856         rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
    857         if (unary) {
    858             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    859             opRegReg(cUnit, op, rlResult.lowReg,
    860                      rlSrc1.lowReg);
    861         } else {
    862             rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
    863             if (shiftOp) {
    864                 int tReg = dvmCompilerAllocTemp(cUnit);
    865                 opRegRegImm(cUnit, kOpAnd, tReg, rlSrc2.lowReg, 31);
    866                 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    867                 opRegRegReg(cUnit, op, rlResult.lowReg,
    868                             rlSrc1.lowReg, tReg);
    869                 dvmCompilerFreeTemp(cUnit, tReg);
    870             } else {
    871                 rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
    872                 opRegRegReg(cUnit, op, rlResult.lowReg,
    873                             rlSrc1.lowReg, rlSrc2.lowReg);
    874             }
    875         }
    876         storeValue(cUnit, rlDest, rlResult);
    877     } else {
    878         RegLocation rlResult;
    879         dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
    880         loadValueDirectFixed(cUnit, rlSrc2, r1);
    881         LOAD_FUNC_ADDR(cUnit, r2, (int) callTgt);
    882         loadValueDirectFixed(cUnit, rlSrc1, r0);
    883         if (checkZero) {
    884             genNullCheck(cUnit, rlSrc2.sRegLow, r1, mir->offset, NULL);
    885         }
    886         opReg(cUnit, kOpBlx, r2);
    887         dvmCompilerClobberCallRegs(cUnit);
    888         if (retReg == r0)
    889             rlResult = dvmCompilerGetReturn(cUnit);
    890         else
    891             rlResult = dvmCompilerGetReturnAlt(cUnit);
    892         storeValue(cUnit, rlDest, rlResult);
    893     }
    894     return false;
    895 }
    896 
    897 static bool genArithOp(CompilationUnit *cUnit, MIR *mir)
    898 {
    899     Opcode opcode = mir->dalvikInsn.opcode;
    900     RegLocation rlDest;
    901     RegLocation rlSrc1;
    902     RegLocation rlSrc2;
    903     /* Deduce sizes of operands */
    904     if (mir->ssaRep->numUses == 2) {
    905         rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
    906         rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
    907     } else if (mir->ssaRep->numUses == 3) {
    908         rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
    909         rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
    910     } else {
    911         rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
    912         rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
    913         assert(mir->ssaRep->numUses == 4);
    914     }
    915     if (mir->ssaRep->numDefs == 1) {
    916         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
    917     } else {
    918         assert(mir->ssaRep->numDefs == 2);
    919         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
    920     }
    921 
    922     if ((opcode >= OP_ADD_LONG_2ADDR) && (opcode <= OP_XOR_LONG_2ADDR)) {
    923         return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    924     }
    925     if ((opcode >= OP_ADD_LONG) && (opcode <= OP_XOR_LONG)) {
    926         return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    927     }
    928     if ((opcode >= OP_SHL_LONG_2ADDR) && (opcode <= OP_USHR_LONG_2ADDR)) {
    929         return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    930     }
    931     if ((opcode >= OP_SHL_LONG) && (opcode <= OP_USHR_LONG)) {
    932         return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    933     }
    934     if ((opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_USHR_INT_2ADDR)) {
    935         return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    936     }
    937     if ((opcode >= OP_ADD_INT) && (opcode <= OP_USHR_INT)) {
    938         return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    939     }
    940     if ((opcode >= OP_ADD_FLOAT_2ADDR) && (opcode <= OP_REM_FLOAT_2ADDR)) {
    941         return genArithOpFloat(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    942     }
    943     if ((opcode >= OP_ADD_FLOAT) && (opcode <= OP_REM_FLOAT)) {
    944         return genArithOpFloat(cUnit, mir, rlDest, rlSrc1, rlSrc2);
    945     }
    946     if ((opcode >= OP_ADD_DOUBLE_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) {
    947         return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    948     }
    949     if ((opcode >= OP_ADD_DOUBLE) && (opcode <= OP_REM_DOUBLE)) {
    950         return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
    951     }
    952     return true;
    953 }
    954 
    955 /* Generate unconditional branch instructions */
    956 static ArmLIR *genUnconditionalBranch(CompilationUnit *cUnit, ArmLIR *target)
    957 {
    958     ArmLIR *branch = opNone(cUnit, kOpUncondBr);
    959     branch->generic.target = (LIR *) target;
    960     return branch;
    961 }
    962 
    963 /* Perform the actual operation for OP_RETURN_* */
    964 static void genReturnCommon(CompilationUnit *cUnit, MIR *mir)
    965 {
    966     genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
    967                          TEMPLATE_RETURN_PROF : TEMPLATE_RETURN);
    968 #if defined(WITH_JIT_TUNING)
    969     gDvmJit.returnOp++;
    970 #endif
    971     int dPC = (int) (cUnit->method->insns + mir->offset);
    972     /* Insert branch, but defer setting of target */
    973     ArmLIR *branch = genUnconditionalBranch(cUnit, NULL);
    974     /* Set up the place holder to reconstruct this Dalvik PC */
    975     ArmLIR *pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
    976     pcrLabel->opcode = kArmPseudoPCReconstructionCell;
    977     pcrLabel->operands[0] = dPC;
    978     pcrLabel->operands[1] = mir->offset;
    979     /* Insert the place holder to the growable list */
    980     dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel);
    981     /* Branch to the PC reconstruction code */
    982     branch->generic.target = (LIR *) pcrLabel;
    983 }
    984 
    985 static void genProcessArgsNoRange(CompilationUnit *cUnit, MIR *mir,
    986                                   DecodedInstruction *dInsn,
    987                                   ArmLIR **pcrLabel)
    988 {
    989     unsigned int i;
    990     unsigned int regMask = 0;
    991     RegLocation rlArg;
    992     int numDone = 0;
    993 
    994     /*
    995      * Load arguments to r0..r4.  Note that these registers may contain
    996      * live values, so we clobber them immediately after loading to prevent
    997      * them from being used as sources for subsequent loads.
    998      */
    999     dvmCompilerLockAllTemps(cUnit);
   1000     for (i = 0; i < dInsn->vA; i++) {
   1001         regMask |= 1 << i;
   1002         rlArg = dvmCompilerGetSrc(cUnit, mir, numDone++);
   1003         loadValueDirectFixed(cUnit, rlArg, i);
   1004     }
   1005     if (regMask) {
   1006         /* Up to 5 args are pushed on top of FP - sizeofStackSaveArea */
   1007         opRegRegImm(cUnit, kOpSub, r7, r5FP,
   1008                     sizeof(StackSaveArea) + (dInsn->vA << 2));
   1009         /* generate null check */
   1010         if (pcrLabel) {
   1011             *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0,
   1012                                      mir->offset, NULL);
   1013         }
   1014         storeMultiple(cUnit, r7, regMask);
   1015     }
   1016 }
   1017 
   1018 static void genProcessArgsRange(CompilationUnit *cUnit, MIR *mir,
   1019                                 DecodedInstruction *dInsn,
   1020                                 ArmLIR **pcrLabel)
   1021 {
   1022     int srcOffset = dInsn->vC << 2;
   1023     int numArgs = dInsn->vA;
   1024     int regMask;
   1025 
   1026     /*
   1027      * Note: here, all promoted registers will have been flushed
   1028      * back to the Dalvik base locations, so register usage restrictins
   1029      * are lifted.  All parms loaded from original Dalvik register
   1030      * region - even though some might conceivably have valid copies
   1031      * cached in a preserved register.
   1032      */
   1033     dvmCompilerLockAllTemps(cUnit);
   1034 
   1035     /*
   1036      * r4PC     : &r5FP[vC]
   1037      * r7: &newFP[0]
   1038      */
   1039     opRegRegImm(cUnit, kOpAdd, r4PC, r5FP, srcOffset);
   1040     /* load [r0 .. min(numArgs,4)] */
   1041     regMask = (1 << ((numArgs < 4) ? numArgs : 4)) - 1;
   1042     /*
   1043      * Protect the loadMultiple instruction from being reordered with other
   1044      * Dalvik stack accesses.
   1045      */
   1046     if (numArgs != 0) loadMultiple(cUnit, r4PC, regMask);
   1047 
   1048     opRegRegImm(cUnit, kOpSub, r7, r5FP,
   1049                 sizeof(StackSaveArea) + (numArgs << 2));
   1050     /* generate null check */
   1051     if (pcrLabel) {
   1052         *pcrLabel = genNullCheck(cUnit, dvmCompilerSSASrc(mir, 0), r0,
   1053                                  mir->offset, NULL);
   1054     }
   1055 
   1056     /*
   1057      * Handle remaining 4n arguments:
   1058      * store previously loaded 4 values and load the next 4 values
   1059      */
   1060     if (numArgs >= 8) {
   1061         ArmLIR *loopLabel = NULL;
   1062         /*
   1063          * r0 contains "this" and it will be used later, so push it to the stack
   1064          * first. Pushing r5FP is just for stack alignment purposes.
   1065          */
   1066         opImm(cUnit, kOpPush, (1 << r0 | 1 << r5FP));
   1067         /* No need to generate the loop structure if numArgs <= 11 */
   1068         if (numArgs > 11) {
   1069             loadConstant(cUnit, 5, ((numArgs - 4) >> 2) << 2);
   1070             loopLabel = newLIR0(cUnit, kArmPseudoTargetLabel);
   1071             loopLabel->defMask = ENCODE_ALL;
   1072         }
   1073         storeMultiple(cUnit, r7, regMask);
   1074         /*
   1075          * Protect the loadMultiple instruction from being reordered with other
   1076          * Dalvik stack accesses.
   1077          */
   1078         loadMultiple(cUnit, r4PC, regMask);
   1079         /* No need to generate the loop structure if numArgs <= 11 */
   1080         if (numArgs > 11) {
   1081             opRegImm(cUnit, kOpSub, r5FP, 4);
   1082             genConditionalBranch(cUnit, kArmCondNe, loopLabel);
   1083         }
   1084     }
   1085 
   1086     /* Save the last batch of loaded values */
   1087     if (numArgs != 0) storeMultiple(cUnit, r7, regMask);
   1088 
   1089     /* Generate the loop epilogue - don't use r0 */
   1090     if ((numArgs > 4) && (numArgs % 4)) {
   1091         regMask = ((1 << (numArgs & 0x3)) - 1) << 1;
   1092         /*
   1093          * Protect the loadMultiple instruction from being reordered with other
   1094          * Dalvik stack accesses.
   1095          */
   1096         loadMultiple(cUnit, r4PC, regMask);
   1097     }
   1098     if (numArgs >= 8)
   1099         opImm(cUnit, kOpPop, (1 << r0 | 1 << r5FP));
   1100 
   1101     /* Save the modulo 4 arguments */
   1102     if ((numArgs > 4) && (numArgs % 4)) {
   1103         storeMultiple(cUnit, r7, regMask);
   1104     }
   1105 }
   1106 
   1107 /*
   1108  * Generate code to setup the call stack then jump to the chaining cell if it
   1109  * is not a native method.
   1110  */
   1111 static void genInvokeSingletonCommon(CompilationUnit *cUnit, MIR *mir,
   1112                                      BasicBlock *bb, ArmLIR *labelList,
   1113                                      ArmLIR *pcrLabel,
   1114                                      const Method *calleeMethod)
   1115 {
   1116     /*
   1117      * Note: all Dalvik register state should be flushed to
   1118      * memory by the point, so register usage restrictions no
   1119      * longer apply.  All temp & preserved registers may be used.
   1120      */
   1121     dvmCompilerLockAllTemps(cUnit);
   1122     ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
   1123 
   1124     /* r1 = &retChainingCell */
   1125     ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
   1126 
   1127     /* r4PC = dalvikCallsite */
   1128     loadConstant(cUnit, r4PC,
   1129                  (int) (cUnit->method->insns + mir->offset));
   1130     addrRetChain->generic.target = (LIR *) retChainingCell;
   1131 
   1132     /* r7 = calleeMethod->registersSize */
   1133     loadConstant(cUnit, r7, calleeMethod->registersSize);
   1134     /*
   1135      * r0 = calleeMethod (loaded upon calling genInvokeSingletonCommon)
   1136      * r1 = &ChainingCell
   1137      * r2 = calleeMethod->outsSize (to be loaded later for Java callees)
   1138      * r4PC = callsiteDPC
   1139      * r7 = calleeMethod->registersSize
   1140      */
   1141     if (dvmIsNativeMethod(calleeMethod)) {
   1142         genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
   1143             TEMPLATE_INVOKE_METHOD_NATIVE_PROF :
   1144             TEMPLATE_INVOKE_METHOD_NATIVE);
   1145 #if defined(WITH_JIT_TUNING)
   1146         gDvmJit.invokeNative++;
   1147 #endif
   1148     } else {
   1149         /* For Java callees, set up r2 to be calleeMethod->outsSize */
   1150         loadConstant(cUnit, r2, calleeMethod->outsSize);
   1151         genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
   1152             TEMPLATE_INVOKE_METHOD_CHAIN_PROF :
   1153             TEMPLATE_INVOKE_METHOD_CHAIN);
   1154 #if defined(WITH_JIT_TUNING)
   1155         gDvmJit.invokeMonomorphic++;
   1156 #endif
   1157         /* Branch to the chaining cell */
   1158         genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
   1159     }
   1160     /* Handle exceptions using the interpreter */
   1161     genTrap(cUnit, mir->offset, pcrLabel);
   1162 }
   1163 
   1164 /*
   1165  * Generate code to check the validity of a predicted chain and take actions
   1166  * based on the result.
   1167  *
   1168  * 0x426a99aa : ldr     r4, [pc, #72] --> r4 <- dalvikPC of this invoke
   1169  * 0x426a99ac : add     r1, pc, #32   --> r1 <- &retChainingCell
   1170  * 0x426a99ae : add     r2, pc, #40   --> r2 <- &predictedChainingCell
   1171  * 0x426a99b0 : blx_1   0x426a918c    --+ TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN
   1172  * 0x426a99b2 : blx_2   see above     --+
   1173  * 0x426a99b4 : b       0x426a99d8    --> off to the predicted chain
   1174  * 0x426a99b6 : b       0x426a99c8    --> punt to the interpreter
   1175  * 0x426a99b8 : ldr     r0, [r7, #44] --> r0 <- this->class->vtable[methodIdx]
   1176  * 0x426a99ba : cmp     r1, #0        --> compare r1 (rechain count) against 0
   1177  * 0x426a99bc : bgt     0x426a99c2    --> >=0? don't rechain
   1178  * 0x426a99be : ldr     r7, [pc, #off]--+ dvmJitToPatchPredictedChain
   1179  * 0x426a99c0 : blx     r7            --+
   1180  * 0x426a99c2 : add     r1, pc, #12   --> r1 <- &retChainingCell
   1181  * 0x426a99c4 : blx_1   0x426a9098    --+ TEMPLATE_INVOKE_METHOD_NO_OPT
   1182  * 0x426a99c6 : blx_2   see above     --+
   1183  */
   1184 static void genInvokeVirtualCommon(CompilationUnit *cUnit, MIR *mir,
   1185                                    int methodIndex,
   1186                                    ArmLIR *retChainingCell,
   1187                                    ArmLIR *predChainingCell,
   1188                                    ArmLIR *pcrLabel)
   1189 {
   1190     /*
   1191      * Note: all Dalvik register state should be flushed to
   1192      * memory by the point, so register usage restrictions no
   1193      * longer apply.  Lock temps to prevent them from being
   1194      * allocated by utility routines.
   1195      */
   1196     dvmCompilerLockAllTemps(cUnit);
   1197 
   1198     /*
   1199      * For verbose printing, store the method pointer in operands[1] first as
   1200      * operands[0] will be clobbered in dvmCompilerMIR2LIR.
   1201      */
   1202     predChainingCell->operands[1] = (int) mir->meta.callsiteInfo->method;
   1203 
   1204     /* "this" is already left in r0 by genProcessArgs* */
   1205 
   1206     /* r4PC = dalvikCallsite */
   1207     loadConstant(cUnit, r4PC,
   1208                  (int) (cUnit->method->insns + mir->offset));
   1209 
   1210     /* r1 = &retChainingCell */
   1211     ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
   1212     addrRetChain->generic.target = (LIR *) retChainingCell;
   1213 
   1214     /* r2 = &predictedChainingCell */
   1215     ArmLIR *predictedChainingCell = opRegRegImm(cUnit, kOpAdd, r2, r15pc, 0);
   1216     predictedChainingCell->generic.target = (LIR *) predChainingCell;
   1217 
   1218     genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
   1219         TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN_PROF :
   1220         TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
   1221 
   1222     /* return through lr - jump to the chaining cell */
   1223     genUnconditionalBranch(cUnit, predChainingCell);
   1224 
   1225     /*
   1226      * null-check on "this" may have been eliminated, but we still need a PC-
   1227      * reconstruction label for stack overflow bailout.
   1228      */
   1229     if (pcrLabel == NULL) {
   1230         int dPC = (int) (cUnit->method->insns + mir->offset);
   1231         pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
   1232         pcrLabel->opcode = kArmPseudoPCReconstructionCell;
   1233         pcrLabel->operands[0] = dPC;
   1234         pcrLabel->operands[1] = mir->offset;
   1235         /* Insert the place holder to the growable list */
   1236         dvmInsertGrowableList(&cUnit->pcReconstructionList,
   1237                               (intptr_t) pcrLabel);
   1238     }
   1239 
   1240     /* return through lr+2 - punt to the interpreter */
   1241     genUnconditionalBranch(cUnit, pcrLabel);
   1242 
   1243     /*
   1244      * return through lr+4 - fully resolve the callee method.
   1245      * r1 <- count
   1246      * r2 <- &predictedChainCell
   1247      * r3 <- this->class
   1248      * r4 <- dPC
   1249      * r7 <- this->class->vtable
   1250      */
   1251 
   1252     /* r0 <- calleeMethod */
   1253     loadWordDisp(cUnit, r7, methodIndex * 4, r0);
   1254 
   1255     /* Check if rechain limit is reached */
   1256     ArmLIR *bypassRechaining = genCmpImmBranch(cUnit, kArmCondGt, r1, 0);
   1257 
   1258     LOAD_FUNC_ADDR(cUnit, r7, (int) dvmJitToPatchPredictedChain);
   1259 
   1260     genRegCopy(cUnit, r1, r6SELF);
   1261 
   1262     /*
   1263      * r0 = calleeMethod
   1264      * r2 = &predictedChainingCell
   1265      * r3 = class
   1266      *
   1267      * &returnChainingCell has been loaded into r1 but is not needed
   1268      * when patching the chaining cell and will be clobbered upon
   1269      * returning so it will be reconstructed again.
   1270      */
   1271     opReg(cUnit, kOpBlx, r7);
   1272 
   1273     /* r1 = &retChainingCell */
   1274     addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
   1275     addrRetChain->generic.target = (LIR *) retChainingCell;
   1276 
   1277     bypassRechaining->generic.target = (LIR *) addrRetChain;
   1278     /*
   1279      * r0 = calleeMethod,
   1280      * r1 = &ChainingCell,
   1281      * r4PC = callsiteDPC,
   1282      */
   1283     genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
   1284         TEMPLATE_INVOKE_METHOD_NO_OPT_PROF :
   1285         TEMPLATE_INVOKE_METHOD_NO_OPT);
   1286 #if defined(WITH_JIT_TUNING)
   1287     gDvmJit.invokePolymorphic++;
   1288 #endif
   1289     /* Handle exceptions using the interpreter */
   1290     genTrap(cUnit, mir->offset, pcrLabel);
   1291 }
   1292 
   1293 /* "this" pointer is already in r0 */
   1294 static void genInvokeVirtualWholeMethod(CompilationUnit *cUnit,
   1295                                         MIR *mir,
   1296                                         void *calleeAddr,
   1297                                         ArmLIR *retChainingCell)
   1298 {
   1299     CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo;
   1300     dvmCompilerLockAllTemps(cUnit);
   1301 
   1302     loadClassPointer(cUnit, r1, (int) callsiteInfo);
   1303 
   1304     loadWordDisp(cUnit, r0, offsetof(Object, clazz), r2);
   1305     /* Branch to the slow path if classes are not equal */
   1306     opRegReg(cUnit, kOpCmp, r1, r2);
   1307     /*
   1308      * Set the misPredBranchOver target so that it will be generated when the
   1309      * code for the non-optimized invoke is generated.
   1310      */
   1311     ArmLIR *classCheck = opCondBranch(cUnit, kArmCondNe);
   1312 
   1313     /* r0 = the Dalvik PC of the callsite */
   1314     loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
   1315 
   1316     newLIR2(cUnit, kThumbBl1, (int) calleeAddr, (int) calleeAddr);
   1317     newLIR2(cUnit, kThumbBl2, (int) calleeAddr, (int) calleeAddr);
   1318     genUnconditionalBranch(cUnit, retChainingCell);
   1319 
   1320     /* Target of slow path */
   1321     ArmLIR *slowPathLabel = newLIR0(cUnit, kArmPseudoTargetLabel);
   1322 
   1323     slowPathLabel->defMask = ENCODE_ALL;
   1324     classCheck->generic.target = (LIR *) slowPathLabel;
   1325 
   1326     // FIXME
   1327     cUnit->printMe = true;
   1328 }
   1329 
   1330 static void genInvokeSingletonWholeMethod(CompilationUnit *cUnit,
   1331                                           MIR *mir,
   1332                                           void *calleeAddr,
   1333                                           ArmLIR *retChainingCell)
   1334 {
   1335     /* r0 = the Dalvik PC of the callsite */
   1336     loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
   1337 
   1338     newLIR2(cUnit, kThumbBl1, (int) calleeAddr, (int) calleeAddr);
   1339     newLIR2(cUnit, kThumbBl2, (int) calleeAddr, (int) calleeAddr);
   1340     genUnconditionalBranch(cUnit, retChainingCell);
   1341 
   1342     // FIXME
   1343     cUnit->printMe = true;
   1344 }
   1345 
   1346 /* Geneate a branch to go back to the interpreter */
   1347 static void genPuntToInterp(CompilationUnit *cUnit, unsigned int offset)
   1348 {
   1349     /* r0 = dalvik pc */
   1350     dvmCompilerFlushAllRegs(cUnit);
   1351     loadConstant(cUnit, r0, (int) (cUnit->method->insns + offset));
   1352     loadWordDisp(cUnit, r6SELF, offsetof(Thread,
   1353                  jitToInterpEntries.dvmJitToInterpPunt), r1);
   1354     opReg(cUnit, kOpBlx, r1);
   1355 }
   1356 
   1357 /*
   1358  * Attempt to single step one instruction using the interpreter and return
   1359  * to the compiled code for the next Dalvik instruction
   1360  */
   1361 static void genInterpSingleStep(CompilationUnit *cUnit, MIR *mir)
   1362 {
   1363     int flags = dexGetFlagsFromOpcode(mir->dalvikInsn.opcode);
   1364     int flagsToCheck = kInstrCanBranch | kInstrCanSwitch | kInstrCanReturn;
   1365 
   1366     // Single stepping is considered loop mode breaker
   1367     if (cUnit->jitMode == kJitLoop) {
   1368         cUnit->quitLoopMode = true;
   1369         return;
   1370     }
   1371 
   1372     //If already optimized out, just ignore
   1373     if (mir->dalvikInsn.opcode == OP_NOP)
   1374         return;
   1375 
   1376     //Ugly, but necessary.  Flush all Dalvik regs so Interp can find them
   1377     dvmCompilerFlushAllRegs(cUnit);
   1378 
   1379     if ((mir->next == NULL) || (flags & flagsToCheck)) {
   1380        genPuntToInterp(cUnit, mir->offset);
   1381        return;
   1382     }
   1383     int entryAddr = offsetof(Thread,
   1384                              jitToInterpEntries.dvmJitToInterpSingleStep);
   1385     loadWordDisp(cUnit, r6SELF, entryAddr, r2);
   1386     /* r0 = dalvik pc */
   1387     loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
   1388     /* r1 = dalvik pc of following instruction */
   1389     loadConstant(cUnit, r1, (int) (cUnit->method->insns + mir->next->offset));
   1390     opReg(cUnit, kOpBlx, r2);
   1391 }
   1392 
   1393 #if defined(_ARMV5TE) || defined(_ARMV5TE_VFP)
   1394 /*
   1395  * To prevent a thread in a monitor wait from blocking the Jit from
   1396  * resetting the code cache, heavyweight monitor lock will not
   1397  * be allowed to return to an existing translation.  Instead, we will
   1398  * handle them by branching to a handler, which will in turn call the
   1399  * runtime lock routine and then branch directly back to the
   1400  * interpreter main loop.  Given the high cost of the heavyweight
   1401  * lock operation, this additional cost should be slight (especially when
   1402  * considering that we expect the vast majority of lock operations to
   1403  * use the fast-path thin lock bypass).
   1404  */
   1405 static void genMonitorPortable(CompilationUnit *cUnit, MIR *mir)
   1406 {
   1407     bool isEnter = (mir->dalvikInsn.opcode == OP_MONITOR_ENTER);
   1408     genExportPC(cUnit, mir);
   1409     dvmCompilerFlushAllRegs(cUnit);   /* Send everything to home location */
   1410     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1411     loadValueDirectFixed(cUnit, rlSrc, r1);
   1412     genRegCopy(cUnit, r0, r6SELF);
   1413     genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
   1414     if (isEnter) {
   1415         /* Get dPC of next insn */
   1416         loadConstant(cUnit, r4PC, (int)(cUnit->method->insns + mir->offset +
   1417                  dexGetWidthFromOpcode(OP_MONITOR_ENTER)));
   1418         genDispatchToHandler(cUnit, TEMPLATE_MONITOR_ENTER);
   1419     } else {
   1420         LOAD_FUNC_ADDR(cUnit, r2, (int)dvmUnlockObject);
   1421         /* Do the call */
   1422         opReg(cUnit, kOpBlx, r2);
   1423         /* Did we throw? */
   1424         ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
   1425         loadConstant(cUnit, r0,
   1426                      (int) (cUnit->method->insns + mir->offset +
   1427                      dexGetWidthFromOpcode(OP_MONITOR_EXIT)));
   1428         genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   1429         ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   1430         target->defMask = ENCODE_ALL;
   1431         branchOver->generic.target = (LIR *) target;
   1432         dvmCompilerClobberCallRegs(cUnit);
   1433     }
   1434 }
   1435 #endif
   1436 
   1437 /*
   1438  * Fetch *self->info.breakFlags. If the breakFlags are non-zero,
   1439  * punt to the interpreter.
   1440  */
   1441 static void genSuspendPoll(CompilationUnit *cUnit, MIR *mir)
   1442 {
   1443     int rTemp = dvmCompilerAllocTemp(cUnit);
   1444     ArmLIR *ld;
   1445     ld = loadBaseDisp(cUnit, NULL, r6SELF,
   1446                       offsetof(Thread, interpBreak.ctl.breakFlags),
   1447                       rTemp, kUnsignedByte, INVALID_SREG);
   1448     setMemRefType(ld, true /* isLoad */, kMustNotAlias);
   1449     genRegImmCheck(cUnit, kArmCondNe, rTemp, 0, mir->offset, NULL);
   1450 }
   1451 
   1452 /*
   1453  * The following are the first-level codegen routines that analyze the format
   1454  * of each bytecode then either dispatch special purpose codegen routines
   1455  * or produce corresponding Thumb instructions directly.
   1456  */
   1457 
   1458 static bool handleFmt10t_Fmt20t_Fmt30t(CompilationUnit *cUnit, MIR *mir,
   1459                                        BasicBlock *bb, ArmLIR *labelList)
   1460 {
   1461     /* backward branch? */
   1462     bool backwardBranch = (bb->taken->startOffset <= mir->offset);
   1463 
   1464     if (backwardBranch &&
   1465         (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
   1466         genSuspendPoll(cUnit, mir);
   1467     }
   1468 
   1469     int numPredecessors = dvmCountSetBits(bb->taken->predecessors);
   1470     /*
   1471      * Things could be hoisted out of the taken block into the predecessor, so
   1472      * make sure it is dominated by the predecessor.
   1473      */
   1474     if (numPredecessors == 1 && bb->taken->visited == false &&
   1475         bb->taken->blockType == kDalvikByteCode) {
   1476         cUnit->nextCodegenBlock = bb->taken;
   1477     } else {
   1478         /* For OP_GOTO, OP_GOTO_16, and OP_GOTO_32 */
   1479         genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
   1480     }
   1481     return false;
   1482 }
   1483 
   1484 static bool handleFmt10x(CompilationUnit *cUnit, MIR *mir)
   1485 {
   1486     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   1487     if ((dalvikOpcode >= OP_UNUSED_3E) && (dalvikOpcode <= OP_UNUSED_43)) {
   1488         ALOGE("Codegen: got unused opcode %#x",dalvikOpcode);
   1489         return true;
   1490     }
   1491     switch (dalvikOpcode) {
   1492         case OP_RETURN_VOID_BARRIER:
   1493             dvmCompilerGenMemBarrier(cUnit, kST);
   1494             // Intentional fallthrough
   1495         case OP_RETURN_VOID:
   1496             genReturnCommon(cUnit,mir);
   1497             break;
   1498         case OP_UNUSED_73:
   1499         case OP_UNUSED_79:
   1500         case OP_UNUSED_7A:
   1501         case OP_UNUSED_FF:
   1502             ALOGE("Codegen: got unused opcode %#x",dalvikOpcode);
   1503             return true;
   1504         case OP_NOP:
   1505             break;
   1506         default:
   1507             return true;
   1508     }
   1509     return false;
   1510 }
   1511 
   1512 static bool handleFmt11n_Fmt31i(CompilationUnit *cUnit, MIR *mir)
   1513 {
   1514     RegLocation rlDest;
   1515     RegLocation rlResult;
   1516     if (mir->ssaRep->numDefs == 2) {
   1517         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1518     } else {
   1519         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1520     }
   1521 
   1522     switch (mir->dalvikInsn.opcode) {
   1523         case OP_CONST:
   1524         case OP_CONST_4: {
   1525             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1526             loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
   1527             storeValue(cUnit, rlDest, rlResult);
   1528             break;
   1529         }
   1530         case OP_CONST_WIDE_32: {
   1531             //TUNING: single routine to load constant pair for support doubles
   1532             //TUNING: load 0/-1 separately to avoid load dependency
   1533             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1534             loadConstantNoClobber(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
   1535             opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
   1536                         rlResult.lowReg, 31);
   1537             storeValueWide(cUnit, rlDest, rlResult);
   1538             break;
   1539         }
   1540         default:
   1541             return true;
   1542     }
   1543     return false;
   1544 }
   1545 
   1546 static bool handleFmt21h(CompilationUnit *cUnit, MIR *mir)
   1547 {
   1548     RegLocation rlDest;
   1549     RegLocation rlResult;
   1550     if (mir->ssaRep->numDefs == 2) {
   1551         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1552     } else {
   1553         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1554     }
   1555     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1556 
   1557     switch (mir->dalvikInsn.opcode) {
   1558         case OP_CONST_HIGH16: {
   1559             loadConstantNoClobber(cUnit, rlResult.lowReg,
   1560                                   mir->dalvikInsn.vB << 16);
   1561             storeValue(cUnit, rlDest, rlResult);
   1562             break;
   1563         }
   1564         case OP_CONST_WIDE_HIGH16: {
   1565             loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg,
   1566                                   0, mir->dalvikInsn.vB << 16);
   1567             storeValueWide(cUnit, rlDest, rlResult);
   1568             break;
   1569         }
   1570         default:
   1571             return true;
   1572     }
   1573     return false;
   1574 }
   1575 
   1576 static bool handleFmt20bc(CompilationUnit *cUnit, MIR *mir)
   1577 {
   1578     /* For OP_THROW_VERIFICATION_ERROR */
   1579     genInterpSingleStep(cUnit, mir);
   1580     return false;
   1581 }
   1582 
   1583 static bool handleFmt21c_Fmt31c(CompilationUnit *cUnit, MIR *mir)
   1584 {
   1585     RegLocation rlResult;
   1586     RegLocation rlDest;
   1587     RegLocation rlSrc;
   1588 
   1589     switch (mir->dalvikInsn.opcode) {
   1590         case OP_CONST_STRING_JUMBO:
   1591         case OP_CONST_STRING: {
   1592             void *strPtr = (void*)
   1593               (cUnit->method->clazz->pDvmDex->pResStrings[mir->dalvikInsn.vB]);
   1594 
   1595             if (strPtr == NULL) {
   1596                 BAIL_LOOP_COMPILATION();
   1597                 ALOGE("Unexpected null string");
   1598                 dvmAbort();
   1599             }
   1600 
   1601             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1602             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1603             loadConstantNoClobber(cUnit, rlResult.lowReg, (int) strPtr );
   1604             storeValue(cUnit, rlDest, rlResult);
   1605             break;
   1606         }
   1607         case OP_CONST_CLASS: {
   1608             void *classPtr = (void*)
   1609               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
   1610 
   1611             if (classPtr == NULL) {
   1612                 BAIL_LOOP_COMPILATION();
   1613                 ALOGE("Unexpected null class");
   1614                 dvmAbort();
   1615             }
   1616 
   1617             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1618             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1619             loadConstantNoClobber(cUnit, rlResult.lowReg, (int) classPtr );
   1620             storeValue(cUnit, rlDest, rlResult);
   1621             break;
   1622         }
   1623         case OP_SGET:
   1624         case OP_SGET_VOLATILE:
   1625         case OP_SGET_OBJECT:
   1626         case OP_SGET_OBJECT_VOLATILE:
   1627         case OP_SGET_BOOLEAN:
   1628         case OP_SGET_CHAR:
   1629         case OP_SGET_BYTE:
   1630         case OP_SGET_SHORT: {
   1631             int valOffset = OFFSETOF_MEMBER(StaticField, value);
   1632             int tReg = dvmCompilerAllocTemp(cUnit);
   1633             bool isVolatile;
   1634             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
   1635                 mir->meta.calleeMethod : cUnit->method;
   1636             void *fieldPtr = (void*)
   1637               (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
   1638 
   1639             if (fieldPtr == NULL) {
   1640                 BAIL_LOOP_COMPILATION();
   1641                 ALOGE("Unexpected null static field");
   1642                 dvmAbort();
   1643             }
   1644 
   1645             /*
   1646              * On SMP systems, Dalvik opcodes found to be referencing
   1647              * volatile fields are rewritten to their _VOLATILE variant.
   1648              * However, this does not happen on non-SMP systems. The JIT
   1649              * still needs to know about volatility to avoid unsafe
   1650              * optimizations so we determine volatility based on either
   1651              * the opcode or the field access flags.
   1652              */
   1653 #if ANDROID_SMP != 0
   1654             Opcode opcode = mir->dalvikInsn.opcode;
   1655             isVolatile = (opcode == OP_SGET_VOLATILE) ||
   1656                          (opcode == OP_SGET_OBJECT_VOLATILE);
   1657             assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
   1658 #else
   1659             isVolatile = dvmIsVolatileField((Field *) fieldPtr);
   1660 #endif
   1661 
   1662             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1663             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1664             loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
   1665 
   1666             if (isVolatile) {
   1667                 dvmCompilerGenMemBarrier(cUnit, kSY);
   1668             }
   1669             HEAP_ACCESS_SHADOW(true);
   1670             loadWordDisp(cUnit, tReg, 0, rlResult.lowReg);
   1671             HEAP_ACCESS_SHADOW(false);
   1672 
   1673             storeValue(cUnit, rlDest, rlResult);
   1674             break;
   1675         }
   1676         case OP_SGET_WIDE: {
   1677             int valOffset = OFFSETOF_MEMBER(StaticField, value);
   1678             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
   1679                 mir->meta.calleeMethod : cUnit->method;
   1680             void *fieldPtr = (void*)
   1681               (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
   1682 
   1683             if (fieldPtr == NULL) {
   1684                 BAIL_LOOP_COMPILATION();
   1685                 ALOGE("Unexpected null static field");
   1686                 dvmAbort();
   1687             }
   1688 
   1689             int tReg = dvmCompilerAllocTemp(cUnit);
   1690             rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1691             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   1692             loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
   1693 
   1694             HEAP_ACCESS_SHADOW(true);
   1695             loadPair(cUnit, tReg, rlResult.lowReg, rlResult.highReg);
   1696             HEAP_ACCESS_SHADOW(false);
   1697 
   1698             storeValueWide(cUnit, rlDest, rlResult);
   1699             break;
   1700         }
   1701         case OP_SPUT:
   1702         case OP_SPUT_VOLATILE:
   1703         case OP_SPUT_OBJECT:
   1704         case OP_SPUT_OBJECT_VOLATILE:
   1705         case OP_SPUT_BOOLEAN:
   1706         case OP_SPUT_CHAR:
   1707         case OP_SPUT_BYTE:
   1708         case OP_SPUT_SHORT: {
   1709             int valOffset = OFFSETOF_MEMBER(StaticField, value);
   1710             int tReg = dvmCompilerAllocTemp(cUnit);
   1711             int objHead;
   1712             bool isVolatile;
   1713             bool isSputObject;
   1714             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
   1715                 mir->meta.calleeMethod : cUnit->method;
   1716             void *fieldPtr = (void*)
   1717               (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
   1718             Opcode opcode = mir->dalvikInsn.opcode;
   1719 
   1720             if (fieldPtr == NULL) {
   1721                 BAIL_LOOP_COMPILATION();
   1722                 ALOGE("Unexpected null static field");
   1723                 dvmAbort();
   1724             }
   1725 
   1726 #if ANDROID_SMP != 0
   1727             isVolatile = (opcode == OP_SPUT_VOLATILE) ||
   1728                          (opcode == OP_SPUT_OBJECT_VOLATILE);
   1729             assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
   1730 #else
   1731             isVolatile = dvmIsVolatileField((Field *) fieldPtr);
   1732 #endif
   1733 
   1734             isSputObject = (opcode == OP_SPUT_OBJECT) ||
   1735                            (opcode == OP_SPUT_OBJECT_VOLATILE);
   1736 
   1737             rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1738             rlSrc = loadValue(cUnit, rlSrc, kAnyReg);
   1739             loadConstant(cUnit, tReg,  (int) fieldPtr);
   1740             if (isSputObject) {
   1741                 objHead = dvmCompilerAllocTemp(cUnit);
   1742                 loadWordDisp(cUnit, tReg, OFFSETOF_MEMBER(Field, clazz), objHead);
   1743             }
   1744             if (isVolatile) {
   1745                 dvmCompilerGenMemBarrier(cUnit, kST);
   1746             }
   1747             HEAP_ACCESS_SHADOW(true);
   1748             storeWordDisp(cUnit, tReg, valOffset ,rlSrc.lowReg);
   1749             dvmCompilerFreeTemp(cUnit, tReg);
   1750             HEAP_ACCESS_SHADOW(false);
   1751             if (isVolatile) {
   1752                 dvmCompilerGenMemBarrier(cUnit, kSY);
   1753             }
   1754             if (isSputObject) {
   1755                 /* NOTE: marking card based sfield->clazz */
   1756                 markCard(cUnit, rlSrc.lowReg, objHead);
   1757                 dvmCompilerFreeTemp(cUnit, objHead);
   1758             }
   1759 
   1760             break;
   1761         }
   1762         case OP_SPUT_WIDE: {
   1763             int tReg = dvmCompilerAllocTemp(cUnit);
   1764             int valOffset = OFFSETOF_MEMBER(StaticField, value);
   1765             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
   1766                 mir->meta.calleeMethod : cUnit->method;
   1767             void *fieldPtr = (void*)
   1768               (method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
   1769 
   1770             if (fieldPtr == NULL) {
   1771                 BAIL_LOOP_COMPILATION();
   1772                 ALOGE("Unexpected null static field");
   1773                 dvmAbort();
   1774             }
   1775 
   1776             rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   1777             rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
   1778             loadConstant(cUnit, tReg,  (int) fieldPtr + valOffset);
   1779 
   1780             HEAP_ACCESS_SHADOW(true);
   1781             storePair(cUnit, tReg, rlSrc.lowReg, rlSrc.highReg);
   1782             HEAP_ACCESS_SHADOW(false);
   1783             break;
   1784         }
   1785         case OP_NEW_INSTANCE: {
   1786             /*
   1787              * Obey the calling convention and don't mess with the register
   1788              * usage.
   1789              */
   1790             ClassObject *classPtr = (ClassObject *)
   1791               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
   1792 
   1793             if (classPtr == NULL) {
   1794                 BAIL_LOOP_COMPILATION();
   1795                 ALOGE("Unexpected null class");
   1796                 dvmAbort();
   1797             }
   1798 
   1799             /*
   1800              * If it is going to throw, it should not make to the trace to begin
   1801              * with.  However, Alloc might throw, so we need to genExportPC()
   1802              */
   1803             assert((classPtr->accessFlags & (ACC_INTERFACE|ACC_ABSTRACT)) == 0);
   1804             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   1805             genExportPC(cUnit, mir);
   1806             LOAD_FUNC_ADDR(cUnit, r2, (int)dvmAllocObject);
   1807             loadConstant(cUnit, r0, (int) classPtr);
   1808             loadConstant(cUnit, r1, ALLOC_DONT_TRACK);
   1809             opReg(cUnit, kOpBlx, r2);
   1810             dvmCompilerClobberCallRegs(cUnit);
   1811             /* generate a branch over if allocation is successful */
   1812             ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
   1813             /*
   1814              * OOM exception needs to be thrown here and cannot re-execute
   1815              */
   1816             loadConstant(cUnit, r0,
   1817                          (int) (cUnit->method->insns + mir->offset));
   1818             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   1819             /* noreturn */
   1820 
   1821             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   1822             target->defMask = ENCODE_ALL;
   1823             branchOver->generic.target = (LIR *) target;
   1824             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1825             rlResult = dvmCompilerGetReturn(cUnit);
   1826             storeValue(cUnit, rlDest, rlResult);
   1827             break;
   1828         }
   1829         case OP_CHECK_CAST: {
   1830             /*
   1831              * Obey the calling convention and don't mess with the register
   1832              * usage.
   1833              */
   1834             ClassObject *classPtr =
   1835               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
   1836             /*
   1837              * Note: It is possible that classPtr is NULL at this point,
   1838              * even though this instruction has been successfully interpreted.
   1839              * If the previous interpretation had a null source, the
   1840              * interpreter would not have bothered to resolve the clazz.
   1841              * Bail out to the interpreter in this case, and log it
   1842              * so that we can tell if it happens frequently.
   1843              */
   1844             if (classPtr == NULL) {
   1845                 BAIL_LOOP_COMPILATION();
   1846                 LOGVV("null clazz in OP_CHECK_CAST, single-stepping");
   1847                 genInterpSingleStep(cUnit, mir);
   1848                 return false;
   1849             }
   1850             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   1851             loadConstant(cUnit, r1, (int) classPtr );
   1852             rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1853             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   1854             /* Null? */
   1855             ArmLIR *branch1 = genCmpImmBranch(cUnit, kArmCondEq,
   1856                                               rlSrc.lowReg, 0);
   1857             /*
   1858              *  rlSrc.lowReg now contains object->clazz.  Note that
   1859              *  it could have been allocated r0, but we're okay so long
   1860              *  as we don't do anything desctructive until r0 is loaded
   1861              *  with clazz.
   1862              */
   1863             /* r0 now contains object->clazz */
   1864             loadWordDisp(cUnit, rlSrc.lowReg, offsetof(Object, clazz), r0);
   1865             LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInstanceofNonTrivial);
   1866             opRegReg(cUnit, kOpCmp, r0, r1);
   1867             ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq);
   1868             opReg(cUnit, kOpBlx, r2);
   1869             dvmCompilerClobberCallRegs(cUnit);
   1870             /*
   1871              * If null, check cast failed - punt to the interpreter.  Because
   1872              * interpreter will be the one throwing, we don't need to
   1873              * genExportPC() here.
   1874              */
   1875             genZeroCheck(cUnit, r0, mir->offset, NULL);
   1876             /* check cast passed - branch target here */
   1877             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   1878             target->defMask = ENCODE_ALL;
   1879             branch1->generic.target = (LIR *)target;
   1880             branch2->generic.target = (LIR *)target;
   1881             break;
   1882         }
   1883         case OP_SGET_WIDE_VOLATILE:
   1884         case OP_SPUT_WIDE_VOLATILE:
   1885             genInterpSingleStep(cUnit, mir);
   1886             break;
   1887         default:
   1888             return true;
   1889     }
   1890     return false;
   1891 }
   1892 
   1893 /*
   1894  * A typical example of inlined getter/setter from a monomorphic callsite:
   1895  *
   1896  * D/dalvikvm(  289): -------- dalvik offset: 0x0000 @ invoke-static (I)
   1897  * D/dalvikvm(  289): -------- dalvik offset: 0x0000 @ sget-object (C) v0, ...
   1898  * D/dalvikvm(  289): 0x4427fc22 (0002): ldr     r0, [pc, #56]
   1899  * D/dalvikvm(  289): 0x4427fc24 (0004): ldr     r1, [r0, #0]
   1900  * D/dalvikvm(  289): 0x4427fc26 (0006): str     r1, [r5, #0]
   1901  * D/dalvikvm(  289): 0x4427fc28 (0008): .align4
   1902  * D/dalvikvm(  289): L0x0003:
   1903  * D/dalvikvm(  289): -------- dalvik offset: 0x0003 @ move-result-object (I) v0
   1904  *
   1905  * Note the invoke-static and move-result-object with the (I) notation are
   1906  * turned into no-op.
   1907  */
   1908 static bool handleFmt11x(CompilationUnit *cUnit, MIR *mir)
   1909 {
   1910     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   1911     RegLocation rlResult;
   1912     switch (dalvikOpcode) {
   1913         case OP_MOVE_EXCEPTION: {
   1914             int exOffset = offsetof(Thread, exception);
   1915             int resetReg = dvmCompilerAllocTemp(cUnit);
   1916             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1917             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   1918             loadWordDisp(cUnit, r6SELF, exOffset, rlResult.lowReg);
   1919             loadConstant(cUnit, resetReg, 0);
   1920             storeWordDisp(cUnit, r6SELF, exOffset, resetReg);
   1921             storeValue(cUnit, rlDest, rlResult);
   1922            break;
   1923         }
   1924         case OP_MOVE_RESULT:
   1925         case OP_MOVE_RESULT_OBJECT: {
   1926             /* An inlined move result is effectively no-op */
   1927             if (mir->OptimizationFlags & MIR_INLINED)
   1928                 break;
   1929             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1930             RegLocation rlSrc = LOC_DALVIK_RETURN_VAL;
   1931             rlSrc.fp = rlDest.fp;
   1932             storeValue(cUnit, rlDest, rlSrc);
   1933             break;
   1934         }
   1935         case OP_MOVE_RESULT_WIDE: {
   1936             /* An inlined move result is effectively no-op */
   1937             if (mir->OptimizationFlags & MIR_INLINED)
   1938                 break;
   1939             RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1940             RegLocation rlSrc = LOC_DALVIK_RETURN_VAL_WIDE;
   1941             rlSrc.fp = rlDest.fp;
   1942             storeValueWide(cUnit, rlDest, rlSrc);
   1943             break;
   1944         }
   1945         case OP_RETURN_WIDE: {
   1946             RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   1947             RegLocation rlDest = LOC_DALVIK_RETURN_VAL_WIDE;
   1948             rlDest.fp = rlSrc.fp;
   1949             storeValueWide(cUnit, rlDest, rlSrc);
   1950             genReturnCommon(cUnit,mir);
   1951             break;
   1952         }
   1953         case OP_RETURN:
   1954         case OP_RETURN_OBJECT: {
   1955             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1956             RegLocation rlDest = LOC_DALVIK_RETURN_VAL;
   1957             rlDest.fp = rlSrc.fp;
   1958             storeValue(cUnit, rlDest, rlSrc);
   1959             genReturnCommon(cUnit, mir);
   1960             break;
   1961         }
   1962         case OP_MONITOR_EXIT:
   1963         case OP_MONITOR_ENTER:
   1964             genMonitor(cUnit, mir);
   1965             break;
   1966         case OP_THROW:
   1967             genInterpSingleStep(cUnit, mir);
   1968             break;
   1969         default:
   1970             return true;
   1971     }
   1972     return false;
   1973 }
   1974 
   1975 static bool handleFmt12x(CompilationUnit *cUnit, MIR *mir)
   1976 {
   1977     Opcode opcode = mir->dalvikInsn.opcode;
   1978     RegLocation rlDest;
   1979     RegLocation rlSrc;
   1980     RegLocation rlResult;
   1981 
   1982     if ( (opcode >= OP_ADD_INT_2ADDR) && (opcode <= OP_REM_DOUBLE_2ADDR)) {
   1983         return genArithOp( cUnit, mir );
   1984     }
   1985 
   1986     if (mir->ssaRep->numUses == 2)
   1987         rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   1988     else
   1989         rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   1990     if (mir->ssaRep->numDefs == 2)
   1991         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   1992     else
   1993         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   1994 
   1995     switch (opcode) {
   1996         case OP_DOUBLE_TO_INT:
   1997         case OP_INT_TO_FLOAT:
   1998         case OP_FLOAT_TO_INT:
   1999         case OP_DOUBLE_TO_FLOAT:
   2000         case OP_FLOAT_TO_DOUBLE:
   2001         case OP_INT_TO_DOUBLE:
   2002         case OP_FLOAT_TO_LONG:
   2003         case OP_LONG_TO_FLOAT:
   2004         case OP_DOUBLE_TO_LONG:
   2005         case OP_LONG_TO_DOUBLE:
   2006             return genConversion(cUnit, mir);
   2007         case OP_NEG_INT:
   2008         case OP_NOT_INT:
   2009             return genArithOpInt(cUnit, mir, rlDest, rlSrc, rlSrc);
   2010         case OP_NEG_LONG:
   2011         case OP_NOT_LONG:
   2012             return genArithOpLong(cUnit, mir, rlDest, rlSrc, rlSrc);
   2013         case OP_NEG_FLOAT:
   2014             return genArithOpFloat(cUnit, mir, rlDest, rlSrc, rlSrc);
   2015         case OP_NEG_DOUBLE:
   2016             return genArithOpDouble(cUnit, mir, rlDest, rlSrc, rlSrc);
   2017         case OP_MOVE_WIDE:
   2018             storeValueWide(cUnit, rlDest, rlSrc);
   2019             break;
   2020         case OP_INT_TO_LONG:
   2021             rlSrc = dvmCompilerUpdateLoc(cUnit, rlSrc);
   2022             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2023             //TUNING: shouldn't loadValueDirect already check for phys reg?
   2024             if (rlSrc.location == kLocPhysReg) {
   2025                 genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
   2026             } else {
   2027                 loadValueDirect(cUnit, rlSrc, rlResult.lowReg);
   2028             }
   2029             opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
   2030                         rlResult.lowReg, 31);
   2031             storeValueWide(cUnit, rlDest, rlResult);
   2032             break;
   2033         case OP_LONG_TO_INT:
   2034             rlSrc = dvmCompilerUpdateLocWide(cUnit, rlSrc);
   2035             rlSrc = dvmCompilerWideToNarrow(cUnit, rlSrc);
   2036             // Intentional fallthrough
   2037         case OP_MOVE:
   2038         case OP_MOVE_OBJECT:
   2039             storeValue(cUnit, rlDest, rlSrc);
   2040             break;
   2041         case OP_INT_TO_BYTE:
   2042             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2043             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2044             opRegReg(cUnit, kOp2Byte, rlResult.lowReg, rlSrc.lowReg);
   2045             storeValue(cUnit, rlDest, rlResult);
   2046             break;
   2047         case OP_INT_TO_SHORT:
   2048             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2049             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2050             opRegReg(cUnit, kOp2Short, rlResult.lowReg, rlSrc.lowReg);
   2051             storeValue(cUnit, rlDest, rlResult);
   2052             break;
   2053         case OP_INT_TO_CHAR:
   2054             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2055             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2056             opRegReg(cUnit, kOp2Char, rlResult.lowReg, rlSrc.lowReg);
   2057             storeValue(cUnit, rlDest, rlResult);
   2058             break;
   2059         case OP_ARRAY_LENGTH: {
   2060             int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
   2061             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2062             genNullCheck(cUnit, rlSrc.sRegLow, rlSrc.lowReg,
   2063                          mir->offset, NULL);
   2064             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2065             loadWordDisp(cUnit, rlSrc.lowReg, lenOffset,
   2066                          rlResult.lowReg);
   2067             storeValue(cUnit, rlDest, rlResult);
   2068             break;
   2069         }
   2070         default:
   2071             return true;
   2072     }
   2073     return false;
   2074 }
   2075 
   2076 static bool handleFmt21s(CompilationUnit *cUnit, MIR *mir)
   2077 {
   2078     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   2079     RegLocation rlDest;
   2080     RegLocation rlResult;
   2081     int BBBB = mir->dalvikInsn.vB;
   2082     if (dalvikOpcode == OP_CONST_WIDE_16) {
   2083         rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   2084         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2085         loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
   2086         //TUNING: do high separately to avoid load dependency
   2087         opRegRegImm(cUnit, kOpAsr, rlResult.highReg, rlResult.lowReg, 31);
   2088         storeValueWide(cUnit, rlDest, rlResult);
   2089     } else if (dalvikOpcode == OP_CONST_16) {
   2090         rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   2091         rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kAnyReg, true);
   2092         loadConstantNoClobber(cUnit, rlResult.lowReg, BBBB);
   2093         storeValue(cUnit, rlDest, rlResult);
   2094     } else
   2095         return true;
   2096     return false;
   2097 }
   2098 
   2099 /* Compare agaist zero */
   2100 static bool handleFmt21t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
   2101                          ArmLIR *labelList)
   2102 {
   2103     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   2104     ArmConditionCode cond;
   2105     /* backward branch? */
   2106     bool backwardBranch = (bb->taken->startOffset <= mir->offset);
   2107 
   2108     if (backwardBranch &&
   2109         (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
   2110         genSuspendPoll(cUnit, mir);
   2111     }
   2112 
   2113     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2114     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2115 
   2116     opRegImm(cUnit, kOpCmp, rlSrc.lowReg, 0);
   2117 
   2118 //TUNING: break this out to allow use of Thumb2 CB[N]Z
   2119     switch (dalvikOpcode) {
   2120         case OP_IF_EQZ:
   2121             cond = kArmCondEq;
   2122             break;
   2123         case OP_IF_NEZ:
   2124             cond = kArmCondNe;
   2125             break;
   2126         case OP_IF_LTZ:
   2127             cond = kArmCondLt;
   2128             break;
   2129         case OP_IF_GEZ:
   2130             cond = kArmCondGe;
   2131             break;
   2132         case OP_IF_GTZ:
   2133             cond = kArmCondGt;
   2134             break;
   2135         case OP_IF_LEZ:
   2136             cond = kArmCondLe;
   2137             break;
   2138         default:
   2139             cond = (ArmConditionCode)0;
   2140             ALOGE("Unexpected opcode (%d) for Fmt21t", dalvikOpcode);
   2141             dvmCompilerAbort(cUnit);
   2142     }
   2143     genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
   2144     /* This mostly likely will be optimized away in a later phase */
   2145     genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
   2146     return false;
   2147 }
   2148 
   2149 static bool isPowerOfTwo(int x)
   2150 {
   2151     return (x & (x - 1)) == 0;
   2152 }
   2153 
   2154 // Returns true if no more than two bits are set in 'x'.
   2155 static bool isPopCountLE2(unsigned int x)
   2156 {
   2157     x &= x - 1;
   2158     return (x & (x - 1)) == 0;
   2159 }
   2160 
   2161 // Returns the index of the lowest set bit in 'x'.
   2162 static int lowestSetBit(unsigned int x) {
   2163     int bit_posn = 0;
   2164     while ((x & 0xf) == 0) {
   2165         bit_posn += 4;
   2166         x >>= 4;
   2167     }
   2168     while ((x & 1) == 0) {
   2169         bit_posn++;
   2170         x >>= 1;
   2171     }
   2172     return bit_posn;
   2173 }
   2174 
   2175 // Returns true if it added instructions to 'cUnit' to divide 'rlSrc' by 'lit'
   2176 // and store the result in 'rlDest'.
   2177 static bool handleEasyDivide(CompilationUnit *cUnit, Opcode dalvikOpcode,
   2178                              RegLocation rlSrc, RegLocation rlDest, int lit)
   2179 {
   2180     if (lit < 2 || !isPowerOfTwo(lit)) {
   2181         return false;
   2182     }
   2183     int k = lowestSetBit(lit);
   2184     if (k >= 30) {
   2185         // Avoid special cases.
   2186         return false;
   2187     }
   2188     bool div = (dalvikOpcode == OP_DIV_INT_LIT8 || dalvikOpcode == OP_DIV_INT_LIT16);
   2189     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2190     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2191     if (div) {
   2192         int tReg = dvmCompilerAllocTemp(cUnit);
   2193         if (lit == 2) {
   2194             // Division by 2 is by far the most common division by constant.
   2195             opRegRegImm(cUnit, kOpLsr, tReg, rlSrc.lowReg, 32 - k);
   2196             opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
   2197             opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
   2198         } else {
   2199             opRegRegImm(cUnit, kOpAsr, tReg, rlSrc.lowReg, 31);
   2200             opRegRegImm(cUnit, kOpLsr, tReg, tReg, 32 - k);
   2201             opRegRegReg(cUnit, kOpAdd, tReg, tReg, rlSrc.lowReg);
   2202             opRegRegImm(cUnit, kOpAsr, rlResult.lowReg, tReg, k);
   2203         }
   2204     } else {
   2205         int cReg = dvmCompilerAllocTemp(cUnit);
   2206         loadConstant(cUnit, cReg, lit - 1);
   2207         int tReg1 = dvmCompilerAllocTemp(cUnit);
   2208         int tReg2 = dvmCompilerAllocTemp(cUnit);
   2209         if (lit == 2) {
   2210             opRegRegImm(cUnit, kOpLsr, tReg1, rlSrc.lowReg, 32 - k);
   2211             opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
   2212             opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
   2213             opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
   2214         } else {
   2215             opRegRegImm(cUnit, kOpAsr, tReg1, rlSrc.lowReg, 31);
   2216             opRegRegImm(cUnit, kOpLsr, tReg1, tReg1, 32 - k);
   2217             opRegRegReg(cUnit, kOpAdd, tReg2, tReg1, rlSrc.lowReg);
   2218             opRegRegReg(cUnit, kOpAnd, tReg2, tReg2, cReg);
   2219             opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg2, tReg1);
   2220         }
   2221     }
   2222     storeValue(cUnit, rlDest, rlResult);
   2223     return true;
   2224 }
   2225 
   2226 // Returns true if it added instructions to 'cUnit' to multiply 'rlSrc' by 'lit'
   2227 // and store the result in 'rlDest'.
   2228 static bool handleEasyMultiply(CompilationUnit *cUnit,
   2229                                RegLocation rlSrc, RegLocation rlDest, int lit)
   2230 {
   2231     // Can we simplify this multiplication?
   2232     bool powerOfTwo = false;
   2233     bool popCountLE2 = false;
   2234     bool powerOfTwoMinusOne = false;
   2235     if (lit < 2) {
   2236         // Avoid special cases.
   2237         return false;
   2238     } else if (isPowerOfTwo(lit)) {
   2239         powerOfTwo = true;
   2240     } else if (isPopCountLE2(lit)) {
   2241         popCountLE2 = true;
   2242     } else if (isPowerOfTwo(lit + 1)) {
   2243         powerOfTwoMinusOne = true;
   2244     } else {
   2245         return false;
   2246     }
   2247     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2248     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2249     if (powerOfTwo) {
   2250         // Shift.
   2251         opRegRegImm(cUnit, kOpLsl, rlResult.lowReg, rlSrc.lowReg,
   2252                     lowestSetBit(lit));
   2253     } else if (popCountLE2) {
   2254         // Shift and add and shift.
   2255         int firstBit = lowestSetBit(lit);
   2256         int secondBit = lowestSetBit(lit ^ (1 << firstBit));
   2257         genMultiplyByTwoBitMultiplier(cUnit, rlSrc, rlResult, lit,
   2258                                       firstBit, secondBit);
   2259     } else {
   2260         // Reverse subtract: (src << (shift + 1)) - src.
   2261         assert(powerOfTwoMinusOne);
   2262         // TODO: rsb dst, src, src lsl#lowestSetBit(lit + 1)
   2263         int tReg = dvmCompilerAllocTemp(cUnit);
   2264         opRegRegImm(cUnit, kOpLsl, tReg, rlSrc.lowReg, lowestSetBit(lit + 1));
   2265         opRegRegReg(cUnit, kOpSub, rlResult.lowReg, tReg, rlSrc.lowReg);
   2266     }
   2267     storeValue(cUnit, rlDest, rlResult);
   2268     return true;
   2269 }
   2270 
   2271 static bool handleFmt22b_Fmt22s(CompilationUnit *cUnit, MIR *mir)
   2272 {
   2273     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   2274     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2275     RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   2276     RegLocation rlResult;
   2277     int lit = mir->dalvikInsn.vC;
   2278     OpKind op = (OpKind)0;      /* Make gcc happy */
   2279     int shiftOp = false;
   2280     bool isDiv = false;
   2281 
   2282     switch (dalvikOpcode) {
   2283         case OP_RSUB_INT_LIT8:
   2284         case OP_RSUB_INT: {
   2285             int tReg;
   2286             //TUNING: add support for use of Arm rsub op
   2287             rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2288             tReg = dvmCompilerAllocTemp(cUnit);
   2289             loadConstant(cUnit, tReg, lit);
   2290             rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2291             opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
   2292                         tReg, rlSrc.lowReg);
   2293             storeValue(cUnit, rlDest, rlResult);
   2294             return false;
   2295             break;
   2296         }
   2297 
   2298         case OP_ADD_INT_LIT8:
   2299         case OP_ADD_INT_LIT16:
   2300             op = kOpAdd;
   2301             break;
   2302         case OP_MUL_INT_LIT8:
   2303         case OP_MUL_INT_LIT16: {
   2304             if (handleEasyMultiply(cUnit, rlSrc, rlDest, lit)) {
   2305                 return false;
   2306             }
   2307             op = kOpMul;
   2308             break;
   2309         }
   2310         case OP_AND_INT_LIT8:
   2311         case OP_AND_INT_LIT16:
   2312             op = kOpAnd;
   2313             break;
   2314         case OP_OR_INT_LIT8:
   2315         case OP_OR_INT_LIT16:
   2316             op = kOpOr;
   2317             break;
   2318         case OP_XOR_INT_LIT8:
   2319         case OP_XOR_INT_LIT16:
   2320             op = kOpXor;
   2321             break;
   2322         case OP_SHL_INT_LIT8:
   2323             lit &= 31;
   2324             shiftOp = true;
   2325             op = kOpLsl;
   2326             break;
   2327         case OP_SHR_INT_LIT8:
   2328             lit &= 31;
   2329             shiftOp = true;
   2330             op = kOpAsr;
   2331             break;
   2332         case OP_USHR_INT_LIT8:
   2333             lit &= 31;
   2334             shiftOp = true;
   2335             op = kOpLsr;
   2336             break;
   2337 
   2338         case OP_DIV_INT_LIT8:
   2339         case OP_DIV_INT_LIT16:
   2340         case OP_REM_INT_LIT8:
   2341         case OP_REM_INT_LIT16:
   2342             if (lit == 0) {
   2343                 /* Let the interpreter deal with div by 0 */
   2344                 genInterpSingleStep(cUnit, mir);
   2345                 return false;
   2346             }
   2347             if (handleEasyDivide(cUnit, dalvikOpcode, rlSrc, rlDest, lit)) {
   2348                 return false;
   2349             }
   2350             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2351             loadValueDirectFixed(cUnit, rlSrc, r0);
   2352             dvmCompilerClobber(cUnit, r0);
   2353             if ((dalvikOpcode == OP_DIV_INT_LIT8) ||
   2354                 (dalvikOpcode == OP_DIV_INT_LIT16)) {
   2355                 LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idiv);
   2356                 isDiv = true;
   2357             } else {
   2358                 LOAD_FUNC_ADDR(cUnit, r2, (int)__aeabi_idivmod);
   2359                 isDiv = false;
   2360             }
   2361             loadConstant(cUnit, r1, lit);
   2362             opReg(cUnit, kOpBlx, r2);
   2363             dvmCompilerClobberCallRegs(cUnit);
   2364             if (isDiv)
   2365                 rlResult = dvmCompilerGetReturn(cUnit);
   2366             else
   2367                 rlResult = dvmCompilerGetReturnAlt(cUnit);
   2368             storeValue(cUnit, rlDest, rlResult);
   2369             return false;
   2370             break;
   2371         default:
   2372             return true;
   2373     }
   2374     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   2375     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   2376     // Avoid shifts by literal 0 - no support in Thumb.  Change to copy
   2377     if (shiftOp && (lit == 0)) {
   2378         genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
   2379     } else {
   2380         opRegRegImm(cUnit, op, rlResult.lowReg, rlSrc.lowReg, lit);
   2381     }
   2382     storeValue(cUnit, rlDest, rlResult);
   2383     return false;
   2384 }
   2385 
   2386 static bool handleFmt22c(CompilationUnit *cUnit, MIR *mir)
   2387 {
   2388     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   2389     int fieldOffset = -1;
   2390     bool isVolatile = false;
   2391     switch (dalvikOpcode) {
   2392         /*
   2393          * Wide volatiles currently handled via single step.
   2394          * Add them here if generating in-line code.
   2395          *     case OP_IGET_WIDE_VOLATILE:
   2396          *     case OP_IPUT_WIDE_VOLATILE:
   2397          */
   2398         case OP_IGET_VOLATILE:
   2399         case OP_IGET_OBJECT_VOLATILE:
   2400         case OP_IPUT_VOLATILE:
   2401         case OP_IPUT_OBJECT_VOLATILE:
   2402 #if ANDROID_SMP != 0
   2403             isVolatile = true;
   2404         // NOTE: intentional fallthrough
   2405 #endif
   2406         case OP_IGET:
   2407         case OP_IGET_WIDE:
   2408         case OP_IGET_OBJECT:
   2409         case OP_IGET_BOOLEAN:
   2410         case OP_IGET_BYTE:
   2411         case OP_IGET_CHAR:
   2412         case OP_IGET_SHORT:
   2413         case OP_IPUT:
   2414         case OP_IPUT_WIDE:
   2415         case OP_IPUT_OBJECT:
   2416         case OP_IPUT_BOOLEAN:
   2417         case OP_IPUT_BYTE:
   2418         case OP_IPUT_CHAR:
   2419         case OP_IPUT_SHORT: {
   2420             const Method *method = (mir->OptimizationFlags & MIR_CALLEE) ?
   2421                 mir->meta.calleeMethod : cUnit->method;
   2422             Field *fieldPtr =
   2423                 method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vC];
   2424 
   2425             if (fieldPtr == NULL) {
   2426                 BAIL_LOOP_COMPILATION();
   2427                 ALOGE("Unexpected null instance field");
   2428                 dvmAbort();
   2429             }
   2430 
   2431 #if ANDROID_SMP != 0
   2432             assert(isVolatile == dvmIsVolatileField((Field *) fieldPtr));
   2433 #else
   2434             isVolatile = dvmIsVolatileField((Field *) fieldPtr);
   2435 #endif
   2436             fieldOffset = ((InstField *)fieldPtr)->byteOffset;
   2437             break;
   2438         }
   2439         default:
   2440             break;
   2441     }
   2442 
   2443     switch (dalvikOpcode) {
   2444         case OP_NEW_ARRAY: {
   2445             // Generates a call - use explicit registers
   2446             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2447             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   2448             RegLocation rlResult;
   2449             void *classPtr = (void*)
   2450               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
   2451 
   2452             if (classPtr == NULL) {
   2453                 BAIL_LOOP_COMPILATION();
   2454                 ALOGE("Unexpected null class");
   2455                 dvmAbort();
   2456             }
   2457 
   2458             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2459             genExportPC(cUnit, mir);
   2460             loadValueDirectFixed(cUnit, rlSrc, r1);   /* Len */
   2461             loadConstant(cUnit, r0, (int) classPtr );
   2462             LOAD_FUNC_ADDR(cUnit, r3, (int)dvmAllocArrayByClass);
   2463             /*
   2464              * "len < 0": bail to the interpreter to re-execute the
   2465              * instruction
   2466              */
   2467             genRegImmCheck(cUnit, kArmCondMi, r1, 0, mir->offset, NULL);
   2468             loadConstant(cUnit, r2, ALLOC_DONT_TRACK);
   2469             opReg(cUnit, kOpBlx, r3);
   2470             dvmCompilerClobberCallRegs(cUnit);
   2471             /* generate a branch over if allocation is successful */
   2472             ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
   2473             /*
   2474              * OOM exception needs to be thrown here and cannot re-execute
   2475              */
   2476             loadConstant(cUnit, r0,
   2477                          (int) (cUnit->method->insns + mir->offset));
   2478             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   2479             /* noreturn */
   2480 
   2481             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   2482             target->defMask = ENCODE_ALL;
   2483             branchOver->generic.target = (LIR *) target;
   2484             rlResult = dvmCompilerGetReturn(cUnit);
   2485             storeValue(cUnit, rlDest, rlResult);
   2486             break;
   2487         }
   2488         case OP_INSTANCE_OF: {
   2489             // May generate a call - use explicit registers
   2490             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2491             RegLocation rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   2492             RegLocation rlResult;
   2493             ClassObject *classPtr =
   2494               (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
   2495             /*
   2496              * Note: It is possible that classPtr is NULL at this point,
   2497              * even though this instruction has been successfully interpreted.
   2498              * If the previous interpretation had a null source, the
   2499              * interpreter would not have bothered to resolve the clazz.
   2500              * Bail out to the interpreter in this case, and log it
   2501              * so that we can tell if it happens frequently.
   2502              */
   2503             if (classPtr == NULL) {
   2504                 BAIL_LOOP_COMPILATION();
   2505                 ALOGD("null clazz in OP_INSTANCE_OF, single-stepping");
   2506                 genInterpSingleStep(cUnit, mir);
   2507                 break;
   2508             }
   2509             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2510             loadValueDirectFixed(cUnit, rlSrc, r0);  /* Ref */
   2511             loadConstant(cUnit, r2, (int) classPtr );
   2512             /* When taken r0 has NULL which can be used for store directly */
   2513             ArmLIR *branch1 = genCmpImmBranch(cUnit, kArmCondEq, r0, 0);
   2514             /* r1 now contains object->clazz */
   2515             loadWordDisp(cUnit, r0, offsetof(Object, clazz), r1);
   2516             /* r1 now contains object->clazz */
   2517             LOAD_FUNC_ADDR(cUnit, r3, (int)dvmInstanceofNonTrivial);
   2518             loadConstant(cUnit, r0, 1);                /* Assume true */
   2519             opRegReg(cUnit, kOpCmp, r1, r2);
   2520             ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq);
   2521             genRegCopy(cUnit, r0, r1);
   2522             genRegCopy(cUnit, r1, r2);
   2523             opReg(cUnit, kOpBlx, r3);
   2524             dvmCompilerClobberCallRegs(cUnit);
   2525             /* branch target here */
   2526             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   2527             target->defMask = ENCODE_ALL;
   2528             rlResult = dvmCompilerGetReturn(cUnit);
   2529             storeValue(cUnit, rlDest, rlResult);
   2530             branch1->generic.target = (LIR *)target;
   2531             branch2->generic.target = (LIR *)target;
   2532             break;
   2533         }
   2534         case OP_IGET_WIDE:
   2535             genIGetWide(cUnit, mir, fieldOffset);
   2536             break;
   2537         case OP_IGET_VOLATILE:
   2538         case OP_IGET_OBJECT_VOLATILE:
   2539         case OP_IGET:
   2540         case OP_IGET_OBJECT:
   2541         case OP_IGET_BOOLEAN:
   2542         case OP_IGET_BYTE:
   2543         case OP_IGET_CHAR:
   2544         case OP_IGET_SHORT:
   2545             genIGet(cUnit, mir, kWord, fieldOffset, isVolatile);
   2546             break;
   2547         case OP_IPUT_WIDE:
   2548             genIPutWide(cUnit, mir, fieldOffset);
   2549             break;
   2550         case OP_IPUT_VOLATILE:
   2551         case OP_IPUT:
   2552         case OP_IPUT_BOOLEAN:
   2553         case OP_IPUT_BYTE:
   2554         case OP_IPUT_CHAR:
   2555         case OP_IPUT_SHORT:
   2556             genIPut(cUnit, mir, kWord, fieldOffset, false, isVolatile);
   2557             break;
   2558         case OP_IPUT_OBJECT_VOLATILE:
   2559         case OP_IPUT_OBJECT:
   2560             genIPut(cUnit, mir, kWord, fieldOffset, true, isVolatile);
   2561             break;
   2562         case OP_IGET_WIDE_VOLATILE:
   2563         case OP_IPUT_WIDE_VOLATILE:
   2564             genInterpSingleStep(cUnit, mir);
   2565             break;
   2566         default:
   2567             return true;
   2568     }
   2569     return false;
   2570 }
   2571 
   2572 static bool handleFmt22cs(CompilationUnit *cUnit, MIR *mir)
   2573 {
   2574     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   2575     int fieldOffset =  mir->dalvikInsn.vC;
   2576     switch (dalvikOpcode) {
   2577         case OP_IGET_QUICK:
   2578         case OP_IGET_OBJECT_QUICK:
   2579             genIGet(cUnit, mir, kWord, fieldOffset, false);
   2580             break;
   2581         case OP_IPUT_QUICK:
   2582             genIPut(cUnit, mir, kWord, fieldOffset, false, false);
   2583             break;
   2584         case OP_IPUT_OBJECT_QUICK:
   2585             genIPut(cUnit, mir, kWord, fieldOffset, true, false);
   2586             break;
   2587         case OP_IGET_WIDE_QUICK:
   2588             genIGetWide(cUnit, mir, fieldOffset);
   2589             break;
   2590         case OP_IPUT_WIDE_QUICK:
   2591             genIPutWide(cUnit, mir, fieldOffset);
   2592             break;
   2593         default:
   2594             return true;
   2595     }
   2596     return false;
   2597 
   2598 }
   2599 
   2600 /* Compare agaist zero */
   2601 static bool handleFmt22t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
   2602                          ArmLIR *labelList)
   2603 {
   2604     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   2605     ArmConditionCode cond;
   2606     /* backward branch? */
   2607     bool backwardBranch = (bb->taken->startOffset <= mir->offset);
   2608 
   2609     if (backwardBranch &&
   2610         (gDvmJit.genSuspendPoll || cUnit->jitMode == kJitLoop)) {
   2611         genSuspendPoll(cUnit, mir);
   2612     }
   2613 
   2614     RegLocation rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
   2615     RegLocation rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
   2616 
   2617     rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
   2618     rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
   2619 
   2620     opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg);
   2621 
   2622     switch (dalvikOpcode) {
   2623         case OP_IF_EQ:
   2624             cond = kArmCondEq;
   2625             break;
   2626         case OP_IF_NE:
   2627             cond = kArmCondNe;
   2628             break;
   2629         case OP_IF_LT:
   2630             cond = kArmCondLt;
   2631             break;
   2632         case OP_IF_GE:
   2633             cond = kArmCondGe;
   2634             break;
   2635         case OP_IF_GT:
   2636             cond = kArmCondGt;
   2637             break;
   2638         case OP_IF_LE:
   2639             cond = kArmCondLe;
   2640             break;
   2641         default:
   2642             cond = (ArmConditionCode)0;
   2643             ALOGE("Unexpected opcode (%d) for Fmt22t", dalvikOpcode);
   2644             dvmCompilerAbort(cUnit);
   2645     }
   2646     genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
   2647     /* This mostly likely will be optimized away in a later phase */
   2648     genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
   2649     return false;
   2650 }
   2651 
   2652 static bool handleFmt22x_Fmt32x(CompilationUnit *cUnit, MIR *mir)
   2653 {
   2654     Opcode opcode = mir->dalvikInsn.opcode;
   2655 
   2656     switch (opcode) {
   2657         case OP_MOVE_16:
   2658         case OP_MOVE_OBJECT_16:
   2659         case OP_MOVE_FROM16:
   2660         case OP_MOVE_OBJECT_FROM16: {
   2661             storeValue(cUnit, dvmCompilerGetDest(cUnit, mir, 0),
   2662                        dvmCompilerGetSrc(cUnit, mir, 0));
   2663             break;
   2664         }
   2665         case OP_MOVE_WIDE_16:
   2666         case OP_MOVE_WIDE_FROM16: {
   2667             storeValueWide(cUnit, dvmCompilerGetDestWide(cUnit, mir, 0, 1),
   2668                            dvmCompilerGetSrcWide(cUnit, mir, 0, 1));
   2669             break;
   2670         }
   2671         default:
   2672             return true;
   2673     }
   2674     return false;
   2675 }
   2676 
   2677 static bool handleFmt23x(CompilationUnit *cUnit, MIR *mir)
   2678 {
   2679     Opcode opcode = mir->dalvikInsn.opcode;
   2680     RegLocation rlSrc1;
   2681     RegLocation rlSrc2;
   2682     RegLocation rlDest;
   2683 
   2684     if ( (opcode >= OP_ADD_INT) && (opcode <= OP_REM_DOUBLE)) {
   2685         return genArithOp( cUnit, mir );
   2686     }
   2687 
   2688     /* APUTs have 3 sources and no targets */
   2689     if (mir->ssaRep->numDefs == 0) {
   2690         if (mir->ssaRep->numUses == 3) {
   2691             rlDest = dvmCompilerGetSrc(cUnit, mir, 0);
   2692             rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 1);
   2693             rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 2);
   2694         } else {
   2695             assert(mir->ssaRep->numUses == 4);
   2696             rlDest = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   2697             rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 2);
   2698             rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 3);
   2699         }
   2700     } else {
   2701         /* Two sources and 1 dest.  Deduce the operand sizes */
   2702         if (mir->ssaRep->numUses == 4) {
   2703             rlSrc1 = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   2704             rlSrc2 = dvmCompilerGetSrcWide(cUnit, mir, 2, 3);
   2705         } else {
   2706             assert(mir->ssaRep->numUses == 2);
   2707             rlSrc1 = dvmCompilerGetSrc(cUnit, mir, 0);
   2708             rlSrc2 = dvmCompilerGetSrc(cUnit, mir, 1);
   2709         }
   2710         if (mir->ssaRep->numDefs == 2) {
   2711             rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   2712         } else {
   2713             assert(mir->ssaRep->numDefs == 1);
   2714             rlDest = dvmCompilerGetDest(cUnit, mir, 0);
   2715         }
   2716     }
   2717 
   2718 
   2719     switch (opcode) {
   2720         case OP_CMPL_FLOAT:
   2721         case OP_CMPG_FLOAT:
   2722         case OP_CMPL_DOUBLE:
   2723         case OP_CMPG_DOUBLE:
   2724             return genCmpFP(cUnit, mir, rlDest, rlSrc1, rlSrc2);
   2725         case OP_CMP_LONG:
   2726             genCmpLong(cUnit, mir, rlDest, rlSrc1, rlSrc2);
   2727             break;
   2728         case OP_AGET_WIDE:
   2729             genArrayGet(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
   2730             break;
   2731         case OP_AGET:
   2732         case OP_AGET_OBJECT:
   2733             genArrayGet(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
   2734             break;
   2735         case OP_AGET_BOOLEAN:
   2736             genArrayGet(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
   2737             break;
   2738         case OP_AGET_BYTE:
   2739             genArrayGet(cUnit, mir, kSignedByte, rlSrc1, rlSrc2, rlDest, 0);
   2740             break;
   2741         case OP_AGET_CHAR:
   2742             genArrayGet(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
   2743             break;
   2744         case OP_AGET_SHORT:
   2745             genArrayGet(cUnit, mir, kSignedHalf, rlSrc1, rlSrc2, rlDest, 1);
   2746             break;
   2747         case OP_APUT_WIDE:
   2748             genArrayPut(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
   2749             break;
   2750         case OP_APUT:
   2751             genArrayPut(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
   2752             break;
   2753         case OP_APUT_OBJECT:
   2754             genArrayObjectPut(cUnit, mir, rlSrc1, rlSrc2, rlDest, 2);
   2755             break;
   2756         case OP_APUT_SHORT:
   2757         case OP_APUT_CHAR:
   2758             genArrayPut(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
   2759             break;
   2760         case OP_APUT_BYTE:
   2761         case OP_APUT_BOOLEAN:
   2762             genArrayPut(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
   2763             break;
   2764         default:
   2765             return true;
   2766     }
   2767     return false;
   2768 }
   2769 
   2770 /*
   2771  * Find the matching case.
   2772  *
   2773  * return values:
   2774  * r0 (low 32-bit): pc of the chaining cell corresponding to the resolved case,
   2775  *    including default which is placed at MIN(size, MAX_CHAINED_SWITCH_CASES).
   2776  * r1 (high 32-bit): the branch offset of the matching case (only for indexes
   2777  *    above MAX_CHAINED_SWITCH_CASES).
   2778  *
   2779  * Instructions around the call are:
   2780  *
   2781  * mov r2, pc
   2782  * blx &findPackedSwitchIndex
   2783  * mov pc, r0
   2784  * .align4
   2785  * chaining cell for case 0 [12 bytes]
   2786  * chaining cell for case 1 [12 bytes]
   2787  *               :
   2788  * chaining cell for case MIN(size, MAX_CHAINED_SWITCH_CASES)-1 [12 bytes]
   2789  * chaining cell for case default [8 bytes]
   2790  * noChain exit
   2791  */
   2792 static u8 findPackedSwitchIndex(const u2* switchData, int testVal, uintptr_t pc)
   2793 {
   2794     int size;
   2795     int firstKey;
   2796     const int *entries;
   2797     int index;
   2798     int jumpIndex;
   2799     uintptr_t caseDPCOffset = 0;
   2800     /* In Thumb mode pc is 4 ahead of the "mov r2, pc" instruction */
   2801     uintptr_t chainingPC = (pc + 4) & ~3;
   2802 
   2803     /*
   2804      * Packed switch data format:
   2805      *  ushort ident = 0x0100   magic value
   2806      *  ushort size             number of entries in the table
   2807      *  int first_key           first (and lowest) switch case value
   2808      *  int targets[size]       branch targets, relative to switch opcode
   2809      *
   2810      * Total size is (4+size*2) 16-bit code units.
   2811      */
   2812     size = switchData[1];
   2813     assert(size > 0);
   2814 
   2815     firstKey = switchData[2];
   2816     firstKey |= switchData[3] << 16;
   2817 
   2818 
   2819     /* The entries are guaranteed to be aligned on a 32-bit boundary;
   2820      * we can treat them as a native int array.
   2821      */
   2822     entries = (const int*) &switchData[4];
   2823     assert(((u4)entries & 0x3) == 0);
   2824 
   2825     index = testVal - firstKey;
   2826 
   2827     /* Jump to the default cell */
   2828     if (index < 0 || index >= size) {
   2829         jumpIndex = MIN(size, MAX_CHAINED_SWITCH_CASES);
   2830     /* Jump to the non-chaining exit point */
   2831     } else if (index >= MAX_CHAINED_SWITCH_CASES) {
   2832         jumpIndex = MAX_CHAINED_SWITCH_CASES + 1;
   2833         caseDPCOffset = entries[index];
   2834     /* Jump to the inline chaining cell */
   2835     } else {
   2836         jumpIndex = index;
   2837     }
   2838 
   2839     chainingPC += jumpIndex * CHAIN_CELL_NORMAL_SIZE;
   2840     return (((u8) caseDPCOffset) << 32) | (u8) chainingPC;
   2841 }
   2842 
   2843 /* See comments for findPackedSwitchIndex */
   2844 static u8 findSparseSwitchIndex(const u2* switchData, int testVal, uintptr_t pc)
   2845 {
   2846     int size;
   2847     const int *keys;
   2848     const int *entries;
   2849     uintptr_t chainingPC = (pc + 4) & ~3;
   2850     int i;
   2851 
   2852     /*
   2853      * Sparse switch data format:
   2854      *  ushort ident = 0x0200   magic value
   2855      *  ushort size             number of entries in the table; > 0
   2856      *  int keys[size]          keys, sorted low-to-high; 32-bit aligned
   2857      *  int targets[size]       branch targets, relative to switch opcode
   2858      *
   2859      * Total size is (2+size*4) 16-bit code units.
   2860      */
   2861 
   2862     size = switchData[1];
   2863     assert(size > 0);
   2864 
   2865     /* The keys are guaranteed to be aligned on a 32-bit boundary;
   2866      * we can treat them as a native int array.
   2867      */
   2868     keys = (const int*) &switchData[2];
   2869     assert(((u4)keys & 0x3) == 0);
   2870 
   2871     /* The entries are guaranteed to be aligned on a 32-bit boundary;
   2872      * we can treat them as a native int array.
   2873      */
   2874     entries = keys + size;
   2875     assert(((u4)entries & 0x3) == 0);
   2876 
   2877     /*
   2878      * Run through the list of keys, which are guaranteed to
   2879      * be sorted low-to-high.
   2880      *
   2881      * Most tables have 3-4 entries.  Few have more than 10.  A binary
   2882      * search here is probably not useful.
   2883      */
   2884     for (i = 0; i < size; i++) {
   2885         int k = keys[i];
   2886         if (k == testVal) {
   2887             /* MAX_CHAINED_SWITCH_CASES + 1 is the start of the overflow case */
   2888             int jumpIndex = (i < MAX_CHAINED_SWITCH_CASES) ?
   2889                            i : MAX_CHAINED_SWITCH_CASES + 1;
   2890             chainingPC += jumpIndex * CHAIN_CELL_NORMAL_SIZE;
   2891             return (((u8) entries[i]) << 32) | (u8) chainingPC;
   2892         } else if (k > testVal) {
   2893             break;
   2894         }
   2895     }
   2896     return chainingPC + MIN(size, MAX_CHAINED_SWITCH_CASES) *
   2897            CHAIN_CELL_NORMAL_SIZE;
   2898 }
   2899 
   2900 static bool handleFmt31t(CompilationUnit *cUnit, MIR *mir)
   2901 {
   2902     Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   2903     switch (dalvikOpcode) {
   2904         case OP_FILL_ARRAY_DATA: {
   2905             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2906             // Making a call - use explicit registers
   2907             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2908             genExportPC(cUnit, mir);
   2909             loadValueDirectFixed(cUnit, rlSrc, r0);
   2910             LOAD_FUNC_ADDR(cUnit, r2, (int)dvmInterpHandleFillArrayData);
   2911             loadConstant(cUnit, r1,
   2912                (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
   2913             opReg(cUnit, kOpBlx, r2);
   2914             dvmCompilerClobberCallRegs(cUnit);
   2915             /* generate a branch over if successful */
   2916             ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
   2917             loadConstant(cUnit, r0,
   2918                          (int) (cUnit->method->insns + mir->offset));
   2919             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   2920             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   2921             target->defMask = ENCODE_ALL;
   2922             branchOver->generic.target = (LIR *) target;
   2923             break;
   2924         }
   2925         /*
   2926          * Compute the goto target of up to
   2927          * MIN(switchSize, MAX_CHAINED_SWITCH_CASES) + 1 chaining cells.
   2928          * See the comment before findPackedSwitchIndex for the code layout.
   2929          */
   2930         case OP_PACKED_SWITCH:
   2931         case OP_SPARSE_SWITCH: {
   2932             RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   2933             dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   2934             loadValueDirectFixed(cUnit, rlSrc, r1);
   2935             dvmCompilerLockAllTemps(cUnit);
   2936             if (dalvikOpcode == OP_PACKED_SWITCH) {
   2937                 LOAD_FUNC_ADDR(cUnit, r4PC, (int)findPackedSwitchIndex);
   2938             } else {
   2939                 LOAD_FUNC_ADDR(cUnit, r4PC, (int)findSparseSwitchIndex);
   2940             }
   2941             /* r0 <- Addr of the switch data */
   2942             loadConstant(cUnit, r0,
   2943                (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
   2944             /* r2 <- pc of the instruction following the blx */
   2945             opRegReg(cUnit, kOpMov, r2, r15pc);
   2946             opReg(cUnit, kOpBlx, r4PC);
   2947             dvmCompilerClobberCallRegs(cUnit);
   2948             /* pc <- computed goto target */
   2949             opRegReg(cUnit, kOpMov, r15pc, r0);
   2950             break;
   2951         }
   2952         default:
   2953             return true;
   2954     }
   2955     return false;
   2956 }
   2957 
   2958 /*
   2959  * See the example of predicted inlining listed before the
   2960  * genValidationForPredictedInline function. The function here takes care the
   2961  * branch over at 0x4858de78 and the misprediction target at 0x4858de7a.
   2962  */
   2963 static void genLandingPadForMispredictedCallee(CompilationUnit *cUnit, MIR *mir,
   2964                                                BasicBlock *bb,
   2965                                                ArmLIR *labelList)
   2966 {
   2967     BasicBlock *fallThrough = bb->fallThrough;
   2968 
   2969     /* Bypass the move-result block if there is one */
   2970     if (fallThrough->firstMIRInsn) {
   2971         assert(fallThrough->firstMIRInsn->OptimizationFlags & MIR_INLINED_PRED);
   2972         fallThrough = fallThrough->fallThrough;
   2973     }
   2974     /* Generate a branch over if the predicted inlining is correct */
   2975     genUnconditionalBranch(cUnit, &labelList[fallThrough->id]);
   2976 
   2977     /* Reset the register state */
   2978     dvmCompilerResetRegPool(cUnit);
   2979     dvmCompilerClobberAllRegs(cUnit);
   2980     dvmCompilerResetNullCheck(cUnit);
   2981 
   2982     /* Target for the slow invoke path */
   2983     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   2984     target->defMask = ENCODE_ALL;
   2985     /* Hook up the target to the verification branch */
   2986     mir->meta.callsiteInfo->misPredBranchOver->target = (LIR *) target;
   2987 }
   2988 
   2989 static bool handleFmt35c_3rc(CompilationUnit *cUnit, MIR *mir,
   2990                              BasicBlock *bb, ArmLIR *labelList)
   2991 {
   2992     ArmLIR *retChainingCell = NULL;
   2993     ArmLIR *pcrLabel = NULL;
   2994 
   2995     /* An invoke with the MIR_INLINED is effectively a no-op */
   2996     if (mir->OptimizationFlags & MIR_INLINED)
   2997         return false;
   2998 
   2999     if (bb->fallThrough != NULL)
   3000         retChainingCell = &labelList[bb->fallThrough->id];
   3001 
   3002     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3003     switch (mir->dalvikInsn.opcode) {
   3004         /*
   3005          * calleeMethod = this->clazz->vtable[
   3006          *     method->clazz->pDvmDex->pResMethods[BBBB]->methodIndex
   3007          * ]
   3008          */
   3009         case OP_INVOKE_VIRTUAL:
   3010         case OP_INVOKE_VIRTUAL_RANGE: {
   3011             ArmLIR *predChainingCell = &labelList[bb->taken->id];
   3012             int methodIndex =
   3013                 cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]->
   3014                 methodIndex;
   3015 
   3016             /*
   3017              * If the invoke has non-null misPredBranchOver, we need to generate
   3018              * the non-inlined version of the invoke here to handle the
   3019              * mispredicted case.
   3020              */
   3021             if (mir->meta.callsiteInfo->misPredBranchOver) {
   3022                 genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
   3023             }
   3024 
   3025             if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL)
   3026                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   3027             else
   3028                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   3029 
   3030             genInvokeVirtualCommon(cUnit, mir, methodIndex,
   3031                                    retChainingCell,
   3032                                    predChainingCell,
   3033                                    pcrLabel);
   3034             break;
   3035         }
   3036         /*
   3037          * calleeMethod = method->clazz->super->vtable[method->clazz->pDvmDex
   3038          *                ->pResMethods[BBBB]->methodIndex]
   3039          */
   3040         case OP_INVOKE_SUPER:
   3041         case OP_INVOKE_SUPER_RANGE: {
   3042             /* Grab the method ptr directly from what the interpreter sees */
   3043             const Method *calleeMethod = mir->meta.callsiteInfo->method;
   3044             assert(calleeMethod == cUnit->method->clazz->super->vtable[
   3045                                      cUnit->method->clazz->pDvmDex->
   3046                                        pResMethods[dInsn->vB]->methodIndex]);
   3047 
   3048             if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER)
   3049                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   3050             else
   3051                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   3052 
   3053             if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
   3054                 const Method *calleeMethod = mir->meta.callsiteInfo->method;
   3055                 void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
   3056                 assert(calleeAddr);
   3057                 genInvokeSingletonWholeMethod(cUnit, mir, calleeAddr,
   3058                                               retChainingCell);
   3059             } else {
   3060                 /* r0 = calleeMethod */
   3061                 loadConstant(cUnit, r0, (int) calleeMethod);
   3062 
   3063                 genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
   3064                                          calleeMethod);
   3065             }
   3066             break;
   3067         }
   3068         /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
   3069         case OP_INVOKE_DIRECT:
   3070         case OP_INVOKE_DIRECT_RANGE: {
   3071             /* Grab the method ptr directly from what the interpreter sees */
   3072             const Method *calleeMethod = mir->meta.callsiteInfo->method;
   3073             assert(calleeMethod ==
   3074                    cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
   3075 
   3076             if (mir->dalvikInsn.opcode == OP_INVOKE_DIRECT)
   3077                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   3078             else
   3079                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   3080 
   3081             /* r0 = calleeMethod */
   3082             loadConstant(cUnit, r0, (int) calleeMethod);
   3083 
   3084             genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
   3085                                      calleeMethod);
   3086             break;
   3087         }
   3088         /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
   3089         case OP_INVOKE_STATIC:
   3090         case OP_INVOKE_STATIC_RANGE: {
   3091             /* Grab the method ptr directly from what the interpreter sees */
   3092             const Method *calleeMethod = mir->meta.callsiteInfo->method;
   3093             assert(calleeMethod ==
   3094                    cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]);
   3095 
   3096             if (mir->dalvikInsn.opcode == OP_INVOKE_STATIC)
   3097                 genProcessArgsNoRange(cUnit, mir, dInsn,
   3098                                       NULL /* no null check */);
   3099             else
   3100                 genProcessArgsRange(cUnit, mir, dInsn,
   3101                                     NULL /* no null check */);
   3102 
   3103             if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
   3104                 const Method *calleeMethod = mir->meta.callsiteInfo->method;
   3105                 void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
   3106                 assert(calleeAddr);
   3107                 genInvokeSingletonWholeMethod(cUnit, mir, calleeAddr,
   3108                                               retChainingCell);
   3109             } else {
   3110                 /* r0 = calleeMethod */
   3111                 loadConstant(cUnit, r0, (int) calleeMethod);
   3112 
   3113                 genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
   3114                                          calleeMethod);
   3115             }
   3116             break;
   3117         }
   3118         /*
   3119          * calleeMethod = dvmFindInterfaceMethodInCache(this->clazz,
   3120          *                    BBBB, method, method->clazz->pDvmDex)
   3121          *
   3122          * The following is an example of generated code for
   3123          *      "invoke-interface v0"
   3124          *
   3125          * -------- dalvik offset: 0x0008 @ invoke-interface v0
   3126          * 0x47357e36 : ldr     r0, [r5, #0]   --+
   3127          * 0x47357e38 : sub     r7,r5,#24        |
   3128          * 0x47357e3c : cmp     r0, #0           | genProcessArgsNoRange
   3129          * 0x47357e3e : beq     0x47357e82       |
   3130          * 0x47357e40 : stmia   r7, <r0>       --+
   3131          * 0x47357e42 : ldr     r4, [pc, #120] --> r4 <- dalvikPC of this invoke
   3132          * 0x47357e44 : add     r1, pc, #64    --> r1 <- &retChainingCell
   3133          * 0x47357e46 : add     r2, pc, #72    --> r2 <- &predictedChainingCell
   3134          * 0x47357e48 : blx_1   0x47348190     --+ TEMPLATE_INVOKE_METHOD_
   3135          * 0x47357e4a : blx_2   see above      --+     PREDICTED_CHAIN
   3136          * 0x47357e4c : b       0x47357e90     --> off to the predicted chain
   3137          * 0x47357e4e : b       0x47357e82     --> punt to the interpreter
   3138          * 0x47357e50 : mov     r8, r1         --+
   3139          * 0x47357e52 : mov     r9, r2           |
   3140          * 0x47357e54 : ldr     r2, [pc, #96]    |
   3141          * 0x47357e56 : mov     r10, r3          |
   3142          * 0x47357e58 : movs    r0, r3           | dvmFindInterfaceMethodInCache
   3143          * 0x47357e5a : ldr     r3, [pc, #88]    |
   3144          * 0x47357e5c : ldr     r7, [pc, #80]    |
   3145          * 0x47357e5e : mov     r1, #1452        |
   3146          * 0x47357e62 : blx     r7             --+
   3147          * 0x47357e64 : cmp     r0, #0         --> calleeMethod == NULL?
   3148          * 0x47357e66 : bne     0x47357e6e     --> branch over the throw if !r0
   3149          * 0x47357e68 : ldr     r0, [pc, #80]  --> load Dalvik PC of the invoke
   3150          * 0x47357e6a : blx_1   0x47348494     --+ TEMPLATE_THROW_EXCEPTION_
   3151          * 0x47357e6c : blx_2   see above      --+     COMMON
   3152          * 0x47357e6e : mov     r1, r8         --> r1 <- &retChainingCell
   3153          * 0x47357e70 : cmp     r1, #0         --> compare against 0
   3154          * 0x47357e72 : bgt     0x47357e7c     --> >=0? don't rechain
   3155          * 0x47357e74 : ldr     r7, [pc, #off] --+
   3156          * 0x47357e76 : mov     r2, r9           | dvmJitToPatchPredictedChain
   3157          * 0x47357e78 : mov     r3, r10          |
   3158          * 0x47357e7a : blx     r7             --+
   3159          * 0x47357e7c : add     r1, pc, #8     --> r1 <- &retChainingCell
   3160          * 0x47357e7e : blx_1   0x4734809c     --+ TEMPLATE_INVOKE_METHOD_NO_OPT
   3161          * 0x47357e80 : blx_2   see above      --+
   3162          * -------- reconstruct dalvik PC : 0x425719dc @ +0x0008
   3163          * 0x47357e82 : ldr     r0, [pc, #56]
   3164          * Exception_Handling:
   3165          * 0x47357e84 : ldr     r1, [r6, #92]
   3166          * 0x47357e86 : blx     r1
   3167          * 0x47357e88 : .align4
   3168          * -------- chaining cell (hot): 0x000b
   3169          * 0x47357e88 : ldr     r0, [r6, #104]
   3170          * 0x47357e8a : blx     r0
   3171          * 0x47357e8c : data    0x19e2(6626)
   3172          * 0x47357e8e : data    0x4257(16983)
   3173          * 0x47357e90 : .align4
   3174          * -------- chaining cell (predicted)
   3175          * 0x47357e90 : data    0xe7fe(59390)  --> will be patched into bx
   3176          * 0x47357e92 : data    0x0000(0)
   3177          * 0x47357e94 : data    0x0000(0)      --> class
   3178          * 0x47357e96 : data    0x0000(0)
   3179          * 0x47357e98 : data    0x0000(0)      --> method
   3180          * 0x47357e9a : data    0x0000(0)
   3181          * 0x47357e9c : data    0x0000(0)      --> rechain count
   3182          * 0x47357e9e : data    0x0000(0)
   3183          * -------- end of chaining cells (0x006c)
   3184          * 0x47357eb0 : .word (0xad03e369)
   3185          * 0x47357eb4 : .word (0x28a90)
   3186          * 0x47357eb8 : .word (0x41a63394)
   3187          * 0x47357ebc : .word (0x425719dc)
   3188          */
   3189         case OP_INVOKE_INTERFACE:
   3190         case OP_INVOKE_INTERFACE_RANGE: {
   3191             ArmLIR *predChainingCell = &labelList[bb->taken->id];
   3192 
   3193             /*
   3194              * If the invoke has non-null misPredBranchOver, we need to generate
   3195              * the non-inlined version of the invoke here to handle the
   3196              * mispredicted case.
   3197              */
   3198             if (mir->meta.callsiteInfo->misPredBranchOver) {
   3199                 genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
   3200             }
   3201 
   3202             if (mir->dalvikInsn.opcode == OP_INVOKE_INTERFACE)
   3203                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   3204             else
   3205                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   3206 
   3207             /* "this" is already left in r0 by genProcessArgs* */
   3208 
   3209             /* r4PC = dalvikCallsite */
   3210             loadConstant(cUnit, r4PC,
   3211                          (int) (cUnit->method->insns + mir->offset));
   3212 
   3213             /* r1 = &retChainingCell */
   3214             ArmLIR *addrRetChain =
   3215                 opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
   3216             addrRetChain->generic.target = (LIR *) retChainingCell;
   3217 
   3218             /* r2 = &predictedChainingCell */
   3219             ArmLIR *predictedChainingCell =
   3220                 opRegRegImm(cUnit, kOpAdd, r2, r15pc, 0);
   3221             predictedChainingCell->generic.target = (LIR *) predChainingCell;
   3222 
   3223             genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
   3224                 TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN_PROF :
   3225                 TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
   3226 
   3227             /* return through lr - jump to the chaining cell */
   3228             genUnconditionalBranch(cUnit, predChainingCell);
   3229 
   3230             /*
   3231              * null-check on "this" may have been eliminated, but we still need
   3232              * a PC-reconstruction label for stack overflow bailout.
   3233              */
   3234             if (pcrLabel == NULL) {
   3235                 int dPC = (int) (cUnit->method->insns + mir->offset);
   3236                 pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
   3237                 pcrLabel->opcode = kArmPseudoPCReconstructionCell;
   3238                 pcrLabel->operands[0] = dPC;
   3239                 pcrLabel->operands[1] = mir->offset;
   3240                 /* Insert the place holder to the growable list */
   3241                 dvmInsertGrowableList(&cUnit->pcReconstructionList,
   3242                                       (intptr_t) pcrLabel);
   3243             }
   3244 
   3245             /* return through lr+2 - punt to the interpreter */
   3246             genUnconditionalBranch(cUnit, pcrLabel);
   3247 
   3248             /*
   3249              * return through lr+4 - fully resolve the callee method.
   3250              * r1 <- count
   3251              * r2 <- &predictedChainCell
   3252              * r3 <- this->class
   3253              * r4 <- dPC
   3254              * r7 <- this->class->vtable
   3255              */
   3256 
   3257             /* Save count, &predictedChainCell, and class to high regs first */
   3258             genRegCopy(cUnit, r8, r1);
   3259             genRegCopy(cUnit, r9, r2);
   3260             genRegCopy(cUnit, r10, r3);
   3261 
   3262             /* r0 now contains this->clazz */
   3263             genRegCopy(cUnit, r0, r3);
   3264 
   3265             /* r1 = BBBB */
   3266             loadConstant(cUnit, r1, dInsn->vB);
   3267 
   3268             /* r2 = method (caller) */
   3269             loadConstant(cUnit, r2, (int) cUnit->method);
   3270 
   3271             /* r3 = pDvmDex */
   3272             loadConstant(cUnit, r3, (int) cUnit->method->clazz->pDvmDex);
   3273 
   3274             LOAD_FUNC_ADDR(cUnit, r7,
   3275                            (intptr_t) dvmFindInterfaceMethodInCache);
   3276             opReg(cUnit, kOpBlx, r7);
   3277             /* r0 = calleeMethod (returned from dvmFindInterfaceMethodInCache */
   3278 
   3279             dvmCompilerClobberCallRegs(cUnit);
   3280             /* generate a branch over if the interface method is resolved */
   3281             ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
   3282             /*
   3283              * calleeMethod == NULL -> throw
   3284              */
   3285             loadConstant(cUnit, r0,
   3286                          (int) (cUnit->method->insns + mir->offset));
   3287             genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   3288             /* noreturn */
   3289 
   3290             ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   3291             target->defMask = ENCODE_ALL;
   3292             branchOver->generic.target = (LIR *) target;
   3293 
   3294             genRegCopy(cUnit, r1, r8);
   3295 
   3296             /* Check if rechain limit is reached */
   3297             ArmLIR *bypassRechaining = genCmpImmBranch(cUnit, kArmCondGt,
   3298                                                        r1, 0);
   3299 
   3300             LOAD_FUNC_ADDR(cUnit, r7, (int) dvmJitToPatchPredictedChain);
   3301 
   3302             genRegCopy(cUnit, r1, r6SELF);
   3303             genRegCopy(cUnit, r2, r9);
   3304             genRegCopy(cUnit, r3, r10);
   3305 
   3306             /*
   3307              * r0 = calleeMethod
   3308              * r2 = &predictedChainingCell
   3309              * r3 = class
   3310              *
   3311              * &returnChainingCell has been loaded into r1 but is not needed
   3312              * when patching the chaining cell and will be clobbered upon
   3313              * returning so it will be reconstructed again.
   3314              */
   3315             opReg(cUnit, kOpBlx, r7);
   3316 
   3317             /* r1 = &retChainingCell */
   3318             addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, r15pc, 0);
   3319             addrRetChain->generic.target = (LIR *) retChainingCell;
   3320 
   3321             bypassRechaining->generic.target = (LIR *) addrRetChain;
   3322 
   3323             /*
   3324              * r0 = this, r1 = calleeMethod,
   3325              * r1 = &ChainingCell,
   3326              * r4PC = callsiteDPC,
   3327              */
   3328             genDispatchToHandler(cUnit, gDvmJit.methodTraceSupport ?
   3329                 TEMPLATE_INVOKE_METHOD_NO_OPT_PROF :
   3330                 TEMPLATE_INVOKE_METHOD_NO_OPT);
   3331 #if defined(WITH_JIT_TUNING)
   3332             gDvmJit.invokePolymorphic++;
   3333 #endif
   3334             /* Handle exceptions using the interpreter */
   3335             genTrap(cUnit, mir->offset, pcrLabel);
   3336             break;
   3337         }
   3338         case OP_INVOKE_OBJECT_INIT_RANGE:
   3339         case OP_FILLED_NEW_ARRAY:
   3340         case OP_FILLED_NEW_ARRAY_RANGE: {
   3341             /* Just let the interpreter deal with these */
   3342             genInterpSingleStep(cUnit, mir);
   3343             break;
   3344         }
   3345         default:
   3346             return true;
   3347     }
   3348     return false;
   3349 }
   3350 
   3351 static bool handleFmt35ms_3rms(CompilationUnit *cUnit, MIR *mir,
   3352                                BasicBlock *bb, ArmLIR *labelList)
   3353 {
   3354     ArmLIR *pcrLabel = NULL;
   3355 
   3356     /* An invoke with the MIR_INLINED is effectively a no-op */
   3357     if (mir->OptimizationFlags & MIR_INLINED)
   3358         return false;
   3359 
   3360     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3361     switch (mir->dalvikInsn.opcode) {
   3362         /* calleeMethod = this->clazz->vtable[BBBB] */
   3363         case OP_INVOKE_VIRTUAL_QUICK_RANGE:
   3364         case OP_INVOKE_VIRTUAL_QUICK: {
   3365             int methodIndex = dInsn->vB;
   3366             ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
   3367             ArmLIR *predChainingCell = &labelList[bb->taken->id];
   3368 
   3369             /*
   3370              * If the invoke has non-null misPredBranchOver, we need to generate
   3371              * the non-inlined version of the invoke here to handle the
   3372              * mispredicted case.
   3373              */
   3374             if (mir->meta.callsiteInfo->misPredBranchOver) {
   3375                 genLandingPadForMispredictedCallee(cUnit, mir, bb, labelList);
   3376             }
   3377 
   3378             if (mir->dalvikInsn.opcode == OP_INVOKE_VIRTUAL_QUICK)
   3379                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   3380             else
   3381                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   3382 
   3383 
   3384             if (mir->OptimizationFlags & MIR_INVOKE_METHOD_JIT) {
   3385                 const Method *calleeMethod = mir->meta.callsiteInfo->method;
   3386                 void *calleeAddr = dvmJitGetMethodAddr(calleeMethod->insns);
   3387                 assert(calleeAddr);
   3388                 genInvokeVirtualWholeMethod(cUnit, mir, calleeAddr,
   3389                                             retChainingCell);
   3390             }
   3391 
   3392             genInvokeVirtualCommon(cUnit, mir, methodIndex,
   3393                                    retChainingCell,
   3394                                    predChainingCell,
   3395                                    pcrLabel);
   3396             break;
   3397         }
   3398         /* calleeMethod = method->clazz->super->vtable[BBBB] */
   3399         case OP_INVOKE_SUPER_QUICK:
   3400         case OP_INVOKE_SUPER_QUICK_RANGE: {
   3401             /* Grab the method ptr directly from what the interpreter sees */
   3402             const Method *calleeMethod = mir->meta.callsiteInfo->method;
   3403             assert(calleeMethod ==
   3404                    cUnit->method->clazz->super->vtable[dInsn->vB]);
   3405 
   3406             if (mir->dalvikInsn.opcode == OP_INVOKE_SUPER_QUICK)
   3407                 genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
   3408             else
   3409                 genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
   3410 
   3411             /* r0 = calleeMethod */
   3412             loadConstant(cUnit, r0, (int) calleeMethod);
   3413 
   3414             genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
   3415                                      calleeMethod);
   3416             break;
   3417         }
   3418         default:
   3419             return true;
   3420     }
   3421     return false;
   3422 }
   3423 
   3424 /*
   3425  * This operation is complex enough that we'll do it partly inline
   3426  * and partly with a handler.  NOTE: the handler uses hardcoded
   3427  * values for string object offsets and must be revisitied if the
   3428  * layout changes.
   3429  */
   3430 static bool genInlinedCompareTo(CompilationUnit *cUnit, MIR *mir)
   3431 {
   3432 #if defined(USE_GLOBAL_STRING_DEFS)
   3433     return handleExecuteInlineC(cUnit, mir);
   3434 #else
   3435     ArmLIR *rollback;
   3436     RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
   3437     RegLocation rlComp = dvmCompilerGetSrc(cUnit, mir, 1);
   3438 
   3439     loadValueDirectFixed(cUnit, rlThis, r0);
   3440     loadValueDirectFixed(cUnit, rlComp, r1);
   3441     /* Test objects for NULL */
   3442     rollback = genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL);
   3443     genNullCheck(cUnit, rlComp.sRegLow, r1, mir->offset, rollback);
   3444     /*
   3445      * TUNING: we could check for object pointer equality before invoking
   3446      * handler. Unclear whether the gain would be worth the added code size
   3447      * expansion.
   3448      */
   3449     genDispatchToHandler(cUnit, TEMPLATE_STRING_COMPARETO);
   3450     storeValue(cUnit, inlinedTarget(cUnit, mir, false),
   3451                dvmCompilerGetReturn(cUnit));
   3452     return false;
   3453 #endif
   3454 }
   3455 
   3456 static bool genInlinedFastIndexOf(CompilationUnit *cUnit, MIR *mir)
   3457 {
   3458 #if defined(USE_GLOBAL_STRING_DEFS)
   3459     return handleExecuteInlineC(cUnit, mir);
   3460 #else
   3461     RegLocation rlThis = dvmCompilerGetSrc(cUnit, mir, 0);
   3462     RegLocation rlChar = dvmCompilerGetSrc(cUnit, mir, 1);
   3463 
   3464     loadValueDirectFixed(cUnit, rlThis, r0);
   3465     loadValueDirectFixed(cUnit, rlChar, r1);
   3466     RegLocation rlStart = dvmCompilerGetSrc(cUnit, mir, 2);
   3467     loadValueDirectFixed(cUnit, rlStart, r2);
   3468     /* Test objects for NULL */
   3469     genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL);
   3470     genDispatchToHandler(cUnit, TEMPLATE_STRING_INDEXOF);
   3471     storeValue(cUnit, inlinedTarget(cUnit, mir, false),
   3472                dvmCompilerGetReturn(cUnit));
   3473     return false;
   3474 #endif
   3475 }
   3476 
   3477 // Generates an inlined String.isEmpty or String.length.
   3478 static bool genInlinedStringIsEmptyOrLength(CompilationUnit *cUnit, MIR *mir,
   3479                                             bool isEmpty)
   3480 {
   3481     // dst = src.length();
   3482     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
   3483     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
   3484     rlObj = loadValue(cUnit, rlObj, kCoreReg);
   3485     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3486     genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset, NULL);
   3487     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count,
   3488                  rlResult.lowReg);
   3489     if (isEmpty) {
   3490         // dst = (dst == 0);
   3491         int tReg = dvmCompilerAllocTemp(cUnit);
   3492         opRegReg(cUnit, kOpNeg, tReg, rlResult.lowReg);
   3493         opRegRegReg(cUnit, kOpAdc, rlResult.lowReg, rlResult.lowReg, tReg);
   3494     }
   3495     storeValue(cUnit, rlDest, rlResult);
   3496     return false;
   3497 }
   3498 
   3499 static bool genInlinedStringLength(CompilationUnit *cUnit, MIR *mir)
   3500 {
   3501     return genInlinedStringIsEmptyOrLength(cUnit, mir, false);
   3502 }
   3503 
   3504 static bool genInlinedStringIsEmpty(CompilationUnit *cUnit, MIR *mir)
   3505 {
   3506     return genInlinedStringIsEmptyOrLength(cUnit, mir, true);
   3507 }
   3508 
   3509 static bool genInlinedStringCharAt(CompilationUnit *cUnit, MIR *mir)
   3510 {
   3511     int contents = OFFSETOF_MEMBER(ArrayObject, contents);
   3512     RegLocation rlObj = dvmCompilerGetSrc(cUnit, mir, 0);
   3513     RegLocation rlIdx = dvmCompilerGetSrc(cUnit, mir, 1);
   3514     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
   3515     RegLocation rlResult;
   3516     rlObj = loadValue(cUnit, rlObj, kCoreReg);
   3517     rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
   3518     int regMax = dvmCompilerAllocTemp(cUnit);
   3519     int regOff = dvmCompilerAllocTemp(cUnit);
   3520     int regPtr = dvmCompilerAllocTemp(cUnit);
   3521     ArmLIR *pcrLabel = genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg,
   3522                                     mir->offset, NULL);
   3523     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_count, regMax);
   3524     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_offset, regOff);
   3525     loadWordDisp(cUnit, rlObj.lowReg, gDvm.offJavaLangString_value, regPtr);
   3526     genBoundsCheck(cUnit, rlIdx.lowReg, regMax, mir->offset, pcrLabel);
   3527     dvmCompilerFreeTemp(cUnit, regMax);
   3528     opRegImm(cUnit, kOpAdd, regPtr, contents);
   3529     opRegReg(cUnit, kOpAdd, regOff, rlIdx.lowReg);
   3530     rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3531     loadBaseIndexed(cUnit, regPtr, regOff, rlResult.lowReg, 1, kUnsignedHalf);
   3532     storeValue(cUnit, rlDest, rlResult);
   3533     return false;
   3534 }
   3535 
   3536 static bool genInlinedAbsInt(CompilationUnit *cUnit, MIR *mir)
   3537 {
   3538     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   3539     rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
   3540     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
   3541     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3542     int signReg = dvmCompilerAllocTemp(cUnit);
   3543     /*
   3544      * abs(x) = y<=x>>31, (x+y)^y.
   3545      * Thumb2's IT block also yields 3 instructions, but imposes
   3546      * scheduling constraints.
   3547      */
   3548     opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.lowReg, 31);
   3549     opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
   3550     opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
   3551     storeValue(cUnit, rlDest, rlResult);
   3552     return false;
   3553 }
   3554 
   3555 static bool genInlinedAbsLong(CompilationUnit *cUnit, MIR *mir)
   3556 {
   3557     RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   3558     RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
   3559     rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg);
   3560     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3561     int signReg = dvmCompilerAllocTemp(cUnit);
   3562     /*
   3563      * abs(x) = y<=x>>31, (x+y)^y.
   3564      * Thumb2 IT block allows slightly shorter sequence,
   3565      * but introduces a scheduling barrier.  Stick with this
   3566      * mechanism for now.
   3567      */
   3568     opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.highReg, 31);
   3569     opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg);
   3570     opRegRegReg(cUnit, kOpAdc, rlResult.highReg, rlSrc.highReg, signReg);
   3571     opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg);
   3572     opRegReg(cUnit, kOpXor, rlResult.highReg, signReg);
   3573     storeValueWide(cUnit, rlDest, rlResult);
   3574     return false;
   3575 }
   3576 
   3577 static bool genInlinedIntFloatConversion(CompilationUnit *cUnit, MIR *mir)
   3578 {
   3579     // Just move from source to destination...
   3580     RegLocation rlSrc = dvmCompilerGetSrc(cUnit, mir, 0);
   3581     RegLocation rlDest = inlinedTarget(cUnit, mir, false);
   3582     storeValue(cUnit, rlDest, rlSrc);
   3583     return false;
   3584 }
   3585 
   3586 static bool genInlinedLongDoubleConversion(CompilationUnit *cUnit, MIR *mir)
   3587 {
   3588     // Just move from source to destination...
   3589     RegLocation rlSrc = dvmCompilerGetSrcWide(cUnit, mir, 0, 1);
   3590     RegLocation rlDest = inlinedTargetWide(cUnit, mir, false);
   3591     storeValueWide(cUnit, rlDest, rlSrc);
   3592     return false;
   3593 }
   3594 
   3595 /*
   3596  * JITs a call to a C function.
   3597  * TODO: use this for faster native method invocation for simple native
   3598  * methods (http://b/3069458).
   3599  */
   3600 static bool handleExecuteInlineC(CompilationUnit *cUnit, MIR *mir)
   3601 {
   3602     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3603     int operation = dInsn->vB;
   3604     unsigned int i;
   3605     const InlineOperation* inLineTable = dvmGetInlineOpsTable();
   3606     uintptr_t fn = (int) inLineTable[operation].func;
   3607     if (fn == 0) {
   3608         dvmCompilerAbort(cUnit);
   3609     }
   3610     dvmCompilerFlushAllRegs(cUnit);   /* Everything to home location */
   3611     dvmCompilerClobberCallRegs(cUnit);
   3612     dvmCompilerClobber(cUnit, r4PC);
   3613     dvmCompilerClobber(cUnit, r7);
   3614     int offset = offsetof(Thread, interpSave.retval);
   3615     opRegRegImm(cUnit, kOpAdd, r4PC, r6SELF, offset);
   3616     opImm(cUnit, kOpPush, (1<<r4PC) | (1<<r7));
   3617     LOAD_FUNC_ADDR(cUnit, r4PC, fn);
   3618     genExportPC(cUnit, mir);
   3619     for (i=0; i < dInsn->vA; i++) {
   3620         loadValueDirect(cUnit, dvmCompilerGetSrc(cUnit, mir, i), i);
   3621     }
   3622     opReg(cUnit, kOpBlx, r4PC);
   3623     opRegImm(cUnit, kOpAdd, r13sp, 8);
   3624     /* NULL? */
   3625     ArmLIR *branchOver = genCmpImmBranch(cUnit, kArmCondNe, r0, 0);
   3626     loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
   3627     genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
   3628     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   3629     target->defMask = ENCODE_ALL;
   3630     branchOver->generic.target = (LIR *) target;
   3631     return false;
   3632 }
   3633 
   3634 /*
   3635  * NOTE: Handles both range and non-range versions (arguments
   3636  * have already been normalized by this point).
   3637  */
   3638 static bool handleExecuteInline(CompilationUnit *cUnit, MIR *mir)
   3639 {
   3640     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3641     assert(dInsn->opcode == OP_EXECUTE_INLINE_RANGE ||
   3642            dInsn->opcode == OP_EXECUTE_INLINE);
   3643     switch (dInsn->vB) {
   3644         case INLINE_EMPTYINLINEMETHOD:
   3645             return false;  /* Nop */
   3646 
   3647         /* These ones we potentially JIT inline. */
   3648 
   3649         case INLINE_STRING_CHARAT:
   3650             return genInlinedStringCharAt(cUnit, mir);
   3651         case INLINE_STRING_LENGTH:
   3652             return genInlinedStringLength(cUnit, mir);
   3653         case INLINE_STRING_IS_EMPTY:
   3654             return genInlinedStringIsEmpty(cUnit, mir);
   3655         case INLINE_STRING_COMPARETO:
   3656             return genInlinedCompareTo(cUnit, mir);
   3657         case INLINE_STRING_FASTINDEXOF_II:
   3658             return genInlinedFastIndexOf(cUnit, mir);
   3659 
   3660         case INLINE_MATH_ABS_INT:
   3661         case INLINE_STRICT_MATH_ABS_INT:
   3662             return genInlinedAbsInt(cUnit, mir);
   3663         case INLINE_MATH_ABS_LONG:
   3664         case INLINE_STRICT_MATH_ABS_LONG:
   3665             return genInlinedAbsLong(cUnit, mir);
   3666         case INLINE_MATH_MIN_INT:
   3667         case INLINE_STRICT_MATH_MIN_INT:
   3668             return genInlinedMinMaxInt(cUnit, mir, true);
   3669         case INLINE_MATH_MAX_INT:
   3670         case INLINE_STRICT_MATH_MAX_INT:
   3671             return genInlinedMinMaxInt(cUnit, mir, false);
   3672         case INLINE_MATH_SQRT:
   3673         case INLINE_STRICT_MATH_SQRT:
   3674             return genInlineSqrt(cUnit, mir);
   3675         case INLINE_MATH_ABS_FLOAT:
   3676         case INLINE_STRICT_MATH_ABS_FLOAT:
   3677             return genInlinedAbsFloat(cUnit, mir);
   3678         case INLINE_MATH_ABS_DOUBLE:
   3679         case INLINE_STRICT_MATH_ABS_DOUBLE:
   3680             return genInlinedAbsDouble(cUnit, mir);
   3681 
   3682         case INLINE_FLOAT_TO_RAW_INT_BITS:
   3683         case INLINE_INT_BITS_TO_FLOAT:
   3684             return genInlinedIntFloatConversion(cUnit, mir);
   3685         case INLINE_DOUBLE_TO_RAW_LONG_BITS:
   3686         case INLINE_LONG_BITS_TO_DOUBLE:
   3687             return genInlinedLongDoubleConversion(cUnit, mir);
   3688 
   3689         /*
   3690          * These ones we just JIT a call to a C function for.
   3691          * TODO: special-case these in the other "invoke" call paths.
   3692          */
   3693         case INLINE_STRING_EQUALS:
   3694         case INLINE_MATH_COS:
   3695         case INLINE_MATH_SIN:
   3696         case INLINE_FLOAT_TO_INT_BITS:
   3697         case INLINE_DOUBLE_TO_LONG_BITS:
   3698             return handleExecuteInlineC(cUnit, mir);
   3699     }
   3700     dvmCompilerAbort(cUnit);
   3701     return false; // Not reachable; keeps compiler happy.
   3702 }
   3703 
   3704 static bool handleFmt51l(CompilationUnit *cUnit, MIR *mir)
   3705 {
   3706     //TUNING: We're using core regs here - not optimal when target is a double
   3707     RegLocation rlDest = dvmCompilerGetDestWide(cUnit, mir, 0, 1);
   3708     RegLocation rlResult = dvmCompilerEvalLoc(cUnit, rlDest, kCoreReg, true);
   3709     loadConstantNoClobber(cUnit, rlResult.lowReg,
   3710                           mir->dalvikInsn.vB_wide & 0xFFFFFFFFUL);
   3711     loadConstantNoClobber(cUnit, rlResult.highReg,
   3712                           (mir->dalvikInsn.vB_wide>>32) & 0xFFFFFFFFUL);
   3713     storeValueWide(cUnit, rlDest, rlResult);
   3714     return false;
   3715 }
   3716 
   3717 /*
   3718  * The following are special processing routines that handle transfer of
   3719  * controls between compiled code and the interpreter. Certain VM states like
   3720  * Dalvik PC and special-purpose registers are reconstructed here.
   3721  */
   3722 
   3723 /*
   3724  * Insert a
   3725  *    b   .+4
   3726  *    nop
   3727  * pair at the beginning of a chaining cell.  This serves as the
   3728  * switch branch that selects between reverting to the interpreter or
   3729  * not.  Once the cell is chained to a translation, the cell will
   3730  * contain a 32-bit branch.  Subsequent chain/unchain operations will
   3731  * then only alter that first 16-bits - the "b .+4" for unchaining,
   3732  * and the restoration of the first half of the 32-bit branch for
   3733  * rechaining.
   3734  */
   3735 static void insertChainingSwitch(CompilationUnit *cUnit)
   3736 {
   3737     ArmLIR *branch = newLIR0(cUnit, kThumbBUncond);
   3738     newLIR2(cUnit, kThumbOrr, r0, r0);
   3739     ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
   3740     target->defMask = ENCODE_ALL;
   3741     branch->generic.target = (LIR *) target;
   3742 }
   3743 
   3744 /* Chaining cell for code that may need warmup. */
   3745 static void handleNormalChainingCell(CompilationUnit *cUnit,
   3746                                      unsigned int offset)
   3747 {
   3748     /*
   3749      * Use raw instruction constructors to guarantee that the generated
   3750      * instructions fit the predefined cell size.
   3751      */
   3752     insertChainingSwitch(cUnit);
   3753     newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
   3754             offsetof(Thread,
   3755                      jitToInterpEntries.dvmJitToInterpNormal) >> 2);
   3756     newLIR1(cUnit, kThumbBlxR, r0);
   3757     addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
   3758 }
   3759 
   3760 /*
   3761  * Chaining cell for instructions that immediately following already translated
   3762  * code.
   3763  */
   3764 static void handleHotChainingCell(CompilationUnit *cUnit,
   3765                                   unsigned int offset)
   3766 {
   3767     /*
   3768      * Use raw instruction constructors to guarantee that the generated
   3769      * instructions fit the predefined cell size.
   3770      */
   3771     insertChainingSwitch(cUnit);
   3772     newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
   3773             offsetof(Thread,
   3774                      jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2);
   3775     newLIR1(cUnit, kThumbBlxR, r0);
   3776     addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
   3777 }
   3778 
   3779 /* Chaining cell for branches that branch back into the same basic block */
   3780 static void handleBackwardBranchChainingCell(CompilationUnit *cUnit,
   3781                                              unsigned int offset)
   3782 {
   3783     /*
   3784      * Use raw instruction constructors to guarantee that the generated
   3785      * instructions fit the predefined cell size.
   3786      */
   3787     insertChainingSwitch(cUnit);
   3788 #if defined(WITH_SELF_VERIFICATION)
   3789     newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
   3790         offsetof(Thread,
   3791                  jitToInterpEntries.dvmJitToInterpBackwardBranch) >> 2);
   3792 #else
   3793     newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
   3794         offsetof(Thread, jitToInterpEntries.dvmJitToInterpNormal) >> 2);
   3795 #endif
   3796     newLIR1(cUnit, kThumbBlxR, r0);
   3797     addWordData(cUnit, NULL, (int) (cUnit->method->insns + offset));
   3798 }
   3799 
   3800 /* Chaining cell for monomorphic method invocations. */
   3801 static void handleInvokeSingletonChainingCell(CompilationUnit *cUnit,
   3802                                               const Method *callee)
   3803 {
   3804     /*
   3805      * Use raw instruction constructors to guarantee that the generated
   3806      * instructions fit the predefined cell size.
   3807      */
   3808     insertChainingSwitch(cUnit);
   3809     newLIR3(cUnit, kThumbLdrRRI5, r0, r6SELF,
   3810             offsetof(Thread,
   3811                      jitToInterpEntries.dvmJitToInterpTraceSelect) >> 2);
   3812     newLIR1(cUnit, kThumbBlxR, r0);
   3813     addWordData(cUnit, NULL, (int) (callee->insns));
   3814 }
   3815 
   3816 /* Chaining cell for monomorphic method invocations. */
   3817 static void handleInvokePredictedChainingCell(CompilationUnit *cUnit)
   3818 {
   3819 
   3820     /* Should not be executed in the initial state */
   3821     addWordData(cUnit, NULL, PREDICTED_CHAIN_BX_PAIR_INIT);
   3822     /* To be filled: class */
   3823     addWordData(cUnit, NULL, PREDICTED_CHAIN_CLAZZ_INIT);
   3824     /* To be filled: method */
   3825     addWordData(cUnit, NULL, PREDICTED_CHAIN_METHOD_INIT);
   3826     /*
   3827      * Rechain count. The initial value of 0 here will trigger chaining upon
   3828      * the first invocation of this callsite.
   3829      */
   3830     addWordData(cUnit, NULL, PREDICTED_CHAIN_COUNTER_INIT);
   3831 }
   3832 
   3833 /* Load the Dalvik PC into r0 and jump to the specified target */
   3834 static void handlePCReconstruction(CompilationUnit *cUnit,
   3835                                    ArmLIR *targetLabel)
   3836 {
   3837     ArmLIR **pcrLabel =
   3838         (ArmLIR **) cUnit->pcReconstructionList.elemList;
   3839     int numElems = cUnit->pcReconstructionList.numUsed;
   3840     int i;
   3841 
   3842     /*
   3843      * We should never reach here through fall-through code, so insert
   3844      * a bomb to signal troubles immediately.
   3845      */
   3846     if (numElems) {
   3847         newLIR0(cUnit, kThumbUndefined);
   3848     }
   3849 
   3850     for (i = 0; i < numElems; i++) {
   3851         dvmCompilerAppendLIR(cUnit, (LIR *) pcrLabel[i]);
   3852         /* r0 = dalvik PC */
   3853         loadConstant(cUnit, r0, pcrLabel[i]->operands[0]);
   3854         genUnconditionalBranch(cUnit, targetLabel);
   3855     }
   3856 }
   3857 
   3858 static const char *extendedMIROpNames[kMirOpLast - kMirOpFirst] = {
   3859     "kMirOpPhi",
   3860     "kMirOpNullNRangeUpCheck",
   3861     "kMirOpNullNRangeDownCheck",
   3862     "kMirOpLowerBound",
   3863     "kMirOpPunt",
   3864     "kMirOpCheckInlinePrediction",
   3865 };
   3866 
   3867 /*
   3868  * vA = arrayReg;
   3869  * vB = idxReg;
   3870  * vC = endConditionReg;
   3871  * arg[0] = maxC
   3872  * arg[1] = minC
   3873  * arg[2] = loopBranchConditionCode
   3874  */
   3875 static void genHoistedChecksForCountUpLoop(CompilationUnit *cUnit, MIR *mir)
   3876 {
   3877     /*
   3878      * NOTE: these synthesized blocks don't have ssa names assigned
   3879      * for Dalvik registers.  However, because they dominate the following
   3880      * blocks we can simply use the Dalvik name w/ subscript 0 as the
   3881      * ssa name.
   3882      */
   3883     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3884     const int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
   3885     const int maxC = dInsn->arg[0];
   3886     int regLength;
   3887     RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
   3888     RegLocation rlIdxEnd = cUnit->regLocation[mir->dalvikInsn.vC];
   3889 
   3890     /* regArray <- arrayRef */
   3891     rlArray = loadValue(cUnit, rlArray, kCoreReg);
   3892     rlIdxEnd = loadValue(cUnit, rlIdxEnd, kCoreReg);
   3893     genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0,
   3894                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3895 
   3896     /* regLength <- len(arrayRef) */
   3897     regLength = dvmCompilerAllocTemp(cUnit);
   3898     loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
   3899 
   3900     int delta = maxC;
   3901     /*
   3902      * If the loop end condition is ">=" instead of ">", then the largest value
   3903      * of the index is "endCondition - 1".
   3904      */
   3905     if (dInsn->arg[2] == OP_IF_GE) {
   3906         delta--;
   3907     }
   3908 
   3909     if (delta) {
   3910         int tReg = dvmCompilerAllocTemp(cUnit);
   3911         opRegRegImm(cUnit, kOpAdd, tReg, rlIdxEnd.lowReg, delta);
   3912         rlIdxEnd.lowReg = tReg;
   3913         dvmCompilerFreeTemp(cUnit, tReg);
   3914     }
   3915     /* Punt if "regIdxEnd < len(Array)" is false */
   3916     genRegRegCheck(cUnit, kArmCondGe, rlIdxEnd.lowReg, regLength, 0,
   3917                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3918 }
   3919 
   3920 /*
   3921  * vA = arrayReg;
   3922  * vB = idxReg;
   3923  * vC = endConditionReg;
   3924  * arg[0] = maxC
   3925  * arg[1] = minC
   3926  * arg[2] = loopBranchConditionCode
   3927  */
   3928 static void genHoistedChecksForCountDownLoop(CompilationUnit *cUnit, MIR *mir)
   3929 {
   3930     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3931     const int lenOffset = OFFSETOF_MEMBER(ArrayObject, length);
   3932     const int regLength = dvmCompilerAllocTemp(cUnit);
   3933     const int maxC = dInsn->arg[0];
   3934     RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
   3935     RegLocation rlIdxInit = cUnit->regLocation[mir->dalvikInsn.vB];
   3936 
   3937     /* regArray <- arrayRef */
   3938     rlArray = loadValue(cUnit, rlArray, kCoreReg);
   3939     rlIdxInit = loadValue(cUnit, rlIdxInit, kCoreReg);
   3940     genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0,
   3941                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3942 
   3943     /* regLength <- len(arrayRef) */
   3944     loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
   3945 
   3946     if (maxC) {
   3947         int tReg = dvmCompilerAllocTemp(cUnit);
   3948         opRegRegImm(cUnit, kOpAdd, tReg, rlIdxInit.lowReg, maxC);
   3949         rlIdxInit.lowReg = tReg;
   3950         dvmCompilerFreeTemp(cUnit, tReg);
   3951     }
   3952 
   3953     /* Punt if "regIdxInit < len(Array)" is false */
   3954     genRegRegCheck(cUnit, kArmCondGe, rlIdxInit.lowReg, regLength, 0,
   3955                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3956 }
   3957 
   3958 /*
   3959  * vA = idxReg;
   3960  * vB = minC;
   3961  */
   3962 static void genHoistedLowerBoundCheck(CompilationUnit *cUnit, MIR *mir)
   3963 {
   3964     DecodedInstruction *dInsn = &mir->dalvikInsn;
   3965     const int minC = dInsn->vB;
   3966     RegLocation rlIdx = cUnit->regLocation[mir->dalvikInsn.vA];
   3967 
   3968     /* regIdx <- initial index value */
   3969     rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
   3970 
   3971     /* Punt if "regIdxInit + minC >= 0" is false */
   3972     genRegImmCheck(cUnit, kArmCondLt, rlIdx.lowReg, -minC, 0,
   3973                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   3974 }
   3975 
   3976 /*
   3977  * vC = this
   3978  *
   3979  * A predicted inlining target looks like the following, where instructions
   3980  * between 0x4858de66 and 0x4858de72 are checking if the predicted class
   3981  * matches "this", and the verificaion code is generated by this routine.
   3982  *
   3983  * (C) means the instruction is inlined from the callee, and (PI) means the
   3984  * instruction is the predicted inlined invoke, whose corresponding
   3985  * instructions are still generated to handle the mispredicted case.
   3986  *
   3987  * D/dalvikvm(   86): -------- kMirOpCheckInlinePrediction
   3988  * D/dalvikvm(   86): 0x4858de66 (0002): ldr     r0, [r5, #68]
   3989  * D/dalvikvm(   86): 0x4858de68 (0004): ldr     r1, [pc, #140]
   3990  * D/dalvikvm(   86): 0x4858de6a (0006): cmp     r0, #0
   3991  * D/dalvikvm(   86): 0x4858de6c (0008): beq     0x4858deb2
   3992  * D/dalvikvm(   86): 0x4858de6e (000a): ldr     r2, [r0, #0]
   3993  * D/dalvikvm(   86): 0x4858de70 (000c): cmp     r1, r2
   3994  * D/dalvikvm(   86): 0x4858de72 (000e): bne     0x4858de7a
   3995  * D/dalvikvm(   86): -------- dalvik offset: 0x004c @ +iget-object-quick (C)
   3996  * v4, v17, (#8)
   3997  * D/dalvikvm(   86): 0x4858de74 (0010): ldr     r3, [r0, #8]
   3998  * D/dalvikvm(   86): 0x4858de76 (0012): str     r3, [r5, #16]
   3999  * D/dalvikvm(   86): -------- dalvik offset: 0x004c @
   4000  * +invoke-virtual-quick/range (PI) v17..v17
   4001  * D/dalvikvm(   86): 0x4858de78 (0014): b       0x4858debc
   4002  * D/dalvikvm(   86): 0x4858de7a (0016): add     r4,r5,#68
   4003  * D/dalvikvm(   86): -------- BARRIER
   4004  * D/dalvikvm(   86): 0x4858de7e (001a): ldmia   r4, <r0>
   4005  * D/dalvikvm(   86): -------- BARRIER
   4006  * D/dalvikvm(   86): 0x4858de80 (001c): sub     r7,r5,#24
   4007  * D/dalvikvm(   86): 0x4858de84 (0020): cmp     r0, #0
   4008  * D/dalvikvm(   86): 0x4858de86 (0022): beq     0x4858deb6
   4009  * D/dalvikvm(   86): -------- BARRIER
   4010  * D/dalvikvm(   86): 0x4858de88 (0024): stmia   r7, <r0>
   4011  * D/dalvikvm(   86): -------- BARRIER
   4012  * D/dalvikvm(   86): 0x4858de8a (0026): ldr     r4, [pc, #104]
   4013  * D/dalvikvm(   86): 0x4858de8c (0028): add     r1, pc, #28
   4014  * D/dalvikvm(   86): 0x4858de8e (002a): add     r2, pc, #56
   4015  * D/dalvikvm(   86): 0x4858de90 (002c): blx_1   0x48589198
   4016  * D/dalvikvm(   86): 0x4858de92 (002e): blx_2   see above
   4017  * D/dalvikvm(   86): 0x4858de94 (0030): b       0x4858dec8
   4018  * D/dalvikvm(   86): 0x4858de96 (0032): b       0x4858deb6
   4019  * D/dalvikvm(   86): 0x4858de98 (0034): ldr     r0, [r7, #72]
   4020  * D/dalvikvm(   86): 0x4858de9a (0036): cmp     r1, #0
   4021  * D/dalvikvm(   86): 0x4858de9c (0038): bgt     0x4858dea4
   4022  * D/dalvikvm(   86): 0x4858de9e (003a): ldr     r7, [r6, #116]
   4023  * D/dalvikvm(   86): 0x4858dea0 (003c): movs    r1, r6
   4024  * D/dalvikvm(   86): 0x4858dea2 (003e): blx     r7
   4025  * D/dalvikvm(   86): 0x4858dea4 (0040): add     r1, pc, #4
   4026  * D/dalvikvm(   86): 0x4858dea6 (0042): blx_1   0x485890a0
   4027  * D/dalvikvm(   86): 0x4858dea8 (0044): blx_2   see above
   4028  * D/dalvikvm(   86): 0x4858deaa (0046): b       0x4858deb6
   4029  * D/dalvikvm(   86): 0x4858deac (0048): .align4
   4030  * D/dalvikvm(   86): L0x004f:
   4031  * D/dalvikvm(   86): -------- dalvik offset: 0x004f @ move-result-object (PI)
   4032  * v4, (#0), (#0)
   4033  * D/dalvikvm(   86): 0x4858deac (0048): ldr     r4, [r6, #8]
   4034  * D/dalvikvm(   86): 0x4858deae (004a): str     r4, [r5, #16]
   4035  * D/dalvikvm(   86): 0x4858deb0 (004c): b       0x4858debc
   4036  * D/dalvikvm(   86): -------- reconstruct dalvik PC : 0x42beefcc @ +0x004c
   4037  * D/dalvikvm(   86): 0x4858deb2 (004e): ldr     r0, [pc, #64]
   4038  * D/dalvikvm(   86): 0x4858deb4 (0050): b       0x4858deb8
   4039  * D/dalvikvm(   86): -------- reconstruct dalvik PC : 0x42beefcc @ +0x004c
   4040  * D/dalvikvm(   86): 0x4858deb6 (0052): ldr     r0, [pc, #60]
   4041  * D/dalvikvm(   86): Exception_Handling:
   4042  * D/dalvikvm(   86): 0x4858deb8 (0054): ldr     r1, [r6, #100]
   4043  * D/dalvikvm(   86): 0x4858deba (0056): blx     r1
   4044  * D/dalvikvm(   86): 0x4858debc (0058): .align4
   4045  * D/dalvikvm(   86): -------- chaining cell (hot): 0x0050
   4046  * D/dalvikvm(   86): 0x4858debc (0058): b       0x4858dec0
   4047  * D/dalvikvm(   86): 0x4858debe (005a): orrs    r0, r0
   4048  * D/dalvikvm(   86): 0x4858dec0 (005c): ldr     r0, [r6, #112]
   4049  * D/dalvikvm(   86): 0x4858dec2 (005e): blx     r0
   4050  * D/dalvikvm(   86): 0x4858dec4 (0060): data    0xefd4(61396)
   4051  * D/dalvikvm(   86): 0x4858dec6 (0062): data    0x42be(17086)
   4052  * D/dalvikvm(   86): 0x4858dec8 (0064): .align4
   4053  * D/dalvikvm(   86): -------- chaining cell (predicted)
   4054  * D/dalvikvm(   86): 0x4858dec8 (0064): data    0xe7fe(59390)
   4055  * D/dalvikvm(   86): 0x4858deca (0066): data    0x0000(0)
   4056  * D/dalvikvm(   86): 0x4858decc (0068): data    0x0000(0)
   4057  * D/dalvikvm(   86): 0x4858dece (006a): data    0x0000(0)
   4058  * :
   4059  */
   4060 static void genValidationForPredictedInline(CompilationUnit *cUnit, MIR *mir)
   4061 {
   4062     CallsiteInfo *callsiteInfo = mir->meta.callsiteInfo;
   4063     RegLocation rlThis = cUnit->regLocation[mir->dalvikInsn.vC];
   4064 
   4065     rlThis = loadValue(cUnit, rlThis, kCoreReg);
   4066     int regPredictedClass = dvmCompilerAllocTemp(cUnit);
   4067     loadClassPointer(cUnit, regPredictedClass, (int) callsiteInfo);
   4068     genNullCheck(cUnit, rlThis.sRegLow, rlThis.lowReg, mir->offset,
   4069                  NULL);/* null object? */
   4070     int regActualClass = dvmCompilerAllocTemp(cUnit);
   4071     loadWordDisp(cUnit, rlThis.lowReg, offsetof(Object, clazz), regActualClass);
   4072     opRegReg(cUnit, kOpCmp, regPredictedClass, regActualClass);
   4073     /*
   4074      * Set the misPredBranchOver target so that it will be generated when the
   4075      * code for the non-optimized invoke is generated.
   4076      */
   4077     callsiteInfo->misPredBranchOver = (LIR *) opCondBranch(cUnit, kArmCondNe);
   4078 }
   4079 
   4080 /* Extended MIR instructions like PHI */
   4081 static void handleExtendedMIR(CompilationUnit *cUnit, MIR *mir)
   4082 {
   4083     int opOffset = mir->dalvikInsn.opcode - kMirOpFirst;
   4084     char *msg = (char *)dvmCompilerNew(strlen(extendedMIROpNames[opOffset]) + 1,
   4085                                         false);
   4086     strcpy(msg, extendedMIROpNames[opOffset]);
   4087     newLIR1(cUnit, kArmPseudoExtended, (int) msg);
   4088 
   4089     switch ((ExtendedMIROpcode)mir->dalvikInsn.opcode) {
   4090         case kMirOpPhi: {
   4091             char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep);
   4092             newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
   4093             break;
   4094         }
   4095         case kMirOpNullNRangeUpCheck: {
   4096             genHoistedChecksForCountUpLoop(cUnit, mir);
   4097             break;
   4098         }
   4099         case kMirOpNullNRangeDownCheck: {
   4100             genHoistedChecksForCountDownLoop(cUnit, mir);
   4101             break;
   4102         }
   4103         case kMirOpLowerBound: {
   4104             genHoistedLowerBoundCheck(cUnit, mir);
   4105             break;
   4106         }
   4107         case kMirOpPunt: {
   4108             genUnconditionalBranch(cUnit,
   4109                                    (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
   4110             break;
   4111         }
   4112         case kMirOpCheckInlinePrediction: {
   4113             genValidationForPredictedInline(cUnit, mir);
   4114             break;
   4115         }
   4116         default:
   4117             break;
   4118     }
   4119 }
   4120 
   4121 /*
   4122  * Create a PC-reconstruction cell for the starting offset of this trace.
   4123  * Since the PCR cell is placed near the end of the compiled code which is
   4124  * usually out of range for a conditional branch, we put two branches (one
   4125  * branch over to the loop body and one layover branch to the actual PCR) at the
   4126  * end of the entry block.
   4127  */
   4128 static void setupLoopEntryBlock(CompilationUnit *cUnit, BasicBlock *entry,
   4129                                 ArmLIR *bodyLabel)
   4130 {
   4131     /* Set up the place holder to reconstruct this Dalvik PC */
   4132     ArmLIR *pcrLabel = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
   4133     pcrLabel->opcode = kArmPseudoPCReconstructionCell;
   4134     pcrLabel->operands[0] =
   4135         (int) (cUnit->method->insns + entry->startOffset);
   4136     pcrLabel->operands[1] = entry->startOffset;
   4137     /* Insert the place holder to the growable list */
   4138     dvmInsertGrowableList(&cUnit->pcReconstructionList, (intptr_t) pcrLabel);
   4139 
   4140     /*
   4141      * Next, create two branches - one branch over to the loop body and the
   4142      * other branch to the PCR cell to punt.
   4143      */
   4144     ArmLIR *branchToBody = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
   4145     branchToBody->opcode = kThumbBUncond;
   4146     branchToBody->generic.target = (LIR *) bodyLabel;
   4147     setupResourceMasks(branchToBody);
   4148     cUnit->loopAnalysis->branchToBody = (LIR *) branchToBody;
   4149 
   4150     ArmLIR *branchToPCR = (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR), true);
   4151     branchToPCR->opcode = kThumbBUncond;
   4152     branchToPCR->generic.target = (LIR *) pcrLabel;
   4153     setupResourceMasks(branchToPCR);
   4154     cUnit->loopAnalysis->branchToPCR = (LIR *) branchToPCR;
   4155 }
   4156 
   4157 #if defined(WITH_SELF_VERIFICATION)
   4158 static bool selfVerificationPuntOps(MIR *mir)
   4159 {
   4160     DecodedInstruction *decInsn = &mir->dalvikInsn;
   4161 
   4162     /*
   4163      * All opcodes that can throw exceptions and use the
   4164      * TEMPLATE_THROW_EXCEPTION_COMMON template should be excluded in the trace
   4165      * under self-verification mode.
   4166      */
   4167     switch (decInsn->opcode) {
   4168         case OP_MONITOR_ENTER:
   4169         case OP_MONITOR_EXIT:
   4170         case OP_NEW_INSTANCE:
   4171         case OP_NEW_ARRAY:
   4172         case OP_CHECK_CAST:
   4173         case OP_MOVE_EXCEPTION:
   4174         case OP_FILL_ARRAY_DATA:
   4175         case OP_EXECUTE_INLINE:
   4176         case OP_EXECUTE_INLINE_RANGE:
   4177             return true;
   4178         default:
   4179             return false;
   4180     }
   4181 }
   4182 #endif
   4183 
   4184 void dvmCompilerMIR2LIR(CompilationUnit *cUnit)
   4185 {
   4186     /* Used to hold the labels of each block */
   4187     ArmLIR *labelList =
   4188         (ArmLIR *) dvmCompilerNew(sizeof(ArmLIR) * cUnit->numBlocks, true);
   4189     ArmLIR *headLIR = NULL;
   4190     GrowableList chainingListByType[kChainingCellGap];
   4191     int i;
   4192 
   4193     /*
   4194      * Initialize various types chaining lists.
   4195      */
   4196     for (i = 0; i < kChainingCellGap; i++) {
   4197         dvmInitGrowableList(&chainingListByType[i], 2);
   4198     }
   4199 
   4200     /* Clear the visited flag for each block */
   4201     dvmCompilerDataFlowAnalysisDispatcher(cUnit, dvmCompilerClearVisitedFlag,
   4202                                           kAllNodes, false /* isIterative */);
   4203 
   4204     GrowableListIterator iterator;
   4205     dvmGrowableListIteratorInit(&cUnit->blockList, &iterator);
   4206 
   4207     /* Traces start with a profiling entry point.  Generate it here */
   4208     cUnit->profileCodeSize = genTraceProfileEntry(cUnit);
   4209 
   4210     /* Handle the content in each basic block */
   4211     for (i = 0; ; i++) {
   4212         MIR *mir;
   4213         BasicBlock *bb = (BasicBlock *) dvmGrowableListIteratorNext(&iterator);
   4214         if (bb == NULL) break;
   4215         if (bb->visited == true) continue;
   4216 
   4217         labelList[i].operands[0] = bb->startOffset;
   4218 
   4219         if (bb->blockType >= kChainingCellGap) {
   4220             if (bb->isFallThroughFromInvoke == true) {
   4221                 /* Align this block first since it is a return chaining cell */
   4222                 newLIR0(cUnit, kArmPseudoPseudoAlign4);
   4223             }
   4224             /*
   4225              * Append the label pseudo LIR first. Chaining cells will be handled
   4226              * separately afterwards.
   4227              */
   4228             dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[i]);
   4229         }
   4230 
   4231         if (bb->blockType == kEntryBlock) {
   4232             labelList[i].opcode = kArmPseudoEntryBlock;
   4233             if (bb->firstMIRInsn == NULL) {
   4234                 continue;
   4235             } else {
   4236               setupLoopEntryBlock(cUnit, bb,
   4237                                   &labelList[bb->fallThrough->id]);
   4238             }
   4239         } else if (bb->blockType == kExitBlock) {
   4240             labelList[i].opcode = kArmPseudoExitBlock;
   4241             goto gen_fallthrough;
   4242         } else if (bb->blockType == kDalvikByteCode) {
   4243             if (bb->hidden == true) continue;
   4244             labelList[i].opcode = kArmPseudoNormalBlockLabel;
   4245             /* Reset the register state */
   4246             dvmCompilerResetRegPool(cUnit);
   4247             dvmCompilerClobberAllRegs(cUnit);
   4248             dvmCompilerResetNullCheck(cUnit);
   4249         } else {
   4250             switch (bb->blockType) {
   4251                 case kChainingCellNormal:
   4252                     labelList[i].opcode = kArmPseudoChainingCellNormal;
   4253                     /* handle the codegen later */
   4254                     dvmInsertGrowableList(
   4255                         &chainingListByType[kChainingCellNormal], i);
   4256                     break;
   4257                 case kChainingCellInvokeSingleton:
   4258                     labelList[i].opcode =
   4259                         kArmPseudoChainingCellInvokeSingleton;
   4260                     labelList[i].operands[0] =
   4261                         (int) bb->containingMethod;
   4262                     /* handle the codegen later */
   4263                     dvmInsertGrowableList(
   4264                         &chainingListByType[kChainingCellInvokeSingleton], i);
   4265                     break;
   4266                 case kChainingCellInvokePredicted:
   4267                     labelList[i].opcode =
   4268                         kArmPseudoChainingCellInvokePredicted;
   4269                     /*
   4270                      * Move the cached method pointer from operand 1 to 0.
   4271                      * Operand 0 was clobbered earlier in this routine to store
   4272                      * the block starting offset, which is not applicable to
   4273                      * predicted chaining cell.
   4274                      */
   4275                     labelList[i].operands[0] = labelList[i].operands[1];
   4276                     /* handle the codegen later */
   4277                     dvmInsertGrowableList(
   4278                         &chainingListByType[kChainingCellInvokePredicted], i);
   4279                     break;
   4280                 case kChainingCellHot:
   4281                     labelList[i].opcode =
   4282                         kArmPseudoChainingCellHot;
   4283                     /* handle the codegen later */
   4284                     dvmInsertGrowableList(
   4285                         &chainingListByType[kChainingCellHot], i);
   4286                     break;
   4287                 case kPCReconstruction:
   4288                     /* Make sure exception handling block is next */
   4289                     labelList[i].opcode =
   4290                         kArmPseudoPCReconstructionBlockLabel;
   4291                     handlePCReconstruction(cUnit,
   4292                                            &labelList[cUnit->puntBlock->id]);
   4293                     break;
   4294                 case kExceptionHandling:
   4295                     labelList[i].opcode = kArmPseudoEHBlockLabel;
   4296                     if (cUnit->pcReconstructionList.numUsed) {
   4297                         loadWordDisp(cUnit, r6SELF, offsetof(Thread,
   4298                                      jitToInterpEntries.dvmJitToInterpPunt),
   4299                                      r1);
   4300                         opReg(cUnit, kOpBlx, r1);
   4301                     }
   4302                     break;
   4303                 case kChainingCellBackwardBranch:
   4304                     labelList[i].opcode =
   4305                         kArmPseudoChainingCellBackwardBranch;
   4306                     /* handle the codegen later */
   4307                     dvmInsertGrowableList(
   4308                         &chainingListByType[kChainingCellBackwardBranch],
   4309                         i);
   4310                     break;
   4311                 default:
   4312                     break;
   4313             }
   4314             continue;
   4315         }
   4316 
   4317         /*
   4318          * Try to build a longer optimization unit. Currently if the previous
   4319          * block ends with a goto, we continue adding instructions and don't
   4320          * reset the register allocation pool.
   4321          */
   4322         for (BasicBlock *nextBB = bb; nextBB != NULL; nextBB = cUnit->nextCodegenBlock) {
   4323             bb = nextBB;
   4324             bb->visited = true;
   4325             cUnit->nextCodegenBlock = NULL;
   4326 
   4327             for (mir = bb->firstMIRInsn; mir; mir = mir->next) {
   4328 
   4329                 dvmCompilerResetRegPool(cUnit);
   4330                 if (gDvmJit.disableOpt & (1 << kTrackLiveTemps)) {
   4331                     dvmCompilerClobberAllRegs(cUnit);
   4332                 }
   4333 
   4334                 if (gDvmJit.disableOpt & (1 << kSuppressLoads)) {
   4335                     dvmCompilerResetDefTracking(cUnit);
   4336                 }
   4337 
   4338                 if ((int)mir->dalvikInsn.opcode >= (int)kMirOpFirst) {
   4339                     handleExtendedMIR(cUnit, mir);
   4340                     continue;
   4341                 }
   4342 
   4343                 Opcode dalvikOpcode = mir->dalvikInsn.opcode;
   4344                 InstructionFormat dalvikFormat =
   4345                     dexGetFormatFromOpcode(dalvikOpcode);
   4346                 const char *note;
   4347                 if (mir->OptimizationFlags & MIR_INLINED) {
   4348                     note = " (I)";
   4349                 } else if (mir->OptimizationFlags & MIR_INLINED_PRED) {
   4350                     note = " (PI)";
   4351                 } else if (mir->OptimizationFlags & MIR_CALLEE) {
   4352                     note = " (C)";
   4353                 } else {
   4354                     note = NULL;
   4355                 }
   4356 
   4357                 ArmLIR *boundaryLIR;
   4358 
   4359                 /*
   4360                  * Don't generate the boundary LIR unless we are debugging this
   4361                  * trace or we need a scheduling barrier.
   4362                  */
   4363                 if (headLIR == NULL || cUnit->printMe == true) {
   4364                     boundaryLIR =
   4365                         newLIR2(cUnit, kArmPseudoDalvikByteCodeBoundary,
   4366                                 mir->offset,
   4367                                 (int) dvmCompilerGetDalvikDisassembly(
   4368                                     &mir->dalvikInsn, note));
   4369                     /* Remember the first LIR for this block */
   4370                     if (headLIR == NULL) {
   4371                         headLIR = boundaryLIR;
   4372                         /* Set the first boundaryLIR as a scheduling barrier */
   4373                         headLIR->defMask = ENCODE_ALL;
   4374                     }
   4375                 }
   4376 
   4377                 /*
   4378                  * Don't generate the SSA annotation unless verbose mode is on
   4379                  */
   4380                 if (cUnit->printMe && mir->ssaRep) {
   4381                     char *ssaString = dvmCompilerGetSSAString(cUnit,
   4382                                                               mir->ssaRep);
   4383                     newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
   4384                 }
   4385 
   4386                 bool notHandled;
   4387                 /*
   4388                  * Debugging: screen the opcode first to see if it is in the
   4389                  * do[-not]-compile list
   4390                  */
   4391                 bool singleStepMe = SINGLE_STEP_OP(dalvikOpcode);
   4392 #if defined(WITH_SELF_VERIFICATION)
   4393               if (singleStepMe == false) {
   4394                   singleStepMe = selfVerificationPuntOps(mir);
   4395               }
   4396 #endif
   4397                 if (singleStepMe || cUnit->allSingleStep) {
   4398                     notHandled = false;
   4399                     genInterpSingleStep(cUnit, mir);
   4400                 } else {
   4401                     opcodeCoverage[dalvikOpcode]++;
   4402                     switch (dalvikFormat) {
   4403                         case kFmt10t:
   4404                         case kFmt20t:
   4405                         case kFmt30t:
   4406                             notHandled = handleFmt10t_Fmt20t_Fmt30t(cUnit,
   4407                                       mir, bb, labelList);
   4408                             break;
   4409                         case kFmt10x:
   4410                             notHandled = handleFmt10x(cUnit, mir);
   4411                             break;
   4412                         case kFmt11n:
   4413                         case kFmt31i:
   4414                             notHandled = handleFmt11n_Fmt31i(cUnit, mir);
   4415                             break;
   4416                         case kFmt11x:
   4417                             notHandled = handleFmt11x(cUnit, mir);
   4418                             break;
   4419                         case kFmt12x:
   4420                             notHandled = handleFmt12x(cUnit, mir);
   4421                             break;
   4422                         case kFmt20bc:
   4423                             notHandled = handleFmt20bc(cUnit, mir);
   4424                             break;
   4425                         case kFmt21c:
   4426                         case kFmt31c:
   4427                             notHandled = handleFmt21c_Fmt31c(cUnit, mir);
   4428                             break;
   4429                         case kFmt21h:
   4430                             notHandled = handleFmt21h(cUnit, mir);
   4431                             break;
   4432                         case kFmt21s:
   4433                             notHandled = handleFmt21s(cUnit, mir);
   4434                             break;
   4435                         case kFmt21t:
   4436                             notHandled = handleFmt21t(cUnit, mir, bb,
   4437                                                       labelList);
   4438                             break;
   4439                         case kFmt22b:
   4440                         case kFmt22s:
   4441                             notHandled = handleFmt22b_Fmt22s(cUnit, mir);
   4442                             break;
   4443                         case kFmt22c:
   4444                             notHandled = handleFmt22c(cUnit, mir);
   4445                             break;
   4446                         case kFmt22cs:
   4447                             notHandled = handleFmt22cs(cUnit, mir);
   4448                             break;
   4449                         case kFmt22t:
   4450                             notHandled = handleFmt22t(cUnit, mir, bb,
   4451                                                       labelList);
   4452                             break;
   4453                         case kFmt22x:
   4454                         case kFmt32x:
   4455                             notHandled = handleFmt22x_Fmt32x(cUnit, mir);
   4456                             break;
   4457                         case kFmt23x:
   4458                             notHandled = handleFmt23x(cUnit, mir);
   4459                             break;
   4460                         case kFmt31t:
   4461                             notHandled = handleFmt31t(cUnit, mir);
   4462                             break;
   4463                         case kFmt3rc:
   4464                         case kFmt35c:
   4465                             notHandled = handleFmt35c_3rc(cUnit, mir, bb,
   4466                                                           labelList);
   4467                             break;
   4468                         case kFmt3rms:
   4469                         case kFmt35ms:
   4470                             notHandled = handleFmt35ms_3rms(cUnit, mir, bb,
   4471                                                             labelList);
   4472                             break;
   4473                         case kFmt35mi:
   4474                         case kFmt3rmi:
   4475                             notHandled = handleExecuteInline(cUnit, mir);
   4476                             break;
   4477                         case kFmt51l:
   4478                             notHandled = handleFmt51l(cUnit, mir);
   4479                             break;
   4480                         default:
   4481                             notHandled = true;
   4482                             break;
   4483                     }
   4484                 }
   4485                 if (notHandled) {
   4486                     ALOGE("%#06x: Opcode %#x (%s) / Fmt %d not handled",
   4487                          mir->offset,
   4488                          dalvikOpcode, dexGetOpcodeName(dalvikOpcode),
   4489                          dalvikFormat);
   4490                     dvmCompilerAbort(cUnit);
   4491                     break;
   4492                 }
   4493             }
   4494         }
   4495 
   4496         if (bb->blockType == kEntryBlock) {
   4497             dvmCompilerAppendLIR(cUnit,
   4498                                  (LIR *) cUnit->loopAnalysis->branchToBody);
   4499             dvmCompilerAppendLIR(cUnit,
   4500                                  (LIR *) cUnit->loopAnalysis->branchToPCR);
   4501         }
   4502 
   4503         if (headLIR) {
   4504             /*
   4505              * Eliminate redundant loads/stores and delay stores into later
   4506              * slots
   4507              */
   4508             dvmCompilerApplyLocalOptimizations(cUnit, (LIR *) headLIR,
   4509                                                cUnit->lastLIRInsn);
   4510             /* Reset headLIR which is also the optimization boundary */
   4511             headLIR = NULL;
   4512         }
   4513 
   4514 gen_fallthrough:
   4515         /*
   4516          * Check if the block is terminated due to trace length constraint -
   4517          * insert an unconditional branch to the chaining cell.
   4518          */
   4519         if (bb->needFallThroughBranch) {
   4520             genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
   4521         }
   4522     }
   4523 
   4524     /* Handle the chaining cells in predefined order */
   4525     for (i = 0; i < kChainingCellGap; i++) {
   4526         size_t j;
   4527         int *blockIdList = (int *) chainingListByType[i].elemList;
   4528 
   4529         cUnit->numChainingCells[i] = chainingListByType[i].numUsed;
   4530 
   4531         /* No chaining cells of this type */
   4532         if (cUnit->numChainingCells[i] == 0)
   4533             continue;
   4534 
   4535         /* Record the first LIR for a new type of chaining cell */
   4536         cUnit->firstChainingLIR[i] = (LIR *) &labelList[blockIdList[0]];
   4537 
   4538         for (j = 0; j < chainingListByType[i].numUsed; j++) {
   4539             int blockId = blockIdList[j];
   4540             BasicBlock *chainingBlock =
   4541                 (BasicBlock *) dvmGrowableListGetElement(&cUnit->blockList,
   4542                                                          blockId);
   4543 
   4544             /* Align this chaining cell first */
   4545             newLIR0(cUnit, kArmPseudoPseudoAlign4);
   4546 
   4547             /* Insert the pseudo chaining instruction */
   4548             dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[blockId]);
   4549 
   4550 
   4551             switch (chainingBlock->blockType) {
   4552                 case kChainingCellNormal:
   4553                     handleNormalChainingCell(cUnit, chainingBlock->startOffset);
   4554                     break;
   4555                 case kChainingCellInvokeSingleton:
   4556                     handleInvokeSingletonChainingCell(cUnit,
   4557                         chainingBlock->containingMethod);
   4558                     break;
   4559                 case kChainingCellInvokePredicted:
   4560                     handleInvokePredictedChainingCell(cUnit);
   4561                     break;
   4562                 case kChainingCellHot:
   4563                     handleHotChainingCell(cUnit, chainingBlock->startOffset);
   4564                     break;
   4565                 case kChainingCellBackwardBranch:
   4566                     handleBackwardBranchChainingCell(cUnit,
   4567                         chainingBlock->startOffset);
   4568                     break;
   4569                 default:
   4570                     ALOGE("Bad blocktype %d", chainingBlock->blockType);
   4571                     dvmCompilerAbort(cUnit);
   4572             }
   4573         }
   4574     }
   4575 
   4576     /* Mark the bottom of chaining cells */
   4577     cUnit->chainingCellBottom = (LIR *) newLIR0(cUnit, kArmChainingCellBottom);
   4578 
   4579     /*
   4580      * Generate the branch to the dvmJitToInterpNoChain entry point at the end
   4581      * of all chaining cells for the overflow cases.
   4582      */
   4583     if (cUnit->switchOverflowPad) {
   4584         loadConstant(cUnit, r0, (int) cUnit->switchOverflowPad);
   4585         loadWordDisp(cUnit, r6SELF, offsetof(Thread,
   4586                      jitToInterpEntries.dvmJitToInterpNoChain), r2);
   4587         opRegReg(cUnit, kOpAdd, r1, r1);
   4588         opRegRegReg(cUnit, kOpAdd, r4PC, r0, r1);
   4589 #if defined(WITH_JIT_TUNING)
   4590         loadConstant(cUnit, r0, kSwitchOverflow);
   4591 #endif
   4592         opReg(cUnit, kOpBlx, r2);
   4593     }
   4594 
   4595     dvmCompilerApplyGlobalOptimizations(cUnit);
   4596 
   4597 #if defined(WITH_SELF_VERIFICATION)
   4598     selfVerificationBranchInsertPass(cUnit);
   4599 #endif
   4600 }
   4601 
   4602 /*
   4603  * Accept the work and start compiling.  Returns true if compilation
   4604  * is attempted.
   4605  */
   4606 bool dvmCompilerDoWork(CompilerWorkOrder *work)
   4607 {
   4608     JitTraceDescription *desc;
   4609     bool isCompile;
   4610     bool success = true;
   4611 
   4612     if (gDvmJit.codeCacheFull) {
   4613         return false;
   4614     }
   4615 
   4616     switch (work->kind) {
   4617         case kWorkOrderTrace:
   4618             isCompile = true;
   4619             /* Start compilation with maximally allowed trace length */
   4620             desc = (JitTraceDescription *)work->info;
   4621             success = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result,
   4622                                         work->bailPtr, 0 /* no hints */);
   4623             break;
   4624         case kWorkOrderTraceDebug: {
   4625             bool oldPrintMe = gDvmJit.printMe;
   4626             gDvmJit.printMe = true;
   4627             isCompile = true;
   4628             /* Start compilation with maximally allowed trace length */
   4629             desc = (JitTraceDescription *)work->info;
   4630             success = dvmCompileTrace(desc, JIT_MAX_TRACE_LEN, &work->result,
   4631                                         work->bailPtr, 0 /* no hints */);
   4632             gDvmJit.printMe = oldPrintMe;
   4633             break;
   4634         }
   4635         case kWorkOrderProfileMode:
   4636             dvmJitChangeProfileMode((TraceProfilingModes)(int)work->info);
   4637             isCompile = false;
   4638             break;
   4639         default:
   4640             isCompile = false;
   4641             ALOGE("Jit: unknown work order type");
   4642             assert(0);  // Bail if debug build, discard otherwise
   4643     }
   4644     if (!success)
   4645         work->result.codeAddress = NULL;
   4646     return isCompile;
   4647 }
   4648 
   4649 /* Architectural-specific debugging helpers go here */
   4650 void dvmCompilerArchDump(void)
   4651 {
   4652     /* Print compiled opcode in this VM instance */
   4653     int i, start, streak;
   4654     char buf[1024];
   4655 
   4656     streak = i = 0;
   4657     buf[0] = 0;
   4658     while (opcodeCoverage[i] == 0 && i < kNumPackedOpcodes) {
   4659         i++;
   4660     }
   4661     if (i == kNumPackedOpcodes) {
   4662         return;
   4663     }
   4664     for (start = i++, streak = 1; i < kNumPackedOpcodes; i++) {
   4665         if (opcodeCoverage[i]) {
   4666             streak++;
   4667         } else {
   4668             if (streak == 1) {
   4669                 sprintf(buf+strlen(buf), "%x,", start);
   4670             } else {
   4671                 sprintf(buf+strlen(buf), "%x-%x,", start, start + streak - 1);
   4672             }
   4673             streak = 0;
   4674             while (opcodeCoverage[i] == 0 && i < kNumPackedOpcodes) {
   4675                 i++;
   4676             }
   4677             if (i < kNumPackedOpcodes) {
   4678                 streak = 1;
   4679                 start = i;
   4680             }
   4681         }
   4682     }
   4683     if (streak) {
   4684         if (streak == 1) {
   4685             sprintf(buf+strlen(buf), "%x", start);
   4686         } else {
   4687             sprintf(buf+strlen(buf), "%x-%x", start, start + streak - 1);
   4688         }
   4689     }
   4690     if (strlen(buf)) {
   4691         ALOGD("dalvik.vm.jit.op = %s", buf);
   4692     }
   4693 }
   4694 
   4695 /* Common initialization routine for an architecture family */
   4696 bool dvmCompilerArchInit()
   4697 {
   4698     int i;
   4699 
   4700     for (i = 0; i < kArmLast; i++) {
   4701         if (EncodingMap[i].opcode != i) {
   4702             ALOGE("Encoding order for %s is wrong: expecting %d, seeing %d",
   4703                  EncodingMap[i].name, i, EncodingMap[i].opcode);
   4704             dvmAbort();  // OK to dvmAbort - build error
   4705         }
   4706     }
   4707 
   4708     return dvmCompilerArchVariantInit();
   4709 }
   4710 
   4711 void *dvmCompilerGetInterpretTemplate()
   4712 {
   4713       return (void*) ((int)gDvmJit.codeCache +
   4714                       templateEntryOffsets[TEMPLATE_INTERPRET]);
   4715 }
   4716 
   4717 JitInstructionSetType dvmCompilerGetInterpretTemplateSet()
   4718 {
   4719     return DALVIK_JIT_ARM;
   4720 }
   4721 
   4722 /* Needed by the Assembler */
   4723 void dvmCompilerSetupResourceMasks(ArmLIR *lir)
   4724 {
   4725     setupResourceMasks(lir);
   4726 }
   4727 
   4728 /* Needed by the ld/st optmizatons */
   4729 ArmLIR* dvmCompilerRegCopyNoInsert(CompilationUnit *cUnit, int rDest, int rSrc)
   4730 {
   4731     return genRegCopyNoInsert(cUnit, rDest, rSrc);
   4732 }
   4733 
   4734 /* Needed by the register allocator */
   4735 ArmLIR* dvmCompilerRegCopy(CompilationUnit *cUnit, int rDest, int rSrc)
   4736 {
   4737     return genRegCopy(cUnit, rDest, rSrc);
   4738 }
   4739 
   4740 /* Needed by the register allocator */
   4741 void dvmCompilerRegCopyWide(CompilationUnit *cUnit, int destLo, int destHi,
   4742                             int srcLo, int srcHi)
   4743 {
   4744     genRegCopyWide(cUnit, destLo, destHi, srcLo, srcHi);
   4745 }
   4746 
   4747 void dvmCompilerFlushRegImpl(CompilationUnit *cUnit, int rBase,
   4748                              int displacement, int rSrc, OpSize size)
   4749 {
   4750     storeBaseDisp(cUnit, rBase, displacement, rSrc, size);
   4751 }
   4752 
   4753 void dvmCompilerFlushRegWideImpl(CompilationUnit *cUnit, int rBase,
   4754                                  int displacement, int rSrcLo, int rSrcHi)
   4755 {
   4756     storeBaseDispWide(cUnit, rBase, displacement, rSrcLo, rSrcHi);
   4757 }
   4758