Home | History | Annotate | Download | only in Hexagon
      1 //===----- HexagonNewValueJump.cpp - Hexagon Backend New Value Jump -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements NewValueJump pass in Hexagon.
     11 // Ideally, we should merge this as a Peephole pass prior to register
     12 // allocation, but because we have a spill in between the feeder and new value
     13 // jump instructions, we are forced to write after register allocation.
     14 // Having said that, we should re-attempt to pull this earlier at some point
     15 // in future.
     16 
     17 // The basic approach looks for sequence of predicated jump, compare instruciton
     18 // that genereates the predicate and, the feeder to the predicate. Once it finds
     19 // all, it collapses compare and jump instruction into a new valu jump
     20 // intstructions.
     21 //
     22 //
     23 //===----------------------------------------------------------------------===//
     24 #define DEBUG_TYPE "hexagon-nvj"
     25 #include "llvm/PassSupport.h"
     26 #include "llvm/Support/Compiler.h"
     27 #include "llvm/Support/Debug.h"
     28 #include "llvm/ADT/DenseMap.h"
     29 #include "llvm/ADT/Statistic.h"
     30 #include "llvm/CodeGen/Passes.h"
     31 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
     32 #include "llvm/CodeGen/MachineInstrBuilder.h"
     33 #include "llvm/CodeGen/MachineFunctionPass.h"
     34 #include "llvm/CodeGen/LiveVariables.h"
     35 #include "llvm/CodeGen/MachineRegisterInfo.h"
     36 #include "llvm/CodeGen/MachineFunctionAnalysis.h"
     37 #include "llvm/Target/TargetMachine.h"
     38 #include "llvm/Target/TargetInstrInfo.h"
     39 #include "llvm/Target/TargetRegisterInfo.h"
     40 #include "Hexagon.h"
     41 #include "HexagonTargetMachine.h"
     42 #include "HexagonRegisterInfo.h"
     43 #include "HexagonSubtarget.h"
     44 #include "HexagonInstrInfo.h"
     45 #include "HexagonMachineFunctionInfo.h"
     46 
     47 #include <map>
     48 
     49 #include "llvm/Support/CommandLine.h"
     50 using namespace llvm;
     51 
     52 STATISTIC(NumNVJGenerated, "Number of New Value Jump Instructions created");
     53 
     54 static cl::opt<int>
     55 DbgNVJCount("nvj-count", cl::init(-1), cl::Hidden, cl::desc(
     56   "Maximum number of predicated jumps to be converted to New Value Jump"));
     57 
     58 static cl::opt<bool> DisableNewValueJumps("disable-nvjump", cl::Hidden,
     59     cl::ZeroOrMore, cl::init(false),
     60     cl::desc("Disable New Value Jumps"));
     61 
     62 namespace {
     63   struct HexagonNewValueJump : public MachineFunctionPass {
     64     const HexagonInstrInfo    *QII;
     65     const HexagonRegisterInfo *QRI;
     66 
     67   public:
     68     static char ID;
     69 
     70     HexagonNewValueJump() : MachineFunctionPass(ID) { }
     71 
     72     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     73       MachineFunctionPass::getAnalysisUsage(AU);
     74     }
     75 
     76     const char *getPassName() const {
     77       return "Hexagon NewValueJump";
     78     }
     79 
     80     virtual bool runOnMachineFunction(MachineFunction &Fn);
     81 
     82   private:
     83 
     84   };
     85 
     86 } // end of anonymous namespace
     87 
     88 char HexagonNewValueJump::ID = 0;
     89 
     90 // We have identified this II could be feeder to NVJ,
     91 // verify that it can be.
     92 static bool canBeFeederToNewValueJump(const HexagonInstrInfo *QII,
     93                                       const TargetRegisterInfo *TRI,
     94                                       MachineBasicBlock::iterator II,
     95                                       MachineBasicBlock::iterator end,
     96                                       MachineBasicBlock::iterator skip,
     97                                       MachineFunction &MF) {
     98 
     99   // Predicated instruction can not be feeder to NVJ.
    100   if (QII->isPredicated(II))
    101     return false;
    102 
    103   // Bail out if feederReg is a paired register (double regs in
    104   // our case). One would think that we can check to see if a given
    105   // register cmpReg1 or cmpReg2 is a sub register of feederReg
    106   // using -- if (QRI->isSubRegister(feederReg, cmpReg1) logic
    107   // before the callsite of this function
    108   // But we can not as it comes in the following fashion.
    109   //    %D0<def> = Hexagon_S2_lsr_r_p %D0<kill>, %R2<kill>
    110   //    %R0<def> = KILL %R0, %D0<imp-use,kill>
    111   //    %P0<def> = CMPEQri %R0<kill>, 0
    112   // Hence, we need to check if it's a KILL instruction.
    113   if (II->getOpcode() == TargetOpcode::KILL)
    114     return false;
    115 
    116 
    117   // Make sure there there is no 'def' or 'use' of any of the uses of
    118   // feeder insn between it's definition, this MI and jump, jmpInst
    119   // skipping compare, cmpInst.
    120   // Here's the example.
    121   //    r21=memub(r22+r24<<#0)
    122   //    p0 = cmp.eq(r21, #0)
    123   //    r4=memub(r3+r21<<#0)
    124   //    if (p0.new) jump:t .LBB29_45
    125   // Without this check, it will be converted into
    126   //    r4=memub(r3+r21<<#0)
    127   //    r21=memub(r22+r24<<#0)
    128   //    p0 = cmp.eq(r21, #0)
    129   //    if (p0.new) jump:t .LBB29_45
    130   // and result WAR hazards if converted to New Value Jump.
    131 
    132   for (unsigned i = 0; i < II->getNumOperands(); ++i) {
    133     if (II->getOperand(i).isReg() &&
    134         (II->getOperand(i).isUse() || II->getOperand(i).isDef())) {
    135       MachineBasicBlock::iterator localII = II;
    136       ++localII;
    137       unsigned Reg = II->getOperand(i).getReg();
    138       for (MachineBasicBlock::iterator localBegin = localII;
    139                         localBegin != end; ++localBegin) {
    140         if (localBegin == skip ) continue;
    141         // Check for Subregisters too.
    142         if (localBegin->modifiesRegister(Reg, TRI) ||
    143             localBegin->readsRegister(Reg, TRI))
    144           return false;
    145       }
    146     }
    147   }
    148   return true;
    149 }
    150 
    151 // These are the common checks that need to performed
    152 // to determine if
    153 // 1. compare instruction can be moved before jump.
    154 // 2. feeder to the compare instruction can be moved before jump.
    155 static bool commonChecksToProhibitNewValueJump(bool afterRA,
    156                           MachineBasicBlock::iterator MII) {
    157 
    158   // If store in path, bail out.
    159   if (MII->getDesc().mayStore())
    160     return false;
    161 
    162   // if call in path, bail out.
    163   if (MII->getOpcode() == Hexagon::CALLv3)
    164     return false;
    165 
    166   // if NVJ is running prior to RA, do the following checks.
    167   if (!afterRA) {
    168     // The following Target Opcode instructions are spurious
    169     // to new value jump. If they are in the path, bail out.
    170     // KILL sets kill flag on the opcode. It also sets up a
    171     // single register, out of pair.
    172     //    %D0<def> = Hexagon_S2_lsr_r_p %D0<kill>, %R2<kill>
    173     //    %R0<def> = KILL %R0, %D0<imp-use,kill>
    174     //    %P0<def> = CMPEQri %R0<kill>, 0
    175     // PHI can be anything after RA.
    176     // COPY can remateriaze things in between feeder, compare and nvj.
    177     if (MII->getOpcode() == TargetOpcode::KILL ||
    178         MII->getOpcode() == TargetOpcode::PHI  ||
    179         MII->getOpcode() == TargetOpcode::COPY)
    180       return false;
    181 
    182     // The following pseudo Hexagon instructions sets "use" and "def"
    183     // of registers by individual passes in the backend. At this time,
    184     // we don't know the scope of usage and definitions of these
    185     // instructions.
    186     if (MII->getOpcode() == Hexagon::TFR_condset_rr ||
    187         MII->getOpcode() == Hexagon::TFR_condset_ii ||
    188         MII->getOpcode() == Hexagon::TFR_condset_ri ||
    189         MII->getOpcode() == Hexagon::TFR_condset_ir ||
    190         MII->getOpcode() == Hexagon::LDriw_pred     ||
    191         MII->getOpcode() == Hexagon::STriw_pred)
    192       return false;
    193   }
    194 
    195   return true;
    196 }
    197 
    198 static bool canCompareBeNewValueJump(const HexagonInstrInfo *QII,
    199                                      const TargetRegisterInfo *TRI,
    200                                      MachineBasicBlock::iterator II,
    201                                      unsigned pReg,
    202                                      bool secondReg,
    203                                      bool optLocation,
    204                                      MachineBasicBlock::iterator end,
    205                                      MachineFunction &MF) {
    206 
    207   MachineInstr *MI = II;
    208 
    209   // If the second operand of the compare is an imm, make sure it's in the
    210   // range specified by the arch.
    211   if (!secondReg) {
    212     int64_t v = MI->getOperand(2).getImm();
    213     if (MI->getOpcode() == Hexagon::CMPGEri ||
    214        (MI->getOpcode() == Hexagon::CMPGEUri && v > 0))
    215       --v;
    216 
    217     if (!(isUInt<5>(v) ||
    218          ((MI->getOpcode() == Hexagon::CMPEQri ||
    219            MI->getOpcode() == Hexagon::CMPGTri ||
    220            MI->getOpcode() == Hexagon::CMPGEri) &&
    221           (v == -1))))
    222       return false;
    223   }
    224 
    225   unsigned cmpReg1, cmpOp2 = 0; // cmpOp2 assignment silences compiler warning.
    226   cmpReg1 = MI->getOperand(1).getReg();
    227 
    228   if (secondReg) {
    229     cmpOp2 = MI->getOperand(2).getReg();
    230 
    231     // Make sure that that second register is not from COPY
    232     // At machine code level, we don't need this, but if we decide
    233     // to move new value jump prior to RA, we would be needing this.
    234     MachineRegisterInfo &MRI = MF.getRegInfo();
    235     if (secondReg && !TargetRegisterInfo::isPhysicalRegister(cmpOp2)) {
    236       MachineInstr *def = MRI.getVRegDef(cmpOp2);
    237       if (def->getOpcode() == TargetOpcode::COPY)
    238         return false;
    239     }
    240   }
    241 
    242   // Walk the instructions after the compare (predicate def) to the jump,
    243   // and satisfy the following conditions.
    244   ++II ;
    245   for (MachineBasicBlock::iterator localII = II; localII != end;
    246        ++localII) {
    247 
    248     // Check 1.
    249     // If "common" checks fail, bail out.
    250     if (!commonChecksToProhibitNewValueJump(optLocation, localII))
    251       return false;
    252 
    253     // Check 2.
    254     // If there is a def or use of predicate (result of compare), bail out.
    255     if (localII->modifiesRegister(pReg, TRI) ||
    256         localII->readsRegister(pReg, TRI))
    257       return false;
    258 
    259     // Check 3.
    260     // If there is a def of any of the use of the compare (operands of compare),
    261     // bail out.
    262     // Eg.
    263     //    p0 = cmp.eq(r2, r0)
    264     //    r2 = r4
    265     //    if (p0.new) jump:t .LBB28_3
    266     if (localII->modifiesRegister(cmpReg1, TRI) ||
    267         (secondReg && localII->modifiesRegister(cmpOp2, TRI)))
    268       return false;
    269   }
    270   return true;
    271 }
    272 
    273 // Given a compare operator, return a matching New Value Jump
    274 // compare operator. Make sure that MI here is included in
    275 // HexagonInstrInfo.cpp::isNewValueJumpCandidate
    276 static unsigned getNewValueJumpOpcode(const MachineInstr *MI, int reg,
    277                                       bool secondRegNewified) {
    278   switch (MI->getOpcode()) {
    279     case Hexagon::CMPEQrr:
    280       return Hexagon::JMP_EQrrPt_nv_V4;
    281 
    282     case Hexagon::CMPEQri: {
    283       if (reg >= 0)
    284         return Hexagon::JMP_EQriPt_nv_V4;
    285       else
    286         return Hexagon::JMP_EQriPtneg_nv_V4;
    287     }
    288 
    289     case Hexagon::CMPLTrr:
    290     case Hexagon::CMPGTrr: {
    291       if (secondRegNewified)
    292         return Hexagon::JMP_GTrrdnPt_nv_V4;
    293       else
    294         return Hexagon::JMP_GTrrPt_nv_V4;
    295     }
    296 
    297     case Hexagon::CMPGEri: {
    298       if (reg >= 1)
    299         return Hexagon::JMP_GTriPt_nv_V4;
    300       else
    301         return Hexagon::JMP_GTriPtneg_nv_V4;
    302     }
    303 
    304     case Hexagon::CMPGTri: {
    305       if (reg >= 0)
    306         return Hexagon::JMP_GTriPt_nv_V4;
    307       else
    308         return Hexagon::JMP_GTriPtneg_nv_V4;
    309     }
    310 
    311     case Hexagon::CMPLTUrr:
    312     case Hexagon::CMPGTUrr: {
    313       if (secondRegNewified)
    314         return Hexagon::JMP_GTUrrdnPt_nv_V4;
    315       else
    316         return Hexagon::JMP_GTUrrPt_nv_V4;
    317     }
    318 
    319     case Hexagon::CMPGTUri:
    320       return Hexagon::JMP_GTUriPt_nv_V4;
    321 
    322     case Hexagon::CMPGEUri: {
    323       if (reg == 0)
    324         return Hexagon::JMP_EQrrPt_nv_V4;
    325       else
    326         return Hexagon::JMP_GTUriPt_nv_V4;
    327     }
    328 
    329     default:
    330        llvm_unreachable("Could not find matching New Value Jump instruction.");
    331   }
    332   // return *some value* to avoid compiler warning
    333   return 0;
    334 }
    335 
    336 bool HexagonNewValueJump::runOnMachineFunction(MachineFunction &MF) {
    337 
    338   DEBUG(dbgs() << "********** Hexagon New Value Jump **********\n"
    339                << "********** Function: "
    340                << MF.getName() << "\n");
    341 
    342 #if 0
    343   // for now disable this, if we move NewValueJump before register
    344   // allocation we need this information.
    345   LiveVariables &LVs = getAnalysis<LiveVariables>();
    346 #endif
    347 
    348   QII = static_cast<const HexagonInstrInfo *>(MF.getTarget().getInstrInfo());
    349   QRI =
    350     static_cast<const HexagonRegisterInfo *>(MF.getTarget().getRegisterInfo());
    351 
    352   if (!QRI->Subtarget.hasV4TOps() ||
    353       DisableNewValueJumps) {
    354     return false;
    355   }
    356 
    357   int nvjCount = DbgNVJCount;
    358   int nvjGenerated = 0;
    359 
    360   // Loop through all the bb's of the function
    361   for (MachineFunction::iterator MBBb = MF.begin(), MBBe = MF.end();
    362         MBBb != MBBe; ++MBBb) {
    363     MachineBasicBlock* MBB = MBBb;
    364 
    365     DEBUG(dbgs() << "** dumping bb ** "
    366                  << MBB->getNumber() << "\n");
    367     DEBUG(MBB->dump());
    368     DEBUG(dbgs() << "\n" << "********** dumping instr bottom up **********\n");
    369     bool foundJump    = false;
    370     bool foundCompare = false;
    371     bool invertPredicate = false;
    372     unsigned predReg = 0; // predicate reg of the jump.
    373     unsigned cmpReg1 = 0;
    374     int cmpOp2 = 0;
    375     bool MO1IsKill = false;
    376     bool MO2IsKill = false;
    377     MachineBasicBlock::iterator jmpPos;
    378     MachineBasicBlock::iterator cmpPos;
    379     MachineInstr *cmpInstr = NULL, *jmpInstr = NULL;
    380     MachineBasicBlock *jmpTarget = NULL;
    381     bool afterRA = false;
    382     bool isSecondOpReg = false;
    383     bool isSecondOpNewified = false;
    384     // Traverse the basic block - bottom up
    385     for (MachineBasicBlock::iterator MII = MBB->end(), E = MBB->begin();
    386              MII != E;) {
    387       MachineInstr *MI = --MII;
    388       if (MI->isDebugValue()) {
    389         continue;
    390       }
    391 
    392       if ((nvjCount == 0) || (nvjCount > -1 && nvjCount <= nvjGenerated))
    393         break;
    394 
    395       DEBUG(dbgs() << "Instr: "; MI->dump(); dbgs() << "\n");
    396 
    397       if (!foundJump &&
    398          (MI->getOpcode() == Hexagon::JMP_c ||
    399           MI->getOpcode() == Hexagon::JMP_cNot ||
    400           MI->getOpcode() == Hexagon::JMP_cdnPt ||
    401           MI->getOpcode() == Hexagon::JMP_cdnPnt ||
    402           MI->getOpcode() == Hexagon::JMP_cdnNotPt ||
    403           MI->getOpcode() == Hexagon::JMP_cdnNotPnt)) {
    404         // This is where you would insert your compare and
    405         // instr that feeds compare
    406         jmpPos = MII;
    407         jmpInstr = MI;
    408         predReg = MI->getOperand(0).getReg();
    409         afterRA = TargetRegisterInfo::isPhysicalRegister(predReg);
    410 
    411         // If ifconverter had not messed up with the kill flags of the
    412         // operands, the following check on the kill flag would suffice.
    413         // if(!jmpInstr->getOperand(0).isKill()) break;
    414 
    415         // This predicate register is live out out of BB
    416         // this would only work if we can actually use Live
    417         // variable analysis on phy regs - but LLVM does not
    418         // provide LV analysis on phys regs.
    419         //if(LVs.isLiveOut(predReg, *MBB)) break;
    420 
    421         // Get all the successors of this block - which will always
    422         // be 2. Check if the predicate register is live in in those
    423         // successor. If yes, we can not delete the predicate -
    424         // I am doing this only because LLVM does not provide LiveOut
    425         // at the BB level.
    426         bool predLive = false;
    427         for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
    428                             SIE = MBB->succ_end(); SI != SIE; ++SI) {
    429           MachineBasicBlock* succMBB = *SI;
    430          if (succMBB->isLiveIn(predReg)) {
    431             predLive = true;
    432           }
    433         }
    434         if (predLive)
    435           break;
    436 
    437         jmpTarget = MI->getOperand(1).getMBB();
    438         foundJump = true;
    439         if (MI->getOpcode() == Hexagon::JMP_cNot ||
    440             MI->getOpcode() == Hexagon::JMP_cdnNotPt ||
    441             MI->getOpcode() == Hexagon::JMP_cdnNotPnt) {
    442           invertPredicate = true;
    443         }
    444         continue;
    445       }
    446 
    447       // No new value jump if there is a barrier. A barrier has to be in its
    448       // own packet. A barrier has zero operands. We conservatively bail out
    449       // here if we see any instruction with zero operands.
    450       if (foundJump && MI->getNumOperands() == 0)
    451         break;
    452 
    453       if (foundJump &&
    454          !foundCompare &&
    455           MI->getOperand(0).isReg() &&
    456           MI->getOperand(0).getReg() == predReg) {
    457 
    458         // Not all compares can be new value compare. Arch Spec: 7.6.1.1
    459         if (QII->isNewValueJumpCandidate(MI)) {
    460 
    461           assert((MI->getDesc().isCompare()) &&
    462               "Only compare instruction can be collapsed into New Value Jump");
    463           isSecondOpReg = MI->getOperand(2).isReg();
    464 
    465           if (!canCompareBeNewValueJump(QII, QRI, MII, predReg, isSecondOpReg,
    466                                         afterRA, jmpPos, MF))
    467             break;
    468 
    469           cmpInstr = MI;
    470           cmpPos = MII;
    471           foundCompare = true;
    472 
    473           // We need cmpReg1 and cmpOp2(imm or reg) while building
    474           // new value jump instruction.
    475           cmpReg1 = MI->getOperand(1).getReg();
    476           if (MI->getOperand(1).isKill())
    477             MO1IsKill = true;
    478 
    479           if (isSecondOpReg) {
    480             cmpOp2 = MI->getOperand(2).getReg();
    481             if (MI->getOperand(2).isKill())
    482               MO2IsKill = true;
    483           } else
    484             cmpOp2 = MI->getOperand(2).getImm();
    485           continue;
    486         }
    487       }
    488 
    489       if (foundCompare && foundJump) {
    490 
    491         // If "common" checks fail, bail out on this BB.
    492         if (!commonChecksToProhibitNewValueJump(afterRA, MII))
    493           break;
    494 
    495         bool foundFeeder = false;
    496         MachineBasicBlock::iterator feederPos = MII;
    497         if (MI->getOperand(0).isReg() &&
    498             MI->getOperand(0).isDef() &&
    499            (MI->getOperand(0).getReg() == cmpReg1 ||
    500             (isSecondOpReg &&
    501              MI->getOperand(0).getReg() == (unsigned) cmpOp2))) {
    502 
    503           unsigned feederReg = MI->getOperand(0).getReg();
    504 
    505           // First try to see if we can get the feeder from the first operand
    506           // of the compare. If we can not, and if secondOpReg is true
    507           // (second operand of the compare is also register), try that one.
    508           // TODO: Try to come up with some heuristic to figure out which
    509           // feeder would benefit.
    510 
    511           if (feederReg == cmpReg1) {
    512             if (!canBeFeederToNewValueJump(QII, QRI, MII, jmpPos, cmpPos, MF)) {
    513               if (!isSecondOpReg)
    514                 break;
    515               else
    516                 continue;
    517             } else
    518               foundFeeder = true;
    519           }
    520 
    521           if (!foundFeeder &&
    522                isSecondOpReg &&
    523                feederReg == (unsigned) cmpOp2)
    524             if (!canBeFeederToNewValueJump(QII, QRI, MII, jmpPos, cmpPos, MF))
    525               break;
    526 
    527           if (isSecondOpReg) {
    528             // In case of CMPLT, or CMPLTU, or EQ with the second register
    529             // to newify, swap the operands.
    530             if (cmpInstr->getOpcode() == Hexagon::CMPLTrr  ||
    531                 cmpInstr->getOpcode() == Hexagon::CMPLTUrr ||
    532                 (cmpInstr->getOpcode() == Hexagon::CMPEQrr &&
    533                                      feederReg == (unsigned) cmpOp2)) {
    534               unsigned tmp = cmpReg1;
    535               bool tmpIsKill = MO1IsKill;
    536               cmpReg1 = cmpOp2;
    537               MO1IsKill = MO2IsKill;
    538               cmpOp2 = tmp;
    539               MO2IsKill = tmpIsKill;
    540             }
    541 
    542             // Now we have swapped the operands, all we need to check is,
    543             // if the second operand (after swap) is the feeder.
    544             // And if it is, make a note.
    545             if (feederReg == (unsigned)cmpOp2)
    546               isSecondOpNewified = true;
    547           }
    548 
    549           // Now that we are moving feeder close the jump,
    550           // make sure we are respecting the kill values of
    551           // the operands of the feeder.
    552 
    553           bool updatedIsKill = false;
    554           for (unsigned i = 0; i < MI->getNumOperands(); i++) {
    555             MachineOperand &MO = MI->getOperand(i);
    556             if (MO.isReg() && MO.isUse()) {
    557               unsigned feederReg = MO.getReg();
    558               for (MachineBasicBlock::iterator localII = feederPos,
    559                    end = jmpPos; localII != end; localII++) {
    560                 MachineInstr *localMI = localII;
    561                 for (unsigned j = 0; j < localMI->getNumOperands(); j++) {
    562                   MachineOperand &localMO = localMI->getOperand(j);
    563                   if (localMO.isReg() && localMO.isUse() &&
    564                       localMO.isKill() && feederReg == localMO.getReg()) {
    565                     // We found that there is kill of a use register
    566                     // Set up a kill flag on the register
    567                     localMO.setIsKill(false);
    568                     MO.setIsKill();
    569                     updatedIsKill = true;
    570                     break;
    571                   }
    572                 }
    573                 if (updatedIsKill) break;
    574               }
    575             }
    576             if (updatedIsKill) break;
    577           }
    578 
    579           MBB->splice(jmpPos, MI->getParent(), MI);
    580           MBB->splice(jmpPos, MI->getParent(), cmpInstr);
    581           DebugLoc dl = MI->getDebugLoc();
    582           MachineInstr *NewMI;
    583 
    584            assert((QII->isNewValueJumpCandidate(cmpInstr)) &&
    585                       "This compare is not a New Value Jump candidate.");
    586           unsigned opc = getNewValueJumpOpcode(cmpInstr, cmpOp2,
    587                                                isSecondOpNewified);
    588           if (invertPredicate)
    589             opc = QII->getInvertedPredicatedOpcode(opc);
    590 
    591           // Manage the conversions from CMPGEUri to either CMPEQrr
    592           // or CMPGTUri properly. See Arch spec for CMPGEUri instructions.
    593           // This has to be after the getNewValueJumpOpcode function call as
    594           // second operand of the compare could be modified in this logic.
    595           if (cmpInstr->getOpcode() == Hexagon::CMPGEUri) {
    596             if (cmpOp2 == 0) {
    597               cmpOp2 = cmpReg1;
    598               MO2IsKill = MO1IsKill;
    599               isSecondOpReg = true;
    600             } else
    601               --cmpOp2;
    602           }
    603 
    604           // Manage the conversions from CMPGEri to CMPGTUri properly.
    605           // See Arch spec for CMPGEri instructions.
    606           if (cmpInstr->getOpcode() == Hexagon::CMPGEri)
    607             --cmpOp2;
    608 
    609           if (isSecondOpReg) {
    610             NewMI = BuildMI(*MBB, jmpPos, dl,
    611                                   QII->get(opc))
    612                                     .addReg(cmpReg1, getKillRegState(MO1IsKill))
    613                                     .addReg(cmpOp2, getKillRegState(MO2IsKill))
    614                                     .addMBB(jmpTarget);
    615           }
    616           else {
    617             NewMI = BuildMI(*MBB, jmpPos, dl,
    618                                   QII->get(opc))
    619                                     .addReg(cmpReg1, getKillRegState(MO1IsKill))
    620                                     .addImm(cmpOp2)
    621                                     .addMBB(jmpTarget);
    622           }
    623 
    624           assert(NewMI && "New Value Jump Instruction Not created!");
    625           if (cmpInstr->getOperand(0).isReg() &&
    626               cmpInstr->getOperand(0).isKill())
    627             cmpInstr->getOperand(0).setIsKill(false);
    628           if (cmpInstr->getOperand(1).isReg() &&
    629               cmpInstr->getOperand(1).isKill())
    630             cmpInstr->getOperand(1).setIsKill(false);
    631           cmpInstr->eraseFromParent();
    632           jmpInstr->eraseFromParent();
    633           ++nvjGenerated;
    634           ++NumNVJGenerated;
    635           break;
    636         }
    637       }
    638     }
    639   }
    640 
    641   return true;
    642 
    643 }
    644 
    645 FunctionPass *llvm::createHexagonNewValueJump() {
    646   return new HexagonNewValueJump();
    647 }
    648