1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs global value numbering to eliminate fully redundant 11 // instructions. It also performs simple dead load elimination. 12 // 13 // Note that this pass does the value numbering itself; it does not use the 14 // ValueNumbering analysis passes. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #define DEBUG_TYPE "gvn" 19 #include "llvm/Transforms/Scalar.h" 20 #include "llvm/GlobalVariable.h" 21 #include "llvm/IRBuilder.h" 22 #include "llvm/IntrinsicInst.h" 23 #include "llvm/LLVMContext.h" 24 #include "llvm/Metadata.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/Hashing.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/Analysis/AliasAnalysis.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/Dominators.h" 33 #include "llvm/Analysis/InstructionSimplify.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryBuiltins.h" 36 #include "llvm/Analysis/MemoryDependenceAnalysis.h" 37 #include "llvm/Analysis/PHITransAddr.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/Assembly/Writer.h" 40 #include "llvm/Support/Allocator.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/PatternMatch.h" 44 #include "llvm/Target/TargetData.h" 45 #include "llvm/Target/TargetLibraryInfo.h" 46 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 47 #include "llvm/Transforms/Utils/SSAUpdater.h" 48 using namespace llvm; 49 using namespace PatternMatch; 50 51 STATISTIC(NumGVNInstr, "Number of instructions deleted"); 52 STATISTIC(NumGVNLoad, "Number of loads deleted"); 53 STATISTIC(NumGVNPRE, "Number of instructions PRE'd"); 54 STATISTIC(NumGVNBlocks, "Number of blocks merged"); 55 STATISTIC(NumGVNSimpl, "Number of instructions simplified"); 56 STATISTIC(NumGVNEqProp, "Number of equalities propagated"); 57 STATISTIC(NumPRELoad, "Number of loads PRE'd"); 58 59 static cl::opt<bool> EnablePRE("enable-pre", 60 cl::init(true), cl::Hidden); 61 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true)); 62 63 // Maximum allowed recursion depth. 64 static cl::opt<uint32_t> 65 MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore, 66 cl::desc("Max recurse depth (default = 1000)")); 67 68 //===----------------------------------------------------------------------===// 69 // ValueTable Class 70 //===----------------------------------------------------------------------===// 71 72 /// This class holds the mapping between values and value numbers. It is used 73 /// as an efficient mechanism to determine the expression-wise equivalence of 74 /// two values. 75 namespace { 76 struct Expression { 77 uint32_t opcode; 78 Type *type; 79 SmallVector<uint32_t, 4> varargs; 80 81 Expression(uint32_t o = ~2U) : opcode(o) { } 82 83 bool operator==(const Expression &other) const { 84 if (opcode != other.opcode) 85 return false; 86 if (opcode == ~0U || opcode == ~1U) 87 return true; 88 if (type != other.type) 89 return false; 90 if (varargs != other.varargs) 91 return false; 92 return true; 93 } 94 95 friend hash_code hash_value(const Expression &Value) { 96 return hash_combine(Value.opcode, Value.type, 97 hash_combine_range(Value.varargs.begin(), 98 Value.varargs.end())); 99 } 100 }; 101 102 class ValueTable { 103 DenseMap<Value*, uint32_t> valueNumbering; 104 DenseMap<Expression, uint32_t> expressionNumbering; 105 AliasAnalysis *AA; 106 MemoryDependenceAnalysis *MD; 107 DominatorTree *DT; 108 109 uint32_t nextValueNumber; 110 111 Expression create_expression(Instruction* I); 112 Expression create_cmp_expression(unsigned Opcode, 113 CmpInst::Predicate Predicate, 114 Value *LHS, Value *RHS); 115 Expression create_extractvalue_expression(ExtractValueInst* EI); 116 uint32_t lookup_or_add_call(CallInst* C); 117 public: 118 ValueTable() : nextValueNumber(1) { } 119 uint32_t lookup_or_add(Value *V); 120 uint32_t lookup(Value *V) const; 121 uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred, 122 Value *LHS, Value *RHS); 123 void add(Value *V, uint32_t num); 124 void clear(); 125 void erase(Value *v); 126 void setAliasAnalysis(AliasAnalysis* A) { AA = A; } 127 AliasAnalysis *getAliasAnalysis() const { return AA; } 128 void setMemDep(MemoryDependenceAnalysis* M) { MD = M; } 129 void setDomTree(DominatorTree* D) { DT = D; } 130 uint32_t getNextUnusedValueNumber() { return nextValueNumber; } 131 void verifyRemoved(const Value *) const; 132 }; 133 } 134 135 namespace llvm { 136 template <> struct DenseMapInfo<Expression> { 137 static inline Expression getEmptyKey() { 138 return ~0U; 139 } 140 141 static inline Expression getTombstoneKey() { 142 return ~1U; 143 } 144 145 static unsigned getHashValue(const Expression e) { 146 using llvm::hash_value; 147 return static_cast<unsigned>(hash_value(e)); 148 } 149 static bool isEqual(const Expression &LHS, const Expression &RHS) { 150 return LHS == RHS; 151 } 152 }; 153 154 } 155 156 //===----------------------------------------------------------------------===// 157 // ValueTable Internal Functions 158 //===----------------------------------------------------------------------===// 159 160 Expression ValueTable::create_expression(Instruction *I) { 161 Expression e; 162 e.type = I->getType(); 163 e.opcode = I->getOpcode(); 164 for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); 165 OI != OE; ++OI) 166 e.varargs.push_back(lookup_or_add(*OI)); 167 if (I->isCommutative()) { 168 // Ensure that commutative instructions that only differ by a permutation 169 // of their operands get the same value number by sorting the operand value 170 // numbers. Since all commutative instructions have two operands it is more 171 // efficient to sort by hand rather than using, say, std::sort. 172 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!"); 173 if (e.varargs[0] > e.varargs[1]) 174 std::swap(e.varargs[0], e.varargs[1]); 175 } 176 177 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 178 // Sort the operand value numbers so x<y and y>x get the same value number. 179 CmpInst::Predicate Predicate = C->getPredicate(); 180 if (e.varargs[0] > e.varargs[1]) { 181 std::swap(e.varargs[0], e.varargs[1]); 182 Predicate = CmpInst::getSwappedPredicate(Predicate); 183 } 184 e.opcode = (C->getOpcode() << 8) | Predicate; 185 } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) { 186 for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end(); 187 II != IE; ++II) 188 e.varargs.push_back(*II); 189 } 190 191 return e; 192 } 193 194 Expression ValueTable::create_cmp_expression(unsigned Opcode, 195 CmpInst::Predicate Predicate, 196 Value *LHS, Value *RHS) { 197 assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && 198 "Not a comparison!"); 199 Expression e; 200 e.type = CmpInst::makeCmpResultType(LHS->getType()); 201 e.varargs.push_back(lookup_or_add(LHS)); 202 e.varargs.push_back(lookup_or_add(RHS)); 203 204 // Sort the operand value numbers so x<y and y>x get the same value number. 205 if (e.varargs[0] > e.varargs[1]) { 206 std::swap(e.varargs[0], e.varargs[1]); 207 Predicate = CmpInst::getSwappedPredicate(Predicate); 208 } 209 e.opcode = (Opcode << 8) | Predicate; 210 return e; 211 } 212 213 Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) { 214 assert(EI != 0 && "Not an ExtractValueInst?"); 215 Expression e; 216 e.type = EI->getType(); 217 e.opcode = 0; 218 219 IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand()); 220 if (I != 0 && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) { 221 // EI might be an extract from one of our recognised intrinsics. If it 222 // is we'll synthesize a semantically equivalent expression instead on 223 // an extract value expression. 224 switch (I->getIntrinsicID()) { 225 case Intrinsic::sadd_with_overflow: 226 case Intrinsic::uadd_with_overflow: 227 e.opcode = Instruction::Add; 228 break; 229 case Intrinsic::ssub_with_overflow: 230 case Intrinsic::usub_with_overflow: 231 e.opcode = Instruction::Sub; 232 break; 233 case Intrinsic::smul_with_overflow: 234 case Intrinsic::umul_with_overflow: 235 e.opcode = Instruction::Mul; 236 break; 237 default: 238 break; 239 } 240 241 if (e.opcode != 0) { 242 // Intrinsic recognized. Grab its args to finish building the expression. 243 assert(I->getNumArgOperands() == 2 && 244 "Expect two args for recognised intrinsics."); 245 e.varargs.push_back(lookup_or_add(I->getArgOperand(0))); 246 e.varargs.push_back(lookup_or_add(I->getArgOperand(1))); 247 return e; 248 } 249 } 250 251 // Not a recognised intrinsic. Fall back to producing an extract value 252 // expression. 253 e.opcode = EI->getOpcode(); 254 for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end(); 255 OI != OE; ++OI) 256 e.varargs.push_back(lookup_or_add(*OI)); 257 258 for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end(); 259 II != IE; ++II) 260 e.varargs.push_back(*II); 261 262 return e; 263 } 264 265 //===----------------------------------------------------------------------===// 266 // ValueTable External Functions 267 //===----------------------------------------------------------------------===// 268 269 /// add - Insert a value into the table with a specified value number. 270 void ValueTable::add(Value *V, uint32_t num) { 271 valueNumbering.insert(std::make_pair(V, num)); 272 } 273 274 uint32_t ValueTable::lookup_or_add_call(CallInst *C) { 275 if (AA->doesNotAccessMemory(C)) { 276 Expression exp = create_expression(C); 277 uint32_t &e = expressionNumbering[exp]; 278 if (!e) e = nextValueNumber++; 279 valueNumbering[C] = e; 280 return e; 281 } else if (AA->onlyReadsMemory(C)) { 282 Expression exp = create_expression(C); 283 uint32_t &e = expressionNumbering[exp]; 284 if (!e) { 285 e = nextValueNumber++; 286 valueNumbering[C] = e; 287 return e; 288 } 289 if (!MD) { 290 e = nextValueNumber++; 291 valueNumbering[C] = e; 292 return e; 293 } 294 295 MemDepResult local_dep = MD->getDependency(C); 296 297 if (!local_dep.isDef() && !local_dep.isNonLocal()) { 298 valueNumbering[C] = nextValueNumber; 299 return nextValueNumber++; 300 } 301 302 if (local_dep.isDef()) { 303 CallInst* local_cdep = cast<CallInst>(local_dep.getInst()); 304 305 if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) { 306 valueNumbering[C] = nextValueNumber; 307 return nextValueNumber++; 308 } 309 310 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { 311 uint32_t c_vn = lookup_or_add(C->getArgOperand(i)); 312 uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i)); 313 if (c_vn != cd_vn) { 314 valueNumbering[C] = nextValueNumber; 315 return nextValueNumber++; 316 } 317 } 318 319 uint32_t v = lookup_or_add(local_cdep); 320 valueNumbering[C] = v; 321 return v; 322 } 323 324 // Non-local case. 325 const MemoryDependenceAnalysis::NonLocalDepInfo &deps = 326 MD->getNonLocalCallDependency(CallSite(C)); 327 // FIXME: Move the checking logic to MemDep! 328 CallInst* cdep = 0; 329 330 // Check to see if we have a single dominating call instruction that is 331 // identical to C. 332 for (unsigned i = 0, e = deps.size(); i != e; ++i) { 333 const NonLocalDepEntry *I = &deps[i]; 334 if (I->getResult().isNonLocal()) 335 continue; 336 337 // We don't handle non-definitions. If we already have a call, reject 338 // instruction dependencies. 339 if (!I->getResult().isDef() || cdep != 0) { 340 cdep = 0; 341 break; 342 } 343 344 CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst()); 345 // FIXME: All duplicated with non-local case. 346 if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){ 347 cdep = NonLocalDepCall; 348 continue; 349 } 350 351 cdep = 0; 352 break; 353 } 354 355 if (!cdep) { 356 valueNumbering[C] = nextValueNumber; 357 return nextValueNumber++; 358 } 359 360 if (cdep->getNumArgOperands() != C->getNumArgOperands()) { 361 valueNumbering[C] = nextValueNumber; 362 return nextValueNumber++; 363 } 364 for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { 365 uint32_t c_vn = lookup_or_add(C->getArgOperand(i)); 366 uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i)); 367 if (c_vn != cd_vn) { 368 valueNumbering[C] = nextValueNumber; 369 return nextValueNumber++; 370 } 371 } 372 373 uint32_t v = lookup_or_add(cdep); 374 valueNumbering[C] = v; 375 return v; 376 377 } else { 378 valueNumbering[C] = nextValueNumber; 379 return nextValueNumber++; 380 } 381 } 382 383 /// lookup_or_add - Returns the value number for the specified value, assigning 384 /// it a new number if it did not have one before. 385 uint32_t ValueTable::lookup_or_add(Value *V) { 386 DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V); 387 if (VI != valueNumbering.end()) 388 return VI->second; 389 390 if (!isa<Instruction>(V)) { 391 valueNumbering[V] = nextValueNumber; 392 return nextValueNumber++; 393 } 394 395 Instruction* I = cast<Instruction>(V); 396 Expression exp; 397 switch (I->getOpcode()) { 398 case Instruction::Call: 399 return lookup_or_add_call(cast<CallInst>(I)); 400 case Instruction::Add: 401 case Instruction::FAdd: 402 case Instruction::Sub: 403 case Instruction::FSub: 404 case Instruction::Mul: 405 case Instruction::FMul: 406 case Instruction::UDiv: 407 case Instruction::SDiv: 408 case Instruction::FDiv: 409 case Instruction::URem: 410 case Instruction::SRem: 411 case Instruction::FRem: 412 case Instruction::Shl: 413 case Instruction::LShr: 414 case Instruction::AShr: 415 case Instruction::And: 416 case Instruction::Or: 417 case Instruction::Xor: 418 case Instruction::ICmp: 419 case Instruction::FCmp: 420 case Instruction::Trunc: 421 case Instruction::ZExt: 422 case Instruction::SExt: 423 case Instruction::FPToUI: 424 case Instruction::FPToSI: 425 case Instruction::UIToFP: 426 case Instruction::SIToFP: 427 case Instruction::FPTrunc: 428 case Instruction::FPExt: 429 case Instruction::PtrToInt: 430 case Instruction::IntToPtr: 431 case Instruction::BitCast: 432 case Instruction::Select: 433 case Instruction::ExtractElement: 434 case Instruction::InsertElement: 435 case Instruction::ShuffleVector: 436 case Instruction::InsertValue: 437 case Instruction::GetElementPtr: 438 exp = create_expression(I); 439 break; 440 case Instruction::ExtractValue: 441 exp = create_extractvalue_expression(cast<ExtractValueInst>(I)); 442 break; 443 default: 444 valueNumbering[V] = nextValueNumber; 445 return nextValueNumber++; 446 } 447 448 uint32_t& e = expressionNumbering[exp]; 449 if (!e) e = nextValueNumber++; 450 valueNumbering[V] = e; 451 return e; 452 } 453 454 /// lookup - Returns the value number of the specified value. Fails if 455 /// the value has not yet been numbered. 456 uint32_t ValueTable::lookup(Value *V) const { 457 DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V); 458 assert(VI != valueNumbering.end() && "Value not numbered?"); 459 return VI->second; 460 } 461 462 /// lookup_or_add_cmp - Returns the value number of the given comparison, 463 /// assigning it a new number if it did not have one before. Useful when 464 /// we deduced the result of a comparison, but don't immediately have an 465 /// instruction realizing that comparison to hand. 466 uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode, 467 CmpInst::Predicate Predicate, 468 Value *LHS, Value *RHS) { 469 Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS); 470 uint32_t& e = expressionNumbering[exp]; 471 if (!e) e = nextValueNumber++; 472 return e; 473 } 474 475 /// clear - Remove all entries from the ValueTable. 476 void ValueTable::clear() { 477 valueNumbering.clear(); 478 expressionNumbering.clear(); 479 nextValueNumber = 1; 480 } 481 482 /// erase - Remove a value from the value numbering. 483 void ValueTable::erase(Value *V) { 484 valueNumbering.erase(V); 485 } 486 487 /// verifyRemoved - Verify that the value is removed from all internal data 488 /// structures. 489 void ValueTable::verifyRemoved(const Value *V) const { 490 for (DenseMap<Value*, uint32_t>::const_iterator 491 I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) { 492 assert(I->first != V && "Inst still occurs in value numbering map!"); 493 } 494 } 495 496 //===----------------------------------------------------------------------===// 497 // GVN Pass 498 //===----------------------------------------------------------------------===// 499 500 namespace { 501 502 class GVN : public FunctionPass { 503 bool NoLoads; 504 MemoryDependenceAnalysis *MD; 505 DominatorTree *DT; 506 const TargetData *TD; 507 const TargetLibraryInfo *TLI; 508 509 ValueTable VN; 510 511 /// LeaderTable - A mapping from value numbers to lists of Value*'s that 512 /// have that value number. Use findLeader to query it. 513 struct LeaderTableEntry { 514 Value *Val; 515 const BasicBlock *BB; 516 LeaderTableEntry *Next; 517 }; 518 DenseMap<uint32_t, LeaderTableEntry> LeaderTable; 519 BumpPtrAllocator TableAllocator; 520 521 SmallVector<Instruction*, 8> InstrsToErase; 522 public: 523 static char ID; // Pass identification, replacement for typeid 524 explicit GVN(bool noloads = false) 525 : FunctionPass(ID), NoLoads(noloads), MD(0) { 526 initializeGVNPass(*PassRegistry::getPassRegistry()); 527 } 528 529 bool runOnFunction(Function &F); 530 531 /// markInstructionForDeletion - This removes the specified instruction from 532 /// our various maps and marks it for deletion. 533 void markInstructionForDeletion(Instruction *I) { 534 VN.erase(I); 535 InstrsToErase.push_back(I); 536 } 537 538 const TargetData *getTargetData() const { return TD; } 539 DominatorTree &getDominatorTree() const { return *DT; } 540 AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); } 541 MemoryDependenceAnalysis &getMemDep() const { return *MD; } 542 private: 543 /// addToLeaderTable - Push a new Value to the LeaderTable onto the list for 544 /// its value number. 545 void addToLeaderTable(uint32_t N, Value *V, const BasicBlock *BB) { 546 LeaderTableEntry &Curr = LeaderTable[N]; 547 if (!Curr.Val) { 548 Curr.Val = V; 549 Curr.BB = BB; 550 return; 551 } 552 553 LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>(); 554 Node->Val = V; 555 Node->BB = BB; 556 Node->Next = Curr.Next; 557 Curr.Next = Node; 558 } 559 560 /// removeFromLeaderTable - Scan the list of values corresponding to a given 561 /// value number, and remove the given instruction if encountered. 562 void removeFromLeaderTable(uint32_t N, Instruction *I, BasicBlock *BB) { 563 LeaderTableEntry* Prev = 0; 564 LeaderTableEntry* Curr = &LeaderTable[N]; 565 566 while (Curr->Val != I || Curr->BB != BB) { 567 Prev = Curr; 568 Curr = Curr->Next; 569 } 570 571 if (Prev) { 572 Prev->Next = Curr->Next; 573 } else { 574 if (!Curr->Next) { 575 Curr->Val = 0; 576 Curr->BB = 0; 577 } else { 578 LeaderTableEntry* Next = Curr->Next; 579 Curr->Val = Next->Val; 580 Curr->BB = Next->BB; 581 Curr->Next = Next->Next; 582 } 583 } 584 } 585 586 // List of critical edges to be split between iterations. 587 SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit; 588 589 // This transformation requires dominator postdominator info 590 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 591 AU.addRequired<DominatorTree>(); 592 AU.addRequired<TargetLibraryInfo>(); 593 if (!NoLoads) 594 AU.addRequired<MemoryDependenceAnalysis>(); 595 AU.addRequired<AliasAnalysis>(); 596 597 AU.addPreserved<DominatorTree>(); 598 AU.addPreserved<AliasAnalysis>(); 599 } 600 601 602 // Helper fuctions 603 // FIXME: eliminate or document these better 604 bool processLoad(LoadInst *L); 605 bool processInstruction(Instruction *I); 606 bool processNonLocalLoad(LoadInst *L); 607 bool processBlock(BasicBlock *BB); 608 void dump(DenseMap<uint32_t, Value*> &d); 609 bool iterateOnFunction(Function &F); 610 bool performPRE(Function &F); 611 Value *findLeader(const BasicBlock *BB, uint32_t num); 612 void cleanupGlobalSets(); 613 void verifyRemoved(const Instruction *I) const; 614 bool splitCriticalEdges(); 615 unsigned replaceAllDominatedUsesWith(Value *From, Value *To, 616 const BasicBlockEdge &Root); 617 bool propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root); 618 }; 619 620 char GVN::ID = 0; 621 } 622 623 // createGVNPass - The public interface to this file... 624 FunctionPass *llvm::createGVNPass(bool NoLoads) { 625 return new GVN(NoLoads); 626 } 627 628 INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false) 629 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis) 630 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 631 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) 632 INITIALIZE_AG_DEPENDENCY(AliasAnalysis) 633 INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false) 634 635 #ifndef NDEBUG 636 void GVN::dump(DenseMap<uint32_t, Value*>& d) { 637 errs() << "{\n"; 638 for (DenseMap<uint32_t, Value*>::iterator I = d.begin(), 639 E = d.end(); I != E; ++I) { 640 errs() << I->first << "\n"; 641 I->second->dump(); 642 } 643 errs() << "}\n"; 644 } 645 #endif 646 647 /// IsValueFullyAvailableInBlock - Return true if we can prove that the value 648 /// we're analyzing is fully available in the specified block. As we go, keep 649 /// track of which blocks we know are fully alive in FullyAvailableBlocks. This 650 /// map is actually a tri-state map with the following values: 651 /// 0) we know the block *is not* fully available. 652 /// 1) we know the block *is* fully available. 653 /// 2) we do not know whether the block is fully available or not, but we are 654 /// currently speculating that it will be. 655 /// 3) we are speculating for this block and have used that to speculate for 656 /// other blocks. 657 static bool IsValueFullyAvailableInBlock(BasicBlock *BB, 658 DenseMap<BasicBlock*, char> &FullyAvailableBlocks, 659 uint32_t RecurseDepth) { 660 if (RecurseDepth > MaxRecurseDepth) 661 return false; 662 663 // Optimistically assume that the block is fully available and check to see 664 // if we already know about this block in one lookup. 665 std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV = 666 FullyAvailableBlocks.insert(std::make_pair(BB, 2)); 667 668 // If the entry already existed for this block, return the precomputed value. 669 if (!IV.second) { 670 // If this is a speculative "available" value, mark it as being used for 671 // speculation of other blocks. 672 if (IV.first->second == 2) 673 IV.first->second = 3; 674 return IV.first->second != 0; 675 } 676 677 // Otherwise, see if it is fully available in all predecessors. 678 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 679 680 // If this block has no predecessors, it isn't live-in here. 681 if (PI == PE) 682 goto SpeculationFailure; 683 684 for (; PI != PE; ++PI) 685 // If the value isn't fully available in one of our predecessors, then it 686 // isn't fully available in this block either. Undo our previous 687 // optimistic assumption and bail out. 688 if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1)) 689 goto SpeculationFailure; 690 691 return true; 692 693 // SpeculationFailure - If we get here, we found out that this is not, after 694 // all, a fully-available block. We have a problem if we speculated on this and 695 // used the speculation to mark other blocks as available. 696 SpeculationFailure: 697 char &BBVal = FullyAvailableBlocks[BB]; 698 699 // If we didn't speculate on this, just return with it set to false. 700 if (BBVal == 2) { 701 BBVal = 0; 702 return false; 703 } 704 705 // If we did speculate on this value, we could have blocks set to 1 that are 706 // incorrect. Walk the (transitive) successors of this block and mark them as 707 // 0 if set to one. 708 SmallVector<BasicBlock*, 32> BBWorklist; 709 BBWorklist.push_back(BB); 710 711 do { 712 BasicBlock *Entry = BBWorklist.pop_back_val(); 713 // Note that this sets blocks to 0 (unavailable) if they happen to not 714 // already be in FullyAvailableBlocks. This is safe. 715 char &EntryVal = FullyAvailableBlocks[Entry]; 716 if (EntryVal == 0) continue; // Already unavailable. 717 718 // Mark as unavailable. 719 EntryVal = 0; 720 721 for (succ_iterator I = succ_begin(Entry), E = succ_end(Entry); I != E; ++I) 722 BBWorklist.push_back(*I); 723 } while (!BBWorklist.empty()); 724 725 return false; 726 } 727 728 729 /// CanCoerceMustAliasedValueToLoad - Return true if 730 /// CoerceAvailableValueToLoadType will succeed. 731 static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal, 732 Type *LoadTy, 733 const TargetData &TD) { 734 // If the loaded or stored value is an first class array or struct, don't try 735 // to transform them. We need to be able to bitcast to integer. 736 if (LoadTy->isStructTy() || LoadTy->isArrayTy() || 737 StoredVal->getType()->isStructTy() || 738 StoredVal->getType()->isArrayTy()) 739 return false; 740 741 // The store has to be at least as big as the load. 742 if (TD.getTypeSizeInBits(StoredVal->getType()) < 743 TD.getTypeSizeInBits(LoadTy)) 744 return false; 745 746 return true; 747 } 748 749 750 /// CoerceAvailableValueToLoadType - If we saw a store of a value to memory, and 751 /// then a load from a must-aliased pointer of a different type, try to coerce 752 /// the stored value. LoadedTy is the type of the load we want to replace and 753 /// InsertPt is the place to insert new instructions. 754 /// 755 /// If we can't do it, return null. 756 static Value *CoerceAvailableValueToLoadType(Value *StoredVal, 757 Type *LoadedTy, 758 Instruction *InsertPt, 759 const TargetData &TD) { 760 if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, TD)) 761 return 0; 762 763 // If this is already the right type, just return it. 764 Type *StoredValTy = StoredVal->getType(); 765 766 uint64_t StoreSize = TD.getTypeSizeInBits(StoredValTy); 767 uint64_t LoadSize = TD.getTypeSizeInBits(LoadedTy); 768 769 // If the store and reload are the same size, we can always reuse it. 770 if (StoreSize == LoadSize) { 771 // Pointer to Pointer -> use bitcast. 772 if (StoredValTy->isPointerTy() && LoadedTy->isPointerTy()) 773 return new BitCastInst(StoredVal, LoadedTy, "", InsertPt); 774 775 // Convert source pointers to integers, which can be bitcast. 776 if (StoredValTy->isPointerTy()) { 777 StoredValTy = TD.getIntPtrType(StoredValTy->getContext()); 778 StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt); 779 } 780 781 Type *TypeToCastTo = LoadedTy; 782 if (TypeToCastTo->isPointerTy()) 783 TypeToCastTo = TD.getIntPtrType(StoredValTy->getContext()); 784 785 if (StoredValTy != TypeToCastTo) 786 StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt); 787 788 // Cast to pointer if the load needs a pointer type. 789 if (LoadedTy->isPointerTy()) 790 StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt); 791 792 return StoredVal; 793 } 794 795 // If the loaded value is smaller than the available value, then we can 796 // extract out a piece from it. If the available value is too small, then we 797 // can't do anything. 798 assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail"); 799 800 // Convert source pointers to integers, which can be manipulated. 801 if (StoredValTy->isPointerTy()) { 802 StoredValTy = TD.getIntPtrType(StoredValTy->getContext()); 803 StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt); 804 } 805 806 // Convert vectors and fp to integer, which can be manipulated. 807 if (!StoredValTy->isIntegerTy()) { 808 StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize); 809 StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt); 810 } 811 812 // If this is a big-endian system, we need to shift the value down to the low 813 // bits so that a truncate will work. 814 if (TD.isBigEndian()) { 815 Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize); 816 StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt); 817 } 818 819 // Truncate the integer to the right size now. 820 Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize); 821 StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt); 822 823 if (LoadedTy == NewIntTy) 824 return StoredVal; 825 826 // If the result is a pointer, inttoptr. 827 if (LoadedTy->isPointerTy()) 828 return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt); 829 830 // Otherwise, bitcast. 831 return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt); 832 } 833 834 /// AnalyzeLoadFromClobberingWrite - This function is called when we have a 835 /// memdep query of a load that ends up being a clobbering memory write (store, 836 /// memset, memcpy, memmove). This means that the write *may* provide bits used 837 /// by the load but we can't be sure because the pointers don't mustalias. 838 /// 839 /// Check this case to see if there is anything more we can do before we give 840 /// up. This returns -1 if we have to give up, or a byte number in the stored 841 /// value of the piece that feeds the load. 842 static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr, 843 Value *WritePtr, 844 uint64_t WriteSizeInBits, 845 const TargetData &TD) { 846 // If the loaded or stored value is a first class array or struct, don't try 847 // to transform them. We need to be able to bitcast to integer. 848 if (LoadTy->isStructTy() || LoadTy->isArrayTy()) 849 return -1; 850 851 int64_t StoreOffset = 0, LoadOffset = 0; 852 Value *StoreBase = GetPointerBaseWithConstantOffset(WritePtr, StoreOffset,TD); 853 Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, TD); 854 if (StoreBase != LoadBase) 855 return -1; 856 857 // If the load and store are to the exact same address, they should have been 858 // a must alias. AA must have gotten confused. 859 // FIXME: Study to see if/when this happens. One case is forwarding a memset 860 // to a load from the base of the memset. 861 #if 0 862 if (LoadOffset == StoreOffset) { 863 dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n" 864 << "Base = " << *StoreBase << "\n" 865 << "Store Ptr = " << *WritePtr << "\n" 866 << "Store Offs = " << StoreOffset << "\n" 867 << "Load Ptr = " << *LoadPtr << "\n"; 868 abort(); 869 } 870 #endif 871 872 // If the load and store don't overlap at all, the store doesn't provide 873 // anything to the load. In this case, they really don't alias at all, AA 874 // must have gotten confused. 875 uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy); 876 877 if ((WriteSizeInBits & 7) | (LoadSize & 7)) 878 return -1; 879 uint64_t StoreSize = WriteSizeInBits >> 3; // Convert to bytes. 880 LoadSize >>= 3; 881 882 883 bool isAAFailure = false; 884 if (StoreOffset < LoadOffset) 885 isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset; 886 else 887 isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset; 888 889 if (isAAFailure) { 890 #if 0 891 dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n" 892 << "Base = " << *StoreBase << "\n" 893 << "Store Ptr = " << *WritePtr << "\n" 894 << "Store Offs = " << StoreOffset << "\n" 895 << "Load Ptr = " << *LoadPtr << "\n"; 896 abort(); 897 #endif 898 return -1; 899 } 900 901 // If the Load isn't completely contained within the stored bits, we don't 902 // have all the bits to feed it. We could do something crazy in the future 903 // (issue a smaller load then merge the bits in) but this seems unlikely to be 904 // valuable. 905 if (StoreOffset > LoadOffset || 906 StoreOffset+StoreSize < LoadOffset+LoadSize) 907 return -1; 908 909 // Okay, we can do this transformation. Return the number of bytes into the 910 // store that the load is. 911 return LoadOffset-StoreOffset; 912 } 913 914 /// AnalyzeLoadFromClobberingStore - This function is called when we have a 915 /// memdep query of a load that ends up being a clobbering store. 916 static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr, 917 StoreInst *DepSI, 918 const TargetData &TD) { 919 // Cannot handle reading from store of first-class aggregate yet. 920 if (DepSI->getValueOperand()->getType()->isStructTy() || 921 DepSI->getValueOperand()->getType()->isArrayTy()) 922 return -1; 923 924 Value *StorePtr = DepSI->getPointerOperand(); 925 uint64_t StoreSize =TD.getTypeSizeInBits(DepSI->getValueOperand()->getType()); 926 return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, 927 StorePtr, StoreSize, TD); 928 } 929 930 /// AnalyzeLoadFromClobberingLoad - This function is called when we have a 931 /// memdep query of a load that ends up being clobbered by another load. See if 932 /// the other load can feed into the second load. 933 static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr, 934 LoadInst *DepLI, const TargetData &TD){ 935 // Cannot handle reading from store of first-class aggregate yet. 936 if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy()) 937 return -1; 938 939 Value *DepPtr = DepLI->getPointerOperand(); 940 uint64_t DepSize = TD.getTypeSizeInBits(DepLI->getType()); 941 int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, TD); 942 if (R != -1) return R; 943 944 // If we have a load/load clobber an DepLI can be widened to cover this load, 945 // then we should widen it! 946 int64_t LoadOffs = 0; 947 const Value *LoadBase = 948 GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, TD); 949 unsigned LoadSize = TD.getTypeStoreSize(LoadTy); 950 951 unsigned Size = MemoryDependenceAnalysis:: 952 getLoadLoadClobberFullWidthSize(LoadBase, LoadOffs, LoadSize, DepLI, TD); 953 if (Size == 0) return -1; 954 955 return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, TD); 956 } 957 958 959 960 static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr, 961 MemIntrinsic *MI, 962 const TargetData &TD) { 963 // If the mem operation is a non-constant size, we can't handle it. 964 ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength()); 965 if (SizeCst == 0) return -1; 966 uint64_t MemSizeInBits = SizeCst->getZExtValue()*8; 967 968 // If this is memset, we just need to see if the offset is valid in the size 969 // of the memset.. 970 if (MI->getIntrinsicID() == Intrinsic::memset) 971 return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(), 972 MemSizeInBits, TD); 973 974 // If we have a memcpy/memmove, the only case we can handle is if this is a 975 // copy from constant memory. In that case, we can read directly from the 976 // constant memory. 977 MemTransferInst *MTI = cast<MemTransferInst>(MI); 978 979 Constant *Src = dyn_cast<Constant>(MTI->getSource()); 980 if (Src == 0) return -1; 981 982 GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, &TD)); 983 if (GV == 0 || !GV->isConstant()) return -1; 984 985 // See if the access is within the bounds of the transfer. 986 int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, 987 MI->getDest(), MemSizeInBits, TD); 988 if (Offset == -1) 989 return Offset; 990 991 // Otherwise, see if we can constant fold a load from the constant with the 992 // offset applied as appropriate. 993 Src = ConstantExpr::getBitCast(Src, 994 llvm::Type::getInt8PtrTy(Src->getContext())); 995 Constant *OffsetCst = 996 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); 997 Src = ConstantExpr::getGetElementPtr(Src, OffsetCst); 998 Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy)); 999 if (ConstantFoldLoadFromConstPtr(Src, &TD)) 1000 return Offset; 1001 return -1; 1002 } 1003 1004 1005 /// GetStoreValueForLoad - This function is called when we have a 1006 /// memdep query of a load that ends up being a clobbering store. This means 1007 /// that the store provides bits used by the load but we the pointers don't 1008 /// mustalias. Check this case to see if there is anything more we can do 1009 /// before we give up. 1010 static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset, 1011 Type *LoadTy, 1012 Instruction *InsertPt, const TargetData &TD){ 1013 LLVMContext &Ctx = SrcVal->getType()->getContext(); 1014 1015 uint64_t StoreSize = (TD.getTypeSizeInBits(SrcVal->getType()) + 7) / 8; 1016 uint64_t LoadSize = (TD.getTypeSizeInBits(LoadTy) + 7) / 8; 1017 1018 IRBuilder<> Builder(InsertPt->getParent(), InsertPt); 1019 1020 // Compute which bits of the stored value are being used by the load. Convert 1021 // to an integer type to start with. 1022 if (SrcVal->getType()->isPointerTy()) 1023 SrcVal = Builder.CreatePtrToInt(SrcVal, TD.getIntPtrType(Ctx)); 1024 if (!SrcVal->getType()->isIntegerTy()) 1025 SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8)); 1026 1027 // Shift the bits to the least significant depending on endianness. 1028 unsigned ShiftAmt; 1029 if (TD.isLittleEndian()) 1030 ShiftAmt = Offset*8; 1031 else 1032 ShiftAmt = (StoreSize-LoadSize-Offset)*8; 1033 1034 if (ShiftAmt) 1035 SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt); 1036 1037 if (LoadSize != StoreSize) 1038 SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8)); 1039 1040 return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, TD); 1041 } 1042 1043 /// GetLoadValueForLoad - This function is called when we have a 1044 /// memdep query of a load that ends up being a clobbering load. This means 1045 /// that the load *may* provide bits used by the load but we can't be sure 1046 /// because the pointers don't mustalias. Check this case to see if there is 1047 /// anything more we can do before we give up. 1048 static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset, 1049 Type *LoadTy, Instruction *InsertPt, 1050 GVN &gvn) { 1051 const TargetData &TD = *gvn.getTargetData(); 1052 // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to 1053 // widen SrcVal out to a larger load. 1054 unsigned SrcValSize = TD.getTypeStoreSize(SrcVal->getType()); 1055 unsigned LoadSize = TD.getTypeStoreSize(LoadTy); 1056 if (Offset+LoadSize > SrcValSize) { 1057 assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!"); 1058 assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load"); 1059 // If we have a load/load clobber an DepLI can be widened to cover this 1060 // load, then we should widen it to the next power of 2 size big enough! 1061 unsigned NewLoadSize = Offset+LoadSize; 1062 if (!isPowerOf2_32(NewLoadSize)) 1063 NewLoadSize = NextPowerOf2(NewLoadSize); 1064 1065 Value *PtrVal = SrcVal->getPointerOperand(); 1066 1067 // Insert the new load after the old load. This ensures that subsequent 1068 // memdep queries will find the new load. We can't easily remove the old 1069 // load completely because it is already in the value numbering table. 1070 IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal)); 1071 Type *DestPTy = 1072 IntegerType::get(LoadTy->getContext(), NewLoadSize*8); 1073 DestPTy = PointerType::get(DestPTy, 1074 cast<PointerType>(PtrVal->getType())->getAddressSpace()); 1075 Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc()); 1076 PtrVal = Builder.CreateBitCast(PtrVal, DestPTy); 1077 LoadInst *NewLoad = Builder.CreateLoad(PtrVal); 1078 NewLoad->takeName(SrcVal); 1079 NewLoad->setAlignment(SrcVal->getAlignment()); 1080 1081 DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n"); 1082 DEBUG(dbgs() << "TO: " << *NewLoad << "\n"); 1083 1084 // Replace uses of the original load with the wider load. On a big endian 1085 // system, we need to shift down to get the relevant bits. 1086 Value *RV = NewLoad; 1087 if (TD.isBigEndian()) 1088 RV = Builder.CreateLShr(RV, 1089 NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits()); 1090 RV = Builder.CreateTrunc(RV, SrcVal->getType()); 1091 SrcVal->replaceAllUsesWith(RV); 1092 1093 // We would like to use gvn.markInstructionForDeletion here, but we can't 1094 // because the load is already memoized into the leader map table that GVN 1095 // tracks. It is potentially possible to remove the load from the table, 1096 // but then there all of the operations based on it would need to be 1097 // rehashed. Just leave the dead load around. 1098 gvn.getMemDep().removeInstruction(SrcVal); 1099 SrcVal = NewLoad; 1100 } 1101 1102 return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, TD); 1103 } 1104 1105 1106 /// GetMemInstValueForLoad - This function is called when we have a 1107 /// memdep query of a load that ends up being a clobbering mem intrinsic. 1108 static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset, 1109 Type *LoadTy, Instruction *InsertPt, 1110 const TargetData &TD){ 1111 LLVMContext &Ctx = LoadTy->getContext(); 1112 uint64_t LoadSize = TD.getTypeSizeInBits(LoadTy)/8; 1113 1114 IRBuilder<> Builder(InsertPt->getParent(), InsertPt); 1115 1116 // We know that this method is only called when the mem transfer fully 1117 // provides the bits for the load. 1118 if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) { 1119 // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and 1120 // independently of what the offset is. 1121 Value *Val = MSI->getValue(); 1122 if (LoadSize != 1) 1123 Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8)); 1124 1125 Value *OneElt = Val; 1126 1127 // Splat the value out to the right number of bits. 1128 for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) { 1129 // If we can double the number of bytes set, do it. 1130 if (NumBytesSet*2 <= LoadSize) { 1131 Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8); 1132 Val = Builder.CreateOr(Val, ShVal); 1133 NumBytesSet <<= 1; 1134 continue; 1135 } 1136 1137 // Otherwise insert one byte at a time. 1138 Value *ShVal = Builder.CreateShl(Val, 1*8); 1139 Val = Builder.CreateOr(OneElt, ShVal); 1140 ++NumBytesSet; 1141 } 1142 1143 return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, TD); 1144 } 1145 1146 // Otherwise, this is a memcpy/memmove from a constant global. 1147 MemTransferInst *MTI = cast<MemTransferInst>(SrcInst); 1148 Constant *Src = cast<Constant>(MTI->getSource()); 1149 1150 // Otherwise, see if we can constant fold a load from the constant with the 1151 // offset applied as appropriate. 1152 Src = ConstantExpr::getBitCast(Src, 1153 llvm::Type::getInt8PtrTy(Src->getContext())); 1154 Constant *OffsetCst = 1155 ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset); 1156 Src = ConstantExpr::getGetElementPtr(Src, OffsetCst); 1157 Src = ConstantExpr::getBitCast(Src, PointerType::getUnqual(LoadTy)); 1158 return ConstantFoldLoadFromConstPtr(Src, &TD); 1159 } 1160 1161 namespace { 1162 1163 struct AvailableValueInBlock { 1164 /// BB - The basic block in question. 1165 BasicBlock *BB; 1166 enum ValType { 1167 SimpleVal, // A simple offsetted value that is accessed. 1168 LoadVal, // A value produced by a load. 1169 MemIntrin // A memory intrinsic which is loaded from. 1170 }; 1171 1172 /// V - The value that is live out of the block. 1173 PointerIntPair<Value *, 2, ValType> Val; 1174 1175 /// Offset - The byte offset in Val that is interesting for the load query. 1176 unsigned Offset; 1177 1178 static AvailableValueInBlock get(BasicBlock *BB, Value *V, 1179 unsigned Offset = 0) { 1180 AvailableValueInBlock Res; 1181 Res.BB = BB; 1182 Res.Val.setPointer(V); 1183 Res.Val.setInt(SimpleVal); 1184 Res.Offset = Offset; 1185 return Res; 1186 } 1187 1188 static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI, 1189 unsigned Offset = 0) { 1190 AvailableValueInBlock Res; 1191 Res.BB = BB; 1192 Res.Val.setPointer(MI); 1193 Res.Val.setInt(MemIntrin); 1194 Res.Offset = Offset; 1195 return Res; 1196 } 1197 1198 static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI, 1199 unsigned Offset = 0) { 1200 AvailableValueInBlock Res; 1201 Res.BB = BB; 1202 Res.Val.setPointer(LI); 1203 Res.Val.setInt(LoadVal); 1204 Res.Offset = Offset; 1205 return Res; 1206 } 1207 1208 bool isSimpleValue() const { return Val.getInt() == SimpleVal; } 1209 bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; } 1210 bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; } 1211 1212 Value *getSimpleValue() const { 1213 assert(isSimpleValue() && "Wrong accessor"); 1214 return Val.getPointer(); 1215 } 1216 1217 LoadInst *getCoercedLoadValue() const { 1218 assert(isCoercedLoadValue() && "Wrong accessor"); 1219 return cast<LoadInst>(Val.getPointer()); 1220 } 1221 1222 MemIntrinsic *getMemIntrinValue() const { 1223 assert(isMemIntrinValue() && "Wrong accessor"); 1224 return cast<MemIntrinsic>(Val.getPointer()); 1225 } 1226 1227 /// MaterializeAdjustedValue - Emit code into this block to adjust the value 1228 /// defined here to the specified type. This handles various coercion cases. 1229 Value *MaterializeAdjustedValue(Type *LoadTy, GVN &gvn) const { 1230 Value *Res; 1231 if (isSimpleValue()) { 1232 Res = getSimpleValue(); 1233 if (Res->getType() != LoadTy) { 1234 const TargetData *TD = gvn.getTargetData(); 1235 assert(TD && "Need target data to handle type mismatch case"); 1236 Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(), 1237 *TD); 1238 1239 DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << " " 1240 << *getSimpleValue() << '\n' 1241 << *Res << '\n' << "\n\n\n"); 1242 } 1243 } else if (isCoercedLoadValue()) { 1244 LoadInst *Load = getCoercedLoadValue(); 1245 if (Load->getType() == LoadTy && Offset == 0) { 1246 Res = Load; 1247 } else { 1248 Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(), 1249 gvn); 1250 1251 DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << " " 1252 << *getCoercedLoadValue() << '\n' 1253 << *Res << '\n' << "\n\n\n"); 1254 } 1255 } else { 1256 const TargetData *TD = gvn.getTargetData(); 1257 assert(TD && "Need target data to handle type mismatch case"); 1258 Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset, 1259 LoadTy, BB->getTerminator(), *TD); 1260 DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset 1261 << " " << *getMemIntrinValue() << '\n' 1262 << *Res << '\n' << "\n\n\n"); 1263 } 1264 return Res; 1265 } 1266 }; 1267 1268 } // end anonymous namespace 1269 1270 /// ConstructSSAForLoadSet - Given a set of loads specified by ValuesPerBlock, 1271 /// construct SSA form, allowing us to eliminate LI. This returns the value 1272 /// that should be used at LI's definition site. 1273 static Value *ConstructSSAForLoadSet(LoadInst *LI, 1274 SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock, 1275 GVN &gvn) { 1276 // Check for the fully redundant, dominating load case. In this case, we can 1277 // just use the dominating value directly. 1278 if (ValuesPerBlock.size() == 1 && 1279 gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB, 1280 LI->getParent())) 1281 return ValuesPerBlock[0].MaterializeAdjustedValue(LI->getType(), gvn); 1282 1283 // Otherwise, we have to construct SSA form. 1284 SmallVector<PHINode*, 8> NewPHIs; 1285 SSAUpdater SSAUpdate(&NewPHIs); 1286 SSAUpdate.Initialize(LI->getType(), LI->getName()); 1287 1288 Type *LoadTy = LI->getType(); 1289 1290 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) { 1291 const AvailableValueInBlock &AV = ValuesPerBlock[i]; 1292 BasicBlock *BB = AV.BB; 1293 1294 if (SSAUpdate.HasValueForBlock(BB)) 1295 continue; 1296 1297 SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LoadTy, gvn)); 1298 } 1299 1300 // Perform PHI construction. 1301 Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent()); 1302 1303 // If new PHI nodes were created, notify alias analysis. 1304 if (V->getType()->isPointerTy()) { 1305 AliasAnalysis *AA = gvn.getAliasAnalysis(); 1306 1307 for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) 1308 AA->copyValue(LI, NewPHIs[i]); 1309 1310 // Now that we've copied information to the new PHIs, scan through 1311 // them again and inform alias analysis that we've added potentially 1312 // escaping uses to any values that are operands to these PHIs. 1313 for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) { 1314 PHINode *P = NewPHIs[i]; 1315 for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) { 1316 unsigned jj = PHINode::getOperandNumForIncomingValue(ii); 1317 AA->addEscapingUse(P->getOperandUse(jj)); 1318 } 1319 } 1320 } 1321 1322 return V; 1323 } 1324 1325 static bool isLifetimeStart(const Instruction *Inst) { 1326 if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst)) 1327 return II->getIntrinsicID() == Intrinsic::lifetime_start; 1328 return false; 1329 } 1330 1331 /// processNonLocalLoad - Attempt to eliminate a load whose dependencies are 1332 /// non-local by performing PHI construction. 1333 bool GVN::processNonLocalLoad(LoadInst *LI) { 1334 // Find the non-local dependencies of the load. 1335 SmallVector<NonLocalDepResult, 64> Deps; 1336 AliasAnalysis::Location Loc = VN.getAliasAnalysis()->getLocation(LI); 1337 MD->getNonLocalPointerDependency(Loc, true, LI->getParent(), Deps); 1338 //DEBUG(dbgs() << "INVESTIGATING NONLOCAL LOAD: " 1339 // << Deps.size() << *LI << '\n'); 1340 1341 // If we had to process more than one hundred blocks to find the 1342 // dependencies, this load isn't worth worrying about. Optimizing 1343 // it will be too expensive. 1344 unsigned NumDeps = Deps.size(); 1345 if (NumDeps > 100) 1346 return false; 1347 1348 // If we had a phi translation failure, we'll have a single entry which is a 1349 // clobber in the current block. Reject this early. 1350 if (NumDeps == 1 && 1351 !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) { 1352 DEBUG( 1353 dbgs() << "GVN: non-local load "; 1354 WriteAsOperand(dbgs(), LI); 1355 dbgs() << " has unknown dependencies\n"; 1356 ); 1357 return false; 1358 } 1359 1360 // Filter out useless results (non-locals, etc). Keep track of the blocks 1361 // where we have a value available in repl, also keep track of whether we see 1362 // dependencies that produce an unknown value for the load (such as a call 1363 // that could potentially clobber the load). 1364 SmallVector<AvailableValueInBlock, 64> ValuesPerBlock; 1365 SmallVector<BasicBlock*, 64> UnavailableBlocks; 1366 1367 for (unsigned i = 0, e = NumDeps; i != e; ++i) { 1368 BasicBlock *DepBB = Deps[i].getBB(); 1369 MemDepResult DepInfo = Deps[i].getResult(); 1370 1371 if (!DepInfo.isDef() && !DepInfo.isClobber()) { 1372 UnavailableBlocks.push_back(DepBB); 1373 continue; 1374 } 1375 1376 if (DepInfo.isClobber()) { 1377 // The address being loaded in this non-local block may not be the same as 1378 // the pointer operand of the load if PHI translation occurs. Make sure 1379 // to consider the right address. 1380 Value *Address = Deps[i].getAddress(); 1381 1382 // If the dependence is to a store that writes to a superset of the bits 1383 // read by the load, we can extract the bits we need for the load from the 1384 // stored value. 1385 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) { 1386 if (TD && Address) { 1387 int Offset = AnalyzeLoadFromClobberingStore(LI->getType(), Address, 1388 DepSI, *TD); 1389 if (Offset != -1) { 1390 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, 1391 DepSI->getValueOperand(), 1392 Offset)); 1393 continue; 1394 } 1395 } 1396 } 1397 1398 // Check to see if we have something like this: 1399 // load i32* P 1400 // load i8* (P+1) 1401 // if we have this, replace the later with an extraction from the former. 1402 if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) { 1403 // If this is a clobber and L is the first instruction in its block, then 1404 // we have the first instruction in the entry block. 1405 if (DepLI != LI && Address && TD) { 1406 int Offset = AnalyzeLoadFromClobberingLoad(LI->getType(), 1407 LI->getPointerOperand(), 1408 DepLI, *TD); 1409 1410 if (Offset != -1) { 1411 ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI, 1412 Offset)); 1413 continue; 1414 } 1415 } 1416 } 1417 1418 // If the clobbering value is a memset/memcpy/memmove, see if we can 1419 // forward a value on from it. 1420 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) { 1421 if (TD && Address) { 1422 int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address, 1423 DepMI, *TD); 1424 if (Offset != -1) { 1425 ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI, 1426 Offset)); 1427 continue; 1428 } 1429 } 1430 } 1431 1432 UnavailableBlocks.push_back(DepBB); 1433 continue; 1434 } 1435 1436 // DepInfo.isDef() here 1437 1438 Instruction *DepInst = DepInfo.getInst(); 1439 1440 // Loading the allocation -> undef. 1441 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) || 1442 // Loading immediately after lifetime begin -> undef. 1443 isLifetimeStart(DepInst)) { 1444 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, 1445 UndefValue::get(LI->getType()))); 1446 continue; 1447 } 1448 1449 if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) { 1450 // Reject loads and stores that are to the same address but are of 1451 // different types if we have to. 1452 if (S->getValueOperand()->getType() != LI->getType()) { 1453 // If the stored value is larger or equal to the loaded value, we can 1454 // reuse it. 1455 if (TD == 0 || !CanCoerceMustAliasedValueToLoad(S->getValueOperand(), 1456 LI->getType(), *TD)) { 1457 UnavailableBlocks.push_back(DepBB); 1458 continue; 1459 } 1460 } 1461 1462 ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, 1463 S->getValueOperand())); 1464 continue; 1465 } 1466 1467 if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) { 1468 // If the types mismatch and we can't handle it, reject reuse of the load. 1469 if (LD->getType() != LI->getType()) { 1470 // If the stored value is larger or equal to the loaded value, we can 1471 // reuse it. 1472 if (TD == 0 || !CanCoerceMustAliasedValueToLoad(LD, LI->getType(),*TD)){ 1473 UnavailableBlocks.push_back(DepBB); 1474 continue; 1475 } 1476 } 1477 ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD)); 1478 continue; 1479 } 1480 1481 UnavailableBlocks.push_back(DepBB); 1482 continue; 1483 } 1484 1485 // If we have no predecessors that produce a known value for this load, exit 1486 // early. 1487 if (ValuesPerBlock.empty()) return false; 1488 1489 // If all of the instructions we depend on produce a known value for this 1490 // load, then it is fully redundant and we can use PHI insertion to compute 1491 // its value. Insert PHIs and remove the fully redundant value now. 1492 if (UnavailableBlocks.empty()) { 1493 DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n'); 1494 1495 // Perform PHI construction. 1496 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this); 1497 LI->replaceAllUsesWith(V); 1498 1499 if (isa<PHINode>(V)) 1500 V->takeName(LI); 1501 if (V->getType()->isPointerTy()) 1502 MD->invalidateCachedPointerInfo(V); 1503 markInstructionForDeletion(LI); 1504 ++NumGVNLoad; 1505 return true; 1506 } 1507 1508 if (!EnablePRE || !EnableLoadPRE) 1509 return false; 1510 1511 // Okay, we have *some* definitions of the value. This means that the value 1512 // is available in some of our (transitive) predecessors. Lets think about 1513 // doing PRE of this load. This will involve inserting a new load into the 1514 // predecessor when it's not available. We could do this in general, but 1515 // prefer to not increase code size. As such, we only do this when we know 1516 // that we only have to insert *one* load (which means we're basically moving 1517 // the load, not inserting a new one). 1518 1519 SmallPtrSet<BasicBlock *, 4> Blockers; 1520 for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i) 1521 Blockers.insert(UnavailableBlocks[i]); 1522 1523 // Let's find the first basic block with more than one predecessor. Walk 1524 // backwards through predecessors if needed. 1525 BasicBlock *LoadBB = LI->getParent(); 1526 BasicBlock *TmpBB = LoadBB; 1527 1528 bool isSinglePred = false; 1529 bool allSingleSucc = true; 1530 while (TmpBB->getSinglePredecessor()) { 1531 isSinglePred = true; 1532 TmpBB = TmpBB->getSinglePredecessor(); 1533 if (TmpBB == LoadBB) // Infinite (unreachable) loop. 1534 return false; 1535 if (Blockers.count(TmpBB)) 1536 return false; 1537 1538 // If any of these blocks has more than one successor (i.e. if the edge we 1539 // just traversed was critical), then there are other paths through this 1540 // block along which the load may not be anticipated. Hoisting the load 1541 // above this block would be adding the load to execution paths along 1542 // which it was not previously executed. 1543 if (TmpBB->getTerminator()->getNumSuccessors() != 1) 1544 return false; 1545 } 1546 1547 assert(TmpBB); 1548 LoadBB = TmpBB; 1549 1550 // FIXME: It is extremely unclear what this loop is doing, other than 1551 // artificially restricting loadpre. 1552 if (isSinglePred) { 1553 bool isHot = false; 1554 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) { 1555 const AvailableValueInBlock &AV = ValuesPerBlock[i]; 1556 if (AV.isSimpleValue()) 1557 // "Hot" Instruction is in some loop (because it dominates its dep. 1558 // instruction). 1559 if (Instruction *I = dyn_cast<Instruction>(AV.getSimpleValue())) 1560 if (DT->dominates(LI, I)) { 1561 isHot = true; 1562 break; 1563 } 1564 } 1565 1566 // We are interested only in "hot" instructions. We don't want to do any 1567 // mis-optimizations here. 1568 if (!isHot) 1569 return false; 1570 } 1571 1572 // Check to see how many predecessors have the loaded value fully 1573 // available. 1574 DenseMap<BasicBlock*, Value*> PredLoads; 1575 DenseMap<BasicBlock*, char> FullyAvailableBlocks; 1576 for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) 1577 FullyAvailableBlocks[ValuesPerBlock[i].BB] = true; 1578 for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i) 1579 FullyAvailableBlocks[UnavailableBlocks[i]] = false; 1580 1581 SmallVector<std::pair<TerminatorInst*, unsigned>, 4> NeedToSplit; 1582 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); 1583 PI != E; ++PI) { 1584 BasicBlock *Pred = *PI; 1585 if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) { 1586 continue; 1587 } 1588 PredLoads[Pred] = 0; 1589 1590 if (Pred->getTerminator()->getNumSuccessors() != 1) { 1591 if (isa<IndirectBrInst>(Pred->getTerminator())) { 1592 DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '" 1593 << Pred->getName() << "': " << *LI << '\n'); 1594 return false; 1595 } 1596 1597 if (LoadBB->isLandingPad()) { 1598 DEBUG(dbgs() 1599 << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '" 1600 << Pred->getName() << "': " << *LI << '\n'); 1601 return false; 1602 } 1603 1604 unsigned SuccNum = GetSuccessorNumber(Pred, LoadBB); 1605 NeedToSplit.push_back(std::make_pair(Pred->getTerminator(), SuccNum)); 1606 } 1607 } 1608 1609 if (!NeedToSplit.empty()) { 1610 toSplit.append(NeedToSplit.begin(), NeedToSplit.end()); 1611 return false; 1612 } 1613 1614 // Decide whether PRE is profitable for this load. 1615 unsigned NumUnavailablePreds = PredLoads.size(); 1616 assert(NumUnavailablePreds != 0 && 1617 "Fully available value should be eliminated above!"); 1618 1619 // If this load is unavailable in multiple predecessors, reject it. 1620 // FIXME: If we could restructure the CFG, we could make a common pred with 1621 // all the preds that don't have an available LI and insert a new load into 1622 // that one block. 1623 if (NumUnavailablePreds != 1) 1624 return false; 1625 1626 // Check if the load can safely be moved to all the unavailable predecessors. 1627 bool CanDoPRE = true; 1628 SmallVector<Instruction*, 8> NewInsts; 1629 for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(), 1630 E = PredLoads.end(); I != E; ++I) { 1631 BasicBlock *UnavailablePred = I->first; 1632 1633 // Do PHI translation to get its value in the predecessor if necessary. The 1634 // returned pointer (if non-null) is guaranteed to dominate UnavailablePred. 1635 1636 // If all preds have a single successor, then we know it is safe to insert 1637 // the load on the pred (?!?), so we can insert code to materialize the 1638 // pointer if it is not available. 1639 PHITransAddr Address(LI->getPointerOperand(), TD); 1640 Value *LoadPtr = 0; 1641 if (allSingleSucc) { 1642 LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, 1643 *DT, NewInsts); 1644 } else { 1645 Address.PHITranslateValue(LoadBB, UnavailablePred, DT); 1646 LoadPtr = Address.getAddr(); 1647 } 1648 1649 // If we couldn't find or insert a computation of this phi translated value, 1650 // we fail PRE. 1651 if (LoadPtr == 0) { 1652 DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: " 1653 << *LI->getPointerOperand() << "\n"); 1654 CanDoPRE = false; 1655 break; 1656 } 1657 1658 // Make sure it is valid to move this load here. We have to watch out for: 1659 // @1 = getelementptr (i8* p, ... 1660 // test p and branch if == 0 1661 // load @1 1662 // It is valid to have the getelementptr before the test, even if p can 1663 // be 0, as getelementptr only does address arithmetic. 1664 // If we are not pushing the value through any multiple-successor blocks 1665 // we do not have this case. Otherwise, check that the load is safe to 1666 // put anywhere; this can be improved, but should be conservatively safe. 1667 if (!allSingleSucc && 1668 // FIXME: REEVALUTE THIS. 1669 !isSafeToLoadUnconditionally(LoadPtr, 1670 UnavailablePred->getTerminator(), 1671 LI->getAlignment(), TD)) { 1672 CanDoPRE = false; 1673 break; 1674 } 1675 1676 I->second = LoadPtr; 1677 } 1678 1679 if (!CanDoPRE) { 1680 while (!NewInsts.empty()) { 1681 Instruction *I = NewInsts.pop_back_val(); 1682 if (MD) MD->removeInstruction(I); 1683 I->eraseFromParent(); 1684 } 1685 return false; 1686 } 1687 1688 // Okay, we can eliminate this load by inserting a reload in the predecessor 1689 // and using PHI construction to get the value in the other predecessors, do 1690 // it. 1691 DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n'); 1692 DEBUG(if (!NewInsts.empty()) 1693 dbgs() << "INSERTED " << NewInsts.size() << " INSTS: " 1694 << *NewInsts.back() << '\n'); 1695 1696 // Assign value numbers to the new instructions. 1697 for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) { 1698 // FIXME: We really _ought_ to insert these value numbers into their 1699 // parent's availability map. However, in doing so, we risk getting into 1700 // ordering issues. If a block hasn't been processed yet, we would be 1701 // marking a value as AVAIL-IN, which isn't what we intend. 1702 VN.lookup_or_add(NewInsts[i]); 1703 } 1704 1705 for (DenseMap<BasicBlock*, Value*>::iterator I = PredLoads.begin(), 1706 E = PredLoads.end(); I != E; ++I) { 1707 BasicBlock *UnavailablePred = I->first; 1708 Value *LoadPtr = I->second; 1709 1710 Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false, 1711 LI->getAlignment(), 1712 UnavailablePred->getTerminator()); 1713 1714 // Transfer the old load's TBAA tag to the new load. 1715 if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) 1716 NewLoad->setMetadata(LLVMContext::MD_tbaa, Tag); 1717 1718 // Transfer DebugLoc. 1719 NewLoad->setDebugLoc(LI->getDebugLoc()); 1720 1721 // Add the newly created load. 1722 ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred, 1723 NewLoad)); 1724 MD->invalidateCachedPointerInfo(LoadPtr); 1725 DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n'); 1726 } 1727 1728 // Perform PHI construction. 1729 Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this); 1730 LI->replaceAllUsesWith(V); 1731 if (isa<PHINode>(V)) 1732 V->takeName(LI); 1733 if (V->getType()->isPointerTy()) 1734 MD->invalidateCachedPointerInfo(V); 1735 markInstructionForDeletion(LI); 1736 ++NumPRELoad; 1737 return true; 1738 } 1739 1740 static void patchReplacementInstruction(Value *Repl, Instruction *I) { 1741 // Patch the replacement so that it is not more restrictive than the value 1742 // being replaced. 1743 BinaryOperator *Op = dyn_cast<BinaryOperator>(I); 1744 BinaryOperator *ReplOp = dyn_cast<BinaryOperator>(Repl); 1745 if (Op && ReplOp && isa<OverflowingBinaryOperator>(Op) && 1746 isa<OverflowingBinaryOperator>(ReplOp)) { 1747 if (ReplOp->hasNoSignedWrap() && !Op->hasNoSignedWrap()) 1748 ReplOp->setHasNoSignedWrap(false); 1749 if (ReplOp->hasNoUnsignedWrap() && !Op->hasNoUnsignedWrap()) 1750 ReplOp->setHasNoUnsignedWrap(false); 1751 } 1752 if (Instruction *ReplInst = dyn_cast<Instruction>(Repl)) { 1753 SmallVector<std::pair<unsigned, MDNode*>, 4> Metadata; 1754 ReplInst->getAllMetadataOtherThanDebugLoc(Metadata); 1755 for (int i = 0, n = Metadata.size(); i < n; ++i) { 1756 unsigned Kind = Metadata[i].first; 1757 MDNode *IMD = I->getMetadata(Kind); 1758 MDNode *ReplMD = Metadata[i].second; 1759 switch(Kind) { 1760 default: 1761 ReplInst->setMetadata(Kind, NULL); // Remove unknown metadata 1762 break; 1763 case LLVMContext::MD_dbg: 1764 llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); 1765 case LLVMContext::MD_tbaa: 1766 ReplInst->setMetadata(Kind, MDNode::getMostGenericTBAA(IMD, ReplMD)); 1767 break; 1768 case LLVMContext::MD_range: 1769 ReplInst->setMetadata(Kind, MDNode::getMostGenericRange(IMD, ReplMD)); 1770 break; 1771 case LLVMContext::MD_prof: 1772 llvm_unreachable("MD_prof in a non terminator instruction"); 1773 break; 1774 case LLVMContext::MD_fpmath: 1775 ReplInst->setMetadata(Kind, MDNode::getMostGenericFPMath(IMD, ReplMD)); 1776 break; 1777 } 1778 } 1779 } 1780 } 1781 1782 static void patchAndReplaceAllUsesWith(Value *Repl, Instruction *I) { 1783 patchReplacementInstruction(Repl, I); 1784 I->replaceAllUsesWith(Repl); 1785 } 1786 1787 /// processLoad - Attempt to eliminate a load, first by eliminating it 1788 /// locally, and then attempting non-local elimination if that fails. 1789 bool GVN::processLoad(LoadInst *L) { 1790 if (!MD) 1791 return false; 1792 1793 if (!L->isSimple()) 1794 return false; 1795 1796 if (L->use_empty()) { 1797 markInstructionForDeletion(L); 1798 return true; 1799 } 1800 1801 // ... to a pointer that has been loaded from before... 1802 MemDepResult Dep = MD->getDependency(L); 1803 1804 // If we have a clobber and target data is around, see if this is a clobber 1805 // that we can fix up through code synthesis. 1806 if (Dep.isClobber() && TD) { 1807 // Check to see if we have something like this: 1808 // store i32 123, i32* %P 1809 // %A = bitcast i32* %P to i8* 1810 // %B = gep i8* %A, i32 1 1811 // %C = load i8* %B 1812 // 1813 // We could do that by recognizing if the clobber instructions are obviously 1814 // a common base + constant offset, and if the previous store (or memset) 1815 // completely covers this load. This sort of thing can happen in bitfield 1816 // access code. 1817 Value *AvailVal = 0; 1818 if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) { 1819 int Offset = AnalyzeLoadFromClobberingStore(L->getType(), 1820 L->getPointerOperand(), 1821 DepSI, *TD); 1822 if (Offset != -1) 1823 AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset, 1824 L->getType(), L, *TD); 1825 } 1826 1827 // Check to see if we have something like this: 1828 // load i32* P 1829 // load i8* (P+1) 1830 // if we have this, replace the later with an extraction from the former. 1831 if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) { 1832 // If this is a clobber and L is the first instruction in its block, then 1833 // we have the first instruction in the entry block. 1834 if (DepLI == L) 1835 return false; 1836 1837 int Offset = AnalyzeLoadFromClobberingLoad(L->getType(), 1838 L->getPointerOperand(), 1839 DepLI, *TD); 1840 if (Offset != -1) 1841 AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this); 1842 } 1843 1844 // If the clobbering value is a memset/memcpy/memmove, see if we can forward 1845 // a value on from it. 1846 if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) { 1847 int Offset = AnalyzeLoadFromClobberingMemInst(L->getType(), 1848 L->getPointerOperand(), 1849 DepMI, *TD); 1850 if (Offset != -1) 1851 AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, *TD); 1852 } 1853 1854 if (AvailVal) { 1855 DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n' 1856 << *AvailVal << '\n' << *L << "\n\n\n"); 1857 1858 // Replace the load! 1859 L->replaceAllUsesWith(AvailVal); 1860 if (AvailVal->getType()->isPointerTy()) 1861 MD->invalidateCachedPointerInfo(AvailVal); 1862 markInstructionForDeletion(L); 1863 ++NumGVNLoad; 1864 return true; 1865 } 1866 } 1867 1868 // If the value isn't available, don't do anything! 1869 if (Dep.isClobber()) { 1870 DEBUG( 1871 // fast print dep, using operator<< on instruction is too slow. 1872 dbgs() << "GVN: load "; 1873 WriteAsOperand(dbgs(), L); 1874 Instruction *I = Dep.getInst(); 1875 dbgs() << " is clobbered by " << *I << '\n'; 1876 ); 1877 return false; 1878 } 1879 1880 // If it is defined in another block, try harder. 1881 if (Dep.isNonLocal()) 1882 return processNonLocalLoad(L); 1883 1884 if (!Dep.isDef()) { 1885 DEBUG( 1886 // fast print dep, using operator<< on instruction is too slow. 1887 dbgs() << "GVN: load "; 1888 WriteAsOperand(dbgs(), L); 1889 dbgs() << " has unknown dependence\n"; 1890 ); 1891 return false; 1892 } 1893 1894 Instruction *DepInst = Dep.getInst(); 1895 if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) { 1896 Value *StoredVal = DepSI->getValueOperand(); 1897 1898 // The store and load are to a must-aliased pointer, but they may not 1899 // actually have the same type. See if we know how to reuse the stored 1900 // value (depending on its type). 1901 if (StoredVal->getType() != L->getType()) { 1902 if (TD) { 1903 StoredVal = CoerceAvailableValueToLoadType(StoredVal, L->getType(), 1904 L, *TD); 1905 if (StoredVal == 0) 1906 return false; 1907 1908 DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal 1909 << '\n' << *L << "\n\n\n"); 1910 } 1911 else 1912 return false; 1913 } 1914 1915 // Remove it! 1916 L->replaceAllUsesWith(StoredVal); 1917 if (StoredVal->getType()->isPointerTy()) 1918 MD->invalidateCachedPointerInfo(StoredVal); 1919 markInstructionForDeletion(L); 1920 ++NumGVNLoad; 1921 return true; 1922 } 1923 1924 if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) { 1925 Value *AvailableVal = DepLI; 1926 1927 // The loads are of a must-aliased pointer, but they may not actually have 1928 // the same type. See if we know how to reuse the previously loaded value 1929 // (depending on its type). 1930 if (DepLI->getType() != L->getType()) { 1931 if (TD) { 1932 AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), 1933 L, *TD); 1934 if (AvailableVal == 0) 1935 return false; 1936 1937 DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal 1938 << "\n" << *L << "\n\n\n"); 1939 } 1940 else 1941 return false; 1942 } 1943 1944 // Remove it! 1945 patchAndReplaceAllUsesWith(AvailableVal, L); 1946 if (DepLI->getType()->isPointerTy()) 1947 MD->invalidateCachedPointerInfo(DepLI); 1948 markInstructionForDeletion(L); 1949 ++NumGVNLoad; 1950 return true; 1951 } 1952 1953 // If this load really doesn't depend on anything, then we must be loading an 1954 // undef value. This can happen when loading for a fresh allocation with no 1955 // intervening stores, for example. 1956 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) { 1957 L->replaceAllUsesWith(UndefValue::get(L->getType())); 1958 markInstructionForDeletion(L); 1959 ++NumGVNLoad; 1960 return true; 1961 } 1962 1963 // If this load occurs either right after a lifetime begin, 1964 // then the loaded value is undefined. 1965 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) { 1966 if (II->getIntrinsicID() == Intrinsic::lifetime_start) { 1967 L->replaceAllUsesWith(UndefValue::get(L->getType())); 1968 markInstructionForDeletion(L); 1969 ++NumGVNLoad; 1970 return true; 1971 } 1972 } 1973 1974 return false; 1975 } 1976 1977 // findLeader - In order to find a leader for a given value number at a 1978 // specific basic block, we first obtain the list of all Values for that number, 1979 // and then scan the list to find one whose block dominates the block in 1980 // question. This is fast because dominator tree queries consist of only 1981 // a few comparisons of DFS numbers. 1982 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) { 1983 LeaderTableEntry Vals = LeaderTable[num]; 1984 if (!Vals.Val) return 0; 1985 1986 Value *Val = 0; 1987 if (DT->dominates(Vals.BB, BB)) { 1988 Val = Vals.Val; 1989 if (isa<Constant>(Val)) return Val; 1990 } 1991 1992 LeaderTableEntry* Next = Vals.Next; 1993 while (Next) { 1994 if (DT->dominates(Next->BB, BB)) { 1995 if (isa<Constant>(Next->Val)) return Next->Val; 1996 if (!Val) Val = Next->Val; 1997 } 1998 1999 Next = Next->Next; 2000 } 2001 2002 return Val; 2003 } 2004 2005 /// replaceAllDominatedUsesWith - Replace all uses of 'From' with 'To' if the 2006 /// use is dominated by the given basic block. Returns the number of uses that 2007 /// were replaced. 2008 unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To, 2009 const BasicBlockEdge &Root) { 2010 unsigned Count = 0; 2011 for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); 2012 UI != UE; ) { 2013 Use &U = (UI++).getUse(); 2014 2015 if (DT->dominates(Root, U)) { 2016 U.set(To); 2017 ++Count; 2018 } 2019 } 2020 return Count; 2021 } 2022 2023 /// isOnlyReachableViaThisEdge - There is an edge from 'Src' to 'Dst'. Return 2024 /// true if every path from the entry block to 'Dst' passes via this edge. In 2025 /// particular 'Dst' must not be reachable via another edge from 'Src'. 2026 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E, 2027 DominatorTree *DT) { 2028 // While in theory it is interesting to consider the case in which Dst has 2029 // more than one predecessor, because Dst might be part of a loop which is 2030 // only reachable from Src, in practice it is pointless since at the time 2031 // GVN runs all such loops have preheaders, which means that Dst will have 2032 // been changed to have only one predecessor, namely Src. 2033 const BasicBlock *Pred = E.getEnd()->getSinglePredecessor(); 2034 const BasicBlock *Src = E.getStart(); 2035 assert((!Pred || Pred == Src) && "No edge between these basic blocks!"); 2036 (void)Src; 2037 return Pred != 0; 2038 } 2039 2040 /// propagateEquality - The given values are known to be equal in every block 2041 /// dominated by 'Root'. Exploit this, for example by replacing 'LHS' with 2042 /// 'RHS' everywhere in the scope. Returns whether a change was made. 2043 bool GVN::propagateEquality(Value *LHS, Value *RHS, 2044 const BasicBlockEdge &Root) { 2045 SmallVector<std::pair<Value*, Value*>, 4> Worklist; 2046 Worklist.push_back(std::make_pair(LHS, RHS)); 2047 bool Changed = false; 2048 // For speed, compute a conservative fast approximation to 2049 // DT->dominates(Root, Root.getEnd()); 2050 bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT); 2051 2052 while (!Worklist.empty()) { 2053 std::pair<Value*, Value*> Item = Worklist.pop_back_val(); 2054 LHS = Item.first; RHS = Item.second; 2055 2056 if (LHS == RHS) continue; 2057 assert(LHS->getType() == RHS->getType() && "Equality but unequal types!"); 2058 2059 // Don't try to propagate equalities between constants. 2060 if (isa<Constant>(LHS) && isa<Constant>(RHS)) continue; 2061 2062 // Prefer a constant on the right-hand side, or an Argument if no constants. 2063 if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS))) 2064 std::swap(LHS, RHS); 2065 assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!"); 2066 2067 // If there is no obvious reason to prefer the left-hand side over the right- 2068 // hand side, ensure the longest lived term is on the right-hand side, so the 2069 // shortest lived term will be replaced by the longest lived. This tends to 2070 // expose more simplifications. 2071 uint32_t LVN = VN.lookup_or_add(LHS); 2072 if ((isa<Argument>(LHS) && isa<Argument>(RHS)) || 2073 (isa<Instruction>(LHS) && isa<Instruction>(RHS))) { 2074 // Move the 'oldest' value to the right-hand side, using the value number as 2075 // a proxy for age. 2076 uint32_t RVN = VN.lookup_or_add(RHS); 2077 if (LVN < RVN) { 2078 std::swap(LHS, RHS); 2079 LVN = RVN; 2080 } 2081 } 2082 2083 // If value numbering later sees that an instruction in the scope is equal 2084 // to 'LHS' then ensure it will be turned into 'RHS'. In order to preserve 2085 // the invariant that instructions only occur in the leader table for their 2086 // own value number (this is used by removeFromLeaderTable), do not do this 2087 // if RHS is an instruction (if an instruction in the scope is morphed into 2088 // LHS then it will be turned into RHS by the next GVN iteration anyway, so 2089 // using the leader table is about compiling faster, not optimizing better). 2090 // The leader table only tracks basic blocks, not edges. Only add to if we 2091 // have the simple case where the edge dominates the end. 2092 if (RootDominatesEnd && !isa<Instruction>(RHS)) 2093 addToLeaderTable(LVN, RHS, Root.getEnd()); 2094 2095 // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope. As 2096 // LHS always has at least one use that is not dominated by Root, this will 2097 // never do anything if LHS has only one use. 2098 if (!LHS->hasOneUse()) { 2099 unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root); 2100 Changed |= NumReplacements > 0; 2101 NumGVNEqProp += NumReplacements; 2102 } 2103 2104 // Now try to deduce additional equalities from this one. For example, if the 2105 // known equality was "(A != B)" == "false" then it follows that A and B are 2106 // equal in the scope. Only boolean equalities with an explicit true or false 2107 // RHS are currently supported. 2108 if (!RHS->getType()->isIntegerTy(1)) 2109 // Not a boolean equality - bail out. 2110 continue; 2111 ConstantInt *CI = dyn_cast<ConstantInt>(RHS); 2112 if (!CI) 2113 // RHS neither 'true' nor 'false' - bail out. 2114 continue; 2115 // Whether RHS equals 'true'. Otherwise it equals 'false'. 2116 bool isKnownTrue = CI->isAllOnesValue(); 2117 bool isKnownFalse = !isKnownTrue; 2118 2119 // If "A && B" is known true then both A and B are known true. If "A || B" 2120 // is known false then both A and B are known false. 2121 Value *A, *B; 2122 if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) || 2123 (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) { 2124 Worklist.push_back(std::make_pair(A, RHS)); 2125 Worklist.push_back(std::make_pair(B, RHS)); 2126 continue; 2127 } 2128 2129 // If we are propagating an equality like "(A == B)" == "true" then also 2130 // propagate the equality A == B. When propagating a comparison such as 2131 // "(A >= B)" == "true", replace all instances of "A < B" with "false". 2132 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(LHS)) { 2133 Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1); 2134 2135 // If "A == B" is known true, or "A != B" is known false, then replace 2136 // A with B everywhere in the scope. 2137 if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) || 2138 (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE)) 2139 Worklist.push_back(std::make_pair(Op0, Op1)); 2140 2141 // If "A >= B" is known true, replace "A < B" with false everywhere. 2142 CmpInst::Predicate NotPred = Cmp->getInversePredicate(); 2143 Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse); 2144 // Since we don't have the instruction "A < B" immediately to hand, work out 2145 // the value number that it would have and use that to find an appropriate 2146 // instruction (if any). 2147 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2148 uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1); 2149 // If the number we were assigned was brand new then there is no point in 2150 // looking for an instruction realizing it: there cannot be one! 2151 if (Num < NextNum) { 2152 Value *NotCmp = findLeader(Root.getEnd(), Num); 2153 if (NotCmp && isa<Instruction>(NotCmp)) { 2154 unsigned NumReplacements = 2155 replaceAllDominatedUsesWith(NotCmp, NotVal, Root); 2156 Changed |= NumReplacements > 0; 2157 NumGVNEqProp += NumReplacements; 2158 } 2159 } 2160 // Ensure that any instruction in scope that gets the "A < B" value number 2161 // is replaced with false. 2162 // The leader table only tracks basic blocks, not edges. Only add to if we 2163 // have the simple case where the edge dominates the end. 2164 if (RootDominatesEnd) 2165 addToLeaderTable(Num, NotVal, Root.getEnd()); 2166 2167 continue; 2168 } 2169 } 2170 2171 return Changed; 2172 } 2173 2174 /// processInstruction - When calculating availability, handle an instruction 2175 /// by inserting it into the appropriate sets 2176 bool GVN::processInstruction(Instruction *I) { 2177 // Ignore dbg info intrinsics. 2178 if (isa<DbgInfoIntrinsic>(I)) 2179 return false; 2180 2181 // If the instruction can be easily simplified then do so now in preference 2182 // to value numbering it. Value numbering often exposes redundancies, for 2183 // example if it determines that %y is equal to %x then the instruction 2184 // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify. 2185 if (Value *V = SimplifyInstruction(I, TD, TLI, DT)) { 2186 I->replaceAllUsesWith(V); 2187 if (MD && V->getType()->isPointerTy()) 2188 MD->invalidateCachedPointerInfo(V); 2189 markInstructionForDeletion(I); 2190 ++NumGVNSimpl; 2191 return true; 2192 } 2193 2194 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 2195 if (processLoad(LI)) 2196 return true; 2197 2198 unsigned Num = VN.lookup_or_add(LI); 2199 addToLeaderTable(Num, LI, LI->getParent()); 2200 return false; 2201 } 2202 2203 // For conditional branches, we can perform simple conditional propagation on 2204 // the condition value itself. 2205 if (BranchInst *BI = dyn_cast<BranchInst>(I)) { 2206 if (!BI->isConditional() || isa<Constant>(BI->getCondition())) 2207 return false; 2208 2209 Value *BranchCond = BI->getCondition(); 2210 2211 BasicBlock *TrueSucc = BI->getSuccessor(0); 2212 BasicBlock *FalseSucc = BI->getSuccessor(1); 2213 // Avoid multiple edges early. 2214 if (TrueSucc == FalseSucc) 2215 return false; 2216 2217 BasicBlock *Parent = BI->getParent(); 2218 bool Changed = false; 2219 2220 Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext()); 2221 BasicBlockEdge TrueE(Parent, TrueSucc); 2222 Changed |= propagateEquality(BranchCond, TrueVal, TrueE); 2223 2224 Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext()); 2225 BasicBlockEdge FalseE(Parent, FalseSucc); 2226 Changed |= propagateEquality(BranchCond, FalseVal, FalseE); 2227 2228 return Changed; 2229 } 2230 2231 // For switches, propagate the case values into the case destinations. 2232 if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { 2233 Value *SwitchCond = SI->getCondition(); 2234 BasicBlock *Parent = SI->getParent(); 2235 bool Changed = false; 2236 2237 // Remember how many outgoing edges there are to every successor. 2238 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; 2239 for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i) 2240 ++SwitchEdges[SI->getSuccessor(i)]; 2241 2242 for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); 2243 i != e; ++i) { 2244 BasicBlock *Dst = i.getCaseSuccessor(); 2245 // If there is only a single edge, propagate the case value into it. 2246 if (SwitchEdges.lookup(Dst) == 1) { 2247 BasicBlockEdge E(Parent, Dst); 2248 Changed |= propagateEquality(SwitchCond, i.getCaseValue(), E); 2249 } 2250 } 2251 return Changed; 2252 } 2253 2254 // Instructions with void type don't return a value, so there's 2255 // no point in trying to find redundancies in them. 2256 if (I->getType()->isVoidTy()) return false; 2257 2258 uint32_t NextNum = VN.getNextUnusedValueNumber(); 2259 unsigned Num = VN.lookup_or_add(I); 2260 2261 // Allocations are always uniquely numbered, so we can save time and memory 2262 // by fast failing them. 2263 if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) { 2264 addToLeaderTable(Num, I, I->getParent()); 2265 return false; 2266 } 2267 2268 // If the number we were assigned was a brand new VN, then we don't 2269 // need to do a lookup to see if the number already exists 2270 // somewhere in the domtree: it can't! 2271 if (Num >= NextNum) { 2272 addToLeaderTable(Num, I, I->getParent()); 2273 return false; 2274 } 2275 2276 // Perform fast-path value-number based elimination of values inherited from 2277 // dominators. 2278 Value *repl = findLeader(I->getParent(), Num); 2279 if (repl == 0) { 2280 // Failure, just remember this instance for future use. 2281 addToLeaderTable(Num, I, I->getParent()); 2282 return false; 2283 } 2284 2285 // Remove it! 2286 patchAndReplaceAllUsesWith(repl, I); 2287 if (MD && repl->getType()->isPointerTy()) 2288 MD->invalidateCachedPointerInfo(repl); 2289 markInstructionForDeletion(I); 2290 return true; 2291 } 2292 2293 /// runOnFunction - This is the main transformation entry point for a function. 2294 bool GVN::runOnFunction(Function& F) { 2295 if (!NoLoads) 2296 MD = &getAnalysis<MemoryDependenceAnalysis>(); 2297 DT = &getAnalysis<DominatorTree>(); 2298 TD = getAnalysisIfAvailable<TargetData>(); 2299 TLI = &getAnalysis<TargetLibraryInfo>(); 2300 VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>()); 2301 VN.setMemDep(MD); 2302 VN.setDomTree(DT); 2303 2304 bool Changed = false; 2305 bool ShouldContinue = true; 2306 2307 // Merge unconditional branches, allowing PRE to catch more 2308 // optimization opportunities. 2309 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) { 2310 BasicBlock *BB = FI++; 2311 2312 bool removedBlock = MergeBlockIntoPredecessor(BB, this); 2313 if (removedBlock) ++NumGVNBlocks; 2314 2315 Changed |= removedBlock; 2316 } 2317 2318 unsigned Iteration = 0; 2319 while (ShouldContinue) { 2320 DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n"); 2321 ShouldContinue = iterateOnFunction(F); 2322 if (splitCriticalEdges()) 2323 ShouldContinue = true; 2324 Changed |= ShouldContinue; 2325 ++Iteration; 2326 } 2327 2328 if (EnablePRE) { 2329 bool PREChanged = true; 2330 while (PREChanged) { 2331 PREChanged = performPRE(F); 2332 Changed |= PREChanged; 2333 } 2334 } 2335 // FIXME: Should perform GVN again after PRE does something. PRE can move 2336 // computations into blocks where they become fully redundant. Note that 2337 // we can't do this until PRE's critical edge splitting updates memdep. 2338 // Actually, when this happens, we should just fully integrate PRE into GVN. 2339 2340 cleanupGlobalSets(); 2341 2342 return Changed; 2343 } 2344 2345 2346 bool GVN::processBlock(BasicBlock *BB) { 2347 // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function 2348 // (and incrementing BI before processing an instruction). 2349 assert(InstrsToErase.empty() && 2350 "We expect InstrsToErase to be empty across iterations"); 2351 bool ChangedFunction = false; 2352 2353 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); 2354 BI != BE;) { 2355 ChangedFunction |= processInstruction(BI); 2356 if (InstrsToErase.empty()) { 2357 ++BI; 2358 continue; 2359 } 2360 2361 // If we need some instructions deleted, do it now. 2362 NumGVNInstr += InstrsToErase.size(); 2363 2364 // Avoid iterator invalidation. 2365 bool AtStart = BI == BB->begin(); 2366 if (!AtStart) 2367 --BI; 2368 2369 for (SmallVector<Instruction*, 4>::iterator I = InstrsToErase.begin(), 2370 E = InstrsToErase.end(); I != E; ++I) { 2371 DEBUG(dbgs() << "GVN removed: " << **I << '\n'); 2372 if (MD) MD->removeInstruction(*I); 2373 (*I)->eraseFromParent(); 2374 DEBUG(verifyRemoved(*I)); 2375 } 2376 InstrsToErase.clear(); 2377 2378 if (AtStart) 2379 BI = BB->begin(); 2380 else 2381 ++BI; 2382 } 2383 2384 return ChangedFunction; 2385 } 2386 2387 /// performPRE - Perform a purely local form of PRE that looks for diamond 2388 /// control flow patterns and attempts to perform simple PRE at the join point. 2389 bool GVN::performPRE(Function &F) { 2390 bool Changed = false; 2391 DenseMap<BasicBlock*, Value*> predMap; 2392 for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()), 2393 DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) { 2394 BasicBlock *CurrentBlock = *DI; 2395 2396 // Nothing to PRE in the entry block. 2397 if (CurrentBlock == &F.getEntryBlock()) continue; 2398 2399 // Don't perform PRE on a landing pad. 2400 if (CurrentBlock->isLandingPad()) continue; 2401 2402 for (BasicBlock::iterator BI = CurrentBlock->begin(), 2403 BE = CurrentBlock->end(); BI != BE; ) { 2404 Instruction *CurInst = BI++; 2405 2406 if (isa<AllocaInst>(CurInst) || 2407 isa<TerminatorInst>(CurInst) || isa<PHINode>(CurInst) || 2408 CurInst->getType()->isVoidTy() || 2409 CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() || 2410 isa<DbgInfoIntrinsic>(CurInst)) 2411 continue; 2412 2413 // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from 2414 // sinking the compare again, and it would force the code generator to 2415 // move the i1 from processor flags or predicate registers into a general 2416 // purpose register. 2417 if (isa<CmpInst>(CurInst)) 2418 continue; 2419 2420 // We don't currently value number ANY inline asm calls. 2421 if (CallInst *CallI = dyn_cast<CallInst>(CurInst)) 2422 if (CallI->isInlineAsm()) 2423 continue; 2424 2425 uint32_t ValNo = VN.lookup(CurInst); 2426 2427 // Look for the predecessors for PRE opportunities. We're 2428 // only trying to solve the basic diamond case, where 2429 // a value is computed in the successor and one predecessor, 2430 // but not the other. We also explicitly disallow cases 2431 // where the successor is its own predecessor, because they're 2432 // more complicated to get right. 2433 unsigned NumWith = 0; 2434 unsigned NumWithout = 0; 2435 BasicBlock *PREPred = 0; 2436 predMap.clear(); 2437 2438 for (pred_iterator PI = pred_begin(CurrentBlock), 2439 PE = pred_end(CurrentBlock); PI != PE; ++PI) { 2440 BasicBlock *P = *PI; 2441 // We're not interested in PRE where the block is its 2442 // own predecessor, or in blocks with predecessors 2443 // that are not reachable. 2444 if (P == CurrentBlock) { 2445 NumWithout = 2; 2446 break; 2447 } else if (!DT->dominates(&F.getEntryBlock(), P)) { 2448 NumWithout = 2; 2449 break; 2450 } 2451 2452 Value* predV = findLeader(P, ValNo); 2453 if (predV == 0) { 2454 PREPred = P; 2455 ++NumWithout; 2456 } else if (predV == CurInst) { 2457 NumWithout = 2; 2458 } else { 2459 predMap[P] = predV; 2460 ++NumWith; 2461 } 2462 } 2463 2464 // Don't do PRE when it might increase code size, i.e. when 2465 // we would need to insert instructions in more than one pred. 2466 if (NumWithout != 1 || NumWith == 0) 2467 continue; 2468 2469 // Don't do PRE across indirect branch. 2470 if (isa<IndirectBrInst>(PREPred->getTerminator())) 2471 continue; 2472 2473 // We can't do PRE safely on a critical edge, so instead we schedule 2474 // the edge to be split and perform the PRE the next time we iterate 2475 // on the function. 2476 unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock); 2477 if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) { 2478 toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum)); 2479 continue; 2480 } 2481 2482 // Instantiate the expression in the predecessor that lacked it. 2483 // Because we are going top-down through the block, all value numbers 2484 // will be available in the predecessor by the time we need them. Any 2485 // that weren't originally present will have been instantiated earlier 2486 // in this loop. 2487 Instruction *PREInstr = CurInst->clone(); 2488 bool success = true; 2489 for (unsigned i = 0, e = CurInst->getNumOperands(); i != e; ++i) { 2490 Value *Op = PREInstr->getOperand(i); 2491 if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op)) 2492 continue; 2493 2494 if (Value *V = findLeader(PREPred, VN.lookup(Op))) { 2495 PREInstr->setOperand(i, V); 2496 } else { 2497 success = false; 2498 break; 2499 } 2500 } 2501 2502 // Fail out if we encounter an operand that is not available in 2503 // the PRE predecessor. This is typically because of loads which 2504 // are not value numbered precisely. 2505 if (!success) { 2506 delete PREInstr; 2507 DEBUG(verifyRemoved(PREInstr)); 2508 continue; 2509 } 2510 2511 PREInstr->insertBefore(PREPred->getTerminator()); 2512 PREInstr->setName(CurInst->getName() + ".pre"); 2513 PREInstr->setDebugLoc(CurInst->getDebugLoc()); 2514 predMap[PREPred] = PREInstr; 2515 VN.add(PREInstr, ValNo); 2516 ++NumGVNPRE; 2517 2518 // Update the availability map to include the new instruction. 2519 addToLeaderTable(ValNo, PREInstr, PREPred); 2520 2521 // Create a PHI to make the value available in this block. 2522 pred_iterator PB = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock); 2523 PHINode* Phi = PHINode::Create(CurInst->getType(), std::distance(PB, PE), 2524 CurInst->getName() + ".pre-phi", 2525 CurrentBlock->begin()); 2526 for (pred_iterator PI = PB; PI != PE; ++PI) { 2527 BasicBlock *P = *PI; 2528 Phi->addIncoming(predMap[P], P); 2529 } 2530 2531 VN.add(Phi, ValNo); 2532 addToLeaderTable(ValNo, Phi, CurrentBlock); 2533 Phi->setDebugLoc(CurInst->getDebugLoc()); 2534 CurInst->replaceAllUsesWith(Phi); 2535 if (Phi->getType()->isPointerTy()) { 2536 // Because we have added a PHI-use of the pointer value, it has now 2537 // "escaped" from alias analysis' perspective. We need to inform 2538 // AA of this. 2539 for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee; 2540 ++ii) { 2541 unsigned jj = PHINode::getOperandNumForIncomingValue(ii); 2542 VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj)); 2543 } 2544 2545 if (MD) 2546 MD->invalidateCachedPointerInfo(Phi); 2547 } 2548 VN.erase(CurInst); 2549 removeFromLeaderTable(ValNo, CurInst, CurrentBlock); 2550 2551 DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n'); 2552 if (MD) MD->removeInstruction(CurInst); 2553 CurInst->eraseFromParent(); 2554 DEBUG(verifyRemoved(CurInst)); 2555 Changed = true; 2556 } 2557 } 2558 2559 if (splitCriticalEdges()) 2560 Changed = true; 2561 2562 return Changed; 2563 } 2564 2565 /// splitCriticalEdges - Split critical edges found during the previous 2566 /// iteration that may enable further optimization. 2567 bool GVN::splitCriticalEdges() { 2568 if (toSplit.empty()) 2569 return false; 2570 do { 2571 std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val(); 2572 SplitCriticalEdge(Edge.first, Edge.second, this); 2573 } while (!toSplit.empty()); 2574 if (MD) MD->invalidateCachedPredecessors(); 2575 return true; 2576 } 2577 2578 /// iterateOnFunction - Executes one iteration of GVN 2579 bool GVN::iterateOnFunction(Function &F) { 2580 cleanupGlobalSets(); 2581 2582 // Top-down walk of the dominator tree 2583 bool Changed = false; 2584 #if 0 2585 // Needed for value numbering with phi construction to work. 2586 ReversePostOrderTraversal<Function*> RPOT(&F); 2587 for (ReversePostOrderTraversal<Function*>::rpo_iterator RI = RPOT.begin(), 2588 RE = RPOT.end(); RI != RE; ++RI) 2589 Changed |= processBlock(*RI); 2590 #else 2591 for (df_iterator<DomTreeNode*> DI = df_begin(DT->getRootNode()), 2592 DE = df_end(DT->getRootNode()); DI != DE; ++DI) 2593 Changed |= processBlock(DI->getBlock()); 2594 #endif 2595 2596 return Changed; 2597 } 2598 2599 void GVN::cleanupGlobalSets() { 2600 VN.clear(); 2601 LeaderTable.clear(); 2602 TableAllocator.Reset(); 2603 } 2604 2605 /// verifyRemoved - Verify that the specified instruction does not occur in our 2606 /// internal data structures. 2607 void GVN::verifyRemoved(const Instruction *Inst) const { 2608 VN.verifyRemoved(Inst); 2609 2610 // Walk through the value number scope to make sure the instruction isn't 2611 // ferreted away in it. 2612 for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator 2613 I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) { 2614 const LeaderTableEntry *Node = &I->second; 2615 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 2616 2617 while (Node->Next) { 2618 Node = Node->Next; 2619 assert(Node->Val != Inst && "Inst still in value numbering scope!"); 2620 } 2621 } 2622 } 2623