Home | History | Annotate | Download | only in Scalar
      1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs various transformations related to eliminating memcpy
     11 // calls, or transforming sets of stores into memset's.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "memcpyopt"
     16 #include "llvm/Transforms/Scalar.h"
     17 #include "llvm/GlobalVariable.h"
     18 #include "llvm/IRBuilder.h"
     19 #include "llvm/Instructions.h"
     20 #include "llvm/IntrinsicInst.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/Analysis/AliasAnalysis.h"
     24 #include "llvm/Analysis/Dominators.h"
     25 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     26 #include "llvm/Analysis/ValueTracking.h"
     27 #include "llvm/Support/Debug.h"
     28 #include "llvm/Support/GetElementPtrTypeIterator.h"
     29 #include "llvm/Support/raw_ostream.h"
     30 #include "llvm/Target/TargetData.h"
     31 #include "llvm/Target/TargetLibraryInfo.h"
     32 #include "llvm/Transforms/Utils/Local.h"
     33 #include <list>
     34 using namespace llvm;
     35 
     36 STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
     37 STATISTIC(NumMemSetInfer, "Number of memsets inferred");
     38 STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy");
     39 STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset");
     40 
     41 static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
     42                                   bool &VariableIdxFound, const TargetData &TD){
     43   // Skip over the first indices.
     44   gep_type_iterator GTI = gep_type_begin(GEP);
     45   for (unsigned i = 1; i != Idx; ++i, ++GTI)
     46     /*skip along*/;
     47 
     48   // Compute the offset implied by the rest of the indices.
     49   int64_t Offset = 0;
     50   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
     51     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
     52     if (OpC == 0)
     53       return VariableIdxFound = true;
     54     if (OpC->isZero()) continue;  // No offset.
     55 
     56     // Handle struct indices, which add their field offset to the pointer.
     57     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
     58       Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
     59       continue;
     60     }
     61 
     62     // Otherwise, we have a sequential type like an array or vector.  Multiply
     63     // the index by the ElementSize.
     64     uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
     65     Offset += Size*OpC->getSExtValue();
     66   }
     67 
     68   return Offset;
     69 }
     70 
     71 /// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
     72 /// constant offset, and return that constant offset.  For example, Ptr1 might
     73 /// be &A[42], and Ptr2 might be &A[40].  In this case offset would be -8.
     74 static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
     75                             const TargetData &TD) {
     76   Ptr1 = Ptr1->stripPointerCasts();
     77   Ptr2 = Ptr2->stripPointerCasts();
     78   GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
     79   GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
     80 
     81   bool VariableIdxFound = false;
     82 
     83   // If one pointer is a GEP and the other isn't, then see if the GEP is a
     84   // constant offset from the base, as in "P" and "gep P, 1".
     85   if (GEP1 && GEP2 == 0 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) {
     86     Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, TD);
     87     return !VariableIdxFound;
     88   }
     89 
     90   if (GEP2 && GEP1 == 0 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) {
     91     Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, TD);
     92     return !VariableIdxFound;
     93   }
     94 
     95   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
     96   // base.  After that base, they may have some number of common (and
     97   // potentially variable) indices.  After that they handle some constant
     98   // offset, which determines their offset from each other.  At this point, we
     99   // handle no other case.
    100   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
    101     return false;
    102 
    103   // Skip any common indices and track the GEP types.
    104   unsigned Idx = 1;
    105   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
    106     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
    107       break;
    108 
    109   int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
    110   int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
    111   if (VariableIdxFound) return false;
    112 
    113   Offset = Offset2-Offset1;
    114   return true;
    115 }
    116 
    117 
    118 /// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
    119 /// This allows us to analyze stores like:
    120 ///   store 0 -> P+1
    121 ///   store 0 -> P+0
    122 ///   store 0 -> P+3
    123 ///   store 0 -> P+2
    124 /// which sometimes happens with stores to arrays of structs etc.  When we see
    125 /// the first store, we make a range [1, 2).  The second store extends the range
    126 /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the
    127 /// two ranges into [0, 3) which is memset'able.
    128 namespace {
    129 struct MemsetRange {
    130   // Start/End - A semi range that describes the span that this range covers.
    131   // The range is closed at the start and open at the end: [Start, End).
    132   int64_t Start, End;
    133 
    134   /// StartPtr - The getelementptr instruction that points to the start of the
    135   /// range.
    136   Value *StartPtr;
    137 
    138   /// Alignment - The known alignment of the first store.
    139   unsigned Alignment;
    140 
    141   /// TheStores - The actual stores that make up this range.
    142   SmallVector<Instruction*, 16> TheStores;
    143 
    144   bool isProfitableToUseMemset(const TargetData &TD) const;
    145 
    146 };
    147 } // end anon namespace
    148 
    149 bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const {
    150   // If we found more than 4 stores to merge or 16 bytes, use memset.
    151   if (TheStores.size() >= 4 || End-Start >= 16) return true;
    152 
    153   // If there is nothing to merge, don't do anything.
    154   if (TheStores.size() < 2) return false;
    155 
    156   // If any of the stores are a memset, then it is always good to extend the
    157   // memset.
    158   for (unsigned i = 0, e = TheStores.size(); i != e; ++i)
    159     if (!isa<StoreInst>(TheStores[i]))
    160       return true;
    161 
    162   // Assume that the code generator is capable of merging pairs of stores
    163   // together if it wants to.
    164   if (TheStores.size() == 2) return false;
    165 
    166   // If we have fewer than 8 stores, it can still be worthwhile to do this.
    167   // For example, merging 4 i8 stores into an i32 store is useful almost always.
    168   // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
    169   // memset will be split into 2 32-bit stores anyway) and doing so can
    170   // pessimize the llvm optimizer.
    171   //
    172   // Since we don't have perfect knowledge here, make some assumptions: assume
    173   // the maximum GPR width is the same size as the pointer size and assume that
    174   // this width can be stored.  If so, check to see whether we will end up
    175   // actually reducing the number of stores used.
    176   unsigned Bytes = unsigned(End-Start);
    177   unsigned NumPointerStores = Bytes/TD.getPointerSize();
    178 
    179   // Assume the remaining bytes if any are done a byte at a time.
    180   unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize();
    181 
    182   // If we will reduce the # stores (according to this heuristic), do the
    183   // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
    184   // etc.
    185   return TheStores.size() > NumPointerStores+NumByteStores;
    186 }
    187 
    188 
    189 namespace {
    190 class MemsetRanges {
    191   /// Ranges - A sorted list of the memset ranges.  We use std::list here
    192   /// because each element is relatively large and expensive to copy.
    193   std::list<MemsetRange> Ranges;
    194   typedef std::list<MemsetRange>::iterator range_iterator;
    195   const TargetData &TD;
    196 public:
    197   MemsetRanges(const TargetData &td) : TD(td) {}
    198 
    199   typedef std::list<MemsetRange>::const_iterator const_iterator;
    200   const_iterator begin() const { return Ranges.begin(); }
    201   const_iterator end() const { return Ranges.end(); }
    202   bool empty() const { return Ranges.empty(); }
    203 
    204   void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
    205     if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
    206       addStore(OffsetFromFirst, SI);
    207     else
    208       addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
    209   }
    210 
    211   void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
    212     int64_t StoreSize = TD.getTypeStoreSize(SI->getOperand(0)->getType());
    213 
    214     addRange(OffsetFromFirst, StoreSize,
    215              SI->getPointerOperand(), SI->getAlignment(), SI);
    216   }
    217 
    218   void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
    219     int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
    220     addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI);
    221   }
    222 
    223   void addRange(int64_t Start, int64_t Size, Value *Ptr,
    224                 unsigned Alignment, Instruction *Inst);
    225 
    226 };
    227 
    228 } // end anon namespace
    229 
    230 
    231 /// addRange - Add a new store to the MemsetRanges data structure.  This adds a
    232 /// new range for the specified store at the specified offset, merging into
    233 /// existing ranges as appropriate.
    234 ///
    235 /// Do a linear search of the ranges to see if this can be joined and/or to
    236 /// find the insertion point in the list.  We keep the ranges sorted for
    237 /// simplicity here.  This is a linear search of a linked list, which is ugly,
    238 /// however the number of ranges is limited, so this won't get crazy slow.
    239 void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
    240                             unsigned Alignment, Instruction *Inst) {
    241   int64_t End = Start+Size;
    242   range_iterator I = Ranges.begin(), E = Ranges.end();
    243 
    244   while (I != E && Start > I->End)
    245     ++I;
    246 
    247   // We now know that I == E, in which case we didn't find anything to merge
    248   // with, or that Start <= I->End.  If End < I->Start or I == E, then we need
    249   // to insert a new range.  Handle this now.
    250   if (I == E || End < I->Start) {
    251     MemsetRange &R = *Ranges.insert(I, MemsetRange());
    252     R.Start        = Start;
    253     R.End          = End;
    254     R.StartPtr     = Ptr;
    255     R.Alignment    = Alignment;
    256     R.TheStores.push_back(Inst);
    257     return;
    258   }
    259 
    260   // This store overlaps with I, add it.
    261   I->TheStores.push_back(Inst);
    262 
    263   // At this point, we may have an interval that completely contains our store.
    264   // If so, just add it to the interval and return.
    265   if (I->Start <= Start && I->End >= End)
    266     return;
    267 
    268   // Now we know that Start <= I->End and End >= I->Start so the range overlaps
    269   // but is not entirely contained within the range.
    270 
    271   // See if the range extends the start of the range.  In this case, it couldn't
    272   // possibly cause it to join the prior range, because otherwise we would have
    273   // stopped on *it*.
    274   if (Start < I->Start) {
    275     I->Start = Start;
    276     I->StartPtr = Ptr;
    277     I->Alignment = Alignment;
    278   }
    279 
    280   // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
    281   // is in or right at the end of I), and that End >= I->Start.  Extend I out to
    282   // End.
    283   if (End > I->End) {
    284     I->End = End;
    285     range_iterator NextI = I;
    286     while (++NextI != E && End >= NextI->Start) {
    287       // Merge the range in.
    288       I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
    289       if (NextI->End > I->End)
    290         I->End = NextI->End;
    291       Ranges.erase(NextI);
    292       NextI = I;
    293     }
    294   }
    295 }
    296 
    297 //===----------------------------------------------------------------------===//
    298 //                         MemCpyOpt Pass
    299 //===----------------------------------------------------------------------===//
    300 
    301 namespace {
    302   class MemCpyOpt : public FunctionPass {
    303     MemoryDependenceAnalysis *MD;
    304     TargetLibraryInfo *TLI;
    305     const TargetData *TD;
    306   public:
    307     static char ID; // Pass identification, replacement for typeid
    308     MemCpyOpt() : FunctionPass(ID) {
    309       initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
    310       MD = 0;
    311       TLI = 0;
    312       TD = 0;
    313     }
    314 
    315     bool runOnFunction(Function &F);
    316 
    317   private:
    318     // This transformation requires dominator postdominator info
    319     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    320       AU.setPreservesCFG();
    321       AU.addRequired<DominatorTree>();
    322       AU.addRequired<MemoryDependenceAnalysis>();
    323       AU.addRequired<AliasAnalysis>();
    324       AU.addRequired<TargetLibraryInfo>();
    325       AU.addPreserved<AliasAnalysis>();
    326       AU.addPreserved<MemoryDependenceAnalysis>();
    327     }
    328 
    329     // Helper fuctions
    330     bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
    331     bool processMemSet(MemSetInst *SI, BasicBlock::iterator &BBI);
    332     bool processMemCpy(MemCpyInst *M);
    333     bool processMemMove(MemMoveInst *M);
    334     bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
    335                               uint64_t cpyLen, CallInst *C);
    336     bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
    337                                        uint64_t MSize);
    338     bool processByValArgument(CallSite CS, unsigned ArgNo);
    339     Instruction *tryMergingIntoMemset(Instruction *I, Value *StartPtr,
    340                                       Value *ByteVal);
    341 
    342     bool iterateOnFunction(Function &F);
    343   };
    344 
    345   char MemCpyOpt::ID = 0;
    346 }
    347 
    348 // createMemCpyOptPass - The public interface to this file...
    349 FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
    350 
    351 INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
    352                       false, false)
    353 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
    354 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
    355 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo)
    356 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    357 INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
    358                     false, false)
    359 
    360 /// tryMergingIntoMemset - When scanning forward over instructions, we look for
    361 /// some other patterns to fold away.  In particular, this looks for stores to
    362 /// neighboring locations of memory.  If it sees enough consecutive ones, it
    363 /// attempts to merge them together into a memcpy/memset.
    364 Instruction *MemCpyOpt::tryMergingIntoMemset(Instruction *StartInst,
    365                                              Value *StartPtr, Value *ByteVal) {
    366   if (TD == 0) return 0;
    367 
    368   // Okay, so we now have a single store that can be splatable.  Scan to find
    369   // all subsequent stores of the same value to offset from the same pointer.
    370   // Join these together into ranges, so we can decide whether contiguous blocks
    371   // are stored.
    372   MemsetRanges Ranges(*TD);
    373 
    374   BasicBlock::iterator BI = StartInst;
    375   for (++BI; !isa<TerminatorInst>(BI); ++BI) {
    376     if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
    377       // If the instruction is readnone, ignore it, otherwise bail out.  We
    378       // don't even allow readonly here because we don't want something like:
    379       // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
    380       if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
    381         break;
    382       continue;
    383     }
    384 
    385     if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) {
    386       // If this is a store, see if we can merge it in.
    387       if (!NextStore->isSimple()) break;
    388 
    389       // Check to see if this stored value is of the same byte-splattable value.
    390       if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
    391         break;
    392 
    393       // Check to see if this store is to a constant offset from the start ptr.
    394       int64_t Offset;
    395       if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(),
    396                            Offset, *TD))
    397         break;
    398 
    399       Ranges.addStore(Offset, NextStore);
    400     } else {
    401       MemSetInst *MSI = cast<MemSetInst>(BI);
    402 
    403       if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
    404           !isa<ConstantInt>(MSI->getLength()))
    405         break;
    406 
    407       // Check to see if this store is to a constant offset from the start ptr.
    408       int64_t Offset;
    409       if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, *TD))
    410         break;
    411 
    412       Ranges.addMemSet(Offset, MSI);
    413     }
    414   }
    415 
    416   // If we have no ranges, then we just had a single store with nothing that
    417   // could be merged in.  This is a very common case of course.
    418   if (Ranges.empty())
    419     return 0;
    420 
    421   // If we had at least one store that could be merged in, add the starting
    422   // store as well.  We try to avoid this unless there is at least something
    423   // interesting as a small compile-time optimization.
    424   Ranges.addInst(0, StartInst);
    425 
    426   // If we create any memsets, we put it right before the first instruction that
    427   // isn't part of the memset block.  This ensure that the memset is dominated
    428   // by any addressing instruction needed by the start of the block.
    429   IRBuilder<> Builder(BI);
    430 
    431   // Now that we have full information about ranges, loop over the ranges and
    432   // emit memset's for anything big enough to be worthwhile.
    433   Instruction *AMemSet = 0;
    434   for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
    435        I != E; ++I) {
    436     const MemsetRange &Range = *I;
    437 
    438     if (Range.TheStores.size() == 1) continue;
    439 
    440     // If it is profitable to lower this range to memset, do so now.
    441     if (!Range.isProfitableToUseMemset(*TD))
    442       continue;
    443 
    444     // Otherwise, we do want to transform this!  Create a new memset.
    445     // Get the starting pointer of the block.
    446     StartPtr = Range.StartPtr;
    447 
    448     // Determine alignment
    449     unsigned Alignment = Range.Alignment;
    450     if (Alignment == 0) {
    451       Type *EltType =
    452         cast<PointerType>(StartPtr->getType())->getElementType();
    453       Alignment = TD->getABITypeAlignment(EltType);
    454     }
    455 
    456     AMemSet =
    457       Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment);
    458 
    459     DEBUG(dbgs() << "Replace stores:\n";
    460           for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
    461             dbgs() << *Range.TheStores[i] << '\n';
    462           dbgs() << "With: " << *AMemSet << '\n');
    463 
    464     if (!Range.TheStores.empty())
    465       AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
    466 
    467     // Zap all the stores.
    468     for (SmallVector<Instruction*, 16>::const_iterator
    469          SI = Range.TheStores.begin(),
    470          SE = Range.TheStores.end(); SI != SE; ++SI) {
    471       MD->removeInstruction(*SI);
    472       (*SI)->eraseFromParent();
    473     }
    474     ++NumMemSetInfer;
    475   }
    476 
    477   return AMemSet;
    478 }
    479 
    480 
    481 bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
    482   if (!SI->isSimple()) return false;
    483 
    484   if (TD == 0) return false;
    485 
    486   // Detect cases where we're performing call slot forwarding, but
    487   // happen to be using a load-store pair to implement it, rather than
    488   // a memcpy.
    489   if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
    490     if (LI->isSimple() && LI->hasOneUse() &&
    491         LI->getParent() == SI->getParent()) {
    492       MemDepResult ldep = MD->getDependency(LI);
    493       CallInst *C = 0;
    494       if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst()))
    495         C = dyn_cast<CallInst>(ldep.getInst());
    496 
    497       if (C) {
    498         // Check that nothing touches the dest of the "copy" between
    499         // the call and the store.
    500         AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
    501         AliasAnalysis::Location StoreLoc = AA.getLocation(SI);
    502         for (BasicBlock::iterator I = --BasicBlock::iterator(SI),
    503                                   E = C; I != E; --I) {
    504           if (AA.getModRefInfo(&*I, StoreLoc) != AliasAnalysis::NoModRef) {
    505             C = 0;
    506             break;
    507           }
    508         }
    509       }
    510 
    511       if (C) {
    512         bool changed = performCallSlotOptzn(LI,
    513                         SI->getPointerOperand()->stripPointerCasts(),
    514                         LI->getPointerOperand()->stripPointerCasts(),
    515                         TD->getTypeStoreSize(SI->getOperand(0)->getType()), C);
    516         if (changed) {
    517           MD->removeInstruction(SI);
    518           SI->eraseFromParent();
    519           MD->removeInstruction(LI);
    520           LI->eraseFromParent();
    521           ++NumMemCpyInstr;
    522           return true;
    523         }
    524       }
    525     }
    526   }
    527 
    528   // There are two cases that are interesting for this code to handle: memcpy
    529   // and memset.  Right now we only handle memset.
    530 
    531   // Ensure that the value being stored is something that can be memset'able a
    532   // byte at a time like "0" or "-1" or any width, as well as things like
    533   // 0xA0A0A0A0 and 0.0.
    534   if (Value *ByteVal = isBytewiseValue(SI->getOperand(0)))
    535     if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
    536                                               ByteVal)) {
    537       BBI = I;  // Don't invalidate iterator.
    538       return true;
    539     }
    540 
    541   return false;
    542 }
    543 
    544 bool MemCpyOpt::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
    545   // See if there is another memset or store neighboring this memset which
    546   // allows us to widen out the memset to do a single larger store.
    547   if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
    548     if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
    549                                               MSI->getValue())) {
    550       BBI = I;  // Don't invalidate iterator.
    551       return true;
    552     }
    553   return false;
    554 }
    555 
    556 
    557 /// performCallSlotOptzn - takes a memcpy and a call that it depends on,
    558 /// and checks for the possibility of a call slot optimization by having
    559 /// the call write its result directly into the destination of the memcpy.
    560 bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
    561                                      Value *cpyDest, Value *cpySrc,
    562                                      uint64_t cpyLen, CallInst *C) {
    563   // The general transformation to keep in mind is
    564   //
    565   //   call @func(..., src, ...)
    566   //   memcpy(dest, src, ...)
    567   //
    568   // ->
    569   //
    570   //   memcpy(dest, src, ...)
    571   //   call @func(..., dest, ...)
    572   //
    573   // Since moving the memcpy is technically awkward, we additionally check that
    574   // src only holds uninitialized values at the moment of the call, meaning that
    575   // the memcpy can be discarded rather than moved.
    576 
    577   // Deliberately get the source and destination with bitcasts stripped away,
    578   // because we'll need to do type comparisons based on the underlying type.
    579   CallSite CS(C);
    580 
    581   // Require that src be an alloca.  This simplifies the reasoning considerably.
    582   AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
    583   if (!srcAlloca)
    584     return false;
    585 
    586   // Check that all of src is copied to dest.
    587   if (TD == 0) return false;
    588 
    589   ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
    590   if (!srcArraySize)
    591     return false;
    592 
    593   uint64_t srcSize = TD->getTypeAllocSize(srcAlloca->getAllocatedType()) *
    594     srcArraySize->getZExtValue();
    595 
    596   if (cpyLen < srcSize)
    597     return false;
    598 
    599   // Check that accessing the first srcSize bytes of dest will not cause a
    600   // trap.  Otherwise the transform is invalid since it might cause a trap
    601   // to occur earlier than it otherwise would.
    602   if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
    603     // The destination is an alloca.  Check it is larger than srcSize.
    604     ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
    605     if (!destArraySize)
    606       return false;
    607 
    608     uint64_t destSize = TD->getTypeAllocSize(A->getAllocatedType()) *
    609       destArraySize->getZExtValue();
    610 
    611     if (destSize < srcSize)
    612       return false;
    613   } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
    614     // If the destination is an sret parameter then only accesses that are
    615     // outside of the returned struct type can trap.
    616     if (!A->hasStructRetAttr())
    617       return false;
    618 
    619     Type *StructTy = cast<PointerType>(A->getType())->getElementType();
    620     uint64_t destSize = TD->getTypeAllocSize(StructTy);
    621 
    622     if (destSize < srcSize)
    623       return false;
    624   } else {
    625     return false;
    626   }
    627 
    628   // Check that src is not accessed except via the call and the memcpy.  This
    629   // guarantees that it holds only undefined values when passed in (so the final
    630   // memcpy can be dropped), that it is not read or written between the call and
    631   // the memcpy, and that writing beyond the end of it is undefined.
    632   SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
    633                                    srcAlloca->use_end());
    634   while (!srcUseList.empty()) {
    635     User *UI = srcUseList.pop_back_val();
    636 
    637     if (isa<BitCastInst>(UI)) {
    638       for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
    639            I != E; ++I)
    640         srcUseList.push_back(*I);
    641     } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(UI)) {
    642       if (G->hasAllZeroIndices())
    643         for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
    644              I != E; ++I)
    645           srcUseList.push_back(*I);
    646       else
    647         return false;
    648     } else if (UI != C && UI != cpy) {
    649       return false;
    650     }
    651   }
    652 
    653   // Since we're changing the parameter to the callsite, we need to make sure
    654   // that what would be the new parameter dominates the callsite.
    655   DominatorTree &DT = getAnalysis<DominatorTree>();
    656   if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
    657     if (!DT.dominates(cpyDestInst, C))
    658       return false;
    659 
    660   // In addition to knowing that the call does not access src in some
    661   // unexpected manner, for example via a global, which we deduce from
    662   // the use analysis, we also need to know that it does not sneakily
    663   // access dest.  We rely on AA to figure this out for us.
    664   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
    665   AliasAnalysis::ModRefResult MR = AA.getModRefInfo(C, cpyDest, srcSize);
    666   // If necessary, perform additional analysis.
    667   if (MR != AliasAnalysis::NoModRef)
    668     MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT);
    669   if (MR != AliasAnalysis::NoModRef)
    670     return false;
    671 
    672   // All the checks have passed, so do the transformation.
    673   bool changedArgument = false;
    674   for (unsigned i = 0; i < CS.arg_size(); ++i)
    675     if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
    676       if (cpySrc->getType() != cpyDest->getType())
    677         cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
    678                                               cpyDest->getName(), C);
    679       changedArgument = true;
    680       if (CS.getArgument(i)->getType() == cpyDest->getType())
    681         CS.setArgument(i, cpyDest);
    682       else
    683         CS.setArgument(i, CastInst::CreatePointerCast(cpyDest,
    684                           CS.getArgument(i)->getType(), cpyDest->getName(), C));
    685     }
    686 
    687   if (!changedArgument)
    688     return false;
    689 
    690   // Drop any cached information about the call, because we may have changed
    691   // its dependence information by changing its parameter.
    692   MD->removeInstruction(C);
    693 
    694   // Remove the memcpy.
    695   MD->removeInstruction(cpy);
    696   ++NumMemCpyInstr;
    697 
    698   return true;
    699 }
    700 
    701 /// processMemCpyMemCpyDependence - We've found that the (upward scanning)
    702 /// memory dependence of memcpy 'M' is the memcpy 'MDep'.  Try to simplify M to
    703 /// copy from MDep's input if we can.  MSize is the size of M's copy.
    704 ///
    705 bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
    706                                               uint64_t MSize) {
    707   // We can only transforms memcpy's where the dest of one is the source of the
    708   // other.
    709   if (M->getSource() != MDep->getDest() || MDep->isVolatile())
    710     return false;
    711 
    712   // If dep instruction is reading from our current input, then it is a noop
    713   // transfer and substituting the input won't change this instruction.  Just
    714   // ignore the input and let someone else zap MDep.  This handles cases like:
    715   //    memcpy(a <- a)
    716   //    memcpy(b <- a)
    717   if (M->getSource() == MDep->getSource())
    718     return false;
    719 
    720   // Second, the length of the memcpy's must be the same, or the preceding one
    721   // must be larger than the following one.
    722   ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
    723   ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength());
    724   if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
    725     return false;
    726 
    727   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
    728 
    729   // Verify that the copied-from memory doesn't change in between the two
    730   // transfers.  For example, in:
    731   //    memcpy(a <- b)
    732   //    *b = 42;
    733   //    memcpy(c <- a)
    734   // It would be invalid to transform the second memcpy into memcpy(c <- b).
    735   //
    736   // TODO: If the code between M and MDep is transparent to the destination "c",
    737   // then we could still perform the xform by moving M up to the first memcpy.
    738   //
    739   // NOTE: This is conservative, it will stop on any read from the source loc,
    740   // not just the defining memcpy.
    741   MemDepResult SourceDep =
    742     MD->getPointerDependencyFrom(AA.getLocationForSource(MDep),
    743                                  false, M, M->getParent());
    744   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
    745     return false;
    746 
    747   // If the dest of the second might alias the source of the first, then the
    748   // source and dest might overlap.  We still want to eliminate the intermediate
    749   // value, but we have to generate a memmove instead of memcpy.
    750   bool UseMemMove = false;
    751   if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(MDep)))
    752     UseMemMove = true;
    753 
    754   // If all checks passed, then we can transform M.
    755 
    756   // Make sure to use the lesser of the alignment of the source and the dest
    757   // since we're changing where we're reading from, but don't want to increase
    758   // the alignment past what can be read from or written to.
    759   // TODO: Is this worth it if we're creating a less aligned memcpy? For
    760   // example we could be moving from movaps -> movq on x86.
    761   unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
    762 
    763   IRBuilder<> Builder(M);
    764   if (UseMemMove)
    765     Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(),
    766                           Align, M->isVolatile());
    767   else
    768     Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(),
    769                          Align, M->isVolatile());
    770 
    771   // Remove the instruction we're replacing.
    772   MD->removeInstruction(M);
    773   M->eraseFromParent();
    774   ++NumMemCpyInstr;
    775   return true;
    776 }
    777 
    778 
    779 /// processMemCpy - perform simplification of memcpy's.  If we have memcpy A
    780 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
    781 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
    782 /// circumstances). This allows later passes to remove the first memcpy
    783 /// altogether.
    784 bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
    785   // We can only optimize statically-sized memcpy's that are non-volatile.
    786   ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
    787   if (CopySize == 0 || M->isVolatile()) return false;
    788 
    789   // If the source and destination of the memcpy are the same, then zap it.
    790   if (M->getSource() == M->getDest()) {
    791     MD->removeInstruction(M);
    792     M->eraseFromParent();
    793     return false;
    794   }
    795 
    796   // If copying from a constant, try to turn the memcpy into a memset.
    797   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource()))
    798     if (GV->isConstant() && GV->hasDefinitiveInitializer())
    799       if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) {
    800         IRBuilder<> Builder(M);
    801         Builder.CreateMemSet(M->getRawDest(), ByteVal, CopySize,
    802                              M->getAlignment(), false);
    803         MD->removeInstruction(M);
    804         M->eraseFromParent();
    805         ++NumCpyToSet;
    806         return true;
    807       }
    808 
    809   // The are two possible optimizations we can do for memcpy:
    810   //   a) memcpy-memcpy xform which exposes redundance for DSE.
    811   //   b) call-memcpy xform for return slot optimization.
    812   MemDepResult DepInfo = MD->getDependency(M);
    813   if (DepInfo.isClobber()) {
    814     if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
    815       if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
    816                                CopySize->getZExtValue(), C)) {
    817         MD->removeInstruction(M);
    818         M->eraseFromParent();
    819         return true;
    820       }
    821     }
    822   }
    823 
    824   AliasAnalysis::Location SrcLoc = AliasAnalysis::getLocationForSource(M);
    825   MemDepResult SrcDepInfo = MD->getPointerDependencyFrom(SrcLoc, true,
    826                                                          M, M->getParent());
    827   if (SrcDepInfo.isClobber()) {
    828     if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst()))
    829       return processMemCpyMemCpyDependence(M, MDep, CopySize->getZExtValue());
    830   }
    831 
    832   return false;
    833 }
    834 
    835 /// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
    836 /// are guaranteed not to alias.
    837 bool MemCpyOpt::processMemMove(MemMoveInst *M) {
    838   AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
    839 
    840   if (!TLI->has(LibFunc::memmove))
    841     return false;
    842 
    843   // See if the pointers alias.
    844   if (!AA.isNoAlias(AA.getLocationForDest(M), AA.getLocationForSource(M)))
    845     return false;
    846 
    847   DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
    848 
    849   // If not, then we know we can transform this.
    850   Module *Mod = M->getParent()->getParent()->getParent();
    851   Type *ArgTys[3] = { M->getRawDest()->getType(),
    852                       M->getRawSource()->getType(),
    853                       M->getLength()->getType() };
    854   M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy,
    855                                                  ArgTys));
    856 
    857   // MemDep may have over conservative information about this instruction, just
    858   // conservatively flush it from the cache.
    859   MD->removeInstruction(M);
    860 
    861   ++NumMoveToCpy;
    862   return true;
    863 }
    864 
    865 /// processByValArgument - This is called on every byval argument in call sites.
    866 bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
    867   if (TD == 0) return false;
    868 
    869   // Find out what feeds this byval argument.
    870   Value *ByValArg = CS.getArgument(ArgNo);
    871   Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType();
    872   uint64_t ByValSize = TD->getTypeAllocSize(ByValTy);
    873   MemDepResult DepInfo =
    874     MD->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg, ByValSize),
    875                                  true, CS.getInstruction(),
    876                                  CS.getInstruction()->getParent());
    877   if (!DepInfo.isClobber())
    878     return false;
    879 
    880   // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by
    881   // a memcpy, see if we can byval from the source of the memcpy instead of the
    882   // result.
    883   MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
    884   if (MDep == 0 || MDep->isVolatile() ||
    885       ByValArg->stripPointerCasts() != MDep->getDest())
    886     return false;
    887 
    888   // The length of the memcpy must be larger or equal to the size of the byval.
    889   ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
    890   if (C1 == 0 || C1->getValue().getZExtValue() < ByValSize)
    891     return false;
    892 
    893   // Get the alignment of the byval.  If the call doesn't specify the alignment,
    894   // then it is some target specific value that we can't know.
    895   unsigned ByValAlign = CS.getParamAlignment(ArgNo+1);
    896   if (ByValAlign == 0) return false;
    897 
    898   // If it is greater than the memcpy, then we check to see if we can force the
    899   // source of the memcpy to the alignment we need.  If we fail, we bail out.
    900   if (MDep->getAlignment() < ByValAlign &&
    901       getOrEnforceKnownAlignment(MDep->getSource(),ByValAlign, TD) < ByValAlign)
    902     return false;
    903 
    904   // Verify that the copied-from memory doesn't change in between the memcpy and
    905   // the byval call.
    906   //    memcpy(a <- b)
    907   //    *b = 42;
    908   //    foo(*a)
    909   // It would be invalid to transform the second memcpy into foo(*b).
    910   //
    911   // NOTE: This is conservative, it will stop on any read from the source loc,
    912   // not just the defining memcpy.
    913   MemDepResult SourceDep =
    914     MD->getPointerDependencyFrom(AliasAnalysis::getLocationForSource(MDep),
    915                                  false, CS.getInstruction(), MDep->getParent());
    916   if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
    917     return false;
    918 
    919   Value *TmpCast = MDep->getSource();
    920   if (MDep->getSource()->getType() != ByValArg->getType())
    921     TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
    922                               "tmpcast", CS.getInstruction());
    923 
    924   DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n"
    925                << "  " << *MDep << "\n"
    926                << "  " << *CS.getInstruction() << "\n");
    927 
    928   // Otherwise we're good!  Update the byval argument.
    929   CS.setArgument(ArgNo, TmpCast);
    930   ++NumMemCpyInstr;
    931   return true;
    932 }
    933 
    934 /// iterateOnFunction - Executes one iteration of MemCpyOpt.
    935 bool MemCpyOpt::iterateOnFunction(Function &F) {
    936   bool MadeChange = false;
    937 
    938   // Walk all instruction in the function.
    939   for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
    940     for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
    941       // Avoid invalidating the iterator.
    942       Instruction *I = BI++;
    943 
    944       bool RepeatInstruction = false;
    945 
    946       if (StoreInst *SI = dyn_cast<StoreInst>(I))
    947         MadeChange |= processStore(SI, BI);
    948       else if (MemSetInst *M = dyn_cast<MemSetInst>(I))
    949         RepeatInstruction = processMemSet(M, BI);
    950       else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I))
    951         RepeatInstruction = processMemCpy(M);
    952       else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I))
    953         RepeatInstruction = processMemMove(M);
    954       else if (CallSite CS = (Value*)I) {
    955         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
    956           if (CS.isByValArgument(i))
    957             MadeChange |= processByValArgument(CS, i);
    958       }
    959 
    960       // Reprocess the instruction if desired.
    961       if (RepeatInstruction) {
    962         if (BI != BB->begin()) --BI;
    963         MadeChange = true;
    964       }
    965     }
    966   }
    967 
    968   return MadeChange;
    969 }
    970 
    971 // MemCpyOpt::runOnFunction - This is the main transformation entry point for a
    972 // function.
    973 //
    974 bool MemCpyOpt::runOnFunction(Function &F) {
    975   bool MadeChange = false;
    976   MD = &getAnalysis<MemoryDependenceAnalysis>();
    977   TD = getAnalysisIfAvailable<TargetData>();
    978   TLI = &getAnalysis<TargetLibraryInfo>();
    979 
    980   // If we don't have at least memset and memcpy, there is little point of doing
    981   // anything here.  These are required by a freestanding implementation, so if
    982   // even they are disabled, there is no point in trying hard.
    983   if (!TLI->has(LibFunc::memset) || !TLI->has(LibFunc::memcpy))
    984     return false;
    985 
    986   while (1) {
    987     if (!iterateOnFunction(F))
    988       break;
    989     MadeChange = true;
    990   }
    991 
    992   MD = 0;
    993   return MadeChange;
    994 }
    995