Home | History | Annotate | Download | only in CodeGen
      1 //===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the RAGreedy function pass for register allocation in
     11 // optimized builds.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "regalloc"
     16 #include "llvm/CodeGen/Passes.h"
     17 #include "AllocationOrder.h"
     18 #include "InterferenceCache.h"
     19 #include "LiveDebugVariables.h"
     20 #include "RegAllocBase.h"
     21 #include "SpillPlacement.h"
     22 #include "Spiller.h"
     23 #include "SplitKit.h"
     24 #include "llvm/ADT/Statistic.h"
     25 #include "llvm/Analysis/AliasAnalysis.h"
     26 #include "llvm/CodeGen/CalcSpillWeights.h"
     27 #include "llvm/CodeGen/EdgeBundles.h"
     28 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     29 #include "llvm/CodeGen/LiveRangeEdit.h"
     30 #include "llvm/CodeGen/LiveRegMatrix.h"
     31 #include "llvm/CodeGen/LiveStackAnalysis.h"
     32 #include "llvm/CodeGen/MachineDominators.h"
     33 #include "llvm/CodeGen/MachineFunctionPass.h"
     34 #include "llvm/CodeGen/MachineLoopInfo.h"
     35 #include "llvm/CodeGen/MachineRegisterInfo.h"
     36 #include "llvm/CodeGen/RegAllocRegistry.h"
     37 #include "llvm/CodeGen/VirtRegMap.h"
     38 #include "llvm/PassAnalysisSupport.h"
     39 #include "llvm/Support/CommandLine.h"
     40 #include "llvm/Support/Debug.h"
     41 #include "llvm/Support/ErrorHandling.h"
     42 #include "llvm/Support/Timer.h"
     43 #include "llvm/Support/raw_ostream.h"
     44 #include <queue>
     45 
     46 using namespace llvm;
     47 
     48 STATISTIC(NumGlobalSplits, "Number of split global live ranges");
     49 STATISTIC(NumLocalSplits,  "Number of split local live ranges");
     50 STATISTIC(NumEvicted,      "Number of interferences evicted");
     51 
     52 static cl::opt<SplitEditor::ComplementSpillMode>
     53 SplitSpillMode("split-spill-mode", cl::Hidden,
     54   cl::desc("Spill mode for splitting live ranges"),
     55   cl::values(clEnumValN(SplitEditor::SM_Partition, "default", "Default"),
     56              clEnumValN(SplitEditor::SM_Size,  "size",  "Optimize for size"),
     57              clEnumValN(SplitEditor::SM_Speed, "speed", "Optimize for speed"),
     58              clEnumValEnd),
     59   cl::init(SplitEditor::SM_Partition));
     60 
     61 static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
     62                                        createGreedyRegisterAllocator);
     63 
     64 namespace {
     65 class RAGreedy : public MachineFunctionPass,
     66                  public RegAllocBase,
     67                  private LiveRangeEdit::Delegate {
     68 
     69   // context
     70   MachineFunction *MF;
     71 
     72   // analyses
     73   SlotIndexes *Indexes;
     74   MachineDominatorTree *DomTree;
     75   MachineLoopInfo *Loops;
     76   EdgeBundles *Bundles;
     77   SpillPlacement *SpillPlacer;
     78   LiveDebugVariables *DebugVars;
     79 
     80   // state
     81   std::auto_ptr<Spiller> SpillerInstance;
     82   std::priority_queue<std::pair<unsigned, unsigned> > Queue;
     83   unsigned NextCascade;
     84 
     85   // Live ranges pass through a number of stages as we try to allocate them.
     86   // Some of the stages may also create new live ranges:
     87   //
     88   // - Region splitting.
     89   // - Per-block splitting.
     90   // - Local splitting.
     91   // - Spilling.
     92   //
     93   // Ranges produced by one of the stages skip the previous stages when they are
     94   // dequeued. This improves performance because we can skip interference checks
     95   // that are unlikely to give any results. It also guarantees that the live
     96   // range splitting algorithm terminates, something that is otherwise hard to
     97   // ensure.
     98   enum LiveRangeStage {
     99     /// Newly created live range that has never been queued.
    100     RS_New,
    101 
    102     /// Only attempt assignment and eviction. Then requeue as RS_Split.
    103     RS_Assign,
    104 
    105     /// Attempt live range splitting if assignment is impossible.
    106     RS_Split,
    107 
    108     /// Attempt more aggressive live range splitting that is guaranteed to make
    109     /// progress.  This is used for split products that may not be making
    110     /// progress.
    111     RS_Split2,
    112 
    113     /// Live range will be spilled.  No more splitting will be attempted.
    114     RS_Spill,
    115 
    116     /// There is nothing more we can do to this live range.  Abort compilation
    117     /// if it can't be assigned.
    118     RS_Done
    119   };
    120 
    121   static const char *const StageName[];
    122 
    123   // RegInfo - Keep additional information about each live range.
    124   struct RegInfo {
    125     LiveRangeStage Stage;
    126 
    127     // Cascade - Eviction loop prevention. See canEvictInterference().
    128     unsigned Cascade;
    129 
    130     RegInfo() : Stage(RS_New), Cascade(0) {}
    131   };
    132 
    133   IndexedMap<RegInfo, VirtReg2IndexFunctor> ExtraRegInfo;
    134 
    135   LiveRangeStage getStage(const LiveInterval &VirtReg) const {
    136     return ExtraRegInfo[VirtReg.reg].Stage;
    137   }
    138 
    139   void setStage(const LiveInterval &VirtReg, LiveRangeStage Stage) {
    140     ExtraRegInfo.resize(MRI->getNumVirtRegs());
    141     ExtraRegInfo[VirtReg.reg].Stage = Stage;
    142   }
    143 
    144   template<typename Iterator>
    145   void setStage(Iterator Begin, Iterator End, LiveRangeStage NewStage) {
    146     ExtraRegInfo.resize(MRI->getNumVirtRegs());
    147     for (;Begin != End; ++Begin) {
    148       unsigned Reg = (*Begin)->reg;
    149       if (ExtraRegInfo[Reg].Stage == RS_New)
    150         ExtraRegInfo[Reg].Stage = NewStage;
    151     }
    152   }
    153 
    154   /// Cost of evicting interference.
    155   struct EvictionCost {
    156     unsigned BrokenHints; ///< Total number of broken hints.
    157     float MaxWeight;      ///< Maximum spill weight evicted.
    158 
    159     EvictionCost(unsigned B = 0) : BrokenHints(B), MaxWeight(0) {}
    160 
    161     bool operator<(const EvictionCost &O) const {
    162       if (BrokenHints != O.BrokenHints)
    163         return BrokenHints < O.BrokenHints;
    164       return MaxWeight < O.MaxWeight;
    165     }
    166   };
    167 
    168   // splitting state.
    169   std::auto_ptr<SplitAnalysis> SA;
    170   std::auto_ptr<SplitEditor> SE;
    171 
    172   /// Cached per-block interference maps
    173   InterferenceCache IntfCache;
    174 
    175   /// All basic blocks where the current register has uses.
    176   SmallVector<SpillPlacement::BlockConstraint, 8> SplitConstraints;
    177 
    178   /// Global live range splitting candidate info.
    179   struct GlobalSplitCandidate {
    180     // Register intended for assignment, or 0.
    181     unsigned PhysReg;
    182 
    183     // SplitKit interval index for this candidate.
    184     unsigned IntvIdx;
    185 
    186     // Interference for PhysReg.
    187     InterferenceCache::Cursor Intf;
    188 
    189     // Bundles where this candidate should be live.
    190     BitVector LiveBundles;
    191     SmallVector<unsigned, 8> ActiveBlocks;
    192 
    193     void reset(InterferenceCache &Cache, unsigned Reg) {
    194       PhysReg = Reg;
    195       IntvIdx = 0;
    196       Intf.setPhysReg(Cache, Reg);
    197       LiveBundles.clear();
    198       ActiveBlocks.clear();
    199     }
    200 
    201     // Set B[i] = C for every live bundle where B[i] was NoCand.
    202     unsigned getBundles(SmallVectorImpl<unsigned> &B, unsigned C) {
    203       unsigned Count = 0;
    204       for (int i = LiveBundles.find_first(); i >= 0;
    205            i = LiveBundles.find_next(i))
    206         if (B[i] == NoCand) {
    207           B[i] = C;
    208           Count++;
    209         }
    210       return Count;
    211     }
    212   };
    213 
    214   /// Candidate info for for each PhysReg in AllocationOrder.
    215   /// This vector never shrinks, but grows to the size of the largest register
    216   /// class.
    217   SmallVector<GlobalSplitCandidate, 32> GlobalCand;
    218 
    219   enum { NoCand = ~0u };
    220 
    221   /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
    222   /// NoCand which indicates the stack interval.
    223   SmallVector<unsigned, 32> BundleCand;
    224 
    225 public:
    226   RAGreedy();
    227 
    228   /// Return the pass name.
    229   virtual const char* getPassName() const {
    230     return "Greedy Register Allocator";
    231   }
    232 
    233   /// RAGreedy analysis usage.
    234   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
    235   virtual void releaseMemory();
    236   virtual Spiller &spiller() { return *SpillerInstance; }
    237   virtual void enqueue(LiveInterval *LI);
    238   virtual LiveInterval *dequeue();
    239   virtual unsigned selectOrSplit(LiveInterval&,
    240                                  SmallVectorImpl<LiveInterval*>&);
    241 
    242   /// Perform register allocation.
    243   virtual bool runOnMachineFunction(MachineFunction &mf);
    244 
    245   static char ID;
    246 
    247 private:
    248   bool LRE_CanEraseVirtReg(unsigned);
    249   void LRE_WillShrinkVirtReg(unsigned);
    250   void LRE_DidCloneVirtReg(unsigned, unsigned);
    251 
    252   float calcSpillCost();
    253   bool addSplitConstraints(InterferenceCache::Cursor, float&);
    254   void addThroughConstraints(InterferenceCache::Cursor, ArrayRef<unsigned>);
    255   void growRegion(GlobalSplitCandidate &Cand);
    256   float calcGlobalSplitCost(GlobalSplitCandidate&);
    257   bool calcCompactRegion(GlobalSplitCandidate&);
    258   void splitAroundRegion(LiveRangeEdit&, ArrayRef<unsigned>);
    259   void calcGapWeights(unsigned, SmallVectorImpl<float>&);
    260   bool shouldEvict(LiveInterval &A, bool, LiveInterval &B, bool);
    261   bool canEvictInterference(LiveInterval&, unsigned, bool, EvictionCost&);
    262   void evictInterference(LiveInterval&, unsigned,
    263                          SmallVectorImpl<LiveInterval*>&);
    264 
    265   unsigned tryAssign(LiveInterval&, AllocationOrder&,
    266                      SmallVectorImpl<LiveInterval*>&);
    267   unsigned tryEvict(LiveInterval&, AllocationOrder&,
    268                     SmallVectorImpl<LiveInterval*>&, unsigned = ~0u);
    269   unsigned tryRegionSplit(LiveInterval&, AllocationOrder&,
    270                           SmallVectorImpl<LiveInterval*>&);
    271   unsigned tryBlockSplit(LiveInterval&, AllocationOrder&,
    272                          SmallVectorImpl<LiveInterval*>&);
    273   unsigned tryInstructionSplit(LiveInterval&, AllocationOrder&,
    274                                SmallVectorImpl<LiveInterval*>&);
    275   unsigned tryLocalSplit(LiveInterval&, AllocationOrder&,
    276     SmallVectorImpl<LiveInterval*>&);
    277   unsigned trySplit(LiveInterval&, AllocationOrder&,
    278                     SmallVectorImpl<LiveInterval*>&);
    279 };
    280 } // end anonymous namespace
    281 
    282 char RAGreedy::ID = 0;
    283 
    284 #ifndef NDEBUG
    285 const char *const RAGreedy::StageName[] = {
    286     "RS_New",
    287     "RS_Assign",
    288     "RS_Split",
    289     "RS_Split2",
    290     "RS_Spill",
    291     "RS_Done"
    292 };
    293 #endif
    294 
    295 // Hysteresis to use when comparing floats.
    296 // This helps stabilize decisions based on float comparisons.
    297 const float Hysteresis = 0.98f;
    298 
    299 
    300 FunctionPass* llvm::createGreedyRegisterAllocator() {
    301   return new RAGreedy();
    302 }
    303 
    304 RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
    305   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
    306   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
    307   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
    308   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
    309   initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
    310   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
    311   initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
    312   initializeLiveStacksPass(*PassRegistry::getPassRegistry());
    313   initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
    314   initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
    315   initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
    316   initializeLiveRegMatrixPass(*PassRegistry::getPassRegistry());
    317   initializeEdgeBundlesPass(*PassRegistry::getPassRegistry());
    318   initializeSpillPlacementPass(*PassRegistry::getPassRegistry());
    319 }
    320 
    321 void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
    322   AU.setPreservesCFG();
    323   AU.addRequired<AliasAnalysis>();
    324   AU.addPreserved<AliasAnalysis>();
    325   AU.addRequired<LiveIntervals>();
    326   AU.addPreserved<LiveIntervals>();
    327   AU.addRequired<SlotIndexes>();
    328   AU.addPreserved<SlotIndexes>();
    329   AU.addRequired<LiveDebugVariables>();
    330   AU.addPreserved<LiveDebugVariables>();
    331   AU.addRequired<LiveStacks>();
    332   AU.addPreserved<LiveStacks>();
    333   AU.addRequired<CalculateSpillWeights>();
    334   AU.addRequired<MachineDominatorTree>();
    335   AU.addPreserved<MachineDominatorTree>();
    336   AU.addRequired<MachineLoopInfo>();
    337   AU.addPreserved<MachineLoopInfo>();
    338   AU.addRequired<VirtRegMap>();
    339   AU.addPreserved<VirtRegMap>();
    340   AU.addRequired<LiveRegMatrix>();
    341   AU.addPreserved<LiveRegMatrix>();
    342   AU.addRequired<EdgeBundles>();
    343   AU.addRequired<SpillPlacement>();
    344   MachineFunctionPass::getAnalysisUsage(AU);
    345 }
    346 
    347 
    348 //===----------------------------------------------------------------------===//
    349 //                     LiveRangeEdit delegate methods
    350 //===----------------------------------------------------------------------===//
    351 
    352 bool RAGreedy::LRE_CanEraseVirtReg(unsigned VirtReg) {
    353   if (VRM->hasPhys(VirtReg)) {
    354     Matrix->unassign(LIS->getInterval(VirtReg));
    355     return true;
    356   }
    357   // Unassigned virtreg is probably in the priority queue.
    358   // RegAllocBase will erase it after dequeueing.
    359   return false;
    360 }
    361 
    362 void RAGreedy::LRE_WillShrinkVirtReg(unsigned VirtReg) {
    363   if (!VRM->hasPhys(VirtReg))
    364     return;
    365 
    366   // Register is assigned, put it back on the queue for reassignment.
    367   LiveInterval &LI = LIS->getInterval(VirtReg);
    368   Matrix->unassign(LI);
    369   enqueue(&LI);
    370 }
    371 
    372 void RAGreedy::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
    373   // Cloning a register we haven't even heard about yet?  Just ignore it.
    374   if (!ExtraRegInfo.inBounds(Old))
    375     return;
    376 
    377   // LRE may clone a virtual register because dead code elimination causes it to
    378   // be split into connected components. The new components are much smaller
    379   // than the original, so they should get a new chance at being assigned.
    380   // same stage as the parent.
    381   ExtraRegInfo[Old].Stage = RS_Assign;
    382   ExtraRegInfo.grow(New);
    383   ExtraRegInfo[New] = ExtraRegInfo[Old];
    384 }
    385 
    386 void RAGreedy::releaseMemory() {
    387   SpillerInstance.reset(0);
    388   ExtraRegInfo.clear();
    389   GlobalCand.clear();
    390 }
    391 
    392 void RAGreedy::enqueue(LiveInterval *LI) {
    393   // Prioritize live ranges by size, assigning larger ranges first.
    394   // The queue holds (size, reg) pairs.
    395   const unsigned Size = LI->getSize();
    396   const unsigned Reg = LI->reg;
    397   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
    398          "Can only enqueue virtual registers");
    399   unsigned Prio;
    400 
    401   ExtraRegInfo.grow(Reg);
    402   if (ExtraRegInfo[Reg].Stage == RS_New)
    403     ExtraRegInfo[Reg].Stage = RS_Assign;
    404 
    405   if (ExtraRegInfo[Reg].Stage == RS_Split) {
    406     // Unsplit ranges that couldn't be allocated immediately are deferred until
    407     // everything else has been allocated.
    408     Prio = Size;
    409   } else {
    410     // Everything is allocated in long->short order. Long ranges that don't fit
    411     // should be spilled (or split) ASAP so they don't create interference.
    412     Prio = (1u << 31) + Size;
    413 
    414     // Boost ranges that have a physical register hint.
    415     if (VRM->hasKnownPreference(Reg))
    416       Prio |= (1u << 30);
    417   }
    418 
    419   Queue.push(std::make_pair(Prio, ~Reg));
    420 }
    421 
    422 LiveInterval *RAGreedy::dequeue() {
    423   if (Queue.empty())
    424     return 0;
    425   LiveInterval *LI = &LIS->getInterval(~Queue.top().second);
    426   Queue.pop();
    427   return LI;
    428 }
    429 
    430 
    431 //===----------------------------------------------------------------------===//
    432 //                            Direct Assignment
    433 //===----------------------------------------------------------------------===//
    434 
    435 /// tryAssign - Try to assign VirtReg to an available register.
    436 unsigned RAGreedy::tryAssign(LiveInterval &VirtReg,
    437                              AllocationOrder &Order,
    438                              SmallVectorImpl<LiveInterval*> &NewVRegs) {
    439   Order.rewind();
    440   unsigned PhysReg;
    441   while ((PhysReg = Order.next()))
    442     if (!Matrix->checkInterference(VirtReg, PhysReg))
    443       break;
    444   if (!PhysReg || Order.isHint())
    445     return PhysReg;
    446 
    447   // PhysReg is available, but there may be a better choice.
    448 
    449   // If we missed a simple hint, try to cheaply evict interference from the
    450   // preferred register.
    451   if (unsigned Hint = MRI->getSimpleHint(VirtReg.reg))
    452     if (Order.isHint(Hint)) {
    453       DEBUG(dbgs() << "missed hint " << PrintReg(Hint, TRI) << '\n');
    454       EvictionCost MaxCost(1);
    455       if (canEvictInterference(VirtReg, Hint, true, MaxCost)) {
    456         evictInterference(VirtReg, Hint, NewVRegs);
    457         return Hint;
    458       }
    459     }
    460 
    461   // Try to evict interference from a cheaper alternative.
    462   unsigned Cost = TRI->getCostPerUse(PhysReg);
    463 
    464   // Most registers have 0 additional cost.
    465   if (!Cost)
    466     return PhysReg;
    467 
    468   DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is available at cost " << Cost
    469                << '\n');
    470   unsigned CheapReg = tryEvict(VirtReg, Order, NewVRegs, Cost);
    471   return CheapReg ? CheapReg : PhysReg;
    472 }
    473 
    474 
    475 //===----------------------------------------------------------------------===//
    476 //                         Interference eviction
    477 //===----------------------------------------------------------------------===//
    478 
    479 /// shouldEvict - determine if A should evict the assigned live range B. The
    480 /// eviction policy defined by this function together with the allocation order
    481 /// defined by enqueue() decides which registers ultimately end up being split
    482 /// and spilled.
    483 ///
    484 /// Cascade numbers are used to prevent infinite loops if this function is a
    485 /// cyclic relation.
    486 ///
    487 /// @param A          The live range to be assigned.
    488 /// @param IsHint     True when A is about to be assigned to its preferred
    489 ///                   register.
    490 /// @param B          The live range to be evicted.
    491 /// @param BreaksHint True when B is already assigned to its preferred register.
    492 bool RAGreedy::shouldEvict(LiveInterval &A, bool IsHint,
    493                            LiveInterval &B, bool BreaksHint) {
    494   bool CanSplit = getStage(B) < RS_Spill;
    495 
    496   // Be fairly aggressive about following hints as long as the evictee can be
    497   // split.
    498   if (CanSplit && IsHint && !BreaksHint)
    499     return true;
    500 
    501   return A.weight > B.weight;
    502 }
    503 
    504 /// canEvictInterference - Return true if all interferences between VirtReg and
    505 /// PhysReg can be evicted.  When OnlyCheap is set, don't do anything
    506 ///
    507 /// @param VirtReg Live range that is about to be assigned.
    508 /// @param PhysReg Desired register for assignment.
    509 /// @param IsHint  True when PhysReg is VirtReg's preferred register.
    510 /// @param MaxCost Only look for cheaper candidates and update with new cost
    511 ///                when returning true.
    512 /// @returns True when interference can be evicted cheaper than MaxCost.
    513 bool RAGreedy::canEvictInterference(LiveInterval &VirtReg, unsigned PhysReg,
    514                                     bool IsHint, EvictionCost &MaxCost) {
    515   // It is only possible to evict virtual register interference.
    516   if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg)
    517     return false;
    518 
    519   // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
    520   // involved in an eviction before. If a cascade number was assigned, deny
    521   // evicting anything with the same or a newer cascade number. This prevents
    522   // infinite eviction loops.
    523   //
    524   // This works out so a register without a cascade number is allowed to evict
    525   // anything, and it can be evicted by anything.
    526   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
    527   if (!Cascade)
    528     Cascade = NextCascade;
    529 
    530   EvictionCost Cost;
    531   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
    532     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
    533     // If there is 10 or more interferences, chances are one is heavier.
    534     if (Q.collectInterferingVRegs(10) >= 10)
    535       return false;
    536 
    537     // Check if any interfering live range is heavier than MaxWeight.
    538     for (unsigned i = Q.interferingVRegs().size(); i; --i) {
    539       LiveInterval *Intf = Q.interferingVRegs()[i - 1];
    540       assert(TargetRegisterInfo::isVirtualRegister(Intf->reg) &&
    541              "Only expecting virtual register interference from query");
    542       // Never evict spill products. They cannot split or spill.
    543       if (getStage(*Intf) == RS_Done)
    544         return false;
    545       // Once a live range becomes small enough, it is urgent that we find a
    546       // register for it. This is indicated by an infinite spill weight. These
    547       // urgent live ranges get to evict almost anything.
    548       //
    549       // Also allow urgent evictions of unspillable ranges from a strictly
    550       // larger allocation order.
    551       bool Urgent = !VirtReg.isSpillable() &&
    552         (Intf->isSpillable() ||
    553          RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg)) <
    554          RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(Intf->reg)));
    555       // Only evict older cascades or live ranges without a cascade.
    556       unsigned IntfCascade = ExtraRegInfo[Intf->reg].Cascade;
    557       if (Cascade <= IntfCascade) {
    558         if (!Urgent)
    559           return false;
    560         // We permit breaking cascades for urgent evictions. It should be the
    561         // last resort, though, so make it really expensive.
    562         Cost.BrokenHints += 10;
    563       }
    564       // Would this break a satisfied hint?
    565       bool BreaksHint = VRM->hasPreferredPhys(Intf->reg);
    566       // Update eviction cost.
    567       Cost.BrokenHints += BreaksHint;
    568       Cost.MaxWeight = std::max(Cost.MaxWeight, Intf->weight);
    569       // Abort if this would be too expensive.
    570       if (!(Cost < MaxCost))
    571         return false;
    572       // Finally, apply the eviction policy for non-urgent evictions.
    573       if (!Urgent && !shouldEvict(VirtReg, IsHint, *Intf, BreaksHint))
    574         return false;
    575     }
    576   }
    577   MaxCost = Cost;
    578   return true;
    579 }
    580 
    581 /// evictInterference - Evict any interferring registers that prevent VirtReg
    582 /// from being assigned to Physreg. This assumes that canEvictInterference
    583 /// returned true.
    584 void RAGreedy::evictInterference(LiveInterval &VirtReg, unsigned PhysReg,
    585                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
    586   // Make sure that VirtReg has a cascade number, and assign that cascade
    587   // number to every evicted register. These live ranges than then only be
    588   // evicted by a newer cascade, preventing infinite loops.
    589   unsigned Cascade = ExtraRegInfo[VirtReg.reg].Cascade;
    590   if (!Cascade)
    591     Cascade = ExtraRegInfo[VirtReg.reg].Cascade = NextCascade++;
    592 
    593   DEBUG(dbgs() << "evicting " << PrintReg(PhysReg, TRI)
    594                << " interference: Cascade " << Cascade << '\n');
    595 
    596   // Collect all interfering virtregs first.
    597   SmallVector<LiveInterval*, 8> Intfs;
    598   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
    599     LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
    600     assert(Q.seenAllInterferences() && "Didn't check all interfererences.");
    601     ArrayRef<LiveInterval*> IVR = Q.interferingVRegs();
    602     Intfs.append(IVR.begin(), IVR.end());
    603   }
    604 
    605   // Evict them second. This will invalidate the queries.
    606   for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
    607     LiveInterval *Intf = Intfs[i];
    608     // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
    609     if (!VRM->hasPhys(Intf->reg))
    610       continue;
    611     Matrix->unassign(*Intf);
    612     assert((ExtraRegInfo[Intf->reg].Cascade < Cascade ||
    613             VirtReg.isSpillable() < Intf->isSpillable()) &&
    614            "Cannot decrease cascade number, illegal eviction");
    615     ExtraRegInfo[Intf->reg].Cascade = Cascade;
    616     ++NumEvicted;
    617     NewVRegs.push_back(Intf);
    618   }
    619 }
    620 
    621 /// tryEvict - Try to evict all interferences for a physreg.
    622 /// @param  VirtReg Currently unassigned virtual register.
    623 /// @param  Order   Physregs to try.
    624 /// @return         Physreg to assign VirtReg, or 0.
    625 unsigned RAGreedy::tryEvict(LiveInterval &VirtReg,
    626                             AllocationOrder &Order,
    627                             SmallVectorImpl<LiveInterval*> &NewVRegs,
    628                             unsigned CostPerUseLimit) {
    629   NamedRegionTimer T("Evict", TimerGroupName, TimePassesIsEnabled);
    630 
    631   // Keep track of the cheapest interference seen so far.
    632   EvictionCost BestCost(~0u);
    633   unsigned BestPhys = 0;
    634   unsigned OrderLimit = Order.getOrder().size();
    635 
    636   // When we are just looking for a reduced cost per use, don't break any
    637   // hints, and only evict smaller spill weights.
    638   if (CostPerUseLimit < ~0u) {
    639     BestCost.BrokenHints = 0;
    640     BestCost.MaxWeight = VirtReg.weight;
    641 
    642     // Check of any registers in RC are below CostPerUseLimit.
    643     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg.reg);
    644     unsigned MinCost = RegClassInfo.getMinCost(RC);
    645     if (MinCost >= CostPerUseLimit) {
    646       DEBUG(dbgs() << RC->getName() << " minimum cost = " << MinCost
    647                    << ", no cheaper registers to be found.\n");
    648       return 0;
    649     }
    650 
    651     // It is normal for register classes to have a long tail of registers with
    652     // the same cost. We don't need to look at them if they're too expensive.
    653     if (TRI->getCostPerUse(Order.getOrder().back()) >= CostPerUseLimit) {
    654       OrderLimit = RegClassInfo.getLastCostChange(RC);
    655       DEBUG(dbgs() << "Only trying the first " << OrderLimit << " regs.\n");
    656     }
    657   }
    658 
    659   Order.rewind();
    660   while (unsigned PhysReg = Order.nextWithDups(OrderLimit)) {
    661     if (TRI->getCostPerUse(PhysReg) >= CostPerUseLimit)
    662       continue;
    663     // The first use of a callee-saved register in a function has cost 1.
    664     // Don't start using a CSR when the CostPerUseLimit is low.
    665     if (CostPerUseLimit == 1)
    666      if (unsigned CSR = RegClassInfo.getLastCalleeSavedAlias(PhysReg))
    667        if (!MRI->isPhysRegUsed(CSR)) {
    668          DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " would clobber CSR "
    669                       << PrintReg(CSR, TRI) << '\n');
    670          continue;
    671        }
    672 
    673     if (!canEvictInterference(VirtReg, PhysReg, false, BestCost))
    674       continue;
    675 
    676     // Best so far.
    677     BestPhys = PhysReg;
    678 
    679     // Stop if the hint can be used.
    680     if (Order.isHint())
    681       break;
    682   }
    683 
    684   if (!BestPhys)
    685     return 0;
    686 
    687   evictInterference(VirtReg, BestPhys, NewVRegs);
    688   return BestPhys;
    689 }
    690 
    691 
    692 //===----------------------------------------------------------------------===//
    693 //                              Region Splitting
    694 //===----------------------------------------------------------------------===//
    695 
    696 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
    697 /// interference pattern in Physreg and its aliases. Add the constraints to
    698 /// SpillPlacement and return the static cost of this split in Cost, assuming
    699 /// that all preferences in SplitConstraints are met.
    700 /// Return false if there are no bundles with positive bias.
    701 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf,
    702                                    float &Cost) {
    703   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
    704 
    705   // Reset interference dependent info.
    706   SplitConstraints.resize(UseBlocks.size());
    707   float StaticCost = 0;
    708   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    709     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    710     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
    711 
    712     BC.Number = BI.MBB->getNumber();
    713     Intf.moveToBlock(BC.Number);
    714     BC.Entry = BI.LiveIn ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
    715     BC.Exit = BI.LiveOut ? SpillPlacement::PrefReg : SpillPlacement::DontCare;
    716     BC.ChangesValue = BI.FirstDef;
    717 
    718     if (!Intf.hasInterference())
    719       continue;
    720 
    721     // Number of spill code instructions to insert.
    722     unsigned Ins = 0;
    723 
    724     // Interference for the live-in value.
    725     if (BI.LiveIn) {
    726       if (Intf.first() <= Indexes->getMBBStartIdx(BC.Number))
    727         BC.Entry = SpillPlacement::MustSpill, ++Ins;
    728       else if (Intf.first() < BI.FirstInstr)
    729         BC.Entry = SpillPlacement::PrefSpill, ++Ins;
    730       else if (Intf.first() < BI.LastInstr)
    731         ++Ins;
    732     }
    733 
    734     // Interference for the live-out value.
    735     if (BI.LiveOut) {
    736       if (Intf.last() >= SA->getLastSplitPoint(BC.Number))
    737         BC.Exit = SpillPlacement::MustSpill, ++Ins;
    738       else if (Intf.last() > BI.LastInstr)
    739         BC.Exit = SpillPlacement::PrefSpill, ++Ins;
    740       else if (Intf.last() > BI.FirstInstr)
    741         ++Ins;
    742     }
    743 
    744     // Accumulate the total frequency of inserted spill code.
    745     if (Ins)
    746       StaticCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
    747   }
    748   Cost = StaticCost;
    749 
    750   // Add constraints for use-blocks. Note that these are the only constraints
    751   // that may add a positive bias, it is downhill from here.
    752   SpillPlacer->addConstraints(SplitConstraints);
    753   return SpillPlacer->scanActiveBundles();
    754 }
    755 
    756 
    757 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
    758 /// live-through blocks in Blocks.
    759 void RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf,
    760                                      ArrayRef<unsigned> Blocks) {
    761   const unsigned GroupSize = 8;
    762   SpillPlacement::BlockConstraint BCS[GroupSize];
    763   unsigned TBS[GroupSize];
    764   unsigned B = 0, T = 0;
    765 
    766   for (unsigned i = 0; i != Blocks.size(); ++i) {
    767     unsigned Number = Blocks[i];
    768     Intf.moveToBlock(Number);
    769 
    770     if (!Intf.hasInterference()) {
    771       assert(T < GroupSize && "Array overflow");
    772       TBS[T] = Number;
    773       if (++T == GroupSize) {
    774         SpillPlacer->addLinks(makeArrayRef(TBS, T));
    775         T = 0;
    776       }
    777       continue;
    778     }
    779 
    780     assert(B < GroupSize && "Array overflow");
    781     BCS[B].Number = Number;
    782 
    783     // Interference for the live-in value.
    784     if (Intf.first() <= Indexes->getMBBStartIdx(Number))
    785       BCS[B].Entry = SpillPlacement::MustSpill;
    786     else
    787       BCS[B].Entry = SpillPlacement::PrefSpill;
    788 
    789     // Interference for the live-out value.
    790     if (Intf.last() >= SA->getLastSplitPoint(Number))
    791       BCS[B].Exit = SpillPlacement::MustSpill;
    792     else
    793       BCS[B].Exit = SpillPlacement::PrefSpill;
    794 
    795     if (++B == GroupSize) {
    796       ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
    797       SpillPlacer->addConstraints(Array);
    798       B = 0;
    799     }
    800   }
    801 
    802   ArrayRef<SpillPlacement::BlockConstraint> Array(BCS, B);
    803   SpillPlacer->addConstraints(Array);
    804   SpillPlacer->addLinks(makeArrayRef(TBS, T));
    805 }
    806 
    807 void RAGreedy::growRegion(GlobalSplitCandidate &Cand) {
    808   // Keep track of through blocks that have not been added to SpillPlacer.
    809   BitVector Todo = SA->getThroughBlocks();
    810   SmallVectorImpl<unsigned> &ActiveBlocks = Cand.ActiveBlocks;
    811   unsigned AddedTo = 0;
    812 #ifndef NDEBUG
    813   unsigned Visited = 0;
    814 #endif
    815 
    816   for (;;) {
    817     ArrayRef<unsigned> NewBundles = SpillPlacer->getRecentPositive();
    818     // Find new through blocks in the periphery of PrefRegBundles.
    819     for (int i = 0, e = NewBundles.size(); i != e; ++i) {
    820       unsigned Bundle = NewBundles[i];
    821       // Look at all blocks connected to Bundle in the full graph.
    822       ArrayRef<unsigned> Blocks = Bundles->getBlocks(Bundle);
    823       for (ArrayRef<unsigned>::iterator I = Blocks.begin(), E = Blocks.end();
    824            I != E; ++I) {
    825         unsigned Block = *I;
    826         if (!Todo.test(Block))
    827           continue;
    828         Todo.reset(Block);
    829         // This is a new through block. Add it to SpillPlacer later.
    830         ActiveBlocks.push_back(Block);
    831 #ifndef NDEBUG
    832         ++Visited;
    833 #endif
    834       }
    835     }
    836     // Any new blocks to add?
    837     if (ActiveBlocks.size() == AddedTo)
    838       break;
    839 
    840     // Compute through constraints from the interference, or assume that all
    841     // through blocks prefer spilling when forming compact regions.
    842     ArrayRef<unsigned> NewBlocks = makeArrayRef(ActiveBlocks).slice(AddedTo);
    843     if (Cand.PhysReg)
    844       addThroughConstraints(Cand.Intf, NewBlocks);
    845     else
    846       // Provide a strong negative bias on through blocks to prevent unwanted
    847       // liveness on loop backedges.
    848       SpillPlacer->addPrefSpill(NewBlocks, /* Strong= */ true);
    849     AddedTo = ActiveBlocks.size();
    850 
    851     // Perhaps iterating can enable more bundles?
    852     SpillPlacer->iterate();
    853   }
    854   DEBUG(dbgs() << ", v=" << Visited);
    855 }
    856 
    857 /// calcCompactRegion - Compute the set of edge bundles that should be live
    858 /// when splitting the current live range into compact regions.  Compact
    859 /// regions can be computed without looking at interference.  They are the
    860 /// regions formed by removing all the live-through blocks from the live range.
    861 ///
    862 /// Returns false if the current live range is already compact, or if the
    863 /// compact regions would form single block regions anyway.
    864 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate &Cand) {
    865   // Without any through blocks, the live range is already compact.
    866   if (!SA->getNumThroughBlocks())
    867     return false;
    868 
    869   // Compact regions don't correspond to any physreg.
    870   Cand.reset(IntfCache, 0);
    871 
    872   DEBUG(dbgs() << "Compact region bundles");
    873 
    874   // Use the spill placer to determine the live bundles. GrowRegion pretends
    875   // that all the through blocks have interference when PhysReg is unset.
    876   SpillPlacer->prepare(Cand.LiveBundles);
    877 
    878   // The static split cost will be zero since Cand.Intf reports no interference.
    879   float Cost;
    880   if (!addSplitConstraints(Cand.Intf, Cost)) {
    881     DEBUG(dbgs() << ", none.\n");
    882     return false;
    883   }
    884 
    885   growRegion(Cand);
    886   SpillPlacer->finish();
    887 
    888   if (!Cand.LiveBundles.any()) {
    889     DEBUG(dbgs() << ", none.\n");
    890     return false;
    891   }
    892 
    893   DEBUG({
    894     for (int i = Cand.LiveBundles.find_first(); i>=0;
    895          i = Cand.LiveBundles.find_next(i))
    896     dbgs() << " EB#" << i;
    897     dbgs() << ".\n";
    898   });
    899   return true;
    900 }
    901 
    902 /// calcSpillCost - Compute how expensive it would be to split the live range in
    903 /// SA around all use blocks instead of forming bundle regions.
    904 float RAGreedy::calcSpillCost() {
    905   float Cost = 0;
    906   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
    907   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    908     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    909     unsigned Number = BI.MBB->getNumber();
    910     // We normally only need one spill instruction - a load or a store.
    911     Cost += SpillPlacer->getBlockFrequency(Number);
    912 
    913     // Unless the value is redefined in the block.
    914     if (BI.LiveIn && BI.LiveOut && BI.FirstDef)
    915       Cost += SpillPlacer->getBlockFrequency(Number);
    916   }
    917   return Cost;
    918 }
    919 
    920 /// calcGlobalSplitCost - Return the global split cost of following the split
    921 /// pattern in LiveBundles. This cost should be added to the local cost of the
    922 /// interference pattern in SplitConstraints.
    923 ///
    924 float RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate &Cand) {
    925   float GlobalCost = 0;
    926   const BitVector &LiveBundles = Cand.LiveBundles;
    927   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
    928   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    929     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    930     SpillPlacement::BlockConstraint &BC = SplitConstraints[i];
    931     bool RegIn  = LiveBundles[Bundles->getBundle(BC.Number, 0)];
    932     bool RegOut = LiveBundles[Bundles->getBundle(BC.Number, 1)];
    933     unsigned Ins = 0;
    934 
    935     if (BI.LiveIn)
    936       Ins += RegIn != (BC.Entry == SpillPlacement::PrefReg);
    937     if (BI.LiveOut)
    938       Ins += RegOut != (BC.Exit == SpillPlacement::PrefReg);
    939     if (Ins)
    940       GlobalCost += Ins * SpillPlacer->getBlockFrequency(BC.Number);
    941   }
    942 
    943   for (unsigned i = 0, e = Cand.ActiveBlocks.size(); i != e; ++i) {
    944     unsigned Number = Cand.ActiveBlocks[i];
    945     bool RegIn  = LiveBundles[Bundles->getBundle(Number, 0)];
    946     bool RegOut = LiveBundles[Bundles->getBundle(Number, 1)];
    947     if (!RegIn && !RegOut)
    948       continue;
    949     if (RegIn && RegOut) {
    950       // We need double spill code if this block has interference.
    951       Cand.Intf.moveToBlock(Number);
    952       if (Cand.Intf.hasInterference())
    953         GlobalCost += 2*SpillPlacer->getBlockFrequency(Number);
    954       continue;
    955     }
    956     // live-in / stack-out or stack-in live-out.
    957     GlobalCost += SpillPlacer->getBlockFrequency(Number);
    958   }
    959   return GlobalCost;
    960 }
    961 
    962 /// splitAroundRegion - Split the current live range around the regions
    963 /// determined by BundleCand and GlobalCand.
    964 ///
    965 /// Before calling this function, GlobalCand and BundleCand must be initialized
    966 /// so each bundle is assigned to a valid candidate, or NoCand for the
    967 /// stack-bound bundles.  The shared SA/SE SplitAnalysis and SplitEditor
    968 /// objects must be initialized for the current live range, and intervals
    969 /// created for the used candidates.
    970 ///
    971 /// @param LREdit    The LiveRangeEdit object handling the current split.
    972 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
    973 ///                  must appear in this list.
    974 void RAGreedy::splitAroundRegion(LiveRangeEdit &LREdit,
    975                                  ArrayRef<unsigned> UsedCands) {
    976   // These are the intervals created for new global ranges. We may create more
    977   // intervals for local ranges.
    978   const unsigned NumGlobalIntvs = LREdit.size();
    979   DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs << " globals.\n");
    980   assert(NumGlobalIntvs && "No global intervals configured");
    981 
    982   // Isolate even single instructions when dealing with a proper sub-class.
    983   // That guarantees register class inflation for the stack interval because it
    984   // is all copies.
    985   unsigned Reg = SA->getParent().reg;
    986   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
    987 
    988   // First handle all the blocks with uses.
    989   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
    990   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
    991     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
    992     unsigned Number = BI.MBB->getNumber();
    993     unsigned IntvIn = 0, IntvOut = 0;
    994     SlotIndex IntfIn, IntfOut;
    995     if (BI.LiveIn) {
    996       unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
    997       if (CandIn != NoCand) {
    998         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
    999         IntvIn = Cand.IntvIdx;
   1000         Cand.Intf.moveToBlock(Number);
   1001         IntfIn = Cand.Intf.first();
   1002       }
   1003     }
   1004     if (BI.LiveOut) {
   1005       unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
   1006       if (CandOut != NoCand) {
   1007         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
   1008         IntvOut = Cand.IntvIdx;
   1009         Cand.Intf.moveToBlock(Number);
   1010         IntfOut = Cand.Intf.last();
   1011       }
   1012     }
   1013 
   1014     // Create separate intervals for isolated blocks with multiple uses.
   1015     if (!IntvIn && !IntvOut) {
   1016       DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " isolated.\n");
   1017       if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
   1018         SE->splitSingleBlock(BI);
   1019       continue;
   1020     }
   1021 
   1022     if (IntvIn && IntvOut)
   1023       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
   1024     else if (IntvIn)
   1025       SE->splitRegInBlock(BI, IntvIn, IntfIn);
   1026     else
   1027       SE->splitRegOutBlock(BI, IntvOut, IntfOut);
   1028   }
   1029 
   1030   // Handle live-through blocks. The relevant live-through blocks are stored in
   1031   // the ActiveBlocks list with each candidate. We need to filter out
   1032   // duplicates.
   1033   BitVector Todo = SA->getThroughBlocks();
   1034   for (unsigned c = 0; c != UsedCands.size(); ++c) {
   1035     ArrayRef<unsigned> Blocks = GlobalCand[UsedCands[c]].ActiveBlocks;
   1036     for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
   1037       unsigned Number = Blocks[i];
   1038       if (!Todo.test(Number))
   1039         continue;
   1040       Todo.reset(Number);
   1041 
   1042       unsigned IntvIn = 0, IntvOut = 0;
   1043       SlotIndex IntfIn, IntfOut;
   1044 
   1045       unsigned CandIn = BundleCand[Bundles->getBundle(Number, 0)];
   1046       if (CandIn != NoCand) {
   1047         GlobalSplitCandidate &Cand = GlobalCand[CandIn];
   1048         IntvIn = Cand.IntvIdx;
   1049         Cand.Intf.moveToBlock(Number);
   1050         IntfIn = Cand.Intf.first();
   1051       }
   1052 
   1053       unsigned CandOut = BundleCand[Bundles->getBundle(Number, 1)];
   1054       if (CandOut != NoCand) {
   1055         GlobalSplitCandidate &Cand = GlobalCand[CandOut];
   1056         IntvOut = Cand.IntvIdx;
   1057         Cand.Intf.moveToBlock(Number);
   1058         IntfOut = Cand.Intf.last();
   1059       }
   1060       if (!IntvIn && !IntvOut)
   1061         continue;
   1062       SE->splitLiveThroughBlock(Number, IntvIn, IntfIn, IntvOut, IntfOut);
   1063     }
   1064   }
   1065 
   1066   ++NumGlobalSplits;
   1067 
   1068   SmallVector<unsigned, 8> IntvMap;
   1069   SE->finish(&IntvMap);
   1070   DebugVars->splitRegister(Reg, LREdit.regs());
   1071 
   1072   ExtraRegInfo.resize(MRI->getNumVirtRegs());
   1073   unsigned OrigBlocks = SA->getNumLiveBlocks();
   1074 
   1075   // Sort out the new intervals created by splitting. We get four kinds:
   1076   // - Remainder intervals should not be split again.
   1077   // - Candidate intervals can be assigned to Cand.PhysReg.
   1078   // - Block-local splits are candidates for local splitting.
   1079   // - DCE leftovers should go back on the queue.
   1080   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
   1081     LiveInterval &Reg = *LREdit.get(i);
   1082 
   1083     // Ignore old intervals from DCE.
   1084     if (getStage(Reg) != RS_New)
   1085       continue;
   1086 
   1087     // Remainder interval. Don't try splitting again, spill if it doesn't
   1088     // allocate.
   1089     if (IntvMap[i] == 0) {
   1090       setStage(Reg, RS_Spill);
   1091       continue;
   1092     }
   1093 
   1094     // Global intervals. Allow repeated splitting as long as the number of live
   1095     // blocks is strictly decreasing.
   1096     if (IntvMap[i] < NumGlobalIntvs) {
   1097       if (SA->countLiveBlocks(&Reg) >= OrigBlocks) {
   1098         DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
   1099                      << " blocks as original.\n");
   1100         // Don't allow repeated splitting as a safe guard against looping.
   1101         setStage(Reg, RS_Split2);
   1102       }
   1103       continue;
   1104     }
   1105 
   1106     // Other intervals are treated as new. This includes local intervals created
   1107     // for blocks with multiple uses, and anything created by DCE.
   1108   }
   1109 
   1110   if (VerifyEnabled)
   1111     MF->verify(this, "After splitting live range around region");
   1112 }
   1113 
   1114 unsigned RAGreedy::tryRegionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
   1115                                   SmallVectorImpl<LiveInterval*> &NewVRegs) {
   1116   unsigned NumCands = 0;
   1117   unsigned BestCand = NoCand;
   1118   float BestCost;
   1119   SmallVector<unsigned, 8> UsedCands;
   1120 
   1121   // Check if we can split this live range around a compact region.
   1122   bool HasCompact = calcCompactRegion(GlobalCand.front());
   1123   if (HasCompact) {
   1124     // Yes, keep GlobalCand[0] as the compact region candidate.
   1125     NumCands = 1;
   1126     BestCost = HUGE_VALF;
   1127   } else {
   1128     // No benefit from the compact region, our fallback will be per-block
   1129     // splitting. Make sure we find a solution that is cheaper than spilling.
   1130     BestCost = Hysteresis * calcSpillCost();
   1131     DEBUG(dbgs() << "Cost of isolating all blocks = " << BestCost << '\n');
   1132   }
   1133 
   1134   Order.rewind();
   1135   while (unsigned PhysReg = Order.next()) {
   1136     // Discard bad candidates before we run out of interference cache cursors.
   1137     // This will only affect register classes with a lot of registers (>32).
   1138     if (NumCands == IntfCache.getMaxCursors()) {
   1139       unsigned WorstCount = ~0u;
   1140       unsigned Worst = 0;
   1141       for (unsigned i = 0; i != NumCands; ++i) {
   1142         if (i == BestCand || !GlobalCand[i].PhysReg)
   1143           continue;
   1144         unsigned Count = GlobalCand[i].LiveBundles.count();
   1145         if (Count < WorstCount)
   1146           Worst = i, WorstCount = Count;
   1147       }
   1148       --NumCands;
   1149       GlobalCand[Worst] = GlobalCand[NumCands];
   1150       if (BestCand == NumCands)
   1151         BestCand = Worst;
   1152     }
   1153 
   1154     if (GlobalCand.size() <= NumCands)
   1155       GlobalCand.resize(NumCands+1);
   1156     GlobalSplitCandidate &Cand = GlobalCand[NumCands];
   1157     Cand.reset(IntfCache, PhysReg);
   1158 
   1159     SpillPlacer->prepare(Cand.LiveBundles);
   1160     float Cost;
   1161     if (!addSplitConstraints(Cand.Intf, Cost)) {
   1162       DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tno positive bundles\n");
   1163       continue;
   1164     }
   1165     DEBUG(dbgs() << PrintReg(PhysReg, TRI) << "\tstatic = " << Cost);
   1166     if (Cost >= BestCost) {
   1167       DEBUG({
   1168         if (BestCand == NoCand)
   1169           dbgs() << " worse than no bundles\n";
   1170         else
   1171           dbgs() << " worse than "
   1172                  << PrintReg(GlobalCand[BestCand].PhysReg, TRI) << '\n';
   1173       });
   1174       continue;
   1175     }
   1176     growRegion(Cand);
   1177 
   1178     SpillPlacer->finish();
   1179 
   1180     // No live bundles, defer to splitSingleBlocks().
   1181     if (!Cand.LiveBundles.any()) {
   1182       DEBUG(dbgs() << " no bundles.\n");
   1183       continue;
   1184     }
   1185 
   1186     Cost += calcGlobalSplitCost(Cand);
   1187     DEBUG({
   1188       dbgs() << ", total = " << Cost << " with bundles";
   1189       for (int i = Cand.LiveBundles.find_first(); i>=0;
   1190            i = Cand.LiveBundles.find_next(i))
   1191         dbgs() << " EB#" << i;
   1192       dbgs() << ".\n";
   1193     });
   1194     if (Cost < BestCost) {
   1195       BestCand = NumCands;
   1196       BestCost = Hysteresis * Cost; // Prevent rounding effects.
   1197     }
   1198     ++NumCands;
   1199   }
   1200 
   1201   // No solutions found, fall back to single block splitting.
   1202   if (!HasCompact && BestCand == NoCand)
   1203     return 0;
   1204 
   1205   // Prepare split editor.
   1206   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
   1207   SE->reset(LREdit, SplitSpillMode);
   1208 
   1209   // Assign all edge bundles to the preferred candidate, or NoCand.
   1210   BundleCand.assign(Bundles->getNumBundles(), NoCand);
   1211 
   1212   // Assign bundles for the best candidate region.
   1213   if (BestCand != NoCand) {
   1214     GlobalSplitCandidate &Cand = GlobalCand[BestCand];
   1215     if (unsigned B = Cand.getBundles(BundleCand, BestCand)) {
   1216       UsedCands.push_back(BestCand);
   1217       Cand.IntvIdx = SE->openIntv();
   1218       DEBUG(dbgs() << "Split for " << PrintReg(Cand.PhysReg, TRI) << " in "
   1219                    << B << " bundles, intv " << Cand.IntvIdx << ".\n");
   1220       (void)B;
   1221     }
   1222   }
   1223 
   1224   // Assign bundles for the compact region.
   1225   if (HasCompact) {
   1226     GlobalSplitCandidate &Cand = GlobalCand.front();
   1227     assert(!Cand.PhysReg && "Compact region has no physreg");
   1228     if (unsigned B = Cand.getBundles(BundleCand, 0)) {
   1229       UsedCands.push_back(0);
   1230       Cand.IntvIdx = SE->openIntv();
   1231       DEBUG(dbgs() << "Split for compact region in " << B << " bundles, intv "
   1232                    << Cand.IntvIdx << ".\n");
   1233       (void)B;
   1234     }
   1235   }
   1236 
   1237   splitAroundRegion(LREdit, UsedCands);
   1238   return 0;
   1239 }
   1240 
   1241 
   1242 //===----------------------------------------------------------------------===//
   1243 //                            Per-Block Splitting
   1244 //===----------------------------------------------------------------------===//
   1245 
   1246 /// tryBlockSplit - Split a global live range around every block with uses. This
   1247 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
   1248 /// they don't allocate.
   1249 unsigned RAGreedy::tryBlockSplit(LiveInterval &VirtReg, AllocationOrder &Order,
   1250                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
   1251   assert(&SA->getParent() == &VirtReg && "Live range wasn't analyzed");
   1252   unsigned Reg = VirtReg.reg;
   1253   bool SingleInstrs = RegClassInfo.isProperSubClass(MRI->getRegClass(Reg));
   1254   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
   1255   SE->reset(LREdit, SplitSpillMode);
   1256   ArrayRef<SplitAnalysis::BlockInfo> UseBlocks = SA->getUseBlocks();
   1257   for (unsigned i = 0; i != UseBlocks.size(); ++i) {
   1258     const SplitAnalysis::BlockInfo &BI = UseBlocks[i];
   1259     if (SA->shouldSplitSingleBlock(BI, SingleInstrs))
   1260       SE->splitSingleBlock(BI);
   1261   }
   1262   // No blocks were split.
   1263   if (LREdit.empty())
   1264     return 0;
   1265 
   1266   // We did split for some blocks.
   1267   SmallVector<unsigned, 8> IntvMap;
   1268   SE->finish(&IntvMap);
   1269 
   1270   // Tell LiveDebugVariables about the new ranges.
   1271   DebugVars->splitRegister(Reg, LREdit.regs());
   1272 
   1273   ExtraRegInfo.resize(MRI->getNumVirtRegs());
   1274 
   1275   // Sort out the new intervals created by splitting. The remainder interval
   1276   // goes straight to spilling, the new local ranges get to stay RS_New.
   1277   for (unsigned i = 0, e = LREdit.size(); i != e; ++i) {
   1278     LiveInterval &LI = *LREdit.get(i);
   1279     if (getStage(LI) == RS_New && IntvMap[i] == 0)
   1280       setStage(LI, RS_Spill);
   1281   }
   1282 
   1283   if (VerifyEnabled)
   1284     MF->verify(this, "After splitting live range around basic blocks");
   1285   return 0;
   1286 }
   1287 
   1288 
   1289 //===----------------------------------------------------------------------===//
   1290 //                         Per-Instruction Splitting
   1291 //===----------------------------------------------------------------------===//
   1292 
   1293 /// tryInstructionSplit - Split a live range around individual instructions.
   1294 /// This is normally not worthwhile since the spiller is doing essentially the
   1295 /// same thing. However, when the live range is in a constrained register
   1296 /// class, it may help to insert copies such that parts of the live range can
   1297 /// be moved to a larger register class.
   1298 ///
   1299 /// This is similar to spilling to a larger register class.
   1300 unsigned
   1301 RAGreedy::tryInstructionSplit(LiveInterval &VirtReg, AllocationOrder &Order,
   1302                               SmallVectorImpl<LiveInterval*> &NewVRegs) {
   1303   // There is no point to this if there are no larger sub-classes.
   1304   if (!RegClassInfo.isProperSubClass(MRI->getRegClass(VirtReg.reg)))
   1305     return 0;
   1306 
   1307   // Always enable split spill mode, since we're effectively spilling to a
   1308   // register.
   1309   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
   1310   SE->reset(LREdit, SplitEditor::SM_Size);
   1311 
   1312   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
   1313   if (Uses.size() <= 1)
   1314     return 0;
   1315 
   1316   DEBUG(dbgs() << "Split around " << Uses.size() << " individual instrs.\n");
   1317 
   1318   // Split around every non-copy instruction.
   1319   for (unsigned i = 0; i != Uses.size(); ++i) {
   1320     if (const MachineInstr *MI = Indexes->getInstructionFromIndex(Uses[i]))
   1321       if (MI->isFullCopy()) {
   1322         DEBUG(dbgs() << "    skip:\t" << Uses[i] << '\t' << *MI);
   1323         continue;
   1324       }
   1325     SE->openIntv();
   1326     SlotIndex SegStart = SE->enterIntvBefore(Uses[i]);
   1327     SlotIndex SegStop  = SE->leaveIntvAfter(Uses[i]);
   1328     SE->useIntv(SegStart, SegStop);
   1329   }
   1330 
   1331   if (LREdit.empty()) {
   1332     DEBUG(dbgs() << "All uses were copies.\n");
   1333     return 0;
   1334   }
   1335 
   1336   SmallVector<unsigned, 8> IntvMap;
   1337   SE->finish(&IntvMap);
   1338   DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
   1339   ExtraRegInfo.resize(MRI->getNumVirtRegs());
   1340 
   1341   // Assign all new registers to RS_Spill. This was the last chance.
   1342   setStage(LREdit.begin(), LREdit.end(), RS_Spill);
   1343   return 0;
   1344 }
   1345 
   1346 
   1347 //===----------------------------------------------------------------------===//
   1348 //                             Local Splitting
   1349 //===----------------------------------------------------------------------===//
   1350 
   1351 
   1352 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
   1353 /// in order to use PhysReg between two entries in SA->UseSlots.
   1354 ///
   1355 /// GapWeight[i] represents the gap between UseSlots[i] and UseSlots[i+1].
   1356 ///
   1357 void RAGreedy::calcGapWeights(unsigned PhysReg,
   1358                               SmallVectorImpl<float> &GapWeight) {
   1359   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
   1360   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
   1361   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
   1362   const unsigned NumGaps = Uses.size()-1;
   1363 
   1364   // Start and end points for the interference check.
   1365   SlotIndex StartIdx =
   1366     BI.LiveIn ? BI.FirstInstr.getBaseIndex() : BI.FirstInstr;
   1367   SlotIndex StopIdx =
   1368     BI.LiveOut ? BI.LastInstr.getBoundaryIndex() : BI.LastInstr;
   1369 
   1370   GapWeight.assign(NumGaps, 0.0f);
   1371 
   1372   // Add interference from each overlapping register.
   1373   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
   1374     if (!Matrix->query(const_cast<LiveInterval&>(SA->getParent()), *Units)
   1375           .checkInterference())
   1376       continue;
   1377 
   1378     // We know that VirtReg is a continuous interval from FirstInstr to
   1379     // LastInstr, so we don't need InterferenceQuery.
   1380     //
   1381     // Interference that overlaps an instruction is counted in both gaps
   1382     // surrounding the instruction. The exception is interference before
   1383     // StartIdx and after StopIdx.
   1384     //
   1385     LiveIntervalUnion::SegmentIter IntI =
   1386       Matrix->getLiveUnions()[*Units] .find(StartIdx);
   1387     for (unsigned Gap = 0; IntI.valid() && IntI.start() < StopIdx; ++IntI) {
   1388       // Skip the gaps before IntI.
   1389       while (Uses[Gap+1].getBoundaryIndex() < IntI.start())
   1390         if (++Gap == NumGaps)
   1391           break;
   1392       if (Gap == NumGaps)
   1393         break;
   1394 
   1395       // Update the gaps covered by IntI.
   1396       const float weight = IntI.value()->weight;
   1397       for (; Gap != NumGaps; ++Gap) {
   1398         GapWeight[Gap] = std::max(GapWeight[Gap], weight);
   1399         if (Uses[Gap+1].getBaseIndex() >= IntI.stop())
   1400           break;
   1401       }
   1402       if (Gap == NumGaps)
   1403         break;
   1404     }
   1405   }
   1406 
   1407   // Add fixed interference.
   1408   for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
   1409     const LiveInterval &LI = LIS->getRegUnit(*Units);
   1410     LiveInterval::const_iterator I = LI.find(StartIdx);
   1411     LiveInterval::const_iterator E = LI.end();
   1412 
   1413     // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
   1414     for (unsigned Gap = 0; I != E && I->start < StopIdx; ++I) {
   1415       while (Uses[Gap+1].getBoundaryIndex() < I->start)
   1416         if (++Gap == NumGaps)
   1417           break;
   1418       if (Gap == NumGaps)
   1419         break;
   1420 
   1421       for (; Gap != NumGaps; ++Gap) {
   1422         GapWeight[Gap] = HUGE_VALF;
   1423         if (Uses[Gap+1].getBaseIndex() >= I->end)
   1424           break;
   1425       }
   1426       if (Gap == NumGaps)
   1427         break;
   1428     }
   1429   }
   1430 }
   1431 
   1432 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
   1433 /// basic block.
   1434 ///
   1435 unsigned RAGreedy::tryLocalSplit(LiveInterval &VirtReg, AllocationOrder &Order,
   1436                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
   1437   assert(SA->getUseBlocks().size() == 1 && "Not a local interval");
   1438   const SplitAnalysis::BlockInfo &BI = SA->getUseBlocks().front();
   1439 
   1440   // Note that it is possible to have an interval that is live-in or live-out
   1441   // while only covering a single block - A phi-def can use undef values from
   1442   // predecessors, and the block could be a single-block loop.
   1443   // We don't bother doing anything clever about such a case, we simply assume
   1444   // that the interval is continuous from FirstInstr to LastInstr. We should
   1445   // make sure that we don't do anything illegal to such an interval, though.
   1446 
   1447   ArrayRef<SlotIndex> Uses = SA->getUseSlots();
   1448   if (Uses.size() <= 2)
   1449     return 0;
   1450   const unsigned NumGaps = Uses.size()-1;
   1451 
   1452   DEBUG({
   1453     dbgs() << "tryLocalSplit: ";
   1454     for (unsigned i = 0, e = Uses.size(); i != e; ++i)
   1455       dbgs() << ' ' << Uses[i];
   1456     dbgs() << '\n';
   1457   });
   1458 
   1459   // If VirtReg is live across any register mask operands, compute a list of
   1460   // gaps with register masks.
   1461   SmallVector<unsigned, 8> RegMaskGaps;
   1462   if (Matrix->checkRegMaskInterference(VirtReg)) {
   1463     // Get regmask slots for the whole block.
   1464     ArrayRef<SlotIndex> RMS = LIS->getRegMaskSlotsInBlock(BI.MBB->getNumber());
   1465     DEBUG(dbgs() << RMS.size() << " regmasks in block:");
   1466     // Constrain to VirtReg's live range.
   1467     unsigned ri = std::lower_bound(RMS.begin(), RMS.end(),
   1468                                    Uses.front().getRegSlot()) - RMS.begin();
   1469     unsigned re = RMS.size();
   1470     for (unsigned i = 0; i != NumGaps && ri != re; ++i) {
   1471       // Look for Uses[i] <= RMS <= Uses[i+1].
   1472       assert(!SlotIndex::isEarlierInstr(RMS[ri], Uses[i]));
   1473       if (SlotIndex::isEarlierInstr(Uses[i+1], RMS[ri]))
   1474         continue;
   1475       // Skip a regmask on the same instruction as the last use. It doesn't
   1476       // overlap the live range.
   1477       if (SlotIndex::isSameInstr(Uses[i+1], RMS[ri]) && i+1 == NumGaps)
   1478         break;
   1479       DEBUG(dbgs() << ' ' << RMS[ri] << ':' << Uses[i] << '-' << Uses[i+1]);
   1480       RegMaskGaps.push_back(i);
   1481       // Advance ri to the next gap. A regmask on one of the uses counts in
   1482       // both gaps.
   1483       while (ri != re && SlotIndex::isEarlierInstr(RMS[ri], Uses[i+1]))
   1484         ++ri;
   1485     }
   1486     DEBUG(dbgs() << '\n');
   1487   }
   1488 
   1489   // Since we allow local split results to be split again, there is a risk of
   1490   // creating infinite loops. It is tempting to require that the new live
   1491   // ranges have less instructions than the original. That would guarantee
   1492   // convergence, but it is too strict. A live range with 3 instructions can be
   1493   // split 2+3 (including the COPY), and we want to allow that.
   1494   //
   1495   // Instead we use these rules:
   1496   //
   1497   // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
   1498   //    noop split, of course).
   1499   // 2. Require progress be made for ranges with getStage() == RS_Split2. All
   1500   //    the new ranges must have fewer instructions than before the split.
   1501   // 3. New ranges with the same number of instructions are marked RS_Split2,
   1502   //    smaller ranges are marked RS_New.
   1503   //
   1504   // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
   1505   // excessive splitting and infinite loops.
   1506   //
   1507   bool ProgressRequired = getStage(VirtReg) >= RS_Split2;
   1508 
   1509   // Best split candidate.
   1510   unsigned BestBefore = NumGaps;
   1511   unsigned BestAfter = 0;
   1512   float BestDiff = 0;
   1513 
   1514   const float blockFreq = SpillPlacer->getBlockFrequency(BI.MBB->getNumber());
   1515   SmallVector<float, 8> GapWeight;
   1516 
   1517   Order.rewind();
   1518   while (unsigned PhysReg = Order.next()) {
   1519     // Keep track of the largest spill weight that would need to be evicted in
   1520     // order to make use of PhysReg between UseSlots[i] and UseSlots[i+1].
   1521     calcGapWeights(PhysReg, GapWeight);
   1522 
   1523     // Remove any gaps with regmask clobbers.
   1524     if (Matrix->checkRegMaskInterference(VirtReg, PhysReg))
   1525       for (unsigned i = 0, e = RegMaskGaps.size(); i != e; ++i)
   1526         GapWeight[RegMaskGaps[i]] = HUGE_VALF;
   1527 
   1528     // Try to find the best sequence of gaps to close.
   1529     // The new spill weight must be larger than any gap interference.
   1530 
   1531     // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
   1532     unsigned SplitBefore = 0, SplitAfter = 1;
   1533 
   1534     // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
   1535     // It is the spill weight that needs to be evicted.
   1536     float MaxGap = GapWeight[0];
   1537 
   1538     for (;;) {
   1539       // Live before/after split?
   1540       const bool LiveBefore = SplitBefore != 0 || BI.LiveIn;
   1541       const bool LiveAfter = SplitAfter != NumGaps || BI.LiveOut;
   1542 
   1543       DEBUG(dbgs() << PrintReg(PhysReg, TRI) << ' '
   1544                    << Uses[SplitBefore] << '-' << Uses[SplitAfter]
   1545                    << " i=" << MaxGap);
   1546 
   1547       // Stop before the interval gets so big we wouldn't be making progress.
   1548       if (!LiveBefore && !LiveAfter) {
   1549         DEBUG(dbgs() << " all\n");
   1550         break;
   1551       }
   1552       // Should the interval be extended or shrunk?
   1553       bool Shrink = true;
   1554 
   1555       // How many gaps would the new range have?
   1556       unsigned NewGaps = LiveBefore + SplitAfter - SplitBefore + LiveAfter;
   1557 
   1558       // Legally, without causing looping?
   1559       bool Legal = !ProgressRequired || NewGaps < NumGaps;
   1560 
   1561       if (Legal && MaxGap < HUGE_VALF) {
   1562         // Estimate the new spill weight. Each instruction reads or writes the
   1563         // register. Conservatively assume there are no read-modify-write
   1564         // instructions.
   1565         //
   1566         // Try to guess the size of the new interval.
   1567         const float EstWeight = normalizeSpillWeight(blockFreq * (NewGaps + 1),
   1568                                  Uses[SplitBefore].distance(Uses[SplitAfter]) +
   1569                                  (LiveBefore + LiveAfter)*SlotIndex::InstrDist);
   1570         // Would this split be possible to allocate?
   1571         // Never allocate all gaps, we wouldn't be making progress.
   1572         DEBUG(dbgs() << " w=" << EstWeight);
   1573         if (EstWeight * Hysteresis >= MaxGap) {
   1574           Shrink = false;
   1575           float Diff = EstWeight - MaxGap;
   1576           if (Diff > BestDiff) {
   1577             DEBUG(dbgs() << " (best)");
   1578             BestDiff = Hysteresis * Diff;
   1579             BestBefore = SplitBefore;
   1580             BestAfter = SplitAfter;
   1581           }
   1582         }
   1583       }
   1584 
   1585       // Try to shrink.
   1586       if (Shrink) {
   1587         if (++SplitBefore < SplitAfter) {
   1588           DEBUG(dbgs() << " shrink\n");
   1589           // Recompute the max when necessary.
   1590           if (GapWeight[SplitBefore - 1] >= MaxGap) {
   1591             MaxGap = GapWeight[SplitBefore];
   1592             for (unsigned i = SplitBefore + 1; i != SplitAfter; ++i)
   1593               MaxGap = std::max(MaxGap, GapWeight[i]);
   1594           }
   1595           continue;
   1596         }
   1597         MaxGap = 0;
   1598       }
   1599 
   1600       // Try to extend the interval.
   1601       if (SplitAfter >= NumGaps) {
   1602         DEBUG(dbgs() << " end\n");
   1603         break;
   1604       }
   1605 
   1606       DEBUG(dbgs() << " extend\n");
   1607       MaxGap = std::max(MaxGap, GapWeight[SplitAfter++]);
   1608     }
   1609   }
   1610 
   1611   // Didn't find any candidates?
   1612   if (BestBefore == NumGaps)
   1613     return 0;
   1614 
   1615   DEBUG(dbgs() << "Best local split range: " << Uses[BestBefore]
   1616                << '-' << Uses[BestAfter] << ", " << BestDiff
   1617                << ", " << (BestAfter - BestBefore + 1) << " instrs\n");
   1618 
   1619   LiveRangeEdit LREdit(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
   1620   SE->reset(LREdit);
   1621 
   1622   SE->openIntv();
   1623   SlotIndex SegStart = SE->enterIntvBefore(Uses[BestBefore]);
   1624   SlotIndex SegStop  = SE->leaveIntvAfter(Uses[BestAfter]);
   1625   SE->useIntv(SegStart, SegStop);
   1626   SmallVector<unsigned, 8> IntvMap;
   1627   SE->finish(&IntvMap);
   1628   DebugVars->splitRegister(VirtReg.reg, LREdit.regs());
   1629 
   1630   // If the new range has the same number of instructions as before, mark it as
   1631   // RS_Split2 so the next split will be forced to make progress. Otherwise,
   1632   // leave the new intervals as RS_New so they can compete.
   1633   bool LiveBefore = BestBefore != 0 || BI.LiveIn;
   1634   bool LiveAfter = BestAfter != NumGaps || BI.LiveOut;
   1635   unsigned NewGaps = LiveBefore + BestAfter - BestBefore + LiveAfter;
   1636   if (NewGaps >= NumGaps) {
   1637     DEBUG(dbgs() << "Tagging non-progress ranges: ");
   1638     assert(!ProgressRequired && "Didn't make progress when it was required.");
   1639     for (unsigned i = 0, e = IntvMap.size(); i != e; ++i)
   1640       if (IntvMap[i] == 1) {
   1641         setStage(*LREdit.get(i), RS_Split2);
   1642         DEBUG(dbgs() << PrintReg(LREdit.get(i)->reg));
   1643       }
   1644     DEBUG(dbgs() << '\n');
   1645   }
   1646   ++NumLocalSplits;
   1647 
   1648   return 0;
   1649 }
   1650 
   1651 //===----------------------------------------------------------------------===//
   1652 //                          Live Range Splitting
   1653 //===----------------------------------------------------------------------===//
   1654 
   1655 /// trySplit - Try to split VirtReg or one of its interferences, making it
   1656 /// assignable.
   1657 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
   1658 unsigned RAGreedy::trySplit(LiveInterval &VirtReg, AllocationOrder &Order,
   1659                             SmallVectorImpl<LiveInterval*>&NewVRegs) {
   1660   // Ranges must be Split2 or less.
   1661   if (getStage(VirtReg) >= RS_Spill)
   1662     return 0;
   1663 
   1664   // Local intervals are handled separately.
   1665   if (LIS->intervalIsInOneMBB(VirtReg)) {
   1666     NamedRegionTimer T("Local Splitting", TimerGroupName, TimePassesIsEnabled);
   1667     SA->analyze(&VirtReg);
   1668     unsigned PhysReg = tryLocalSplit(VirtReg, Order, NewVRegs);
   1669     if (PhysReg || !NewVRegs.empty())
   1670       return PhysReg;
   1671     return tryInstructionSplit(VirtReg, Order, NewVRegs);
   1672   }
   1673 
   1674   NamedRegionTimer T("Global Splitting", TimerGroupName, TimePassesIsEnabled);
   1675 
   1676   SA->analyze(&VirtReg);
   1677 
   1678   // FIXME: SplitAnalysis may repair broken live ranges coming from the
   1679   // coalescer. That may cause the range to become allocatable which means that
   1680   // tryRegionSplit won't be making progress. This check should be replaced with
   1681   // an assertion when the coalescer is fixed.
   1682   if (SA->didRepairRange()) {
   1683     // VirtReg has changed, so all cached queries are invalid.
   1684     Matrix->invalidateVirtRegs();
   1685     if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
   1686       return PhysReg;
   1687   }
   1688 
   1689   // First try to split around a region spanning multiple blocks. RS_Split2
   1690   // ranges already made dubious progress with region splitting, so they go
   1691   // straight to single block splitting.
   1692   if (getStage(VirtReg) < RS_Split2) {
   1693     unsigned PhysReg = tryRegionSplit(VirtReg, Order, NewVRegs);
   1694     if (PhysReg || !NewVRegs.empty())
   1695       return PhysReg;
   1696   }
   1697 
   1698   // Then isolate blocks.
   1699   return tryBlockSplit(VirtReg, Order, NewVRegs);
   1700 }
   1701 
   1702 
   1703 //===----------------------------------------------------------------------===//
   1704 //                            Main Entry Point
   1705 //===----------------------------------------------------------------------===//
   1706 
   1707 unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
   1708                                  SmallVectorImpl<LiveInterval*> &NewVRegs) {
   1709   // First try assigning a free register.
   1710   AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo);
   1711   if (unsigned PhysReg = tryAssign(VirtReg, Order, NewVRegs))
   1712     return PhysReg;
   1713 
   1714   LiveRangeStage Stage = getStage(VirtReg);
   1715   DEBUG(dbgs() << StageName[Stage]
   1716                << " Cascade " << ExtraRegInfo[VirtReg.reg].Cascade << '\n');
   1717 
   1718   // Try to evict a less worthy live range, but only for ranges from the primary
   1719   // queue. The RS_Split ranges already failed to do this, and they should not
   1720   // get a second chance until they have been split.
   1721   if (Stage != RS_Split)
   1722     if (unsigned PhysReg = tryEvict(VirtReg, Order, NewVRegs))
   1723       return PhysReg;
   1724 
   1725   assert(NewVRegs.empty() && "Cannot append to existing NewVRegs");
   1726 
   1727   // The first time we see a live range, don't try to split or spill.
   1728   // Wait until the second time, when all smaller ranges have been allocated.
   1729   // This gives a better picture of the interference to split around.
   1730   if (Stage < RS_Split) {
   1731     setStage(VirtReg, RS_Split);
   1732     DEBUG(dbgs() << "wait for second round\n");
   1733     NewVRegs.push_back(&VirtReg);
   1734     return 0;
   1735   }
   1736 
   1737   // If we couldn't allocate a register from spilling, there is probably some
   1738   // invalid inline assembly. The base class wil report it.
   1739   if (Stage >= RS_Done || !VirtReg.isSpillable())
   1740     return ~0u;
   1741 
   1742   // Try splitting VirtReg or interferences.
   1743   unsigned PhysReg = trySplit(VirtReg, Order, NewVRegs);
   1744   if (PhysReg || !NewVRegs.empty())
   1745     return PhysReg;
   1746 
   1747   // Finally spill VirtReg itself.
   1748   NamedRegionTimer T("Spiller", TimerGroupName, TimePassesIsEnabled);
   1749   LiveRangeEdit LRE(&VirtReg, NewVRegs, *MF, *LIS, VRM, this);
   1750   spiller().spill(LRE);
   1751   setStage(NewVRegs.begin(), NewVRegs.end(), RS_Done);
   1752 
   1753   if (VerifyEnabled)
   1754     MF->verify(this, "After spilling");
   1755 
   1756   // The live virtual register requesting allocation was spilled, so tell
   1757   // the caller not to allocate anything during this round.
   1758   return 0;
   1759 }
   1760 
   1761 bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
   1762   DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
   1763                << "********** Function: " << mf.getName() << '\n');
   1764 
   1765   MF = &mf;
   1766   if (VerifyEnabled)
   1767     MF->verify(this, "Before greedy register allocator");
   1768 
   1769   RegAllocBase::init(getAnalysis<VirtRegMap>(),
   1770                      getAnalysis<LiveIntervals>(),
   1771                      getAnalysis<LiveRegMatrix>());
   1772   Indexes = &getAnalysis<SlotIndexes>();
   1773   DomTree = &getAnalysis<MachineDominatorTree>();
   1774   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
   1775   Loops = &getAnalysis<MachineLoopInfo>();
   1776   Bundles = &getAnalysis<EdgeBundles>();
   1777   SpillPlacer = &getAnalysis<SpillPlacement>();
   1778   DebugVars = &getAnalysis<LiveDebugVariables>();
   1779 
   1780   SA.reset(new SplitAnalysis(*VRM, *LIS, *Loops));
   1781   SE.reset(new SplitEditor(*SA, *LIS, *VRM, *DomTree));
   1782   ExtraRegInfo.clear();
   1783   ExtraRegInfo.resize(MRI->getNumVirtRegs());
   1784   NextCascade = 1;
   1785   IntfCache.init(MF, Matrix->getLiveUnions(), Indexes, LIS, TRI);
   1786   GlobalCand.resize(32);  // This will grow as needed.
   1787 
   1788   allocatePhysRegs();
   1789   releaseMemory();
   1790   return true;
   1791 }
   1792