1 //===-- RegAllocFast.cpp - A fast register allocator for debug code -------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This register allocator allocates registers to a basic block at a time, 11 // attempting to keep values in registers and reusing registers as appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "llvm/CodeGen/Passes.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/IndexedMap.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/SparseSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/MachineFrameInfo.h" 25 #include "llvm/CodeGen/MachineFunctionPass.h" 26 #include "llvm/CodeGen/MachineInstr.h" 27 #include "llvm/CodeGen/MachineInstrBuilder.h" 28 #include "llvm/CodeGen/MachineRegisterInfo.h" 29 #include "llvm/CodeGen/RegAllocRegistry.h" 30 #include "llvm/CodeGen/RegisterClassInfo.h" 31 #include "llvm/IR/BasicBlock.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/Debug.h" 34 #include "llvm/Support/ErrorHandling.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetInstrInfo.h" 37 #include "llvm/Target/TargetMachine.h" 38 #include <algorithm> 39 using namespace llvm; 40 41 STATISTIC(NumStores, "Number of stores added"); 42 STATISTIC(NumLoads , "Number of loads added"); 43 STATISTIC(NumCopies, "Number of copies coalesced"); 44 45 static RegisterRegAlloc 46 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator); 47 48 namespace { 49 class RAFast : public MachineFunctionPass { 50 public: 51 static char ID; 52 RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1), 53 isBulkSpilling(false) {} 54 private: 55 const TargetMachine *TM; 56 MachineFunction *MF; 57 MachineRegisterInfo *MRI; 58 const TargetRegisterInfo *TRI; 59 const TargetInstrInfo *TII; 60 RegisterClassInfo RegClassInfo; 61 62 // Basic block currently being allocated. 63 MachineBasicBlock *MBB; 64 65 // StackSlotForVirtReg - Maps virtual regs to the frame index where these 66 // values are spilled. 67 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 68 69 // Everything we know about a live virtual register. 70 struct LiveReg { 71 MachineInstr *LastUse; // Last instr to use reg. 72 unsigned VirtReg; // Virtual register number. 73 unsigned PhysReg; // Currently held here. 74 unsigned short LastOpNum; // OpNum on LastUse. 75 bool Dirty; // Register needs spill. 76 77 explicit LiveReg(unsigned v) 78 : LastUse(0), VirtReg(v), PhysReg(0), LastOpNum(0), Dirty(false) {} 79 80 unsigned getSparseSetIndex() const { 81 return TargetRegisterInfo::virtReg2Index(VirtReg); 82 } 83 }; 84 85 typedef SparseSet<LiveReg> LiveRegMap; 86 87 // LiveVirtRegs - This map contains entries for each virtual register 88 // that is currently available in a physical register. 89 LiveRegMap LiveVirtRegs; 90 91 DenseMap<unsigned, SmallVector<MachineInstr *, 4> > LiveDbgValueMap; 92 93 // RegState - Track the state of a physical register. 94 enum RegState { 95 // A disabled register is not available for allocation, but an alias may 96 // be in use. A register can only be moved out of the disabled state if 97 // all aliases are disabled. 98 regDisabled, 99 100 // A free register is not currently in use and can be allocated 101 // immediately without checking aliases. 102 regFree, 103 104 // A reserved register has been assigned explicitly (e.g., setting up a 105 // call parameter), and it remains reserved until it is used. 106 regReserved 107 108 // A register state may also be a virtual register number, indication that 109 // the physical register is currently allocated to a virtual register. In 110 // that case, LiveVirtRegs contains the inverse mapping. 111 }; 112 113 // PhysRegState - One of the RegState enums, or a virtreg. 114 std::vector<unsigned> PhysRegState; 115 116 // Set of register units. 117 typedef SparseSet<unsigned> UsedInInstrSet; 118 119 // Set of register units that are used in the current instruction, and so 120 // cannot be allocated. 121 UsedInInstrSet UsedInInstr; 122 123 // Mark a physreg as used in this instruction. 124 void markRegUsedInInstr(unsigned PhysReg) { 125 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 126 UsedInInstr.insert(*Units); 127 } 128 129 // Check if a physreg or any of its aliases are used in this instruction. 130 bool isRegUsedInInstr(unsigned PhysReg) const { 131 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) 132 if (UsedInInstr.count(*Units)) 133 return true; 134 return false; 135 } 136 137 // SkippedInstrs - Descriptors of instructions whose clobber list was 138 // ignored because all registers were spilled. It is still necessary to 139 // mark all the clobbered registers as used by the function. 140 SmallPtrSet<const MCInstrDesc*, 4> SkippedInstrs; 141 142 // isBulkSpilling - This flag is set when LiveRegMap will be cleared 143 // completely after spilling all live registers. LiveRegMap entries should 144 // not be erased. 145 bool isBulkSpilling; 146 147 enum { 148 spillClean = 1, 149 spillDirty = 100, 150 spillImpossible = ~0u 151 }; 152 public: 153 virtual const char *getPassName() const { 154 return "Fast Register Allocator"; 155 } 156 157 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 158 AU.setPreservesCFG(); 159 MachineFunctionPass::getAnalysisUsage(AU); 160 } 161 162 private: 163 bool runOnMachineFunction(MachineFunction &Fn); 164 void AllocateBasicBlock(); 165 void handleThroughOperands(MachineInstr *MI, 166 SmallVectorImpl<unsigned> &VirtDead); 167 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC); 168 bool isLastUseOfLocalReg(MachineOperand&); 169 170 void addKillFlag(const LiveReg&); 171 void killVirtReg(LiveRegMap::iterator); 172 void killVirtReg(unsigned VirtReg); 173 void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator); 174 void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg); 175 176 void usePhysReg(MachineOperand&); 177 void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState); 178 unsigned calcSpillCost(unsigned PhysReg) const; 179 void assignVirtToPhysReg(LiveReg&, unsigned PhysReg); 180 LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) { 181 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 182 } 183 LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const { 184 return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg)); 185 } 186 LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, unsigned PhysReg); 187 LiveRegMap::iterator allocVirtReg(MachineInstr *MI, LiveRegMap::iterator, 188 unsigned Hint); 189 LiveRegMap::iterator defineVirtReg(MachineInstr *MI, unsigned OpNum, 190 unsigned VirtReg, unsigned Hint); 191 LiveRegMap::iterator reloadVirtReg(MachineInstr *MI, unsigned OpNum, 192 unsigned VirtReg, unsigned Hint); 193 void spillAll(MachineBasicBlock::iterator MI); 194 bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg); 195 }; 196 char RAFast::ID = 0; 197 } 198 199 /// getStackSpaceFor - This allocates space for the specified virtual register 200 /// to be held on the stack. 201 int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) { 202 // Find the location Reg would belong... 203 int SS = StackSlotForVirtReg[VirtReg]; 204 if (SS != -1) 205 return SS; // Already has space allocated? 206 207 // Allocate a new stack object for this spill location... 208 int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(), 209 RC->getAlignment()); 210 211 // Assign the slot. 212 StackSlotForVirtReg[VirtReg] = FrameIdx; 213 return FrameIdx; 214 } 215 216 /// isLastUseOfLocalReg - Return true if MO is the only remaining reference to 217 /// its virtual register, and it is guaranteed to be a block-local register. 218 /// 219 bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) { 220 // If the register has ever been spilled or reloaded, we conservatively assume 221 // it is a global register used in multiple blocks. 222 if (StackSlotForVirtReg[MO.getReg()] != -1) 223 return false; 224 225 // Check that the use/def chain has exactly one operand - MO. 226 MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg()); 227 if (&I.getOperand() != &MO) 228 return false; 229 return ++I == MRI->reg_nodbg_end(); 230 } 231 232 /// addKillFlag - Set kill flags on last use of a virtual register. 233 void RAFast::addKillFlag(const LiveReg &LR) { 234 if (!LR.LastUse) return; 235 MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum); 236 if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) { 237 if (MO.getReg() == LR.PhysReg) 238 MO.setIsKill(); 239 else 240 LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true); 241 } 242 } 243 244 /// killVirtReg - Mark virtreg as no longer available. 245 void RAFast::killVirtReg(LiveRegMap::iterator LRI) { 246 addKillFlag(*LRI); 247 assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg && 248 "Broken RegState mapping"); 249 PhysRegState[LRI->PhysReg] = regFree; 250 // Erase from LiveVirtRegs unless we're spilling in bulk. 251 if (!isBulkSpilling) 252 LiveVirtRegs.erase(LRI); 253 } 254 255 /// killVirtReg - Mark virtreg as no longer available. 256 void RAFast::killVirtReg(unsigned VirtReg) { 257 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 258 "killVirtReg needs a virtual register"); 259 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 260 if (LRI != LiveVirtRegs.end()) 261 killVirtReg(LRI); 262 } 263 264 /// spillVirtReg - This method spills the value specified by VirtReg into the 265 /// corresponding stack slot if needed. 266 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) { 267 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 268 "Spilling a physical register is illegal!"); 269 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 270 assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register"); 271 spillVirtReg(MI, LRI); 272 } 273 274 /// spillVirtReg - Do the actual work of spilling. 275 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, 276 LiveRegMap::iterator LRI) { 277 LiveReg &LR = *LRI; 278 assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping"); 279 280 if (LR.Dirty) { 281 // If this physreg is used by the instruction, we want to kill it on the 282 // instruction, not on the spill. 283 bool SpillKill = LR.LastUse != MI; 284 LR.Dirty = false; 285 DEBUG(dbgs() << "Spilling " << PrintReg(LRI->VirtReg, TRI) 286 << " in " << PrintReg(LR.PhysReg, TRI)); 287 const TargetRegisterClass *RC = MRI->getRegClass(LRI->VirtReg); 288 int FI = getStackSpaceFor(LRI->VirtReg, RC); 289 DEBUG(dbgs() << " to stack slot #" << FI << "\n"); 290 TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI); 291 ++NumStores; // Update statistics 292 293 // If this register is used by DBG_VALUE then insert new DBG_VALUE to 294 // identify spilled location as the place to find corresponding variable's 295 // value. 296 SmallVector<MachineInstr *, 4> &LRIDbgValues = 297 LiveDbgValueMap[LRI->VirtReg]; 298 for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) { 299 MachineInstr *DBG = LRIDbgValues[li]; 300 const MDNode *MDPtr = 301 DBG->getOperand(DBG->getNumOperands()-1).getMetadata(); 302 int64_t Offset = 0; 303 if (DBG->getOperand(1).isImm()) 304 Offset = DBG->getOperand(1).getImm(); 305 DebugLoc DL; 306 if (MI == MBB->end()) { 307 // If MI is at basic block end then use last instruction's location. 308 MachineBasicBlock::iterator EI = MI; 309 DL = (--EI)->getDebugLoc(); 310 } 311 else 312 DL = MI->getDebugLoc(); 313 if (MachineInstr *NewDV = 314 TII->emitFrameIndexDebugValue(*MF, FI, Offset, MDPtr, DL)) { 315 MachineBasicBlock *MBB = DBG->getParent(); 316 MBB->insert(MI, NewDV); 317 DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV); 318 } 319 } 320 // Now this register is spilled there is should not be any DBG_VALUE 321 // pointing to this register because they are all pointing to spilled value 322 // now. 323 LRIDbgValues.clear(); 324 if (SpillKill) 325 LR.LastUse = 0; // Don't kill register again 326 } 327 killVirtReg(LRI); 328 } 329 330 /// spillAll - Spill all dirty virtregs without killing them. 331 void RAFast::spillAll(MachineBasicBlock::iterator MI) { 332 if (LiveVirtRegs.empty()) return; 333 isBulkSpilling = true; 334 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 335 // of spilling here is deterministic, if arbitrary. 336 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end(); 337 i != e; ++i) 338 spillVirtReg(MI, i); 339 LiveVirtRegs.clear(); 340 isBulkSpilling = false; 341 } 342 343 /// usePhysReg - Handle the direct use of a physical register. 344 /// Check that the register is not used by a virtreg. 345 /// Kill the physreg, marking it free. 346 /// This may add implicit kills to MO->getParent() and invalidate MO. 347 void RAFast::usePhysReg(MachineOperand &MO) { 348 unsigned PhysReg = MO.getReg(); 349 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && 350 "Bad usePhysReg operand"); 351 markRegUsedInInstr(PhysReg); 352 switch (PhysRegState[PhysReg]) { 353 case regDisabled: 354 break; 355 case regReserved: 356 PhysRegState[PhysReg] = regFree; 357 // Fall through 358 case regFree: 359 MO.setIsKill(); 360 return; 361 default: 362 // The physreg was allocated to a virtual register. That means the value we 363 // wanted has been clobbered. 364 llvm_unreachable("Instruction uses an allocated register"); 365 } 366 367 // Maybe a superregister is reserved? 368 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 369 unsigned Alias = *AI; 370 switch (PhysRegState[Alias]) { 371 case regDisabled: 372 break; 373 case regReserved: 374 assert(TRI->isSuperRegister(PhysReg, Alias) && 375 "Instruction is not using a subregister of a reserved register"); 376 // Leave the superregister in the working set. 377 PhysRegState[Alias] = regFree; 378 MO.getParent()->addRegisterKilled(Alias, TRI, true); 379 return; 380 case regFree: 381 if (TRI->isSuperRegister(PhysReg, Alias)) { 382 // Leave the superregister in the working set. 383 MO.getParent()->addRegisterKilled(Alias, TRI, true); 384 return; 385 } 386 // Some other alias was in the working set - clear it. 387 PhysRegState[Alias] = regDisabled; 388 break; 389 default: 390 llvm_unreachable("Instruction uses an alias of an allocated register"); 391 } 392 } 393 394 // All aliases are disabled, bring register into working set. 395 PhysRegState[PhysReg] = regFree; 396 MO.setIsKill(); 397 } 398 399 /// definePhysReg - Mark PhysReg as reserved or free after spilling any 400 /// virtregs. This is very similar to defineVirtReg except the physreg is 401 /// reserved instead of allocated. 402 void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg, 403 RegState NewState) { 404 markRegUsedInInstr(PhysReg); 405 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 406 case regDisabled: 407 break; 408 default: 409 spillVirtReg(MI, VirtReg); 410 // Fall through. 411 case regFree: 412 case regReserved: 413 PhysRegState[PhysReg] = NewState; 414 return; 415 } 416 417 // This is a disabled register, disable all aliases. 418 PhysRegState[PhysReg] = NewState; 419 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 420 unsigned Alias = *AI; 421 switch (unsigned VirtReg = PhysRegState[Alias]) { 422 case regDisabled: 423 break; 424 default: 425 spillVirtReg(MI, VirtReg); 426 // Fall through. 427 case regFree: 428 case regReserved: 429 PhysRegState[Alias] = regDisabled; 430 if (TRI->isSuperRegister(PhysReg, Alias)) 431 return; 432 break; 433 } 434 } 435 } 436 437 438 // calcSpillCost - Return the cost of spilling clearing out PhysReg and 439 // aliases so it is free for allocation. 440 // Returns 0 when PhysReg is free or disabled with all aliases disabled - it 441 // can be allocated directly. 442 // Returns spillImpossible when PhysReg or an alias can't be spilled. 443 unsigned RAFast::calcSpillCost(unsigned PhysReg) const { 444 if (isRegUsedInInstr(PhysReg)) { 445 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n"); 446 return spillImpossible; 447 } 448 switch (unsigned VirtReg = PhysRegState[PhysReg]) { 449 case regDisabled: 450 break; 451 case regFree: 452 return 0; 453 case regReserved: 454 DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding " 455 << PrintReg(PhysReg, TRI) << " is reserved already.\n"); 456 return spillImpossible; 457 default: { 458 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 459 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 460 return I->Dirty ? spillDirty : spillClean; 461 } 462 } 463 464 // This is a disabled register, add up cost of aliases. 465 DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n"); 466 unsigned Cost = 0; 467 for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) { 468 unsigned Alias = *AI; 469 switch (unsigned VirtReg = PhysRegState[Alias]) { 470 case regDisabled: 471 break; 472 case regFree: 473 ++Cost; 474 break; 475 case regReserved: 476 return spillImpossible; 477 default: { 478 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 479 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 480 Cost += I->Dirty ? spillDirty : spillClean; 481 break; 482 } 483 } 484 } 485 return Cost; 486 } 487 488 489 /// assignVirtToPhysReg - This method updates local state so that we know 490 /// that PhysReg is the proper container for VirtReg now. The physical 491 /// register must not be used for anything else when this is called. 492 /// 493 void RAFast::assignVirtToPhysReg(LiveReg &LR, unsigned PhysReg) { 494 DEBUG(dbgs() << "Assigning " << PrintReg(LR.VirtReg, TRI) << " to " 495 << PrintReg(PhysReg, TRI) << "\n"); 496 PhysRegState[PhysReg] = LR.VirtReg; 497 assert(!LR.PhysReg && "Already assigned a physreg"); 498 LR.PhysReg = PhysReg; 499 } 500 501 RAFast::LiveRegMap::iterator 502 RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) { 503 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 504 assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared"); 505 assignVirtToPhysReg(*LRI, PhysReg); 506 return LRI; 507 } 508 509 /// allocVirtReg - Allocate a physical register for VirtReg. 510 RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr *MI, 511 LiveRegMap::iterator LRI, 512 unsigned Hint) { 513 const unsigned VirtReg = LRI->VirtReg; 514 515 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 516 "Can only allocate virtual registers"); 517 518 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); 519 520 // Ignore invalid hints. 521 if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) || 522 !RC->contains(Hint) || !MRI->isAllocatable(Hint))) 523 Hint = 0; 524 525 // Take hint when possible. 526 if (Hint) { 527 // Ignore the hint if we would have to spill a dirty register. 528 unsigned Cost = calcSpillCost(Hint); 529 if (Cost < spillDirty) { 530 if (Cost) 531 definePhysReg(MI, Hint, regFree); 532 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 533 // That invalidates LRI, so run a new lookup for VirtReg. 534 return assignVirtToPhysReg(VirtReg, Hint); 535 } 536 } 537 538 ArrayRef<MCPhysReg> AO = RegClassInfo.getOrder(RC); 539 540 // First try to find a completely free register. 541 for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){ 542 unsigned PhysReg = *I; 543 if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) { 544 assignVirtToPhysReg(*LRI, PhysReg); 545 return LRI; 546 } 547 } 548 549 DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from " 550 << RC->getName() << "\n"); 551 552 unsigned BestReg = 0, BestCost = spillImpossible; 553 for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){ 554 unsigned Cost = calcSpillCost(*I); 555 DEBUG(dbgs() << "\tRegister: " << PrintReg(*I, TRI) << "\n"); 556 DEBUG(dbgs() << "\tCost: " << Cost << "\n"); 557 DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n"); 558 // Cost is 0 when all aliases are already disabled. 559 if (Cost == 0) { 560 assignVirtToPhysReg(*LRI, *I); 561 return LRI; 562 } 563 if (Cost < BestCost) 564 BestReg = *I, BestCost = Cost; 565 } 566 567 if (BestReg) { 568 definePhysReg(MI, BestReg, regFree); 569 // definePhysReg may kill virtual registers and modify LiveVirtRegs. 570 // That invalidates LRI, so run a new lookup for VirtReg. 571 return assignVirtToPhysReg(VirtReg, BestReg); 572 } 573 574 // Nothing we can do. Report an error and keep going with a bad allocation. 575 MI->emitError("ran out of registers during register allocation"); 576 definePhysReg(MI, *AO.begin(), regFree); 577 return assignVirtToPhysReg(VirtReg, *AO.begin()); 578 } 579 580 /// defineVirtReg - Allocate a register for VirtReg and mark it as dirty. 581 RAFast::LiveRegMap::iterator 582 RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum, 583 unsigned VirtReg, unsigned Hint) { 584 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 585 "Not a virtual register"); 586 LiveRegMap::iterator LRI; 587 bool New; 588 tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 589 if (New) { 590 // If there is no hint, peek at the only use of this register. 591 if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) && 592 MRI->hasOneNonDBGUse(VirtReg)) { 593 const MachineInstr &UseMI = *MRI->use_nodbg_begin(VirtReg); 594 // It's a copy, use the destination register as a hint. 595 if (UseMI.isCopyLike()) 596 Hint = UseMI.getOperand(0).getReg(); 597 } 598 LRI = allocVirtReg(MI, LRI, Hint); 599 } else if (LRI->LastUse) { 600 // Redefining a live register - kill at the last use, unless it is this 601 // instruction defining VirtReg multiple times. 602 if (LRI->LastUse != MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse()) 603 addKillFlag(*LRI); 604 } 605 assert(LRI->PhysReg && "Register not assigned"); 606 LRI->LastUse = MI; 607 LRI->LastOpNum = OpNum; 608 LRI->Dirty = true; 609 markRegUsedInInstr(LRI->PhysReg); 610 return LRI; 611 } 612 613 /// reloadVirtReg - Make sure VirtReg is available in a physreg and return it. 614 RAFast::LiveRegMap::iterator 615 RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum, 616 unsigned VirtReg, unsigned Hint) { 617 assert(TargetRegisterInfo::isVirtualRegister(VirtReg) && 618 "Not a virtual register"); 619 LiveRegMap::iterator LRI; 620 bool New; 621 tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 622 MachineOperand &MO = MI->getOperand(OpNum); 623 if (New) { 624 LRI = allocVirtReg(MI, LRI, Hint); 625 const TargetRegisterClass *RC = MRI->getRegClass(VirtReg); 626 int FrameIndex = getStackSpaceFor(VirtReg, RC); 627 DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into " 628 << PrintReg(LRI->PhysReg, TRI) << "\n"); 629 TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, RC, TRI); 630 ++NumLoads; 631 } else if (LRI->Dirty) { 632 if (isLastUseOfLocalReg(MO)) { 633 DEBUG(dbgs() << "Killing last use: " << MO << "\n"); 634 if (MO.isUse()) 635 MO.setIsKill(); 636 else 637 MO.setIsDead(); 638 } else if (MO.isKill()) { 639 DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n"); 640 MO.setIsKill(false); 641 } else if (MO.isDead()) { 642 DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n"); 643 MO.setIsDead(false); 644 } 645 } else if (MO.isKill()) { 646 // We must remove kill flags from uses of reloaded registers because the 647 // register would be killed immediately, and there might be a second use: 648 // %foo = OR %x<kill>, %x 649 // This would cause a second reload of %x into a different register. 650 DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n"); 651 MO.setIsKill(false); 652 } else if (MO.isDead()) { 653 DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n"); 654 MO.setIsDead(false); 655 } 656 assert(LRI->PhysReg && "Register not assigned"); 657 LRI->LastUse = MI; 658 LRI->LastOpNum = OpNum; 659 markRegUsedInInstr(LRI->PhysReg); 660 return LRI; 661 } 662 663 // setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering 664 // subregs. This may invalidate any operand pointers. 665 // Return true if the operand kills its register. 666 bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) { 667 MachineOperand &MO = MI->getOperand(OpNum); 668 bool Dead = MO.isDead(); 669 if (!MO.getSubReg()) { 670 MO.setReg(PhysReg); 671 return MO.isKill() || Dead; 672 } 673 674 // Handle subregister index. 675 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0); 676 MO.setSubReg(0); 677 678 // A kill flag implies killing the full register. Add corresponding super 679 // register kill. 680 if (MO.isKill()) { 681 MI->addRegisterKilled(PhysReg, TRI, true); 682 return true; 683 } 684 685 // A <def,read-undef> of a sub-register requires an implicit def of the full 686 // register. 687 if (MO.isDef() && MO.isUndef()) 688 MI->addRegisterDefined(PhysReg, TRI); 689 690 return Dead; 691 } 692 693 // Handle special instruction operand like early clobbers and tied ops when 694 // there are additional physreg defines. 695 void RAFast::handleThroughOperands(MachineInstr *MI, 696 SmallVectorImpl<unsigned> &VirtDead) { 697 DEBUG(dbgs() << "Scanning for through registers:"); 698 SmallSet<unsigned, 8> ThroughRegs; 699 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 700 MachineOperand &MO = MI->getOperand(i); 701 if (!MO.isReg()) continue; 702 unsigned Reg = MO.getReg(); 703 if (!TargetRegisterInfo::isVirtualRegister(Reg)) 704 continue; 705 if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) || 706 (MO.getSubReg() && MI->readsVirtualRegister(Reg))) { 707 if (ThroughRegs.insert(Reg)) 708 DEBUG(dbgs() << ' ' << PrintReg(Reg)); 709 } 710 } 711 712 // If any physreg defines collide with preallocated through registers, 713 // we must spill and reallocate. 714 DEBUG(dbgs() << "\nChecking for physdef collisions.\n"); 715 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 716 MachineOperand &MO = MI->getOperand(i); 717 if (!MO.isReg() || !MO.isDef()) continue; 718 unsigned Reg = MO.getReg(); 719 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 720 markRegUsedInInstr(Reg); 721 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 722 if (ThroughRegs.count(PhysRegState[*AI])) 723 definePhysReg(MI, *AI, regFree); 724 } 725 } 726 727 SmallVector<unsigned, 8> PartialDefs; 728 DEBUG(dbgs() << "Allocating tied uses.\n"); 729 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 730 MachineOperand &MO = MI->getOperand(i); 731 if (!MO.isReg()) continue; 732 unsigned Reg = MO.getReg(); 733 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 734 if (MO.isUse()) { 735 unsigned DefIdx = 0; 736 if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue; 737 DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand " 738 << DefIdx << ".\n"); 739 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0); 740 unsigned PhysReg = LRI->PhysReg; 741 setPhysReg(MI, i, PhysReg); 742 // Note: we don't update the def operand yet. That would cause the normal 743 // def-scan to attempt spilling. 744 } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) { 745 DEBUG(dbgs() << "Partial redefine: " << MO << "\n"); 746 // Reload the register, but don't assign to the operand just yet. 747 // That would confuse the later phys-def processing pass. 748 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0); 749 PartialDefs.push_back(LRI->PhysReg); 750 } 751 } 752 753 DEBUG(dbgs() << "Allocating early clobbers.\n"); 754 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 755 MachineOperand &MO = MI->getOperand(i); 756 if (!MO.isReg()) continue; 757 unsigned Reg = MO.getReg(); 758 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 759 if (!MO.isEarlyClobber()) 760 continue; 761 // Note: defineVirtReg may invalidate MO. 762 LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, 0); 763 unsigned PhysReg = LRI->PhysReg; 764 if (setPhysReg(MI, i, PhysReg)) 765 VirtDead.push_back(Reg); 766 } 767 768 // Restore UsedInInstr to a state usable for allocating normal virtual uses. 769 UsedInInstr.clear(); 770 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 771 MachineOperand &MO = MI->getOperand(i); 772 if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue; 773 unsigned Reg = MO.getReg(); 774 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 775 DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI) 776 << " as used in instr\n"); 777 markRegUsedInInstr(Reg); 778 } 779 780 // Also mark PartialDefs as used to avoid reallocation. 781 for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i) 782 markRegUsedInInstr(PartialDefs[i]); 783 } 784 785 void RAFast::AllocateBasicBlock() { 786 DEBUG(dbgs() << "\nAllocating " << *MBB); 787 788 PhysRegState.assign(TRI->getNumRegs(), regDisabled); 789 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 790 791 MachineBasicBlock::iterator MII = MBB->begin(); 792 793 // Add live-in registers as live. 794 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), 795 E = MBB->livein_end(); I != E; ++I) 796 if (MRI->isAllocatable(*I)) 797 definePhysReg(MII, *I, regReserved); 798 799 SmallVector<unsigned, 8> VirtDead; 800 SmallVector<MachineInstr*, 32> Coalesced; 801 802 // Otherwise, sequentially allocate each instruction in the MBB. 803 while (MII != MBB->end()) { 804 MachineInstr *MI = MII++; 805 const MCInstrDesc &MCID = MI->getDesc(); 806 DEBUG({ 807 dbgs() << "\n>> " << *MI << "Regs:"; 808 for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) { 809 if (PhysRegState[Reg] == regDisabled) continue; 810 dbgs() << " " << TRI->getName(Reg); 811 switch(PhysRegState[Reg]) { 812 case regFree: 813 break; 814 case regReserved: 815 dbgs() << "*"; 816 break; 817 default: { 818 dbgs() << '=' << PrintReg(PhysRegState[Reg]); 819 LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]); 820 assert(I != LiveVirtRegs.end() && "Missing VirtReg entry"); 821 if (I->Dirty) 822 dbgs() << "*"; 823 assert(I->PhysReg == Reg && "Bad inverse map"); 824 break; 825 } 826 } 827 } 828 dbgs() << '\n'; 829 // Check that LiveVirtRegs is the inverse. 830 for (LiveRegMap::iterator i = LiveVirtRegs.begin(), 831 e = LiveVirtRegs.end(); i != e; ++i) { 832 assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) && 833 "Bad map key"); 834 assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) && 835 "Bad map value"); 836 assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map"); 837 } 838 }); 839 840 // Debug values are not allowed to change codegen in any way. 841 if (MI->isDebugValue()) { 842 bool ScanDbgValue = true; 843 while (ScanDbgValue) { 844 ScanDbgValue = false; 845 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 846 MachineOperand &MO = MI->getOperand(i); 847 if (!MO.isReg()) continue; 848 unsigned Reg = MO.getReg(); 849 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 850 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 851 if (LRI != LiveVirtRegs.end()) 852 setPhysReg(MI, i, LRI->PhysReg); 853 else { 854 int SS = StackSlotForVirtReg[Reg]; 855 if (SS == -1) { 856 // We can't allocate a physreg for a DebugValue, sorry! 857 DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); 858 MO.setReg(0); 859 } 860 else { 861 // Modify DBG_VALUE now that the value is in a spill slot. 862 int64_t Offset = MI->getOperand(1).getImm(); 863 const MDNode *MDPtr = 864 MI->getOperand(MI->getNumOperands()-1).getMetadata(); 865 DebugLoc DL = MI->getDebugLoc(); 866 if (MachineInstr *NewDV = 867 TII->emitFrameIndexDebugValue(*MF, SS, Offset, MDPtr, DL)) { 868 DEBUG(dbgs() << "Modifying debug info due to spill:" << 869 "\t" << *MI); 870 MachineBasicBlock *MBB = MI->getParent(); 871 MBB->insert(MBB->erase(MI), NewDV); 872 // Scan NewDV operands from the beginning. 873 MI = NewDV; 874 ScanDbgValue = true; 875 break; 876 } else { 877 // We can't allocate a physreg for a DebugValue; sorry! 878 DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE"); 879 MO.setReg(0); 880 } 881 } 882 } 883 LiveDbgValueMap[Reg].push_back(MI); 884 } 885 } 886 // Next instruction. 887 continue; 888 } 889 890 // If this is a copy, we may be able to coalesce. 891 unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0; 892 if (MI->isCopy()) { 893 CopyDst = MI->getOperand(0).getReg(); 894 CopySrc = MI->getOperand(1).getReg(); 895 CopyDstSub = MI->getOperand(0).getSubReg(); 896 CopySrcSub = MI->getOperand(1).getSubReg(); 897 } 898 899 // Track registers used by instruction. 900 UsedInInstr.clear(); 901 902 // First scan. 903 // Mark physreg uses and early clobbers as used. 904 // Find the end of the virtreg operands 905 unsigned VirtOpEnd = 0; 906 bool hasTiedOps = false; 907 bool hasEarlyClobbers = false; 908 bool hasPartialRedefs = false; 909 bool hasPhysDefs = false; 910 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 911 MachineOperand &MO = MI->getOperand(i); 912 // Make sure MRI knows about registers clobbered by regmasks. 913 if (MO.isRegMask()) { 914 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 915 continue; 916 } 917 if (!MO.isReg()) continue; 918 unsigned Reg = MO.getReg(); 919 if (!Reg) continue; 920 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 921 VirtOpEnd = i+1; 922 if (MO.isUse()) { 923 hasTiedOps = hasTiedOps || 924 MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1; 925 } else { 926 if (MO.isEarlyClobber()) 927 hasEarlyClobbers = true; 928 if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) 929 hasPartialRedefs = true; 930 } 931 continue; 932 } 933 if (!MRI->isAllocatable(Reg)) continue; 934 if (MO.isUse()) { 935 usePhysReg(MO); 936 } else if (MO.isEarlyClobber()) { 937 definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ? 938 regFree : regReserved); 939 hasEarlyClobbers = true; 940 } else 941 hasPhysDefs = true; 942 } 943 944 // The instruction may have virtual register operands that must be allocated 945 // the same register at use-time and def-time: early clobbers and tied 946 // operands. If there are also physical defs, these registers must avoid 947 // both physical defs and uses, making them more constrained than normal 948 // operands. 949 // Similarly, if there are multiple defs and tied operands, we must make 950 // sure the same register is allocated to uses and defs. 951 // We didn't detect inline asm tied operands above, so just make this extra 952 // pass for all inline asm. 953 if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs || 954 (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) { 955 handleThroughOperands(MI, VirtDead); 956 // Don't attempt coalescing when we have funny stuff going on. 957 CopyDst = 0; 958 // Pretend we have early clobbers so the use operands get marked below. 959 // This is not necessary for the common case of a single tied use. 960 hasEarlyClobbers = true; 961 } 962 963 // Second scan. 964 // Allocate virtreg uses. 965 for (unsigned i = 0; i != VirtOpEnd; ++i) { 966 MachineOperand &MO = MI->getOperand(i); 967 if (!MO.isReg()) continue; 968 unsigned Reg = MO.getReg(); 969 if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue; 970 if (MO.isUse()) { 971 LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, CopyDst); 972 unsigned PhysReg = LRI->PhysReg; 973 CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0; 974 if (setPhysReg(MI, i, PhysReg)) 975 killVirtReg(LRI); 976 } 977 } 978 979 for (UsedInInstrSet::iterator 980 I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I) 981 MRI->setRegUnitUsed(*I); 982 983 // Track registers defined by instruction - early clobbers and tied uses at 984 // this point. 985 UsedInInstr.clear(); 986 if (hasEarlyClobbers) { 987 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 988 MachineOperand &MO = MI->getOperand(i); 989 if (!MO.isReg()) continue; 990 unsigned Reg = MO.getReg(); 991 if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; 992 // Look for physreg defs and tied uses. 993 if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue; 994 markRegUsedInInstr(Reg); 995 } 996 } 997 998 unsigned DefOpEnd = MI->getNumOperands(); 999 if (MI->isCall()) { 1000 // Spill all virtregs before a call. This serves two purposes: 1. If an 1001 // exception is thrown, the landing pad is going to expect to find 1002 // registers in their spill slots, and 2. we don't have to wade through 1003 // all the <imp-def> operands on the call instruction. 1004 DefOpEnd = VirtOpEnd; 1005 DEBUG(dbgs() << " Spilling remaining registers before call.\n"); 1006 spillAll(MI); 1007 1008 // The imp-defs are skipped below, but we still need to mark those 1009 // registers as used by the function. 1010 SkippedInstrs.insert(&MCID); 1011 } 1012 1013 // Third scan. 1014 // Allocate defs and collect dead defs. 1015 for (unsigned i = 0; i != DefOpEnd; ++i) { 1016 MachineOperand &MO = MI->getOperand(i); 1017 if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber()) 1018 continue; 1019 unsigned Reg = MO.getReg(); 1020 1021 if (TargetRegisterInfo::isPhysicalRegister(Reg)) { 1022 if (!MRI->isAllocatable(Reg)) continue; 1023 definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ? 1024 regFree : regReserved); 1025 continue; 1026 } 1027 LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, CopySrc); 1028 unsigned PhysReg = LRI->PhysReg; 1029 if (setPhysReg(MI, i, PhysReg)) { 1030 VirtDead.push_back(Reg); 1031 CopyDst = 0; // cancel coalescing; 1032 } else 1033 CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0; 1034 } 1035 1036 // Kill dead defs after the scan to ensure that multiple defs of the same 1037 // register are allocated identically. We didn't need to do this for uses 1038 // because we are crerating our own kill flags, and they are always at the 1039 // last use. 1040 for (unsigned i = 0, e = VirtDead.size(); i != e; ++i) 1041 killVirtReg(VirtDead[i]); 1042 VirtDead.clear(); 1043 1044 for (UsedInInstrSet::iterator 1045 I = UsedInInstr.begin(), E = UsedInInstr.end(); I != E; ++I) 1046 MRI->setRegUnitUsed(*I); 1047 1048 if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) { 1049 DEBUG(dbgs() << "-- coalescing: " << *MI); 1050 Coalesced.push_back(MI); 1051 } else { 1052 DEBUG(dbgs() << "<< " << *MI); 1053 } 1054 } 1055 1056 // Spill all physical registers holding virtual registers now. 1057 DEBUG(dbgs() << "Spilling live registers at end of block.\n"); 1058 spillAll(MBB->getFirstTerminator()); 1059 1060 // Erase all the coalesced copies. We are delaying it until now because 1061 // LiveVirtRegs might refer to the instrs. 1062 for (unsigned i = 0, e = Coalesced.size(); i != e; ++i) 1063 MBB->erase(Coalesced[i]); 1064 NumCopies += Coalesced.size(); 1065 1066 DEBUG(MBB->dump()); 1067 } 1068 1069 /// runOnMachineFunction - Register allocate the whole function 1070 /// 1071 bool RAFast::runOnMachineFunction(MachineFunction &Fn) { 1072 DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1073 << "********** Function: " << Fn.getName() << '\n'); 1074 MF = &Fn; 1075 MRI = &MF->getRegInfo(); 1076 TM = &Fn.getTarget(); 1077 TRI = TM->getRegisterInfo(); 1078 TII = TM->getInstrInfo(); 1079 MRI->freezeReservedRegs(Fn); 1080 RegClassInfo.runOnMachineFunction(Fn); 1081 UsedInInstr.clear(); 1082 UsedInInstr.setUniverse(TRI->getNumRegUnits()); 1083 1084 assert(!MRI->isSSA() && "regalloc requires leaving SSA"); 1085 1086 // initialize the virtual->physical register map to have a 'null' 1087 // mapping for all virtual registers 1088 StackSlotForVirtReg.resize(MRI->getNumVirtRegs()); 1089 LiveVirtRegs.setUniverse(MRI->getNumVirtRegs()); 1090 1091 // Loop over all of the basic blocks, eliminating virtual register references 1092 for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end(); 1093 MBBi != MBBe; ++MBBi) { 1094 MBB = &*MBBi; 1095 AllocateBasicBlock(); 1096 } 1097 1098 // Add the clobber lists for all the instructions we skipped earlier. 1099 for (SmallPtrSet<const MCInstrDesc*, 4>::const_iterator 1100 I = SkippedInstrs.begin(), E = SkippedInstrs.end(); I != E; ++I) 1101 if (const uint16_t *Defs = (*I)->getImplicitDefs()) 1102 while (*Defs) 1103 MRI->setPhysRegUsed(*Defs++); 1104 1105 // All machine operands and other references to virtual registers have been 1106 // replaced. Remove the virtual registers. 1107 MRI->clearVirtRegs(); 1108 1109 SkippedInstrs.clear(); 1110 StackSlotForVirtReg.clear(); 1111 LiveDbgValueMap.clear(); 1112 return true; 1113 } 1114 1115 FunctionPass *llvm::createFastRegisterAllocator() { 1116 return new RAFast(); 1117 } 1118