1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/GlobalAlias.h" 21 #include "llvm/IR/GlobalVariable.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Metadata.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/Support/ConstantRange.h" 28 #include "llvm/Support/GetElementPtrTypeIterator.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/PatternMatch.h" 31 #include <cstring> 32 using namespace llvm; 33 using namespace llvm::PatternMatch; 34 35 const unsigned MaxDepth = 6; 36 37 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if 38 /// unknown returns 0). For vector types, returns the element type's bitwidth. 39 static unsigned getBitWidth(Type *Ty, const DataLayout *TD) { 40 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 41 return BitWidth; 42 assert(isa<PointerType>(Ty) && "Expected a pointer type!"); 43 return TD ? TD->getPointerSizeInBits() : 0; 44 } 45 46 static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 47 APInt &KnownZero, APInt &KnownOne, 48 APInt &KnownZero2, APInt &KnownOne2, 49 const DataLayout *TD, unsigned Depth) { 50 if (!Add) { 51 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 52 // We know that the top bits of C-X are clear if X contains less bits 53 // than C (i.e. no wrap-around can happen). For example, 20-X is 54 // positive if we can prove that X is >= 0 and < 16. 55 if (!CLHS->getValue().isNegative()) { 56 unsigned BitWidth = KnownZero.getBitWidth(); 57 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 58 // NLZ can't be BitWidth with no sign bit 59 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 60 llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1); 61 62 // If all of the MaskV bits are known to be zero, then we know the 63 // output top bits are zero, because we now know that the output is 64 // from [0-C]. 65 if ((KnownZero2 & MaskV) == MaskV) { 66 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 67 // Top bits known zero. 68 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 69 } 70 } 71 } 72 } 73 74 unsigned BitWidth = KnownZero.getBitWidth(); 75 76 // If one of the operands has trailing zeros, then the bits that the 77 // other operand has in those bit positions will be preserved in the 78 // result. For an add, this works with either operand. For a subtract, 79 // this only works if the known zeros are in the right operand. 80 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 81 llvm::ComputeMaskedBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1); 82 assert((LHSKnownZero & LHSKnownOne) == 0 && 83 "Bits known to be one AND zero?"); 84 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes(); 85 86 llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1); 87 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 88 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes(); 89 90 // Determine which operand has more trailing zeros, and use that 91 // many bits from the other operand. 92 if (LHSKnownZeroOut > RHSKnownZeroOut) { 93 if (Add) { 94 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut); 95 KnownZero |= KnownZero2 & Mask; 96 KnownOne |= KnownOne2 & Mask; 97 } else { 98 // If the known zeros are in the left operand for a subtract, 99 // fall back to the minimum known zeros in both operands. 100 KnownZero |= APInt::getLowBitsSet(BitWidth, 101 std::min(LHSKnownZeroOut, 102 RHSKnownZeroOut)); 103 } 104 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) { 105 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut); 106 KnownZero |= LHSKnownZero & Mask; 107 KnownOne |= LHSKnownOne & Mask; 108 } 109 110 // Are we still trying to solve for the sign bit? 111 if (!KnownZero.isNegative() && !KnownOne.isNegative()) { 112 if (NSW) { 113 if (Add) { 114 // Adding two positive numbers can't wrap into negative 115 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 116 KnownZero |= APInt::getSignBit(BitWidth); 117 // and adding two negative numbers can't wrap into positive. 118 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 119 KnownOne |= APInt::getSignBit(BitWidth); 120 } else { 121 // Subtracting a negative number from a positive one can't wrap 122 if (LHSKnownZero.isNegative() && KnownOne2.isNegative()) 123 KnownZero |= APInt::getSignBit(BitWidth); 124 // neither can subtracting a positive number from a negative one. 125 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative()) 126 KnownOne |= APInt::getSignBit(BitWidth); 127 } 128 } 129 } 130 } 131 132 static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW, 133 APInt &KnownZero, APInt &KnownOne, 134 APInt &KnownZero2, APInt &KnownOne2, 135 const DataLayout *TD, unsigned Depth) { 136 unsigned BitWidth = KnownZero.getBitWidth(); 137 ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1); 138 ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1); 139 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 140 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 141 142 bool isKnownNegative = false; 143 bool isKnownNonNegative = false; 144 // If the multiplication is known not to overflow, compute the sign bit. 145 if (NSW) { 146 if (Op0 == Op1) { 147 // The product of a number with itself is non-negative. 148 isKnownNonNegative = true; 149 } else { 150 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 151 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 152 bool isKnownNegativeOp1 = KnownOne.isNegative(); 153 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 154 // The product of two numbers with the same sign is non-negative. 155 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 156 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 157 // The product of a negative number and a non-negative number is either 158 // negative or zero. 159 if (!isKnownNonNegative) 160 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 161 isKnownNonZero(Op0, TD, Depth)) || 162 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 163 isKnownNonZero(Op1, TD, Depth)); 164 } 165 } 166 167 // If low bits are zero in either operand, output low known-0 bits. 168 // Also compute a conserative estimate for high known-0 bits. 169 // More trickiness is possible, but this is sufficient for the 170 // interesting case of alignment computation. 171 KnownOne.clearAllBits(); 172 unsigned TrailZ = KnownZero.countTrailingOnes() + 173 KnownZero2.countTrailingOnes(); 174 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 175 KnownZero2.countLeadingOnes(), 176 BitWidth) - BitWidth; 177 178 TrailZ = std::min(TrailZ, BitWidth); 179 LeadZ = std::min(LeadZ, BitWidth); 180 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 181 APInt::getHighBitsSet(BitWidth, LeadZ); 182 183 // Only make use of no-wrap flags if we failed to compute the sign bit 184 // directly. This matters if the multiplication always overflows, in 185 // which case we prefer to follow the result of the direct computation, 186 // though as the program is invoking undefined behaviour we can choose 187 // whatever we like here. 188 if (isKnownNonNegative && !KnownOne.isNegative()) 189 KnownZero.setBit(BitWidth - 1); 190 else if (isKnownNegative && !KnownZero.isNegative()) 191 KnownOne.setBit(BitWidth - 1); 192 } 193 194 void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) { 195 unsigned BitWidth = KnownZero.getBitWidth(); 196 unsigned NumRanges = Ranges.getNumOperands() / 2; 197 assert(NumRanges >= 1); 198 199 // Use the high end of the ranges to find leading zeros. 200 unsigned MinLeadingZeros = BitWidth; 201 for (unsigned i = 0; i < NumRanges; ++i) { 202 ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0)); 203 ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1)); 204 ConstantRange Range(Lower->getValue(), Upper->getValue()); 205 if (Range.isWrappedSet()) 206 MinLeadingZeros = 0; // -1 has no zeros 207 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros(); 208 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros); 209 } 210 211 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros); 212 } 213 /// ComputeMaskedBits - Determine which of the bits are known to be either zero 214 /// or one and return them in the KnownZero/KnownOne bit sets. 215 /// 216 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 217 /// we cannot optimize based on the assumption that it is zero without changing 218 /// it to be an explicit zero. If we don't change it to zero, other code could 219 /// optimized based on the contradictory assumption that it is non-zero. 220 /// Because instcombine aggressively folds operations with undef args anyway, 221 /// this won't lose us code quality. 222 /// 223 /// This function is defined on values with integer type, values with pointer 224 /// type (but only if TD is non-null), and vectors of integers. In the case 225 /// where V is a vector, known zero, and known one values are the 226 /// same width as the vector element, and the bit is set only if it is true 227 /// for all of the elements in the vector. 228 void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne, 229 const DataLayout *TD, unsigned Depth) { 230 assert(V && "No Value?"); 231 assert(Depth <= MaxDepth && "Limit Search Depth"); 232 unsigned BitWidth = KnownZero.getBitWidth(); 233 234 assert((V->getType()->isIntOrIntVectorTy() || 235 V->getType()->getScalarType()->isPointerTy()) && 236 "Not integer or pointer type!"); 237 assert((!TD || 238 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 239 (!V->getType()->isIntOrIntVectorTy() || 240 V->getType()->getScalarSizeInBits() == BitWidth) && 241 KnownZero.getBitWidth() == BitWidth && 242 KnownOne.getBitWidth() == BitWidth && 243 "V, Mask, KnownOne and KnownZero should have same BitWidth"); 244 245 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 246 // We know all of the bits for a constant! 247 KnownOne = CI->getValue(); 248 KnownZero = ~KnownOne; 249 return; 250 } 251 // Null and aggregate-zero are all-zeros. 252 if (isa<ConstantPointerNull>(V) || 253 isa<ConstantAggregateZero>(V)) { 254 KnownOne.clearAllBits(); 255 KnownZero = APInt::getAllOnesValue(BitWidth); 256 return; 257 } 258 // Handle a constant vector by taking the intersection of the known bits of 259 // each element. There is no real need to handle ConstantVector here, because 260 // we don't handle undef in any particularly useful way. 261 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 262 // We know that CDS must be a vector of integers. Take the intersection of 263 // each element. 264 KnownZero.setAllBits(); KnownOne.setAllBits(); 265 APInt Elt(KnownZero.getBitWidth(), 0); 266 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 267 Elt = CDS->getElementAsInteger(i); 268 KnownZero &= ~Elt; 269 KnownOne &= Elt; 270 } 271 return; 272 } 273 274 // The address of an aligned GlobalValue has trailing zeros. 275 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 276 unsigned Align = GV->getAlignment(); 277 if (Align == 0 && TD) { 278 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) { 279 Type *ObjectType = GVar->getType()->getElementType(); 280 if (ObjectType->isSized()) { 281 // If the object is defined in the current Module, we'll be giving 282 // it the preferred alignment. Otherwise, we have to assume that it 283 // may only have the minimum ABI alignment. 284 if (!GVar->isDeclaration() && !GVar->isWeakForLinker()) 285 Align = TD->getPreferredAlignment(GVar); 286 else 287 Align = TD->getABITypeAlignment(ObjectType); 288 } 289 } 290 } 291 if (Align > 0) 292 KnownZero = APInt::getLowBitsSet(BitWidth, 293 CountTrailingZeros_32(Align)); 294 else 295 KnownZero.clearAllBits(); 296 KnownOne.clearAllBits(); 297 return; 298 } 299 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 300 // the bits of its aliasee. 301 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 302 if (GA->mayBeOverridden()) { 303 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 304 } else { 305 ComputeMaskedBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1); 306 } 307 return; 308 } 309 310 if (Argument *A = dyn_cast<Argument>(V)) { 311 unsigned Align = 0; 312 313 if (A->hasByValAttr()) { 314 // Get alignment information off byval arguments if specified in the IR. 315 Align = A->getParamAlignment(); 316 } else if (TD && A->hasStructRetAttr()) { 317 // An sret parameter has at least the ABI alignment of the return type. 318 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 319 if (EltTy->isSized()) 320 Align = TD->getABITypeAlignment(EltTy); 321 } 322 323 if (Align) 324 KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align)); 325 return; 326 } 327 328 // Start out not knowing anything. 329 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 330 331 if (Depth == MaxDepth) 332 return; // Limit search depth. 333 334 Operator *I = dyn_cast<Operator>(V); 335 if (!I) return; 336 337 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 338 switch (I->getOpcode()) { 339 default: break; 340 case Instruction::Load: 341 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 342 computeMaskedBitsLoad(*MD, KnownZero); 343 return; 344 case Instruction::And: { 345 // If either the LHS or the RHS are Zero, the result is zero. 346 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 347 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 348 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 349 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 350 351 // Output known-1 bits are only known if set in both the LHS & RHS. 352 KnownOne &= KnownOne2; 353 // Output known-0 are known to be clear if zero in either the LHS | RHS. 354 KnownZero |= KnownZero2; 355 return; 356 } 357 case Instruction::Or: { 358 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 359 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 360 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 361 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 362 363 // Output known-0 bits are only known if clear in both the LHS & RHS. 364 KnownZero &= KnownZero2; 365 // Output known-1 are known to be set if set in either the LHS | RHS. 366 KnownOne |= KnownOne2; 367 return; 368 } 369 case Instruction::Xor: { 370 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 371 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 372 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 373 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 374 375 // Output known-0 bits are known if clear or set in both the LHS & RHS. 376 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 377 // Output known-1 are known to be set if set in only one of the LHS, RHS. 378 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 379 KnownZero = KnownZeroOut; 380 return; 381 } 382 case Instruction::Mul: { 383 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 384 ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW, 385 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth); 386 break; 387 } 388 case Instruction::UDiv: { 389 // For the purposes of computing leading zeros we can conservatively 390 // treat a udiv as a logical right shift by the power of 2 known to 391 // be less than the denominator. 392 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 393 unsigned LeadZ = KnownZero2.countLeadingOnes(); 394 395 KnownOne2.clearAllBits(); 396 KnownZero2.clearAllBits(); 397 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1); 398 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 399 if (RHSUnknownLeadingOnes != BitWidth) 400 LeadZ = std::min(BitWidth, 401 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 402 403 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 404 return; 405 } 406 case Instruction::Select: 407 ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1); 408 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, 409 Depth+1); 410 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 411 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 412 413 // Only known if known in both the LHS and RHS. 414 KnownOne &= KnownOne2; 415 KnownZero &= KnownZero2; 416 return; 417 case Instruction::FPTrunc: 418 case Instruction::FPExt: 419 case Instruction::FPToUI: 420 case Instruction::FPToSI: 421 case Instruction::SIToFP: 422 case Instruction::UIToFP: 423 return; // Can't work with floating point. 424 case Instruction::PtrToInt: 425 case Instruction::IntToPtr: 426 // We can't handle these if we don't know the pointer size. 427 if (!TD) return; 428 // FALL THROUGH and handle them the same as zext/trunc. 429 case Instruction::ZExt: 430 case Instruction::Trunc: { 431 Type *SrcTy = I->getOperand(0)->getType(); 432 433 unsigned SrcBitWidth; 434 // Note that we handle pointer operands here because of inttoptr/ptrtoint 435 // which fall through here. 436 if(TD) { 437 SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType()); 438 } else { 439 SrcBitWidth = SrcTy->getScalarSizeInBits(); 440 if (!SrcBitWidth) return; 441 } 442 443 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 444 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 445 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 446 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 447 KnownZero = KnownZero.zextOrTrunc(BitWidth); 448 KnownOne = KnownOne.zextOrTrunc(BitWidth); 449 // Any top bits are known to be zero. 450 if (BitWidth > SrcBitWidth) 451 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 452 return; 453 } 454 case Instruction::BitCast: { 455 Type *SrcTy = I->getOperand(0)->getType(); 456 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 457 // TODO: For now, not handling conversions like: 458 // (bitcast i64 %x to <2 x i32>) 459 !I->getType()->isVectorTy()) { 460 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 461 return; 462 } 463 break; 464 } 465 case Instruction::SExt: { 466 // Compute the bits in the result that are not present in the input. 467 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 468 469 KnownZero = KnownZero.trunc(SrcBitWidth); 470 KnownOne = KnownOne.trunc(SrcBitWidth); 471 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 472 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 473 KnownZero = KnownZero.zext(BitWidth); 474 KnownOne = KnownOne.zext(BitWidth); 475 476 // If the sign bit of the input is known set or clear, then we know the 477 // top bits of the result. 478 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 479 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 480 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 481 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 482 return; 483 } 484 case Instruction::Shl: 485 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 486 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 487 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 488 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 489 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 490 KnownZero <<= ShiftAmt; 491 KnownOne <<= ShiftAmt; 492 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 493 return; 494 } 495 break; 496 case Instruction::LShr: 497 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 498 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 499 // Compute the new bits that are at the top now. 500 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 501 502 // Unsigned shift right. 503 ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1); 504 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 505 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 506 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 507 // high bits known zero. 508 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 509 return; 510 } 511 break; 512 case Instruction::AShr: 513 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 514 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 515 // Compute the new bits that are at the top now. 516 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 517 518 // Signed shift right. 519 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 520 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 521 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 522 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 523 524 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 525 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 526 KnownZero |= HighBits; 527 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 528 KnownOne |= HighBits; 529 return; 530 } 531 break; 532 case Instruction::Sub: { 533 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 534 ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 535 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 536 Depth); 537 break; 538 } 539 case Instruction::Add: { 540 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 541 ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 542 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 543 Depth); 544 break; 545 } 546 case Instruction::SRem: 547 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 548 APInt RA = Rem->getValue().abs(); 549 if (RA.isPowerOf2()) { 550 APInt LowBits = RA - 1; 551 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 552 553 // The low bits of the first operand are unchanged by the srem. 554 KnownZero = KnownZero2 & LowBits; 555 KnownOne = KnownOne2 & LowBits; 556 557 // If the first operand is non-negative or has all low bits zero, then 558 // the upper bits are all zero. 559 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 560 KnownZero |= ~LowBits; 561 562 // If the first operand is negative and not all low bits are zero, then 563 // the upper bits are all one. 564 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 565 KnownOne |= ~LowBits; 566 567 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 568 } 569 } 570 571 // The sign bit is the LHS's sign bit, except when the result of the 572 // remainder is zero. 573 if (KnownZero.isNonNegative()) { 574 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 575 ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD, 576 Depth+1); 577 // If it's known zero, our sign bit is also zero. 578 if (LHSKnownZero.isNegative()) 579 KnownZero.setBit(BitWidth - 1); 580 } 581 582 break; 583 case Instruction::URem: { 584 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 585 APInt RA = Rem->getValue(); 586 if (RA.isPowerOf2()) { 587 APInt LowBits = (RA - 1); 588 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, 589 Depth+1); 590 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 591 KnownZero |= ~LowBits; 592 KnownOne &= LowBits; 593 break; 594 } 595 } 596 597 // Since the result is less than or equal to either operand, any leading 598 // zero bits in either operand must also exist in the result. 599 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 600 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1); 601 602 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 603 KnownZero2.countLeadingOnes()); 604 KnownOne.clearAllBits(); 605 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 606 break; 607 } 608 609 case Instruction::Alloca: { 610 AllocaInst *AI = cast<AllocaInst>(V); 611 unsigned Align = AI->getAlignment(); 612 if (Align == 0 && TD) 613 Align = TD->getABITypeAlignment(AI->getType()->getElementType()); 614 615 if (Align > 0) 616 KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align)); 617 break; 618 } 619 case Instruction::GetElementPtr: { 620 // Analyze all of the subscripts of this getelementptr instruction 621 // to determine if we can prove known low zero bits. 622 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 623 ComputeMaskedBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD, 624 Depth+1); 625 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 626 627 gep_type_iterator GTI = gep_type_begin(I); 628 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 629 Value *Index = I->getOperand(i); 630 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 631 // Handle struct member offset arithmetic. 632 if (!TD) return; 633 const StructLayout *SL = TD->getStructLayout(STy); 634 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 635 uint64_t Offset = SL->getElementOffset(Idx); 636 TrailZ = std::min(TrailZ, 637 CountTrailingZeros_64(Offset)); 638 } else { 639 // Handle array index arithmetic. 640 Type *IndexedTy = GTI.getIndexedType(); 641 if (!IndexedTy->isSized()) return; 642 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 643 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; 644 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 645 ComputeMaskedBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1); 646 TrailZ = std::min(TrailZ, 647 unsigned(CountTrailingZeros_64(TypeSize) + 648 LocalKnownZero.countTrailingOnes())); 649 } 650 } 651 652 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 653 break; 654 } 655 case Instruction::PHI: { 656 PHINode *P = cast<PHINode>(I); 657 // Handle the case of a simple two-predecessor recurrence PHI. 658 // There's a lot more that could theoretically be done here, but 659 // this is sufficient to catch some interesting cases. 660 if (P->getNumIncomingValues() == 2) { 661 for (unsigned i = 0; i != 2; ++i) { 662 Value *L = P->getIncomingValue(i); 663 Value *R = P->getIncomingValue(!i); 664 Operator *LU = dyn_cast<Operator>(L); 665 if (!LU) 666 continue; 667 unsigned Opcode = LU->getOpcode(); 668 // Check for operations that have the property that if 669 // both their operands have low zero bits, the result 670 // will have low zero bits. 671 if (Opcode == Instruction::Add || 672 Opcode == Instruction::Sub || 673 Opcode == Instruction::And || 674 Opcode == Instruction::Or || 675 Opcode == Instruction::Mul) { 676 Value *LL = LU->getOperand(0); 677 Value *LR = LU->getOperand(1); 678 // Find a recurrence. 679 if (LL == I) 680 L = LR; 681 else if (LR == I) 682 L = LL; 683 else 684 break; 685 // Ok, we have a PHI of the form L op= R. Check for low 686 // zero bits. 687 ComputeMaskedBits(R, KnownZero2, KnownOne2, TD, Depth+1); 688 689 // We need to take the minimum number of known bits 690 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 691 ComputeMaskedBits(L, KnownZero3, KnownOne3, TD, Depth+1); 692 693 KnownZero = APInt::getLowBitsSet(BitWidth, 694 std::min(KnownZero2.countTrailingOnes(), 695 KnownZero3.countTrailingOnes())); 696 break; 697 } 698 } 699 } 700 701 // Unreachable blocks may have zero-operand PHI nodes. 702 if (P->getNumIncomingValues() == 0) 703 return; 704 705 // Otherwise take the unions of the known bit sets of the operands, 706 // taking conservative care to avoid excessive recursion. 707 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 708 // Skip if every incoming value references to ourself. 709 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 710 break; 711 712 KnownZero = APInt::getAllOnesValue(BitWidth); 713 KnownOne = APInt::getAllOnesValue(BitWidth); 714 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { 715 // Skip direct self references. 716 if (P->getIncomingValue(i) == P) continue; 717 718 KnownZero2 = APInt(BitWidth, 0); 719 KnownOne2 = APInt(BitWidth, 0); 720 // Recurse, but cap the recursion to one level, because we don't 721 // want to waste time spinning around in loops. 722 ComputeMaskedBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD, 723 MaxDepth-1); 724 KnownZero &= KnownZero2; 725 KnownOne &= KnownOne2; 726 // If all bits have been ruled out, there's no need to check 727 // more operands. 728 if (!KnownZero && !KnownOne) 729 break; 730 } 731 } 732 break; 733 } 734 case Instruction::Call: 735 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 736 switch (II->getIntrinsicID()) { 737 default: break; 738 case Intrinsic::ctlz: 739 case Intrinsic::cttz: { 740 unsigned LowBits = Log2_32(BitWidth)+1; 741 // If this call is undefined for 0, the result will be less than 2^n. 742 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 743 LowBits -= 1; 744 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 745 break; 746 } 747 case Intrinsic::ctpop: { 748 unsigned LowBits = Log2_32(BitWidth)+1; 749 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 750 break; 751 } 752 case Intrinsic::x86_sse42_crc32_64_8: 753 case Intrinsic::x86_sse42_crc32_64_64: 754 KnownZero = APInt::getHighBitsSet(64, 32); 755 break; 756 } 757 } 758 break; 759 case Instruction::ExtractValue: 760 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 761 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 762 if (EVI->getNumIndices() != 1) break; 763 if (EVI->getIndices()[0] == 0) { 764 switch (II->getIntrinsicID()) { 765 default: break; 766 case Intrinsic::uadd_with_overflow: 767 case Intrinsic::sadd_with_overflow: 768 ComputeMaskedBitsAddSub(true, II->getArgOperand(0), 769 II->getArgOperand(1), false, KnownZero, 770 KnownOne, KnownZero2, KnownOne2, TD, Depth); 771 break; 772 case Intrinsic::usub_with_overflow: 773 case Intrinsic::ssub_with_overflow: 774 ComputeMaskedBitsAddSub(false, II->getArgOperand(0), 775 II->getArgOperand(1), false, KnownZero, 776 KnownOne, KnownZero2, KnownOne2, TD, Depth); 777 break; 778 case Intrinsic::umul_with_overflow: 779 case Intrinsic::smul_with_overflow: 780 ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1), 781 false, KnownZero, KnownOne, 782 KnownZero2, KnownOne2, TD, Depth); 783 break; 784 } 785 } 786 } 787 } 788 } 789 790 /// ComputeSignBit - Determine whether the sign bit is known to be zero or 791 /// one. Convenience wrapper around ComputeMaskedBits. 792 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 793 const DataLayout *TD, unsigned Depth) { 794 unsigned BitWidth = getBitWidth(V->getType(), TD); 795 if (!BitWidth) { 796 KnownZero = false; 797 KnownOne = false; 798 return; 799 } 800 APInt ZeroBits(BitWidth, 0); 801 APInt OneBits(BitWidth, 0); 802 ComputeMaskedBits(V, ZeroBits, OneBits, TD, Depth); 803 KnownOne = OneBits[BitWidth - 1]; 804 KnownZero = ZeroBits[BitWidth - 1]; 805 } 806 807 /// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one 808 /// bit set when defined. For vectors return true if every element is known to 809 /// be a power of two when defined. Supports values with integer or pointer 810 /// types and vectors of integers. 811 bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) { 812 if (Constant *C = dyn_cast<Constant>(V)) { 813 if (C->isNullValue()) 814 return OrZero; 815 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 816 return CI->getValue().isPowerOf2(); 817 // TODO: Handle vector constants. 818 } 819 820 // 1 << X is clearly a power of two if the one is not shifted off the end. If 821 // it is shifted off the end then the result is undefined. 822 if (match(V, m_Shl(m_One(), m_Value()))) 823 return true; 824 825 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 826 // bottom. If it is shifted off the bottom then the result is undefined. 827 if (match(V, m_LShr(m_SignBit(), m_Value()))) 828 return true; 829 830 // The remaining tests are all recursive, so bail out if we hit the limit. 831 if (Depth++ == MaxDepth) 832 return false; 833 834 Value *X = 0, *Y = 0; 835 // A shift of a power of two is a power of two or zero. 836 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 837 match(V, m_Shr(m_Value(X), m_Value())))) 838 return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth); 839 840 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 841 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth); 842 843 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 844 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth) && 845 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth); 846 847 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 848 // A power of two and'd with anything is a power of two or zero. 849 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth) || 850 isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth)) 851 return true; 852 // X & (-X) is always a power of two or zero. 853 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 854 return true; 855 return false; 856 } 857 858 // An exact divide or right shift can only shift off zero bits, so the result 859 // is a power of two only if the first operand is a power of two and not 860 // copying a sign bit (sdiv int_min, 2). 861 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 862 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 863 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, Depth); 864 } 865 866 return false; 867 } 868 869 /// \brief Test whether a GEP's result is known to be non-null. 870 /// 871 /// Uses properties inherent in a GEP to try to determine whether it is known 872 /// to be non-null. 873 /// 874 /// Currently this routine does not support vector GEPs. 875 static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL, 876 unsigned Depth) { 877 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 878 return false; 879 880 // FIXME: Support vector-GEPs. 881 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 882 883 // If the base pointer is non-null, we cannot walk to a null address with an 884 // inbounds GEP in address space zero. 885 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth)) 886 return true; 887 888 // Past this, if we don't have DataLayout, we can't do much. 889 if (!DL) 890 return false; 891 892 // Walk the GEP operands and see if any operand introduces a non-zero offset. 893 // If so, then the GEP cannot produce a null pointer, as doing so would 894 // inherently violate the inbounds contract within address space zero. 895 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 896 GTI != GTE; ++GTI) { 897 // Struct types are easy -- they must always be indexed by a constant. 898 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 899 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 900 unsigned ElementIdx = OpC->getZExtValue(); 901 const StructLayout *SL = DL->getStructLayout(STy); 902 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 903 if (ElementOffset > 0) 904 return true; 905 continue; 906 } 907 908 // If we have a zero-sized type, the index doesn't matter. Keep looping. 909 if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0) 910 continue; 911 912 // Fast path the constant operand case both for efficiency and so we don't 913 // increment Depth when just zipping down an all-constant GEP. 914 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 915 if (!OpC->isZero()) 916 return true; 917 continue; 918 } 919 920 // We post-increment Depth here because while isKnownNonZero increments it 921 // as well, when we pop back up that increment won't persist. We don't want 922 // to recurse 10k times just because we have 10k GEP operands. We don't 923 // bail completely out because we want to handle constant GEPs regardless 924 // of depth. 925 if (Depth++ >= MaxDepth) 926 continue; 927 928 if (isKnownNonZero(GTI.getOperand(), DL, Depth)) 929 return true; 930 } 931 932 return false; 933 } 934 935 /// isKnownNonZero - Return true if the given value is known to be non-zero 936 /// when defined. For vectors return true if every element is known to be 937 /// non-zero when defined. Supports values with integer or pointer type and 938 /// vectors of integers. 939 bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) { 940 if (Constant *C = dyn_cast<Constant>(V)) { 941 if (C->isNullValue()) 942 return false; 943 if (isa<ConstantInt>(C)) 944 // Must be non-zero due to null test above. 945 return true; 946 // TODO: Handle vectors 947 return false; 948 } 949 950 // The remaining tests are all recursive, so bail out if we hit the limit. 951 if (Depth++ >= MaxDepth) 952 return false; 953 954 // Check for pointer simplifications. 955 if (V->getType()->isPointerTy()) { 956 if (isKnownNonNull(V)) 957 return true; 958 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 959 if (isGEPKnownNonNull(GEP, TD, Depth)) 960 return true; 961 } 962 963 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD); 964 965 // X | Y != 0 if X != 0 or Y != 0. 966 Value *X = 0, *Y = 0; 967 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 968 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth); 969 970 // ext X != 0 if X != 0. 971 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 972 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth); 973 974 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 975 // if the lowest bit is shifted off the end. 976 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 977 // shl nuw can't remove any non-zero bits. 978 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 979 if (BO->hasNoUnsignedWrap()) 980 return isKnownNonZero(X, TD, Depth); 981 982 APInt KnownZero(BitWidth, 0); 983 APInt KnownOne(BitWidth, 0); 984 ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth); 985 if (KnownOne[0]) 986 return true; 987 } 988 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 989 // defined if the sign bit is shifted off the end. 990 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 991 // shr exact can only shift out zero bits. 992 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 993 if (BO->isExact()) 994 return isKnownNonZero(X, TD, Depth); 995 996 bool XKnownNonNegative, XKnownNegative; 997 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 998 if (XKnownNegative) 999 return true; 1000 } 1001 // div exact can only produce a zero if the dividend is zero. 1002 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1003 return isKnownNonZero(X, TD, Depth); 1004 } 1005 // X + Y. 1006 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1007 bool XKnownNonNegative, XKnownNegative; 1008 bool YKnownNonNegative, YKnownNegative; 1009 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 1010 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth); 1011 1012 // If X and Y are both non-negative (as signed values) then their sum is not 1013 // zero unless both X and Y are zero. 1014 if (XKnownNonNegative && YKnownNonNegative) 1015 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth)) 1016 return true; 1017 1018 // If X and Y are both negative (as signed values) then their sum is not 1019 // zero unless both X and Y equal INT_MIN. 1020 if (BitWidth && XKnownNegative && YKnownNegative) { 1021 APInt KnownZero(BitWidth, 0); 1022 APInt KnownOne(BitWidth, 0); 1023 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1024 // The sign bit of X is set. If some other bit is set then X is not equal 1025 // to INT_MIN. 1026 ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth); 1027 if ((KnownOne & Mask) != 0) 1028 return true; 1029 // The sign bit of Y is set. If some other bit is set then Y is not equal 1030 // to INT_MIN. 1031 ComputeMaskedBits(Y, KnownZero, KnownOne, TD, Depth); 1032 if ((KnownOne & Mask) != 0) 1033 return true; 1034 } 1035 1036 // The sum of a non-negative number and a power of two is not zero. 1037 if (XKnownNonNegative && isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth)) 1038 return true; 1039 if (YKnownNonNegative && isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth)) 1040 return true; 1041 } 1042 // X * Y. 1043 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1044 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1045 // If X and Y are non-zero then so is X * Y as long as the multiplication 1046 // does not overflow. 1047 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1048 isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth)) 1049 return true; 1050 } 1051 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1052 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1053 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) && 1054 isKnownNonZero(SI->getFalseValue(), TD, Depth)) 1055 return true; 1056 } 1057 1058 if (!BitWidth) return false; 1059 APInt KnownZero(BitWidth, 0); 1060 APInt KnownOne(BitWidth, 0); 1061 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth); 1062 return KnownOne != 0; 1063 } 1064 1065 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 1066 /// this predicate to simplify operations downstream. Mask is known to be zero 1067 /// for bits that V cannot have. 1068 /// 1069 /// This function is defined on values with integer type, values with pointer 1070 /// type (but only if TD is non-null), and vectors of integers. In the case 1071 /// where V is a vector, the mask, known zero, and known one values are the 1072 /// same width as the vector element, and the bit is set only if it is true 1073 /// for all of the elements in the vector. 1074 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, 1075 const DataLayout *TD, unsigned Depth) { 1076 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1077 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth); 1078 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1079 return (KnownZero & Mask) == Mask; 1080 } 1081 1082 1083 1084 /// ComputeNumSignBits - Return the number of times the sign bit of the 1085 /// register is replicated into the other bits. We know that at least 1 bit 1086 /// is always equal to the sign bit (itself), but other cases can give us 1087 /// information. For example, immediately after an "ashr X, 2", we know that 1088 /// the top 3 bits are all equal to each other, so we return 3. 1089 /// 1090 /// 'Op' must have a scalar integer type. 1091 /// 1092 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, 1093 unsigned Depth) { 1094 assert((TD || V->getType()->isIntOrIntVectorTy()) && 1095 "ComputeNumSignBits requires a DataLayout object to operate " 1096 "on non-integer values!"); 1097 Type *Ty = V->getType(); 1098 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) : 1099 Ty->getScalarSizeInBits(); 1100 unsigned Tmp, Tmp2; 1101 unsigned FirstAnswer = 1; 1102 1103 // Note that ConstantInt is handled by the general ComputeMaskedBits case 1104 // below. 1105 1106 if (Depth == 6) 1107 return 1; // Limit search depth. 1108 1109 Operator *U = dyn_cast<Operator>(V); 1110 switch (Operator::getOpcode(V)) { 1111 default: break; 1112 case Instruction::SExt: 1113 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 1114 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; 1115 1116 case Instruction::AShr: { 1117 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1118 // ashr X, C -> adds C sign bits. Vectors too. 1119 const APInt *ShAmt; 1120 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1121 Tmp += ShAmt->getZExtValue(); 1122 if (Tmp > TyBits) Tmp = TyBits; 1123 } 1124 return Tmp; 1125 } 1126 case Instruction::Shl: { 1127 const APInt *ShAmt; 1128 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1129 // shl destroys sign bits. 1130 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1131 Tmp2 = ShAmt->getZExtValue(); 1132 if (Tmp2 >= TyBits || // Bad shift. 1133 Tmp2 >= Tmp) break; // Shifted all sign bits out. 1134 return Tmp - Tmp2; 1135 } 1136 break; 1137 } 1138 case Instruction::And: 1139 case Instruction::Or: 1140 case Instruction::Xor: // NOT is handled here. 1141 // Logical binary ops preserve the number of sign bits at the worst. 1142 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1143 if (Tmp != 1) { 1144 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1145 FirstAnswer = std::min(Tmp, Tmp2); 1146 // We computed what we know about the sign bits as our first 1147 // answer. Now proceed to the generic code that uses 1148 // ComputeMaskedBits, and pick whichever answer is better. 1149 } 1150 break; 1151 1152 case Instruction::Select: 1153 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1154 if (Tmp == 1) return 1; // Early out. 1155 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); 1156 return std::min(Tmp, Tmp2); 1157 1158 case Instruction::Add: 1159 // Add can have at most one carry bit. Thus we know that the output 1160 // is, at worst, one more bit than the inputs. 1161 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1162 if (Tmp == 1) return 1; // Early out. 1163 1164 // Special case decrementing a value (ADD X, -1): 1165 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1))) 1166 if (CRHS->isAllOnesValue()) { 1167 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1168 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 1169 1170 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1171 // sign bits set. 1172 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 1173 return TyBits; 1174 1175 // If we are subtracting one from a positive number, there is no carry 1176 // out of the result. 1177 if (KnownZero.isNegative()) 1178 return Tmp; 1179 } 1180 1181 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1182 if (Tmp2 == 1) return 1; 1183 return std::min(Tmp, Tmp2)-1; 1184 1185 case Instruction::Sub: 1186 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1187 if (Tmp2 == 1) return 1; 1188 1189 // Handle NEG. 1190 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) 1191 if (CLHS->isNullValue()) { 1192 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1193 ComputeMaskedBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 1194 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1195 // sign bits set. 1196 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 1197 return TyBits; 1198 1199 // If the input is known to be positive (the sign bit is known clear), 1200 // the output of the NEG has the same number of sign bits as the input. 1201 if (KnownZero.isNegative()) 1202 return Tmp2; 1203 1204 // Otherwise, we treat this like a SUB. 1205 } 1206 1207 // Sub can have at most one carry bit. Thus we know that the output 1208 // is, at worst, one more bit than the inputs. 1209 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1210 if (Tmp == 1) return 1; // Early out. 1211 return std::min(Tmp, Tmp2)-1; 1212 1213 case Instruction::PHI: { 1214 PHINode *PN = cast<PHINode>(U); 1215 // Don't analyze large in-degree PHIs. 1216 if (PN->getNumIncomingValues() > 4) break; 1217 1218 // Take the minimum of all incoming values. This can't infinitely loop 1219 // because of our depth threshold. 1220 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1); 1221 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 1222 if (Tmp == 1) return Tmp; 1223 Tmp = std::min(Tmp, 1224 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1)); 1225 } 1226 return Tmp; 1227 } 1228 1229 case Instruction::Trunc: 1230 // FIXME: it's tricky to do anything useful for this, but it is an important 1231 // case for targets like X86. 1232 break; 1233 } 1234 1235 // Finally, if we can prove that the top bits of the result are 0's or 1's, 1236 // use this information. 1237 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1238 APInt Mask; 1239 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth); 1240 1241 if (KnownZero.isNegative()) { // sign bit is 0 1242 Mask = KnownZero; 1243 } else if (KnownOne.isNegative()) { // sign bit is 1; 1244 Mask = KnownOne; 1245 } else { 1246 // Nothing known. 1247 return FirstAnswer; 1248 } 1249 1250 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 1251 // the number of identical bits in the top of the input value. 1252 Mask = ~Mask; 1253 Mask <<= Mask.getBitWidth()-TyBits; 1254 // Return # leading zeros. We use 'min' here in case Val was zero before 1255 // shifting. We don't want to return '64' as for an i32 "0". 1256 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 1257 } 1258 1259 /// ComputeMultiple - This function computes the integer multiple of Base that 1260 /// equals V. If successful, it returns true and returns the multiple in 1261 /// Multiple. If unsuccessful, it returns false. It looks 1262 /// through SExt instructions only if LookThroughSExt is true. 1263 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 1264 bool LookThroughSExt, unsigned Depth) { 1265 const unsigned MaxDepth = 6; 1266 1267 assert(V && "No Value?"); 1268 assert(Depth <= MaxDepth && "Limit Search Depth"); 1269 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 1270 1271 Type *T = V->getType(); 1272 1273 ConstantInt *CI = dyn_cast<ConstantInt>(V); 1274 1275 if (Base == 0) 1276 return false; 1277 1278 if (Base == 1) { 1279 Multiple = V; 1280 return true; 1281 } 1282 1283 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 1284 Constant *BaseVal = ConstantInt::get(T, Base); 1285 if (CO && CO == BaseVal) { 1286 // Multiple is 1. 1287 Multiple = ConstantInt::get(T, 1); 1288 return true; 1289 } 1290 1291 if (CI && CI->getZExtValue() % Base == 0) { 1292 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 1293 return true; 1294 } 1295 1296 if (Depth == MaxDepth) return false; // Limit search depth. 1297 1298 Operator *I = dyn_cast<Operator>(V); 1299 if (!I) return false; 1300 1301 switch (I->getOpcode()) { 1302 default: break; 1303 case Instruction::SExt: 1304 if (!LookThroughSExt) return false; 1305 // otherwise fall through to ZExt 1306 case Instruction::ZExt: 1307 return ComputeMultiple(I->getOperand(0), Base, Multiple, 1308 LookThroughSExt, Depth+1); 1309 case Instruction::Shl: 1310 case Instruction::Mul: { 1311 Value *Op0 = I->getOperand(0); 1312 Value *Op1 = I->getOperand(1); 1313 1314 if (I->getOpcode() == Instruction::Shl) { 1315 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 1316 if (!Op1CI) return false; 1317 // Turn Op0 << Op1 into Op0 * 2^Op1 1318 APInt Op1Int = Op1CI->getValue(); 1319 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 1320 APInt API(Op1Int.getBitWidth(), 0); 1321 API.setBit(BitToSet); 1322 Op1 = ConstantInt::get(V->getContext(), API); 1323 } 1324 1325 Value *Mul0 = NULL; 1326 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 1327 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 1328 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 1329 if (Op1C->getType()->getPrimitiveSizeInBits() < 1330 MulC->getType()->getPrimitiveSizeInBits()) 1331 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 1332 if (Op1C->getType()->getPrimitiveSizeInBits() > 1333 MulC->getType()->getPrimitiveSizeInBits()) 1334 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 1335 1336 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 1337 Multiple = ConstantExpr::getMul(MulC, Op1C); 1338 return true; 1339 } 1340 1341 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 1342 if (Mul0CI->getValue() == 1) { 1343 // V == Base * Op1, so return Op1 1344 Multiple = Op1; 1345 return true; 1346 } 1347 } 1348 1349 Value *Mul1 = NULL; 1350 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 1351 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 1352 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 1353 if (Op0C->getType()->getPrimitiveSizeInBits() < 1354 MulC->getType()->getPrimitiveSizeInBits()) 1355 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 1356 if (Op0C->getType()->getPrimitiveSizeInBits() > 1357 MulC->getType()->getPrimitiveSizeInBits()) 1358 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 1359 1360 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 1361 Multiple = ConstantExpr::getMul(MulC, Op0C); 1362 return true; 1363 } 1364 1365 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 1366 if (Mul1CI->getValue() == 1) { 1367 // V == Base * Op0, so return Op0 1368 Multiple = Op0; 1369 return true; 1370 } 1371 } 1372 } 1373 } 1374 1375 // We could not determine if V is a multiple of Base. 1376 return false; 1377 } 1378 1379 /// CannotBeNegativeZero - Return true if we can prove that the specified FP 1380 /// value is never equal to -0.0. 1381 /// 1382 /// NOTE: this function will need to be revisited when we support non-default 1383 /// rounding modes! 1384 /// 1385 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 1386 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 1387 return !CFP->getValueAPF().isNegZero(); 1388 1389 if (Depth == 6) 1390 return 1; // Limit search depth. 1391 1392 const Operator *I = dyn_cast<Operator>(V); 1393 if (I == 0) return false; 1394 1395 // Check if the nsz fast-math flag is set 1396 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 1397 if (FPO->hasNoSignedZeros()) 1398 return true; 1399 1400 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 1401 if (I->getOpcode() == Instruction::FAdd) 1402 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 1403 if (CFP->isNullValue()) 1404 return true; 1405 1406 // sitofp and uitofp turn into +0.0 for zero. 1407 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 1408 return true; 1409 1410 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1411 // sqrt(-0.0) = -0.0, no other negative results are possible. 1412 if (II->getIntrinsicID() == Intrinsic::sqrt) 1413 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 1414 1415 if (const CallInst *CI = dyn_cast<CallInst>(I)) 1416 if (const Function *F = CI->getCalledFunction()) { 1417 if (F->isDeclaration()) { 1418 // abs(x) != -0.0 1419 if (F->getName() == "abs") return true; 1420 // fabs[lf](x) != -0.0 1421 if (F->getName() == "fabs") return true; 1422 if (F->getName() == "fabsf") return true; 1423 if (F->getName() == "fabsl") return true; 1424 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 1425 F->getName() == "sqrtl") 1426 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 1427 } 1428 } 1429 1430 return false; 1431 } 1432 1433 /// isBytewiseValue - If the specified value can be set by repeating the same 1434 /// byte in memory, return the i8 value that it is represented with. This is 1435 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 1436 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 1437 /// byte store (e.g. i16 0x1234), return null. 1438 Value *llvm::isBytewiseValue(Value *V) { 1439 // All byte-wide stores are splatable, even of arbitrary variables. 1440 if (V->getType()->isIntegerTy(8)) return V; 1441 1442 // Handle 'null' ConstantArrayZero etc. 1443 if (Constant *C = dyn_cast<Constant>(V)) 1444 if (C->isNullValue()) 1445 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 1446 1447 // Constant float and double values can be handled as integer values if the 1448 // corresponding integer value is "byteable". An important case is 0.0. 1449 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1450 if (CFP->getType()->isFloatTy()) 1451 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 1452 if (CFP->getType()->isDoubleTy()) 1453 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 1454 // Don't handle long double formats, which have strange constraints. 1455 } 1456 1457 // We can handle constant integers that are power of two in size and a 1458 // multiple of 8 bits. 1459 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1460 unsigned Width = CI->getBitWidth(); 1461 if (isPowerOf2_32(Width) && Width > 8) { 1462 // We can handle this value if the recursive binary decomposition is the 1463 // same at all levels. 1464 APInt Val = CI->getValue(); 1465 APInt Val2; 1466 while (Val.getBitWidth() != 8) { 1467 unsigned NextWidth = Val.getBitWidth()/2; 1468 Val2 = Val.lshr(NextWidth); 1469 Val2 = Val2.trunc(Val.getBitWidth()/2); 1470 Val = Val.trunc(Val.getBitWidth()/2); 1471 1472 // If the top/bottom halves aren't the same, reject it. 1473 if (Val != Val2) 1474 return 0; 1475 } 1476 return ConstantInt::get(V->getContext(), Val); 1477 } 1478 } 1479 1480 // A ConstantDataArray/Vector is splatable if all its members are equal and 1481 // also splatable. 1482 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 1483 Value *Elt = CA->getElementAsConstant(0); 1484 Value *Val = isBytewiseValue(Elt); 1485 if (!Val) 1486 return 0; 1487 1488 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 1489 if (CA->getElementAsConstant(I) != Elt) 1490 return 0; 1491 1492 return Val; 1493 } 1494 1495 // Conceptually, we could handle things like: 1496 // %a = zext i8 %X to i16 1497 // %b = shl i16 %a, 8 1498 // %c = or i16 %a, %b 1499 // but until there is an example that actually needs this, it doesn't seem 1500 // worth worrying about. 1501 return 0; 1502 } 1503 1504 1505 // This is the recursive version of BuildSubAggregate. It takes a few different 1506 // arguments. Idxs is the index within the nested struct From that we are 1507 // looking at now (which is of type IndexedType). IdxSkip is the number of 1508 // indices from Idxs that should be left out when inserting into the resulting 1509 // struct. To is the result struct built so far, new insertvalue instructions 1510 // build on that. 1511 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 1512 SmallVector<unsigned, 10> &Idxs, 1513 unsigned IdxSkip, 1514 Instruction *InsertBefore) { 1515 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 1516 if (STy) { 1517 // Save the original To argument so we can modify it 1518 Value *OrigTo = To; 1519 // General case, the type indexed by Idxs is a struct 1520 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1521 // Process each struct element recursively 1522 Idxs.push_back(i); 1523 Value *PrevTo = To; 1524 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 1525 InsertBefore); 1526 Idxs.pop_back(); 1527 if (!To) { 1528 // Couldn't find any inserted value for this index? Cleanup 1529 while (PrevTo != OrigTo) { 1530 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 1531 PrevTo = Del->getAggregateOperand(); 1532 Del->eraseFromParent(); 1533 } 1534 // Stop processing elements 1535 break; 1536 } 1537 } 1538 // If we successfully found a value for each of our subaggregates 1539 if (To) 1540 return To; 1541 } 1542 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 1543 // the struct's elements had a value that was inserted directly. In the latter 1544 // case, perhaps we can't determine each of the subelements individually, but 1545 // we might be able to find the complete struct somewhere. 1546 1547 // Find the value that is at that particular spot 1548 Value *V = FindInsertedValue(From, Idxs); 1549 1550 if (!V) 1551 return NULL; 1552 1553 // Insert the value in the new (sub) aggregrate 1554 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 1555 "tmp", InsertBefore); 1556 } 1557 1558 // This helper takes a nested struct and extracts a part of it (which is again a 1559 // struct) into a new value. For example, given the struct: 1560 // { a, { b, { c, d }, e } } 1561 // and the indices "1, 1" this returns 1562 // { c, d }. 1563 // 1564 // It does this by inserting an insertvalue for each element in the resulting 1565 // struct, as opposed to just inserting a single struct. This will only work if 1566 // each of the elements of the substruct are known (ie, inserted into From by an 1567 // insertvalue instruction somewhere). 1568 // 1569 // All inserted insertvalue instructions are inserted before InsertBefore 1570 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 1571 Instruction *InsertBefore) { 1572 assert(InsertBefore && "Must have someplace to insert!"); 1573 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 1574 idx_range); 1575 Value *To = UndefValue::get(IndexedType); 1576 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 1577 unsigned IdxSkip = Idxs.size(); 1578 1579 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 1580 } 1581 1582 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if 1583 /// the scalar value indexed is already around as a register, for example if it 1584 /// were inserted directly into the aggregrate. 1585 /// 1586 /// If InsertBefore is not null, this function will duplicate (modified) 1587 /// insertvalues when a part of a nested struct is extracted. 1588 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 1589 Instruction *InsertBefore) { 1590 // Nothing to index? Just return V then (this is useful at the end of our 1591 // recursion). 1592 if (idx_range.empty()) 1593 return V; 1594 // We have indices, so V should have an indexable type. 1595 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 1596 "Not looking at a struct or array?"); 1597 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 1598 "Invalid indices for type?"); 1599 1600 if (Constant *C = dyn_cast<Constant>(V)) { 1601 C = C->getAggregateElement(idx_range[0]); 1602 if (C == 0) return 0; 1603 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 1604 } 1605 1606 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 1607 // Loop the indices for the insertvalue instruction in parallel with the 1608 // requested indices 1609 const unsigned *req_idx = idx_range.begin(); 1610 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 1611 i != e; ++i, ++req_idx) { 1612 if (req_idx == idx_range.end()) { 1613 // We can't handle this without inserting insertvalues 1614 if (!InsertBefore) 1615 return 0; 1616 1617 // The requested index identifies a part of a nested aggregate. Handle 1618 // this specially. For example, 1619 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 1620 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 1621 // %C = extractvalue {i32, { i32, i32 } } %B, 1 1622 // This can be changed into 1623 // %A = insertvalue {i32, i32 } undef, i32 10, 0 1624 // %C = insertvalue {i32, i32 } %A, i32 11, 1 1625 // which allows the unused 0,0 element from the nested struct to be 1626 // removed. 1627 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 1628 InsertBefore); 1629 } 1630 1631 // This insert value inserts something else than what we are looking for. 1632 // See if the (aggregrate) value inserted into has the value we are 1633 // looking for, then. 1634 if (*req_idx != *i) 1635 return FindInsertedValue(I->getAggregateOperand(), idx_range, 1636 InsertBefore); 1637 } 1638 // If we end up here, the indices of the insertvalue match with those 1639 // requested (though possibly only partially). Now we recursively look at 1640 // the inserted value, passing any remaining indices. 1641 return FindInsertedValue(I->getInsertedValueOperand(), 1642 makeArrayRef(req_idx, idx_range.end()), 1643 InsertBefore); 1644 } 1645 1646 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 1647 // If we're extracting a value from an aggregrate that was extracted from 1648 // something else, we can extract from that something else directly instead. 1649 // However, we will need to chain I's indices with the requested indices. 1650 1651 // Calculate the number of indices required 1652 unsigned size = I->getNumIndices() + idx_range.size(); 1653 // Allocate some space to put the new indices in 1654 SmallVector<unsigned, 5> Idxs; 1655 Idxs.reserve(size); 1656 // Add indices from the extract value instruction 1657 Idxs.append(I->idx_begin(), I->idx_end()); 1658 1659 // Add requested indices 1660 Idxs.append(idx_range.begin(), idx_range.end()); 1661 1662 assert(Idxs.size() == size 1663 && "Number of indices added not correct?"); 1664 1665 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 1666 } 1667 // Otherwise, we don't know (such as, extracting from a function return value 1668 // or load instruction) 1669 return 0; 1670 } 1671 1672 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if 1673 /// it can be expressed as a base pointer plus a constant offset. Return the 1674 /// base and offset to the caller. 1675 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 1676 const DataLayout *TD) { 1677 // Without DataLayout, conservatively assume 64-bit offsets, which is 1678 // the widest we support. 1679 unsigned BitWidth = TD ? TD->getPointerSizeInBits() : 64; 1680 APInt ByteOffset(BitWidth, 0); 1681 while (1) { 1682 if (Ptr->getType()->isVectorTy()) 1683 break; 1684 1685 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 1686 APInt GEPOffset(BitWidth, 0); 1687 if (TD && !GEP->accumulateConstantOffset(*TD, GEPOffset)) 1688 break; 1689 ByteOffset += GEPOffset; 1690 Ptr = GEP->getPointerOperand(); 1691 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast) { 1692 Ptr = cast<Operator>(Ptr)->getOperand(0); 1693 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 1694 if (GA->mayBeOverridden()) 1695 break; 1696 Ptr = GA->getAliasee(); 1697 } else { 1698 break; 1699 } 1700 } 1701 Offset = ByteOffset.getSExtValue(); 1702 return Ptr; 1703 } 1704 1705 1706 /// getConstantStringInfo - This function computes the length of a 1707 /// null-terminated C string pointed to by V. If successful, it returns true 1708 /// and returns the string in Str. If unsuccessful, it returns false. 1709 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 1710 uint64_t Offset, bool TrimAtNul) { 1711 assert(V); 1712 1713 // Look through bitcast instructions and geps. 1714 V = V->stripPointerCasts(); 1715 1716 // If the value is a GEP instructionor constant expression, treat it as an 1717 // offset. 1718 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1719 // Make sure the GEP has exactly three arguments. 1720 if (GEP->getNumOperands() != 3) 1721 return false; 1722 1723 // Make sure the index-ee is a pointer to array of i8. 1724 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 1725 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 1726 if (AT == 0 || !AT->getElementType()->isIntegerTy(8)) 1727 return false; 1728 1729 // Check to make sure that the first operand of the GEP is an integer and 1730 // has value 0 so that we are sure we're indexing into the initializer. 1731 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 1732 if (FirstIdx == 0 || !FirstIdx->isZero()) 1733 return false; 1734 1735 // If the second index isn't a ConstantInt, then this is a variable index 1736 // into the array. If this occurs, we can't say anything meaningful about 1737 // the string. 1738 uint64_t StartIdx = 0; 1739 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 1740 StartIdx = CI->getZExtValue(); 1741 else 1742 return false; 1743 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset); 1744 } 1745 1746 // The GEP instruction, constant or instruction, must reference a global 1747 // variable that is a constant and is initialized. The referenced constant 1748 // initializer is the array that we'll use for optimization. 1749 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 1750 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 1751 return false; 1752 1753 // Handle the all-zeros case 1754 if (GV->getInitializer()->isNullValue()) { 1755 // This is a degenerate case. The initializer is constant zero so the 1756 // length of the string must be zero. 1757 Str = ""; 1758 return true; 1759 } 1760 1761 // Must be a Constant Array 1762 const ConstantDataArray *Array = 1763 dyn_cast<ConstantDataArray>(GV->getInitializer()); 1764 if (Array == 0 || !Array->isString()) 1765 return false; 1766 1767 // Get the number of elements in the array 1768 uint64_t NumElts = Array->getType()->getArrayNumElements(); 1769 1770 // Start out with the entire array in the StringRef. 1771 Str = Array->getAsString(); 1772 1773 if (Offset > NumElts) 1774 return false; 1775 1776 // Skip over 'offset' bytes. 1777 Str = Str.substr(Offset); 1778 1779 if (TrimAtNul) { 1780 // Trim off the \0 and anything after it. If the array is not nul 1781 // terminated, we just return the whole end of string. The client may know 1782 // some other way that the string is length-bound. 1783 Str = Str.substr(0, Str.find('\0')); 1784 } 1785 return true; 1786 } 1787 1788 // These next two are very similar to the above, but also look through PHI 1789 // nodes. 1790 // TODO: See if we can integrate these two together. 1791 1792 /// GetStringLengthH - If we can compute the length of the string pointed to by 1793 /// the specified pointer, return 'len+1'. If we can't, return 0. 1794 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) { 1795 // Look through noop bitcast instructions. 1796 V = V->stripPointerCasts(); 1797 1798 // If this is a PHI node, there are two cases: either we have already seen it 1799 // or we haven't. 1800 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1801 if (!PHIs.insert(PN)) 1802 return ~0ULL; // already in the set. 1803 1804 // If it was new, see if all the input strings are the same length. 1805 uint64_t LenSoFar = ~0ULL; 1806 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1807 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); 1808 if (Len == 0) return 0; // Unknown length -> unknown. 1809 1810 if (Len == ~0ULL) continue; 1811 1812 if (Len != LenSoFar && LenSoFar != ~0ULL) 1813 return 0; // Disagree -> unknown. 1814 LenSoFar = Len; 1815 } 1816 1817 // Success, all agree. 1818 return LenSoFar; 1819 } 1820 1821 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 1822 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1823 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 1824 if (Len1 == 0) return 0; 1825 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 1826 if (Len2 == 0) return 0; 1827 if (Len1 == ~0ULL) return Len2; 1828 if (Len2 == ~0ULL) return Len1; 1829 if (Len1 != Len2) return 0; 1830 return Len1; 1831 } 1832 1833 // Otherwise, see if we can read the string. 1834 StringRef StrData; 1835 if (!getConstantStringInfo(V, StrData)) 1836 return 0; 1837 1838 return StrData.size()+1; 1839 } 1840 1841 /// GetStringLength - If we can compute the length of the string pointed to by 1842 /// the specified pointer, return 'len+1'. If we can't, return 0. 1843 uint64_t llvm::GetStringLength(Value *V) { 1844 if (!V->getType()->isPointerTy()) return 0; 1845 1846 SmallPtrSet<PHINode*, 32> PHIs; 1847 uint64_t Len = GetStringLengthH(V, PHIs); 1848 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 1849 // an empty string as a length. 1850 return Len == ~0ULL ? 1 : Len; 1851 } 1852 1853 Value * 1854 llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) { 1855 if (!V->getType()->isPointerTy()) 1856 return V; 1857 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 1858 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1859 V = GEP->getPointerOperand(); 1860 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 1861 V = cast<Operator>(V)->getOperand(0); 1862 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1863 if (GA->mayBeOverridden()) 1864 return V; 1865 V = GA->getAliasee(); 1866 } else { 1867 // See if InstructionSimplify knows any relevant tricks. 1868 if (Instruction *I = dyn_cast<Instruction>(V)) 1869 // TODO: Acquire a DominatorTree and use it. 1870 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) { 1871 V = Simplified; 1872 continue; 1873 } 1874 1875 return V; 1876 } 1877 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 1878 } 1879 return V; 1880 } 1881 1882 void 1883 llvm::GetUnderlyingObjects(Value *V, 1884 SmallVectorImpl<Value *> &Objects, 1885 const DataLayout *TD, 1886 unsigned MaxLookup) { 1887 SmallPtrSet<Value *, 4> Visited; 1888 SmallVector<Value *, 4> Worklist; 1889 Worklist.push_back(V); 1890 do { 1891 Value *P = Worklist.pop_back_val(); 1892 P = GetUnderlyingObject(P, TD, MaxLookup); 1893 1894 if (!Visited.insert(P)) 1895 continue; 1896 1897 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 1898 Worklist.push_back(SI->getTrueValue()); 1899 Worklist.push_back(SI->getFalseValue()); 1900 continue; 1901 } 1902 1903 if (PHINode *PN = dyn_cast<PHINode>(P)) { 1904 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1905 Worklist.push_back(PN->getIncomingValue(i)); 1906 continue; 1907 } 1908 1909 Objects.push_back(P); 1910 } while (!Worklist.empty()); 1911 } 1912 1913 /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer 1914 /// are lifetime markers. 1915 /// 1916 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 1917 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); 1918 UI != UE; ++UI) { 1919 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI); 1920 if (!II) return false; 1921 1922 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 1923 II->getIntrinsicID() != Intrinsic::lifetime_end) 1924 return false; 1925 } 1926 return true; 1927 } 1928 1929 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 1930 const DataLayout *TD) { 1931 const Operator *Inst = dyn_cast<Operator>(V); 1932 if (!Inst) 1933 return false; 1934 1935 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 1936 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 1937 if (C->canTrap()) 1938 return false; 1939 1940 switch (Inst->getOpcode()) { 1941 default: 1942 return true; 1943 case Instruction::UDiv: 1944 case Instruction::URem: 1945 // x / y is undefined if y == 0, but calcuations like x / 3 are safe. 1946 return isKnownNonZero(Inst->getOperand(1), TD); 1947 case Instruction::SDiv: 1948 case Instruction::SRem: { 1949 Value *Op = Inst->getOperand(1); 1950 // x / y is undefined if y == 0 1951 if (!isKnownNonZero(Op, TD)) 1952 return false; 1953 // x / y might be undefined if y == -1 1954 unsigned BitWidth = getBitWidth(Op->getType(), TD); 1955 if (BitWidth == 0) 1956 return false; 1957 APInt KnownZero(BitWidth, 0); 1958 APInt KnownOne(BitWidth, 0); 1959 ComputeMaskedBits(Op, KnownZero, KnownOne, TD); 1960 return !!KnownZero; 1961 } 1962 case Instruction::Load: { 1963 const LoadInst *LI = cast<LoadInst>(Inst); 1964 if (!LI->isUnordered()) 1965 return false; 1966 return LI->getPointerOperand()->isDereferenceablePointer(); 1967 } 1968 case Instruction::Call: { 1969 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 1970 switch (II->getIntrinsicID()) { 1971 // These synthetic intrinsics have no side-effects, and just mark 1972 // information about their operands. 1973 // FIXME: There are other no-op synthetic instructions that potentially 1974 // should be considered at least *safe* to speculate... 1975 case Intrinsic::dbg_declare: 1976 case Intrinsic::dbg_value: 1977 return true; 1978 1979 case Intrinsic::bswap: 1980 case Intrinsic::ctlz: 1981 case Intrinsic::ctpop: 1982 case Intrinsic::cttz: 1983 case Intrinsic::objectsize: 1984 case Intrinsic::sadd_with_overflow: 1985 case Intrinsic::smul_with_overflow: 1986 case Intrinsic::ssub_with_overflow: 1987 case Intrinsic::uadd_with_overflow: 1988 case Intrinsic::umul_with_overflow: 1989 case Intrinsic::usub_with_overflow: 1990 return true; 1991 // TODO: some fp intrinsics are marked as having the same error handling 1992 // as libm. They're safe to speculate when they won't error. 1993 // TODO: are convert_{from,to}_fp16 safe? 1994 // TODO: can we list target-specific intrinsics here? 1995 default: break; 1996 } 1997 } 1998 return false; // The called function could have undefined behavior or 1999 // side-effects, even if marked readnone nounwind. 2000 } 2001 case Instruction::VAArg: 2002 case Instruction::Alloca: 2003 case Instruction::Invoke: 2004 case Instruction::PHI: 2005 case Instruction::Store: 2006 case Instruction::Ret: 2007 case Instruction::Br: 2008 case Instruction::IndirectBr: 2009 case Instruction::Switch: 2010 case Instruction::Unreachable: 2011 case Instruction::Fence: 2012 case Instruction::LandingPad: 2013 case Instruction::AtomicRMW: 2014 case Instruction::AtomicCmpXchg: 2015 case Instruction::Resume: 2016 return false; // Misc instructions which have effects 2017 } 2018 } 2019 2020 /// isKnownNonNull - Return true if we know that the specified value is never 2021 /// null. 2022 bool llvm::isKnownNonNull(const Value *V) { 2023 // Alloca never returns null, malloc might. 2024 if (isa<AllocaInst>(V)) return true; 2025 2026 // A byval argument is never null. 2027 if (const Argument *A = dyn_cast<Argument>(V)) 2028 return A->hasByValAttr(); 2029 2030 // Global values are not null unless extern weak. 2031 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2032 return !GV->hasExternalWeakLinkage(); 2033 return false; 2034 } 2035