Home | History | Annotate | Download | only in Core
      1 //= ProgramState.cpp - Path-Sensitive "State" for tracking values --*- C++ -*--=
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements ProgramState and ProgramStateManager.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
     15 #include "clang/Analysis/CFG.h"
     16 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
     17 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
     18 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
     19 #include "clang/StaticAnalyzer/Core/PathSensitive/TaintManager.h"
     20 #include "llvm/Support/raw_ostream.h"
     21 
     22 using namespace clang;
     23 using namespace ento;
     24 
     25 namespace clang { namespace  ento {
     26 /// Increments the number of times this state is referenced.
     27 
     28 void ProgramStateRetain(const ProgramState *state) {
     29   ++const_cast<ProgramState*>(state)->refCount;
     30 }
     31 
     32 /// Decrement the number of times this state is referenced.
     33 void ProgramStateRelease(const ProgramState *state) {
     34   assert(state->refCount > 0);
     35   ProgramState *s = const_cast<ProgramState*>(state);
     36   if (--s->refCount == 0) {
     37     ProgramStateManager &Mgr = s->getStateManager();
     38     Mgr.StateSet.RemoveNode(s);
     39     s->~ProgramState();
     40     Mgr.freeStates.push_back(s);
     41   }
     42 }
     43 }}
     44 
     45 ProgramState::ProgramState(ProgramStateManager *mgr, const Environment& env,
     46                  StoreRef st, GenericDataMap gdm)
     47   : stateMgr(mgr),
     48     Env(env),
     49     store(st.getStore()),
     50     GDM(gdm),
     51     refCount(0) {
     52   stateMgr->getStoreManager().incrementReferenceCount(store);
     53 }
     54 
     55 ProgramState::ProgramState(const ProgramState &RHS)
     56     : llvm::FoldingSetNode(),
     57       stateMgr(RHS.stateMgr),
     58       Env(RHS.Env),
     59       store(RHS.store),
     60       GDM(RHS.GDM),
     61       refCount(0) {
     62   stateMgr->getStoreManager().incrementReferenceCount(store);
     63 }
     64 
     65 ProgramState::~ProgramState() {
     66   if (store)
     67     stateMgr->getStoreManager().decrementReferenceCount(store);
     68 }
     69 
     70 ProgramStateManager::ProgramStateManager(ASTContext &Ctx,
     71                                          StoreManagerCreator CreateSMgr,
     72                                          ConstraintManagerCreator CreateCMgr,
     73                                          llvm::BumpPtrAllocator &alloc,
     74                                          SubEngine *SubEng)
     75   : Eng(SubEng), EnvMgr(alloc), GDMFactory(alloc),
     76     svalBuilder(createSimpleSValBuilder(alloc, Ctx, *this)),
     77     CallEventMgr(new CallEventManager(alloc)), Alloc(alloc) {
     78   StoreMgr.reset((*CreateSMgr)(*this));
     79   ConstraintMgr.reset((*CreateCMgr)(*this, SubEng));
     80 }
     81 
     82 
     83 ProgramStateManager::~ProgramStateManager() {
     84   for (GDMContextsTy::iterator I=GDMContexts.begin(), E=GDMContexts.end();
     85        I!=E; ++I)
     86     I->second.second(I->second.first);
     87 }
     88 
     89 ProgramStateRef
     90 ProgramStateManager::removeDeadBindings(ProgramStateRef state,
     91                                    const StackFrameContext *LCtx,
     92                                    SymbolReaper& SymReaper) {
     93 
     94   // This code essentially performs a "mark-and-sweep" of the VariableBindings.
     95   // The roots are any Block-level exprs and Decls that our liveness algorithm
     96   // tells us are live.  We then see what Decls they may reference, and keep
     97   // those around.  This code more than likely can be made faster, and the
     98   // frequency of which this method is called should be experimented with
     99   // for optimum performance.
    100   ProgramState NewState = *state;
    101 
    102   NewState.Env = EnvMgr.removeDeadBindings(NewState.Env, SymReaper, state);
    103 
    104   // Clean up the store.
    105   StoreRef newStore = StoreMgr->removeDeadBindings(NewState.getStore(), LCtx,
    106                                                    SymReaper);
    107   NewState.setStore(newStore);
    108   SymReaper.setReapedStore(newStore);
    109 
    110   ProgramStateRef Result = getPersistentState(NewState);
    111   return ConstraintMgr->removeDeadBindings(Result, SymReaper);
    112 }
    113 
    114 ProgramStateRef ProgramState::bindCompoundLiteral(const CompoundLiteralExpr *CL,
    115                                             const LocationContext *LC,
    116                                             SVal V) const {
    117   const StoreRef &newStore =
    118     getStateManager().StoreMgr->bindCompoundLiteral(getStore(), CL, LC, V);
    119   return makeWithStore(newStore);
    120 }
    121 
    122 ProgramStateRef ProgramState::bindLoc(Loc LV, SVal V, bool notifyChanges) const {
    123   ProgramStateManager &Mgr = getStateManager();
    124   ProgramStateRef newState = makeWithStore(Mgr.StoreMgr->Bind(getStore(),
    125                                                              LV, V));
    126   const MemRegion *MR = LV.getAsRegion();
    127   if (MR && Mgr.getOwningEngine() && notifyChanges)
    128     return Mgr.getOwningEngine()->processRegionChange(newState, MR);
    129 
    130   return newState;
    131 }
    132 
    133 ProgramStateRef ProgramState::bindDefault(SVal loc, SVal V) const {
    134   ProgramStateManager &Mgr = getStateManager();
    135   const MemRegion *R = loc.castAs<loc::MemRegionVal>().getRegion();
    136   const StoreRef &newStore = Mgr.StoreMgr->BindDefault(getStore(), R, V);
    137   ProgramStateRef new_state = makeWithStore(newStore);
    138   return Mgr.getOwningEngine() ?
    139            Mgr.getOwningEngine()->processRegionChange(new_state, R) :
    140            new_state;
    141 }
    142 
    143 ProgramStateRef
    144 ProgramState::invalidateRegions(ArrayRef<const MemRegion *> Regions,
    145                                 const Expr *E, unsigned Count,
    146                                 const LocationContext *LCtx,
    147                                 bool CausedByPointerEscape,
    148                                 InvalidatedSymbols *IS,
    149                                 const CallEvent *Call) const {
    150   if (!IS) {
    151     InvalidatedSymbols invalidated;
    152     return invalidateRegionsImpl(Regions, E, Count, LCtx,
    153                                  CausedByPointerEscape,
    154                                  invalidated, Call);
    155   }
    156   return invalidateRegionsImpl(Regions, E, Count, LCtx, CausedByPointerEscape,
    157                                *IS, Call);
    158 }
    159 
    160 ProgramStateRef
    161 ProgramState::invalidateRegionsImpl(ArrayRef<const MemRegion *> Regions,
    162                                     const Expr *E, unsigned Count,
    163                                     const LocationContext *LCtx,
    164                                     bool CausedByPointerEscape,
    165                                     InvalidatedSymbols &IS,
    166                                     const CallEvent *Call) const {
    167   ProgramStateManager &Mgr = getStateManager();
    168   SubEngine* Eng = Mgr.getOwningEngine();
    169 
    170   if (Eng) {
    171     StoreManager::InvalidatedRegions Invalidated;
    172     const StoreRef &newStore
    173       = Mgr.StoreMgr->invalidateRegions(getStore(), Regions, E, Count, LCtx, IS,
    174                                         Call, &Invalidated);
    175 
    176     ProgramStateRef newState = makeWithStore(newStore);
    177 
    178     if (CausedByPointerEscape)
    179       newState = Eng->processPointerEscapedOnInvalidateRegions(newState,
    180                                                &IS, Regions, Invalidated, Call);
    181 
    182     return Eng->processRegionChanges(newState, &IS, Regions, Invalidated, Call);
    183   }
    184 
    185   const StoreRef &newStore =
    186     Mgr.StoreMgr->invalidateRegions(getStore(), Regions, E, Count, LCtx, IS,
    187                                     Call, NULL);
    188   return makeWithStore(newStore);
    189 }
    190 
    191 ProgramStateRef ProgramState::killBinding(Loc LV) const {
    192   assert(!LV.getAs<loc::MemRegionVal>() && "Use invalidateRegion instead.");
    193 
    194   Store OldStore = getStore();
    195   const StoreRef &newStore =
    196     getStateManager().StoreMgr->killBinding(OldStore, LV);
    197 
    198   if (newStore.getStore() == OldStore)
    199     return this;
    200 
    201   return makeWithStore(newStore);
    202 }
    203 
    204 ProgramStateRef
    205 ProgramState::enterStackFrame(const CallEvent &Call,
    206                               const StackFrameContext *CalleeCtx) const {
    207   const StoreRef &NewStore =
    208     getStateManager().StoreMgr->enterStackFrame(getStore(), Call, CalleeCtx);
    209   return makeWithStore(NewStore);
    210 }
    211 
    212 SVal ProgramState::getSValAsScalarOrLoc(const MemRegion *R) const {
    213   // We only want to do fetches from regions that we can actually bind
    214   // values.  For example, SymbolicRegions of type 'id<...>' cannot
    215   // have direct bindings (but their can be bindings on their subregions).
    216   if (!R->isBoundable())
    217     return UnknownVal();
    218 
    219   if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R)) {
    220     QualType T = TR->getValueType();
    221     if (Loc::isLocType(T) || T->isIntegerType())
    222       return getSVal(R);
    223   }
    224 
    225   return UnknownVal();
    226 }
    227 
    228 SVal ProgramState::getSVal(Loc location, QualType T) const {
    229   SVal V = getRawSVal(cast<Loc>(location), T);
    230 
    231   // If 'V' is a symbolic value that is *perfectly* constrained to
    232   // be a constant value, use that value instead to lessen the burden
    233   // on later analysis stages (so we have less symbolic values to reason
    234   // about).
    235   if (!T.isNull()) {
    236     if (SymbolRef sym = V.getAsSymbol()) {
    237       if (const llvm::APSInt *Int = getStateManager()
    238                                     .getConstraintManager()
    239                                     .getSymVal(this, sym)) {
    240         // FIXME: Because we don't correctly model (yet) sign-extension
    241         // and truncation of symbolic values, we need to convert
    242         // the integer value to the correct signedness and bitwidth.
    243         //
    244         // This shows up in the following:
    245         //
    246         //   char foo();
    247         //   unsigned x = foo();
    248         //   if (x == 54)
    249         //     ...
    250         //
    251         //  The symbolic value stored to 'x' is actually the conjured
    252         //  symbol for the call to foo(); the type of that symbol is 'char',
    253         //  not unsigned.
    254         const llvm::APSInt &NewV = getBasicVals().Convert(T, *Int);
    255 
    256         if (V.getAs<Loc>())
    257           return loc::ConcreteInt(NewV);
    258         else
    259           return nonloc::ConcreteInt(NewV);
    260       }
    261     }
    262   }
    263 
    264   return V;
    265 }
    266 
    267 ProgramStateRef ProgramState::BindExpr(const Stmt *S,
    268                                            const LocationContext *LCtx,
    269                                            SVal V, bool Invalidate) const{
    270   Environment NewEnv =
    271     getStateManager().EnvMgr.bindExpr(Env, EnvironmentEntry(S, LCtx), V,
    272                                       Invalidate);
    273   if (NewEnv == Env)
    274     return this;
    275 
    276   ProgramState NewSt = *this;
    277   NewSt.Env = NewEnv;
    278   return getStateManager().getPersistentState(NewSt);
    279 }
    280 
    281 ProgramStateRef ProgramState::assumeInBound(DefinedOrUnknownSVal Idx,
    282                                       DefinedOrUnknownSVal UpperBound,
    283                                       bool Assumption,
    284                                       QualType indexTy) const {
    285   if (Idx.isUnknown() || UpperBound.isUnknown())
    286     return this;
    287 
    288   // Build an expression for 0 <= Idx < UpperBound.
    289   // This is the same as Idx + MIN < UpperBound + MIN, if overflow is allowed.
    290   // FIXME: This should probably be part of SValBuilder.
    291   ProgramStateManager &SM = getStateManager();
    292   SValBuilder &svalBuilder = SM.getSValBuilder();
    293   ASTContext &Ctx = svalBuilder.getContext();
    294 
    295   // Get the offset: the minimum value of the array index type.
    296   BasicValueFactory &BVF = svalBuilder.getBasicValueFactory();
    297   // FIXME: This should be using ValueManager::ArrayindexTy...somehow.
    298   if (indexTy.isNull())
    299     indexTy = Ctx.IntTy;
    300   nonloc::ConcreteInt Min(BVF.getMinValue(indexTy));
    301 
    302   // Adjust the index.
    303   SVal newIdx = svalBuilder.evalBinOpNN(this, BO_Add,
    304                                         Idx.castAs<NonLoc>(), Min, indexTy);
    305   if (newIdx.isUnknownOrUndef())
    306     return this;
    307 
    308   // Adjust the upper bound.
    309   SVal newBound =
    310     svalBuilder.evalBinOpNN(this, BO_Add, UpperBound.castAs<NonLoc>(),
    311                             Min, indexTy);
    312 
    313   if (newBound.isUnknownOrUndef())
    314     return this;
    315 
    316   // Build the actual comparison.
    317   SVal inBound = svalBuilder.evalBinOpNN(this, BO_LT, newIdx.castAs<NonLoc>(),
    318                                          newBound.castAs<NonLoc>(), Ctx.IntTy);
    319   if (inBound.isUnknownOrUndef())
    320     return this;
    321 
    322   // Finally, let the constraint manager take care of it.
    323   ConstraintManager &CM = SM.getConstraintManager();
    324   return CM.assume(this, inBound.castAs<DefinedSVal>(), Assumption);
    325 }
    326 
    327 ConditionTruthVal ProgramState::isNull(SVal V) const {
    328   if (V.isZeroConstant())
    329     return true;
    330 
    331   SymbolRef Sym = V.getAsSymbol();
    332   if (!Sym)
    333     return false;
    334   return getStateManager().ConstraintMgr->isNull(this, Sym);
    335 }
    336 
    337 ProgramStateRef ProgramStateManager::getInitialState(const LocationContext *InitLoc) {
    338   ProgramState State(this,
    339                 EnvMgr.getInitialEnvironment(),
    340                 StoreMgr->getInitialStore(InitLoc),
    341                 GDMFactory.getEmptyMap());
    342 
    343   return getPersistentState(State);
    344 }
    345 
    346 ProgramStateRef ProgramStateManager::getPersistentStateWithGDM(
    347                                                      ProgramStateRef FromState,
    348                                                      ProgramStateRef GDMState) {
    349   ProgramState NewState(*FromState);
    350   NewState.GDM = GDMState->GDM;
    351   return getPersistentState(NewState);
    352 }
    353 
    354 ProgramStateRef ProgramStateManager::getPersistentState(ProgramState &State) {
    355 
    356   llvm::FoldingSetNodeID ID;
    357   State.Profile(ID);
    358   void *InsertPos;
    359 
    360   if (ProgramState *I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
    361     return I;
    362 
    363   ProgramState *newState = 0;
    364   if (!freeStates.empty()) {
    365     newState = freeStates.back();
    366     freeStates.pop_back();
    367   }
    368   else {
    369     newState = (ProgramState*) Alloc.Allocate<ProgramState>();
    370   }
    371   new (newState) ProgramState(State);
    372   StateSet.InsertNode(newState, InsertPos);
    373   return newState;
    374 }
    375 
    376 ProgramStateRef ProgramState::makeWithStore(const StoreRef &store) const {
    377   ProgramState NewSt(*this);
    378   NewSt.setStore(store);
    379   return getStateManager().getPersistentState(NewSt);
    380 }
    381 
    382 void ProgramState::setStore(const StoreRef &newStore) {
    383   Store newStoreStore = newStore.getStore();
    384   if (newStoreStore)
    385     stateMgr->getStoreManager().incrementReferenceCount(newStoreStore);
    386   if (store)
    387     stateMgr->getStoreManager().decrementReferenceCount(store);
    388   store = newStoreStore;
    389 }
    390 
    391 //===----------------------------------------------------------------------===//
    392 //  State pretty-printing.
    393 //===----------------------------------------------------------------------===//
    394 
    395 void ProgramState::print(raw_ostream &Out,
    396                          const char *NL, const char *Sep) const {
    397   // Print the store.
    398   ProgramStateManager &Mgr = getStateManager();
    399   Mgr.getStoreManager().print(getStore(), Out, NL, Sep);
    400 
    401   // Print out the environment.
    402   Env.print(Out, NL, Sep);
    403 
    404   // Print out the constraints.
    405   Mgr.getConstraintManager().print(this, Out, NL, Sep);
    406 
    407   // Print checker-specific data.
    408   Mgr.getOwningEngine()->printState(Out, this, NL, Sep);
    409 }
    410 
    411 void ProgramState::printDOT(raw_ostream &Out) const {
    412   print(Out, "\\l", "\\|");
    413 }
    414 
    415 void ProgramState::dump() const {
    416   print(llvm::errs());
    417 }
    418 
    419 void ProgramState::printTaint(raw_ostream &Out,
    420                               const char *NL, const char *Sep) const {
    421   TaintMapImpl TM = get<TaintMap>();
    422 
    423   if (!TM.isEmpty())
    424     Out <<"Tainted Symbols:" << NL;
    425 
    426   for (TaintMapImpl::iterator I = TM.begin(), E = TM.end(); I != E; ++I) {
    427     Out << I->first << " : " << I->second << NL;
    428   }
    429 }
    430 
    431 void ProgramState::dumpTaint() const {
    432   printTaint(llvm::errs());
    433 }
    434 
    435 //===----------------------------------------------------------------------===//
    436 // Generic Data Map.
    437 //===----------------------------------------------------------------------===//
    438 
    439 void *const* ProgramState::FindGDM(void *K) const {
    440   return GDM.lookup(K);
    441 }
    442 
    443 void*
    444 ProgramStateManager::FindGDMContext(void *K,
    445                                void *(*CreateContext)(llvm::BumpPtrAllocator&),
    446                                void (*DeleteContext)(void*)) {
    447 
    448   std::pair<void*, void (*)(void*)>& p = GDMContexts[K];
    449   if (!p.first) {
    450     p.first = CreateContext(Alloc);
    451     p.second = DeleteContext;
    452   }
    453 
    454   return p.first;
    455 }
    456 
    457 ProgramStateRef ProgramStateManager::addGDM(ProgramStateRef St, void *Key, void *Data){
    458   ProgramState::GenericDataMap M1 = St->getGDM();
    459   ProgramState::GenericDataMap M2 = GDMFactory.add(M1, Key, Data);
    460 
    461   if (M1 == M2)
    462     return St;
    463 
    464   ProgramState NewSt = *St;
    465   NewSt.GDM = M2;
    466   return getPersistentState(NewSt);
    467 }
    468 
    469 ProgramStateRef ProgramStateManager::removeGDM(ProgramStateRef state, void *Key) {
    470   ProgramState::GenericDataMap OldM = state->getGDM();
    471   ProgramState::GenericDataMap NewM = GDMFactory.remove(OldM, Key);
    472 
    473   if (NewM == OldM)
    474     return state;
    475 
    476   ProgramState NewState = *state;
    477   NewState.GDM = NewM;
    478   return getPersistentState(NewState);
    479 }
    480 
    481 bool ScanReachableSymbols::scan(nonloc::CompoundVal val) {
    482   for (nonloc::CompoundVal::iterator I=val.begin(), E=val.end(); I!=E; ++I)
    483     if (!scan(*I))
    484       return false;
    485 
    486   return true;
    487 }
    488 
    489 bool ScanReachableSymbols::scan(const SymExpr *sym) {
    490   unsigned &isVisited = visited[sym];
    491   if (isVisited)
    492     return true;
    493   isVisited = 1;
    494 
    495   if (!visitor.VisitSymbol(sym))
    496     return false;
    497 
    498   // TODO: should be rewritten using SymExpr::symbol_iterator.
    499   switch (sym->getKind()) {
    500     case SymExpr::RegionValueKind:
    501     case SymExpr::ConjuredKind:
    502     case SymExpr::DerivedKind:
    503     case SymExpr::ExtentKind:
    504     case SymExpr::MetadataKind:
    505       break;
    506     case SymExpr::CastSymbolKind:
    507       return scan(cast<SymbolCast>(sym)->getOperand());
    508     case SymExpr::SymIntKind:
    509       return scan(cast<SymIntExpr>(sym)->getLHS());
    510     case SymExpr::IntSymKind:
    511       return scan(cast<IntSymExpr>(sym)->getRHS());
    512     case SymExpr::SymSymKind: {
    513       const SymSymExpr *x = cast<SymSymExpr>(sym);
    514       return scan(x->getLHS()) && scan(x->getRHS());
    515     }
    516   }
    517   return true;
    518 }
    519 
    520 bool ScanReachableSymbols::scan(SVal val) {
    521   if (Optional<loc::MemRegionVal> X = val.getAs<loc::MemRegionVal>())
    522     return scan(X->getRegion());
    523 
    524   if (Optional<nonloc::LazyCompoundVal> X =
    525           val.getAs<nonloc::LazyCompoundVal>()) {
    526     StoreManager &StoreMgr = state->getStateManager().getStoreManager();
    527     // FIXME: We don't really want to use getBaseRegion() here because pointer
    528     // arithmetic doesn't apply, but scanReachableSymbols only accepts base
    529     // regions right now.
    530     if (!StoreMgr.scanReachableSymbols(X->getStore(),
    531                                        X->getRegion()->getBaseRegion(),
    532                                        *this))
    533       return false;
    534   }
    535 
    536   if (Optional<nonloc::LocAsInteger> X = val.getAs<nonloc::LocAsInteger>())
    537     return scan(X->getLoc());
    538 
    539   if (SymbolRef Sym = val.getAsSymbol())
    540     return scan(Sym);
    541 
    542   if (const SymExpr *Sym = val.getAsSymbolicExpression())
    543     return scan(Sym);
    544 
    545   if (Optional<nonloc::CompoundVal> X = val.getAs<nonloc::CompoundVal>())
    546     return scan(*X);
    547 
    548   return true;
    549 }
    550 
    551 bool ScanReachableSymbols::scan(const MemRegion *R) {
    552   if (isa<MemSpaceRegion>(R))
    553     return true;
    554 
    555   unsigned &isVisited = visited[R];
    556   if (isVisited)
    557     return true;
    558   isVisited = 1;
    559 
    560 
    561   if (!visitor.VisitMemRegion(R))
    562     return false;
    563 
    564   // If this is a symbolic region, visit the symbol for the region.
    565   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
    566     if (!visitor.VisitSymbol(SR->getSymbol()))
    567       return false;
    568 
    569   // If this is a subregion, also visit the parent regions.
    570   if (const SubRegion *SR = dyn_cast<SubRegion>(R)) {
    571     const MemRegion *Super = SR->getSuperRegion();
    572     if (!scan(Super))
    573       return false;
    574 
    575     // When we reach the topmost region, scan all symbols in it.
    576     if (isa<MemSpaceRegion>(Super)) {
    577       StoreManager &StoreMgr = state->getStateManager().getStoreManager();
    578       if (!StoreMgr.scanReachableSymbols(state->getStore(), SR, *this))
    579         return false;
    580     }
    581   }
    582 
    583   // Regions captured by a block are also implicitly reachable.
    584   if (const BlockDataRegion *BDR = dyn_cast<BlockDataRegion>(R)) {
    585     BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
    586                                               E = BDR->referenced_vars_end();
    587     for ( ; I != E; ++I) {
    588       if (!scan(I.getCapturedRegion()))
    589         return false;
    590     }
    591   }
    592 
    593   return true;
    594 }
    595 
    596 bool ProgramState::scanReachableSymbols(SVal val, SymbolVisitor& visitor) const {
    597   ScanReachableSymbols S(this, visitor);
    598   return S.scan(val);
    599 }
    600 
    601 bool ProgramState::scanReachableSymbols(const SVal *I, const SVal *E,
    602                                    SymbolVisitor &visitor) const {
    603   ScanReachableSymbols S(this, visitor);
    604   for ( ; I != E; ++I) {
    605     if (!S.scan(*I))
    606       return false;
    607   }
    608   return true;
    609 }
    610 
    611 bool ProgramState::scanReachableSymbols(const MemRegion * const *I,
    612                                    const MemRegion * const *E,
    613                                    SymbolVisitor &visitor) const {
    614   ScanReachableSymbols S(this, visitor);
    615   for ( ; I != E; ++I) {
    616     if (!S.scan(*I))
    617       return false;
    618   }
    619   return true;
    620 }
    621 
    622 ProgramStateRef ProgramState::addTaint(const Stmt *S,
    623                                            const LocationContext *LCtx,
    624                                            TaintTagType Kind) const {
    625   if (const Expr *E = dyn_cast_or_null<Expr>(S))
    626     S = E->IgnoreParens();
    627 
    628   SymbolRef Sym = getSVal(S, LCtx).getAsSymbol();
    629   if (Sym)
    630     return addTaint(Sym, Kind);
    631 
    632   const MemRegion *R = getSVal(S, LCtx).getAsRegion();
    633   addTaint(R, Kind);
    634 
    635   // Cannot add taint, so just return the state.
    636   return this;
    637 }
    638 
    639 ProgramStateRef ProgramState::addTaint(const MemRegion *R,
    640                                            TaintTagType Kind) const {
    641   if (const SymbolicRegion *SR = dyn_cast_or_null<SymbolicRegion>(R))
    642     return addTaint(SR->getSymbol(), Kind);
    643   return this;
    644 }
    645 
    646 ProgramStateRef ProgramState::addTaint(SymbolRef Sym,
    647                                            TaintTagType Kind) const {
    648   // If this is a symbol cast, remove the cast before adding the taint. Taint
    649   // is cast agnostic.
    650   while (const SymbolCast *SC = dyn_cast<SymbolCast>(Sym))
    651     Sym = SC->getOperand();
    652 
    653   ProgramStateRef NewState = set<TaintMap>(Sym, Kind);
    654   assert(NewState);
    655   return NewState;
    656 }
    657 
    658 bool ProgramState::isTainted(const Stmt *S, const LocationContext *LCtx,
    659                              TaintTagType Kind) const {
    660   if (const Expr *E = dyn_cast_or_null<Expr>(S))
    661     S = E->IgnoreParens();
    662 
    663   SVal val = getSVal(S, LCtx);
    664   return isTainted(val, Kind);
    665 }
    666 
    667 bool ProgramState::isTainted(SVal V, TaintTagType Kind) const {
    668   if (const SymExpr *Sym = V.getAsSymExpr())
    669     return isTainted(Sym, Kind);
    670   if (const MemRegion *Reg = V.getAsRegion())
    671     return isTainted(Reg, Kind);
    672   return false;
    673 }
    674 
    675 bool ProgramState::isTainted(const MemRegion *Reg, TaintTagType K) const {
    676   if (!Reg)
    677     return false;
    678 
    679   // Element region (array element) is tainted if either the base or the offset
    680   // are tainted.
    681   if (const ElementRegion *ER = dyn_cast<ElementRegion>(Reg))
    682     return isTainted(ER->getSuperRegion(), K) || isTainted(ER->getIndex(), K);
    683 
    684   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg))
    685     return isTainted(SR->getSymbol(), K);
    686 
    687   if (const SubRegion *ER = dyn_cast<SubRegion>(Reg))
    688     return isTainted(ER->getSuperRegion(), K);
    689 
    690   return false;
    691 }
    692 
    693 bool ProgramState::isTainted(SymbolRef Sym, TaintTagType Kind) const {
    694   if (!Sym)
    695     return false;
    696 
    697   // Traverse all the symbols this symbol depends on to see if any are tainted.
    698   bool Tainted = false;
    699   for (SymExpr::symbol_iterator SI = Sym->symbol_begin(), SE =Sym->symbol_end();
    700        SI != SE; ++SI) {
    701     if (!isa<SymbolData>(*SI))
    702       continue;
    703 
    704     const TaintTagType *Tag = get<TaintMap>(*SI);
    705     Tainted = (Tag && *Tag == Kind);
    706 
    707     // If this is a SymbolDerived with a tainted parent, it's also tainted.
    708     if (const SymbolDerived *SD = dyn_cast<SymbolDerived>(*SI))
    709       Tainted = Tainted || isTainted(SD->getParentSymbol(), Kind);
    710 
    711     // If memory region is tainted, data is also tainted.
    712     if (const SymbolRegionValue *SRV = dyn_cast<SymbolRegionValue>(*SI))
    713       Tainted = Tainted || isTainted(SRV->getRegion(), Kind);
    714 
    715     // If If this is a SymbolCast from a tainted value, it's also tainted.
    716     if (const SymbolCast *SC = dyn_cast<SymbolCast>(*SI))
    717       Tainted = Tainted || isTainted(SC->getOperand(), Kind);
    718 
    719     if (Tainted)
    720       return true;
    721   }
    722 
    723   return Tainted;
    724 }
    725 
    726 /// The GDM component containing the dynamic type info. This is a map from a
    727 /// symbol to its most likely type.
    728 REGISTER_TRAIT_WITH_PROGRAMSTATE(DynamicTypeMap,
    729                                  CLANG_ENTO_PROGRAMSTATE_MAP(const MemRegion *,
    730                                                              DynamicTypeInfo))
    731 
    732 DynamicTypeInfo ProgramState::getDynamicTypeInfo(const MemRegion *Reg) const {
    733   Reg = Reg->StripCasts();
    734 
    735   // Look up the dynamic type in the GDM.
    736   const DynamicTypeInfo *GDMType = get<DynamicTypeMap>(Reg);
    737   if (GDMType)
    738     return *GDMType;
    739 
    740   // Otherwise, fall back to what we know about the region.
    741   if (const TypedRegion *TR = dyn_cast<TypedRegion>(Reg))
    742     return DynamicTypeInfo(TR->getLocationType(), /*CanBeSubclass=*/false);
    743 
    744   if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(Reg)) {
    745     SymbolRef Sym = SR->getSymbol();
    746     return DynamicTypeInfo(Sym->getType());
    747   }
    748 
    749   return DynamicTypeInfo();
    750 }
    751 
    752 ProgramStateRef ProgramState::setDynamicTypeInfo(const MemRegion *Reg,
    753                                                  DynamicTypeInfo NewTy) const {
    754   Reg = Reg->StripCasts();
    755   ProgramStateRef NewState = set<DynamicTypeMap>(Reg, NewTy);
    756   assert(NewState);
    757   return NewState;
    758 }
    759