1 //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CriticalAntiDepBreaker class, which 11 // implements register anti-dependence breaking along a blocks 12 // critical path during post-RA scheduler. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "post-RA-sched" 17 #include "CriticalAntiDepBreaker.h" 18 #include "llvm/CodeGen/MachineBasicBlock.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/raw_ostream.h" 23 #include "llvm/Target/TargetInstrInfo.h" 24 #include "llvm/Target/TargetMachine.h" 25 #include "llvm/Target/TargetRegisterInfo.h" 26 27 using namespace llvm; 28 29 CriticalAntiDepBreaker:: 30 CriticalAntiDepBreaker(MachineFunction& MFi, const RegisterClassInfo &RCI) : 31 AntiDepBreaker(), MF(MFi), 32 MRI(MF.getRegInfo()), 33 TII(MF.getTarget().getInstrInfo()), 34 TRI(MF.getTarget().getRegisterInfo()), 35 RegClassInfo(RCI), 36 Classes(TRI->getNumRegs(), static_cast<const TargetRegisterClass *>(0)), 37 KillIndices(TRI->getNumRegs(), 0), 38 DefIndices(TRI->getNumRegs(), 0), 39 KeepRegs(TRI->getNumRegs(), false) {} 40 41 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() { 42 } 43 44 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) { 45 const unsigned BBSize = BB->size(); 46 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) { 47 // Clear out the register class data. 48 Classes[i] = static_cast<const TargetRegisterClass *>(0); 49 50 // Initialize the indices to indicate that no registers are live. 51 KillIndices[i] = ~0u; 52 DefIndices[i] = BBSize; 53 } 54 55 // Clear "do not change" set. 56 KeepRegs.reset(); 57 58 bool IsReturnBlock = (BBSize != 0 && BB->back().isReturn()); 59 60 // Examine the live-in regs of all successors. 61 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), 62 SE = BB->succ_end(); SI != SE; ++SI) 63 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), 64 E = (*SI)->livein_end(); I != E; ++I) { 65 for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) { 66 unsigned Reg = *AI; 67 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 68 KillIndices[Reg] = BBSize; 69 DefIndices[Reg] = ~0u; 70 } 71 } 72 73 // Mark live-out callee-saved registers. In a return block this is 74 // all callee-saved registers. In non-return this is any 75 // callee-saved register that is not saved in the prolog. 76 const MachineFrameInfo *MFI = MF.getFrameInfo(); 77 BitVector Pristine = MFI->getPristineRegs(BB); 78 for (const uint16_t *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) { 79 if (!IsReturnBlock && !Pristine.test(*I)) continue; 80 for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) { 81 unsigned Reg = *AI; 82 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 83 KillIndices[Reg] = BBSize; 84 DefIndices[Reg] = ~0u; 85 } 86 } 87 } 88 89 void CriticalAntiDepBreaker::FinishBlock() { 90 RegRefs.clear(); 91 KeepRegs.reset(); 92 } 93 94 void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count, 95 unsigned InsertPosIndex) { 96 if (MI->isDebugValue()) 97 return; 98 assert(Count < InsertPosIndex && "Instruction index out of expected range!"); 99 100 for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) { 101 if (KillIndices[Reg] != ~0u) { 102 // If Reg is currently live, then mark that it can't be renamed as 103 // we don't know the extent of its live-range anymore (now that it 104 // has been scheduled). 105 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 106 KillIndices[Reg] = Count; 107 } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) { 108 // Any register which was defined within the previous scheduling region 109 // may have been rescheduled and its lifetime may overlap with registers 110 // in ways not reflected in our current liveness state. For each such 111 // register, adjust the liveness state to be conservatively correct. 112 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 113 114 // Move the def index to the end of the previous region, to reflect 115 // that the def could theoretically have been scheduled at the end. 116 DefIndices[Reg] = InsertPosIndex; 117 } 118 } 119 120 PrescanInstruction(MI); 121 ScanInstruction(MI, Count); 122 } 123 124 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up 125 /// critical path. 126 static const SDep *CriticalPathStep(const SUnit *SU) { 127 const SDep *Next = 0; 128 unsigned NextDepth = 0; 129 // Find the predecessor edge with the greatest depth. 130 for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end(); 131 P != PE; ++P) { 132 const SUnit *PredSU = P->getSUnit(); 133 unsigned PredLatency = P->getLatency(); 134 unsigned PredTotalLatency = PredSU->getDepth() + PredLatency; 135 // In the case of a latency tie, prefer an anti-dependency edge over 136 // other types of edges. 137 if (NextDepth < PredTotalLatency || 138 (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) { 139 NextDepth = PredTotalLatency; 140 Next = &*P; 141 } 142 } 143 return Next; 144 } 145 146 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) { 147 // It's not safe to change register allocation for source operands of 148 // that have special allocation requirements. Also assume all registers 149 // used in a call must not be changed (ABI). 150 // FIXME: The issue with predicated instruction is more complex. We are being 151 // conservative here because the kill markers cannot be trusted after 152 // if-conversion: 153 // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14] 154 // ... 155 // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395] 156 // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12] 157 // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8) 158 // 159 // The first R6 kill is not really a kill since it's killed by a predicated 160 // instruction which may not be executed. The second R6 def may or may not 161 // re-define R6 so it's not safe to change it since the last R6 use cannot be 162 // changed. 163 bool Special = MI->isCall() || 164 MI->hasExtraSrcRegAllocReq() || 165 TII->isPredicated(MI); 166 167 // Scan the register operands for this instruction and update 168 // Classes and RegRefs. 169 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 170 MachineOperand &MO = MI->getOperand(i); 171 if (!MO.isReg()) continue; 172 unsigned Reg = MO.getReg(); 173 if (Reg == 0) continue; 174 const TargetRegisterClass *NewRC = 0; 175 176 if (i < MI->getDesc().getNumOperands()) 177 NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF); 178 179 // For now, only allow the register to be changed if its register 180 // class is consistent across all uses. 181 if (!Classes[Reg] && NewRC) 182 Classes[Reg] = NewRC; 183 else if (!NewRC || Classes[Reg] != NewRC) 184 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 185 186 // Now check for aliases. 187 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { 188 // If an alias of the reg is used during the live range, give up. 189 // Note that this allows us to skip checking if AntiDepReg 190 // overlaps with any of the aliases, among other things. 191 unsigned AliasReg = *AI; 192 if (Classes[AliasReg]) { 193 Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1); 194 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 195 } 196 } 197 198 // If we're still willing to consider this register, note the reference. 199 if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1)) 200 RegRefs.insert(std::make_pair(Reg, &MO)); 201 202 if (MO.isUse() && Special) { 203 if (!KeepRegs.test(Reg)) { 204 KeepRegs.set(Reg); 205 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) 206 KeepRegs.set(*SubRegs); 207 } 208 } 209 } 210 } 211 212 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI, 213 unsigned Count) { 214 // Update liveness. 215 // Proceeding upwards, registers that are defed but not used in this 216 // instruction are now dead. 217 218 if (!TII->isPredicated(MI)) { 219 // Predicated defs are modeled as read + write, i.e. similar to two 220 // address updates. 221 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 222 MachineOperand &MO = MI->getOperand(i); 223 224 if (MO.isRegMask()) 225 for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) 226 if (MO.clobbersPhysReg(i)) { 227 DefIndices[i] = Count; 228 KillIndices[i] = ~0u; 229 KeepRegs.reset(i); 230 Classes[i] = 0; 231 RegRefs.erase(i); 232 } 233 234 if (!MO.isReg()) continue; 235 unsigned Reg = MO.getReg(); 236 if (Reg == 0) continue; 237 if (!MO.isDef()) continue; 238 // Ignore two-addr defs. 239 if (MI->isRegTiedToUseOperand(i)) continue; 240 241 DefIndices[Reg] = Count; 242 KillIndices[Reg] = ~0u; 243 assert(((KillIndices[Reg] == ~0u) != 244 (DefIndices[Reg] == ~0u)) && 245 "Kill and Def maps aren't consistent for Reg!"); 246 KeepRegs.reset(Reg); 247 Classes[Reg] = 0; 248 RegRefs.erase(Reg); 249 // Repeat, for all subregs. 250 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { 251 unsigned SubregReg = *SubRegs; 252 DefIndices[SubregReg] = Count; 253 KillIndices[SubregReg] = ~0u; 254 KeepRegs.reset(SubregReg); 255 Classes[SubregReg] = 0; 256 RegRefs.erase(SubregReg); 257 } 258 // Conservatively mark super-registers as unusable. 259 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) 260 Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1); 261 } 262 } 263 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 264 MachineOperand &MO = MI->getOperand(i); 265 if (!MO.isReg()) continue; 266 unsigned Reg = MO.getReg(); 267 if (Reg == 0) continue; 268 if (!MO.isUse()) continue; 269 270 const TargetRegisterClass *NewRC = 0; 271 if (i < MI->getDesc().getNumOperands()) 272 NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF); 273 274 // For now, only allow the register to be changed if its register 275 // class is consistent across all uses. 276 if (!Classes[Reg] && NewRC) 277 Classes[Reg] = NewRC; 278 else if (!NewRC || Classes[Reg] != NewRC) 279 Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1); 280 281 RegRefs.insert(std::make_pair(Reg, &MO)); 282 283 // It wasn't previously live but now it is, this is a kill. 284 if (KillIndices[Reg] == ~0u) { 285 KillIndices[Reg] = Count; 286 DefIndices[Reg] = ~0u; 287 assert(((KillIndices[Reg] == ~0u) != 288 (DefIndices[Reg] == ~0u)) && 289 "Kill and Def maps aren't consistent for Reg!"); 290 } 291 // Repeat, for all aliases. 292 for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) { 293 unsigned AliasReg = *AI; 294 if (KillIndices[AliasReg] == ~0u) { 295 KillIndices[AliasReg] = Count; 296 DefIndices[AliasReg] = ~0u; 297 } 298 } 299 } 300 } 301 302 // Check all machine operands that reference the antidependent register and must 303 // be replaced by NewReg. Return true if any of their parent instructions may 304 // clobber the new register. 305 // 306 // Note: AntiDepReg may be referenced by a two-address instruction such that 307 // it's use operand is tied to a def operand. We guard against the case in which 308 // the two-address instruction also defines NewReg, as may happen with 309 // pre/postincrement loads. In this case, both the use and def operands are in 310 // RegRefs because the def is inserted by PrescanInstruction and not erased 311 // during ScanInstruction. So checking for an instructions with definitions of 312 // both NewReg and AntiDepReg covers it. 313 bool 314 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin, 315 RegRefIter RegRefEnd, 316 unsigned NewReg) 317 { 318 for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) { 319 MachineOperand *RefOper = I->second; 320 321 // Don't allow the instruction defining AntiDepReg to earlyclobber its 322 // operands, in case they may be assigned to NewReg. In this case antidep 323 // breaking must fail, but it's too rare to bother optimizing. 324 if (RefOper->isDef() && RefOper->isEarlyClobber()) 325 return true; 326 327 // Handle cases in which this instructions defines NewReg. 328 MachineInstr *MI = RefOper->getParent(); 329 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 330 const MachineOperand &CheckOper = MI->getOperand(i); 331 332 if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg)) 333 return true; 334 335 if (!CheckOper.isReg() || !CheckOper.isDef() || 336 CheckOper.getReg() != NewReg) 337 continue; 338 339 // Don't allow the instruction to define NewReg and AntiDepReg. 340 // When AntiDepReg is renamed it will be an illegal op. 341 if (RefOper->isDef()) 342 return true; 343 344 // Don't allow an instruction using AntiDepReg to be earlyclobbered by 345 // NewReg 346 if (CheckOper.isEarlyClobber()) 347 return true; 348 349 // Don't allow inline asm to define NewReg at all. Who know what it's 350 // doing with it. 351 if (MI->isInlineAsm()) 352 return true; 353 } 354 } 355 return false; 356 } 357 358 unsigned CriticalAntiDepBreaker:: 359 findSuitableFreeRegister(RegRefIter RegRefBegin, 360 RegRefIter RegRefEnd, 361 unsigned AntiDepReg, 362 unsigned LastNewReg, 363 const TargetRegisterClass *RC, 364 SmallVector<unsigned, 2> &Forbid) 365 { 366 ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC); 367 for (unsigned i = 0; i != Order.size(); ++i) { 368 unsigned NewReg = Order[i]; 369 // Don't replace a register with itself. 370 if (NewReg == AntiDepReg) continue; 371 // Don't replace a register with one that was recently used to repair 372 // an anti-dependence with this AntiDepReg, because that would 373 // re-introduce that anti-dependence. 374 if (NewReg == LastNewReg) continue; 375 // If any instructions that define AntiDepReg also define the NewReg, it's 376 // not suitable. For example, Instruction with multiple definitions can 377 // result in this condition. 378 if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue; 379 // If NewReg is dead and NewReg's most recent def is not before 380 // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg. 381 assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u)) 382 && "Kill and Def maps aren't consistent for AntiDepReg!"); 383 assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u)) 384 && "Kill and Def maps aren't consistent for NewReg!"); 385 if (KillIndices[NewReg] != ~0u || 386 Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) || 387 KillIndices[AntiDepReg] > DefIndices[NewReg]) 388 continue; 389 // If NewReg overlaps any of the forbidden registers, we can't use it. 390 bool Forbidden = false; 391 for (SmallVector<unsigned, 2>::iterator it = Forbid.begin(), 392 ite = Forbid.end(); it != ite; ++it) 393 if (TRI->regsOverlap(NewReg, *it)) { 394 Forbidden = true; 395 break; 396 } 397 if (Forbidden) continue; 398 return NewReg; 399 } 400 401 // No registers are free and available! 402 return 0; 403 } 404 405 unsigned CriticalAntiDepBreaker:: 406 BreakAntiDependencies(const std::vector<SUnit>& SUnits, 407 MachineBasicBlock::iterator Begin, 408 MachineBasicBlock::iterator End, 409 unsigned InsertPosIndex, 410 DbgValueVector &DbgValues) { 411 // The code below assumes that there is at least one instruction, 412 // so just duck out immediately if the block is empty. 413 if (SUnits.empty()) return 0; 414 415 // Keep a map of the MachineInstr*'s back to the SUnit representing them. 416 // This is used for updating debug information. 417 // 418 // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap 419 DenseMap<MachineInstr*,const SUnit*> MISUnitMap; 420 421 // Find the node at the bottom of the critical path. 422 const SUnit *Max = 0; 423 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 424 const SUnit *SU = &SUnits[i]; 425 MISUnitMap[SU->getInstr()] = SU; 426 if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency) 427 Max = SU; 428 } 429 430 #ifndef NDEBUG 431 { 432 DEBUG(dbgs() << "Critical path has total latency " 433 << (Max->getDepth() + Max->Latency) << "\n"); 434 DEBUG(dbgs() << "Available regs:"); 435 for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) { 436 if (KillIndices[Reg] == ~0u) 437 DEBUG(dbgs() << " " << TRI->getName(Reg)); 438 } 439 DEBUG(dbgs() << '\n'); 440 } 441 #endif 442 443 // Track progress along the critical path through the SUnit graph as we walk 444 // the instructions. 445 const SUnit *CriticalPathSU = Max; 446 MachineInstr *CriticalPathMI = CriticalPathSU->getInstr(); 447 448 // Consider this pattern: 449 // A = ... 450 // ... = A 451 // A = ... 452 // ... = A 453 // A = ... 454 // ... = A 455 // A = ... 456 // ... = A 457 // There are three anti-dependencies here, and without special care, 458 // we'd break all of them using the same register: 459 // A = ... 460 // ... = A 461 // B = ... 462 // ... = B 463 // B = ... 464 // ... = B 465 // B = ... 466 // ... = B 467 // because at each anti-dependence, B is the first register that 468 // isn't A which is free. This re-introduces anti-dependencies 469 // at all but one of the original anti-dependencies that we were 470 // trying to break. To avoid this, keep track of the most recent 471 // register that each register was replaced with, avoid 472 // using it to repair an anti-dependence on the same register. 473 // This lets us produce this: 474 // A = ... 475 // ... = A 476 // B = ... 477 // ... = B 478 // C = ... 479 // ... = C 480 // B = ... 481 // ... = B 482 // This still has an anti-dependence on B, but at least it isn't on the 483 // original critical path. 484 // 485 // TODO: If we tracked more than one register here, we could potentially 486 // fix that remaining critical edge too. This is a little more involved, 487 // because unlike the most recent register, less recent registers should 488 // still be considered, though only if no other registers are available. 489 std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0); 490 491 // Attempt to break anti-dependence edges on the critical path. Walk the 492 // instructions from the bottom up, tracking information about liveness 493 // as we go to help determine which registers are available. 494 unsigned Broken = 0; 495 unsigned Count = InsertPosIndex - 1; 496 for (MachineBasicBlock::iterator I = End, E = Begin; 497 I != E; --Count) { 498 MachineInstr *MI = --I; 499 if (MI->isDebugValue()) 500 continue; 501 502 // Check if this instruction has a dependence on the critical path that 503 // is an anti-dependence that we may be able to break. If it is, set 504 // AntiDepReg to the non-zero register associated with the anti-dependence. 505 // 506 // We limit our attention to the critical path as a heuristic to avoid 507 // breaking anti-dependence edges that aren't going to significantly 508 // impact the overall schedule. There are a limited number of registers 509 // and we want to save them for the important edges. 510 // 511 // TODO: Instructions with multiple defs could have multiple 512 // anti-dependencies. The current code here only knows how to break one 513 // edge per instruction. Note that we'd have to be able to break all of 514 // the anti-dependencies in an instruction in order to be effective. 515 unsigned AntiDepReg = 0; 516 if (MI == CriticalPathMI) { 517 if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) { 518 const SUnit *NextSU = Edge->getSUnit(); 519 520 // Only consider anti-dependence edges. 521 if (Edge->getKind() == SDep::Anti) { 522 AntiDepReg = Edge->getReg(); 523 assert(AntiDepReg != 0 && "Anti-dependence on reg0?"); 524 if (!MRI.isAllocatable(AntiDepReg)) 525 // Don't break anti-dependencies on non-allocatable registers. 526 AntiDepReg = 0; 527 else if (KeepRegs.test(AntiDepReg)) 528 // Don't break anti-dependencies if an use down below requires 529 // this exact register. 530 AntiDepReg = 0; 531 else { 532 // If the SUnit has other dependencies on the SUnit that it 533 // anti-depends on, don't bother breaking the anti-dependency 534 // since those edges would prevent such units from being 535 // scheduled past each other regardless. 536 // 537 // Also, if there are dependencies on other SUnits with the 538 // same register as the anti-dependency, don't attempt to 539 // break it. 540 for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(), 541 PE = CriticalPathSU->Preds.end(); P != PE; ++P) 542 if (P->getSUnit() == NextSU ? 543 (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) : 544 (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) { 545 AntiDepReg = 0; 546 break; 547 } 548 } 549 } 550 CriticalPathSU = NextSU; 551 CriticalPathMI = CriticalPathSU->getInstr(); 552 } else { 553 // We've reached the end of the critical path. 554 CriticalPathSU = 0; 555 CriticalPathMI = 0; 556 } 557 } 558 559 PrescanInstruction(MI); 560 561 SmallVector<unsigned, 2> ForbidRegs; 562 563 // If MI's defs have a special allocation requirement, don't allow 564 // any def registers to be changed. Also assume all registers 565 // defined in a call must not be changed (ABI). 566 if (MI->isCall() || MI->hasExtraDefRegAllocReq() || 567 TII->isPredicated(MI)) 568 // If this instruction's defs have special allocation requirement, don't 569 // break this anti-dependency. 570 AntiDepReg = 0; 571 else if (AntiDepReg) { 572 // If this instruction has a use of AntiDepReg, breaking it 573 // is invalid. If the instruction defines other registers, 574 // save a list of them so that we don't pick a new register 575 // that overlaps any of them. 576 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 577 MachineOperand &MO = MI->getOperand(i); 578 if (!MO.isReg()) continue; 579 unsigned Reg = MO.getReg(); 580 if (Reg == 0) continue; 581 if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) { 582 AntiDepReg = 0; 583 break; 584 } 585 if (MO.isDef() && Reg != AntiDepReg) 586 ForbidRegs.push_back(Reg); 587 } 588 } 589 590 // Determine AntiDepReg's register class, if it is live and is 591 // consistently used within a single class. 592 const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0; 593 assert((AntiDepReg == 0 || RC != NULL) && 594 "Register should be live if it's causing an anti-dependence!"); 595 if (RC == reinterpret_cast<TargetRegisterClass *>(-1)) 596 AntiDepReg = 0; 597 598 // Look for a suitable register to use to break the anti-depenence. 599 // 600 // TODO: Instead of picking the first free register, consider which might 601 // be the best. 602 if (AntiDepReg != 0) { 603 std::pair<std::multimap<unsigned, MachineOperand *>::iterator, 604 std::multimap<unsigned, MachineOperand *>::iterator> 605 Range = RegRefs.equal_range(AntiDepReg); 606 if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second, 607 AntiDepReg, 608 LastNewReg[AntiDepReg], 609 RC, ForbidRegs)) { 610 DEBUG(dbgs() << "Breaking anti-dependence edge on " 611 << TRI->getName(AntiDepReg) 612 << " with " << RegRefs.count(AntiDepReg) << " references" 613 << " using " << TRI->getName(NewReg) << "!\n"); 614 615 // Update the references to the old register to refer to the new 616 // register. 617 for (std::multimap<unsigned, MachineOperand *>::iterator 618 Q = Range.first, QE = Range.second; Q != QE; ++Q) { 619 Q->second->setReg(NewReg); 620 // If the SU for the instruction being updated has debug information 621 // related to the anti-dependency register, make sure to update that 622 // as well. 623 const SUnit *SU = MISUnitMap[Q->second->getParent()]; 624 if (!SU) continue; 625 for (DbgValueVector::iterator DVI = DbgValues.begin(), 626 DVE = DbgValues.end(); DVI != DVE; ++DVI) 627 if (DVI->second == Q->second->getParent()) 628 UpdateDbgValue(DVI->first, AntiDepReg, NewReg); 629 } 630 631 // We just went back in time and modified history; the 632 // liveness information for the anti-dependence reg is now 633 // inconsistent. Set the state as if it were dead. 634 Classes[NewReg] = Classes[AntiDepReg]; 635 DefIndices[NewReg] = DefIndices[AntiDepReg]; 636 KillIndices[NewReg] = KillIndices[AntiDepReg]; 637 assert(((KillIndices[NewReg] == ~0u) != 638 (DefIndices[NewReg] == ~0u)) && 639 "Kill and Def maps aren't consistent for NewReg!"); 640 641 Classes[AntiDepReg] = 0; 642 DefIndices[AntiDepReg] = KillIndices[AntiDepReg]; 643 KillIndices[AntiDepReg] = ~0u; 644 assert(((KillIndices[AntiDepReg] == ~0u) != 645 (DefIndices[AntiDepReg] == ~0u)) && 646 "Kill and Def maps aren't consistent for AntiDepReg!"); 647 648 RegRefs.erase(AntiDepReg); 649 LastNewReg[AntiDepReg] = NewReg; 650 ++Broken; 651 } 652 } 653 654 ScanInstruction(MI, Count); 655 } 656 657 return Broken; 658 } 659