Home | History | Annotate | Download | only in CodeGen
      1 //===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the CriticalAntiDepBreaker class, which
     11 // implements register anti-dependence breaking along a blocks
     12 // critical path during post-RA scheduler.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "post-RA-sched"
     17 #include "CriticalAntiDepBreaker.h"
     18 #include "llvm/CodeGen/MachineBasicBlock.h"
     19 #include "llvm/CodeGen/MachineFrameInfo.h"
     20 #include "llvm/Support/Debug.h"
     21 #include "llvm/Support/ErrorHandling.h"
     22 #include "llvm/Support/raw_ostream.h"
     23 #include "llvm/Target/TargetInstrInfo.h"
     24 #include "llvm/Target/TargetMachine.h"
     25 #include "llvm/Target/TargetRegisterInfo.h"
     26 
     27 using namespace llvm;
     28 
     29 CriticalAntiDepBreaker::
     30 CriticalAntiDepBreaker(MachineFunction& MFi, const RegisterClassInfo &RCI) :
     31   AntiDepBreaker(), MF(MFi),
     32   MRI(MF.getRegInfo()),
     33   TII(MF.getTarget().getInstrInfo()),
     34   TRI(MF.getTarget().getRegisterInfo()),
     35   RegClassInfo(RCI),
     36   Classes(TRI->getNumRegs(), static_cast<const TargetRegisterClass *>(0)),
     37   KillIndices(TRI->getNumRegs(), 0),
     38   DefIndices(TRI->getNumRegs(), 0),
     39   KeepRegs(TRI->getNumRegs(), false) {}
     40 
     41 CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
     42 }
     43 
     44 void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
     45   const unsigned BBSize = BB->size();
     46   for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
     47     // Clear out the register class data.
     48     Classes[i] = static_cast<const TargetRegisterClass *>(0);
     49 
     50     // Initialize the indices to indicate that no registers are live.
     51     KillIndices[i] = ~0u;
     52     DefIndices[i] = BBSize;
     53   }
     54 
     55   // Clear "do not change" set.
     56   KeepRegs.reset();
     57 
     58   bool IsReturnBlock = (BBSize != 0 && BB->back().isReturn());
     59 
     60   // Examine the live-in regs of all successors.
     61   for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
     62          SE = BB->succ_end(); SI != SE; ++SI)
     63     for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
     64            E = (*SI)->livein_end(); I != E; ++I) {
     65       for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
     66         unsigned Reg = *AI;
     67         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
     68         KillIndices[Reg] = BBSize;
     69         DefIndices[Reg] = ~0u;
     70       }
     71     }
     72 
     73   // Mark live-out callee-saved registers. In a return block this is
     74   // all callee-saved registers. In non-return this is any
     75   // callee-saved register that is not saved in the prolog.
     76   const MachineFrameInfo *MFI = MF.getFrameInfo();
     77   BitVector Pristine = MFI->getPristineRegs(BB);
     78   for (const uint16_t *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
     79     if (!IsReturnBlock && !Pristine.test(*I)) continue;
     80     for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
     81       unsigned Reg = *AI;
     82       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
     83       KillIndices[Reg] = BBSize;
     84       DefIndices[Reg] = ~0u;
     85     }
     86   }
     87 }
     88 
     89 void CriticalAntiDepBreaker::FinishBlock() {
     90   RegRefs.clear();
     91   KeepRegs.reset();
     92 }
     93 
     94 void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
     95                                      unsigned InsertPosIndex) {
     96   if (MI->isDebugValue())
     97     return;
     98   assert(Count < InsertPosIndex && "Instruction index out of expected range!");
     99 
    100   for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
    101     if (KillIndices[Reg] != ~0u) {
    102       // If Reg is currently live, then mark that it can't be renamed as
    103       // we don't know the extent of its live-range anymore (now that it
    104       // has been scheduled).
    105       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    106       KillIndices[Reg] = Count;
    107     } else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
    108       // Any register which was defined within the previous scheduling region
    109       // may have been rescheduled and its lifetime may overlap with registers
    110       // in ways not reflected in our current liveness state. For each such
    111       // register, adjust the liveness state to be conservatively correct.
    112       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    113 
    114       // Move the def index to the end of the previous region, to reflect
    115       // that the def could theoretically have been scheduled at the end.
    116       DefIndices[Reg] = InsertPosIndex;
    117     }
    118   }
    119 
    120   PrescanInstruction(MI);
    121   ScanInstruction(MI, Count);
    122 }
    123 
    124 /// CriticalPathStep - Return the next SUnit after SU on the bottom-up
    125 /// critical path.
    126 static const SDep *CriticalPathStep(const SUnit *SU) {
    127   const SDep *Next = 0;
    128   unsigned NextDepth = 0;
    129   // Find the predecessor edge with the greatest depth.
    130   for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
    131        P != PE; ++P) {
    132     const SUnit *PredSU = P->getSUnit();
    133     unsigned PredLatency = P->getLatency();
    134     unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
    135     // In the case of a latency tie, prefer an anti-dependency edge over
    136     // other types of edges.
    137     if (NextDepth < PredTotalLatency ||
    138         (NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
    139       NextDepth = PredTotalLatency;
    140       Next = &*P;
    141     }
    142   }
    143   return Next;
    144 }
    145 
    146 void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
    147   // It's not safe to change register allocation for source operands of
    148   // that have special allocation requirements. Also assume all registers
    149   // used in a call must not be changed (ABI).
    150   // FIXME: The issue with predicated instruction is more complex. We are being
    151   // conservative here because the kill markers cannot be trusted after
    152   // if-conversion:
    153   // %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
    154   // ...
    155   // STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
    156   // %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
    157   // STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
    158   //
    159   // The first R6 kill is not really a kill since it's killed by a predicated
    160   // instruction which may not be executed. The second R6 def may or may not
    161   // re-define R6 so it's not safe to change it since the last R6 use cannot be
    162   // changed.
    163   bool Special = MI->isCall() ||
    164     MI->hasExtraSrcRegAllocReq() ||
    165     TII->isPredicated(MI);
    166 
    167   // Scan the register operands for this instruction and update
    168   // Classes and RegRefs.
    169   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    170     MachineOperand &MO = MI->getOperand(i);
    171     if (!MO.isReg()) continue;
    172     unsigned Reg = MO.getReg();
    173     if (Reg == 0) continue;
    174     const TargetRegisterClass *NewRC = 0;
    175 
    176     if (i < MI->getDesc().getNumOperands())
    177       NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
    178 
    179     // For now, only allow the register to be changed if its register
    180     // class is consistent across all uses.
    181     if (!Classes[Reg] && NewRC)
    182       Classes[Reg] = NewRC;
    183     else if (!NewRC || Classes[Reg] != NewRC)
    184       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    185 
    186     // Now check for aliases.
    187     for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
    188       // If an alias of the reg is used during the live range, give up.
    189       // Note that this allows us to skip checking if AntiDepReg
    190       // overlaps with any of the aliases, among other things.
    191       unsigned AliasReg = *AI;
    192       if (Classes[AliasReg]) {
    193         Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
    194         Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    195       }
    196     }
    197 
    198     // If we're still willing to consider this register, note the reference.
    199     if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
    200       RegRefs.insert(std::make_pair(Reg, &MO));
    201 
    202     if (MO.isUse() && Special) {
    203       if (!KeepRegs.test(Reg)) {
    204         KeepRegs.set(Reg);
    205         for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
    206           KeepRegs.set(*SubRegs);
    207       }
    208     }
    209   }
    210 }
    211 
    212 void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
    213                                              unsigned Count) {
    214   // Update liveness.
    215   // Proceeding upwards, registers that are defed but not used in this
    216   // instruction are now dead.
    217 
    218   if (!TII->isPredicated(MI)) {
    219     // Predicated defs are modeled as read + write, i.e. similar to two
    220     // address updates.
    221     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    222       MachineOperand &MO = MI->getOperand(i);
    223 
    224       if (MO.isRegMask())
    225         for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
    226           if (MO.clobbersPhysReg(i)) {
    227             DefIndices[i] = Count;
    228             KillIndices[i] = ~0u;
    229             KeepRegs.reset(i);
    230             Classes[i] = 0;
    231             RegRefs.erase(i);
    232           }
    233 
    234       if (!MO.isReg()) continue;
    235       unsigned Reg = MO.getReg();
    236       if (Reg == 0) continue;
    237       if (!MO.isDef()) continue;
    238       // Ignore two-addr defs.
    239       if (MI->isRegTiedToUseOperand(i)) continue;
    240 
    241       DefIndices[Reg] = Count;
    242       KillIndices[Reg] = ~0u;
    243       assert(((KillIndices[Reg] == ~0u) !=
    244               (DefIndices[Reg] == ~0u)) &&
    245              "Kill and Def maps aren't consistent for Reg!");
    246       KeepRegs.reset(Reg);
    247       Classes[Reg] = 0;
    248       RegRefs.erase(Reg);
    249       // Repeat, for all subregs.
    250       for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
    251         unsigned SubregReg = *SubRegs;
    252         DefIndices[SubregReg] = Count;
    253         KillIndices[SubregReg] = ~0u;
    254         KeepRegs.reset(SubregReg);
    255         Classes[SubregReg] = 0;
    256         RegRefs.erase(SubregReg);
    257       }
    258       // Conservatively mark super-registers as unusable.
    259       for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
    260         Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1);
    261     }
    262   }
    263   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    264     MachineOperand &MO = MI->getOperand(i);
    265     if (!MO.isReg()) continue;
    266     unsigned Reg = MO.getReg();
    267     if (Reg == 0) continue;
    268     if (!MO.isUse()) continue;
    269 
    270     const TargetRegisterClass *NewRC = 0;
    271     if (i < MI->getDesc().getNumOperands())
    272       NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
    273 
    274     // For now, only allow the register to be changed if its register
    275     // class is consistent across all uses.
    276     if (!Classes[Reg] && NewRC)
    277       Classes[Reg] = NewRC;
    278     else if (!NewRC || Classes[Reg] != NewRC)
    279       Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
    280 
    281     RegRefs.insert(std::make_pair(Reg, &MO));
    282 
    283     // It wasn't previously live but now it is, this is a kill.
    284     if (KillIndices[Reg] == ~0u) {
    285       KillIndices[Reg] = Count;
    286       DefIndices[Reg] = ~0u;
    287           assert(((KillIndices[Reg] == ~0u) !=
    288                   (DefIndices[Reg] == ~0u)) &&
    289                "Kill and Def maps aren't consistent for Reg!");
    290     }
    291     // Repeat, for all aliases.
    292     for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
    293       unsigned AliasReg = *AI;
    294       if (KillIndices[AliasReg] == ~0u) {
    295         KillIndices[AliasReg] = Count;
    296         DefIndices[AliasReg] = ~0u;
    297       }
    298     }
    299   }
    300 }
    301 
    302 // Check all machine operands that reference the antidependent register and must
    303 // be replaced by NewReg. Return true if any of their parent instructions may
    304 // clobber the new register.
    305 //
    306 // Note: AntiDepReg may be referenced by a two-address instruction such that
    307 // it's use operand is tied to a def operand. We guard against the case in which
    308 // the two-address instruction also defines NewReg, as may happen with
    309 // pre/postincrement loads. In this case, both the use and def operands are in
    310 // RegRefs because the def is inserted by PrescanInstruction and not erased
    311 // during ScanInstruction. So checking for an instructions with definitions of
    312 // both NewReg and AntiDepReg covers it.
    313 bool
    314 CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
    315                                                 RegRefIter RegRefEnd,
    316                                                 unsigned NewReg)
    317 {
    318   for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
    319     MachineOperand *RefOper = I->second;
    320 
    321     // Don't allow the instruction defining AntiDepReg to earlyclobber its
    322     // operands, in case they may be assigned to NewReg. In this case antidep
    323     // breaking must fail, but it's too rare to bother optimizing.
    324     if (RefOper->isDef() && RefOper->isEarlyClobber())
    325       return true;
    326 
    327     // Handle cases in which this instructions defines NewReg.
    328     MachineInstr *MI = RefOper->getParent();
    329     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    330       const MachineOperand &CheckOper = MI->getOperand(i);
    331 
    332       if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
    333         return true;
    334 
    335       if (!CheckOper.isReg() || !CheckOper.isDef() ||
    336           CheckOper.getReg() != NewReg)
    337         continue;
    338 
    339       // Don't allow the instruction to define NewReg and AntiDepReg.
    340       // When AntiDepReg is renamed it will be an illegal op.
    341       if (RefOper->isDef())
    342         return true;
    343 
    344       // Don't allow an instruction using AntiDepReg to be earlyclobbered by
    345       // NewReg
    346       if (CheckOper.isEarlyClobber())
    347         return true;
    348 
    349       // Don't allow inline asm to define NewReg at all. Who know what it's
    350       // doing with it.
    351       if (MI->isInlineAsm())
    352         return true;
    353     }
    354   }
    355   return false;
    356 }
    357 
    358 unsigned CriticalAntiDepBreaker::
    359 findSuitableFreeRegister(RegRefIter RegRefBegin,
    360                          RegRefIter RegRefEnd,
    361                          unsigned AntiDepReg,
    362                          unsigned LastNewReg,
    363                          const TargetRegisterClass *RC,
    364                          SmallVector<unsigned, 2> &Forbid)
    365 {
    366   ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC);
    367   for (unsigned i = 0; i != Order.size(); ++i) {
    368     unsigned NewReg = Order[i];
    369     // Don't replace a register with itself.
    370     if (NewReg == AntiDepReg) continue;
    371     // Don't replace a register with one that was recently used to repair
    372     // an anti-dependence with this AntiDepReg, because that would
    373     // re-introduce that anti-dependence.
    374     if (NewReg == LastNewReg) continue;
    375     // If any instructions that define AntiDepReg also define the NewReg, it's
    376     // not suitable.  For example, Instruction with multiple definitions can
    377     // result in this condition.
    378     if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
    379     // If NewReg is dead and NewReg's most recent def is not before
    380     // AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
    381     assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
    382            && "Kill and Def maps aren't consistent for AntiDepReg!");
    383     assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
    384            && "Kill and Def maps aren't consistent for NewReg!");
    385     if (KillIndices[NewReg] != ~0u ||
    386         Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
    387         KillIndices[AntiDepReg] > DefIndices[NewReg])
    388       continue;
    389     // If NewReg overlaps any of the forbidden registers, we can't use it.
    390     bool Forbidden = false;
    391     for (SmallVector<unsigned, 2>::iterator it = Forbid.begin(),
    392            ite = Forbid.end(); it != ite; ++it)
    393       if (TRI->regsOverlap(NewReg, *it)) {
    394         Forbidden = true;
    395         break;
    396       }
    397     if (Forbidden) continue;
    398     return NewReg;
    399   }
    400 
    401   // No registers are free and available!
    402   return 0;
    403 }
    404 
    405 unsigned CriticalAntiDepBreaker::
    406 BreakAntiDependencies(const std::vector<SUnit>& SUnits,
    407                       MachineBasicBlock::iterator Begin,
    408                       MachineBasicBlock::iterator End,
    409                       unsigned InsertPosIndex,
    410                       DbgValueVector &DbgValues) {
    411   // The code below assumes that there is at least one instruction,
    412   // so just duck out immediately if the block is empty.
    413   if (SUnits.empty()) return 0;
    414 
    415   // Keep a map of the MachineInstr*'s back to the SUnit representing them.
    416   // This is used for updating debug information.
    417   //
    418   // FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
    419   DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
    420 
    421   // Find the node at the bottom of the critical path.
    422   const SUnit *Max = 0;
    423   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    424     const SUnit *SU = &SUnits[i];
    425     MISUnitMap[SU->getInstr()] = SU;
    426     if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
    427       Max = SU;
    428   }
    429 
    430 #ifndef NDEBUG
    431   {
    432     DEBUG(dbgs() << "Critical path has total latency "
    433           << (Max->getDepth() + Max->Latency) << "\n");
    434     DEBUG(dbgs() << "Available regs:");
    435     for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
    436       if (KillIndices[Reg] == ~0u)
    437         DEBUG(dbgs() << " " << TRI->getName(Reg));
    438     }
    439     DEBUG(dbgs() << '\n');
    440   }
    441 #endif
    442 
    443   // Track progress along the critical path through the SUnit graph as we walk
    444   // the instructions.
    445   const SUnit *CriticalPathSU = Max;
    446   MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
    447 
    448   // Consider this pattern:
    449   //   A = ...
    450   //   ... = A
    451   //   A = ...
    452   //   ... = A
    453   //   A = ...
    454   //   ... = A
    455   //   A = ...
    456   //   ... = A
    457   // There are three anti-dependencies here, and without special care,
    458   // we'd break all of them using the same register:
    459   //   A = ...
    460   //   ... = A
    461   //   B = ...
    462   //   ... = B
    463   //   B = ...
    464   //   ... = B
    465   //   B = ...
    466   //   ... = B
    467   // because at each anti-dependence, B is the first register that
    468   // isn't A which is free.  This re-introduces anti-dependencies
    469   // at all but one of the original anti-dependencies that we were
    470   // trying to break.  To avoid this, keep track of the most recent
    471   // register that each register was replaced with, avoid
    472   // using it to repair an anti-dependence on the same register.
    473   // This lets us produce this:
    474   //   A = ...
    475   //   ... = A
    476   //   B = ...
    477   //   ... = B
    478   //   C = ...
    479   //   ... = C
    480   //   B = ...
    481   //   ... = B
    482   // This still has an anti-dependence on B, but at least it isn't on the
    483   // original critical path.
    484   //
    485   // TODO: If we tracked more than one register here, we could potentially
    486   // fix that remaining critical edge too. This is a little more involved,
    487   // because unlike the most recent register, less recent registers should
    488   // still be considered, though only if no other registers are available.
    489   std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
    490 
    491   // Attempt to break anti-dependence edges on the critical path. Walk the
    492   // instructions from the bottom up, tracking information about liveness
    493   // as we go to help determine which registers are available.
    494   unsigned Broken = 0;
    495   unsigned Count = InsertPosIndex - 1;
    496   for (MachineBasicBlock::iterator I = End, E = Begin;
    497        I != E; --Count) {
    498     MachineInstr *MI = --I;
    499     if (MI->isDebugValue())
    500       continue;
    501 
    502     // Check if this instruction has a dependence on the critical path that
    503     // is an anti-dependence that we may be able to break. If it is, set
    504     // AntiDepReg to the non-zero register associated with the anti-dependence.
    505     //
    506     // We limit our attention to the critical path as a heuristic to avoid
    507     // breaking anti-dependence edges that aren't going to significantly
    508     // impact the overall schedule. There are a limited number of registers
    509     // and we want to save them for the important edges.
    510     //
    511     // TODO: Instructions with multiple defs could have multiple
    512     // anti-dependencies. The current code here only knows how to break one
    513     // edge per instruction. Note that we'd have to be able to break all of
    514     // the anti-dependencies in an instruction in order to be effective.
    515     unsigned AntiDepReg = 0;
    516     if (MI == CriticalPathMI) {
    517       if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
    518         const SUnit *NextSU = Edge->getSUnit();
    519 
    520         // Only consider anti-dependence edges.
    521         if (Edge->getKind() == SDep::Anti) {
    522           AntiDepReg = Edge->getReg();
    523           assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
    524           if (!MRI.isAllocatable(AntiDepReg))
    525             // Don't break anti-dependencies on non-allocatable registers.
    526             AntiDepReg = 0;
    527           else if (KeepRegs.test(AntiDepReg))
    528             // Don't break anti-dependencies if an use down below requires
    529             // this exact register.
    530             AntiDepReg = 0;
    531           else {
    532             // If the SUnit has other dependencies on the SUnit that it
    533             // anti-depends on, don't bother breaking the anti-dependency
    534             // since those edges would prevent such units from being
    535             // scheduled past each other regardless.
    536             //
    537             // Also, if there are dependencies on other SUnits with the
    538             // same register as the anti-dependency, don't attempt to
    539             // break it.
    540             for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
    541                  PE = CriticalPathSU->Preds.end(); P != PE; ++P)
    542               if (P->getSUnit() == NextSU ?
    543                     (P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
    544                     (P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
    545                 AntiDepReg = 0;
    546                 break;
    547               }
    548           }
    549         }
    550         CriticalPathSU = NextSU;
    551         CriticalPathMI = CriticalPathSU->getInstr();
    552       } else {
    553         // We've reached the end of the critical path.
    554         CriticalPathSU = 0;
    555         CriticalPathMI = 0;
    556       }
    557     }
    558 
    559     PrescanInstruction(MI);
    560 
    561     SmallVector<unsigned, 2> ForbidRegs;
    562 
    563     // If MI's defs have a special allocation requirement, don't allow
    564     // any def registers to be changed. Also assume all registers
    565     // defined in a call must not be changed (ABI).
    566     if (MI->isCall() || MI->hasExtraDefRegAllocReq() ||
    567         TII->isPredicated(MI))
    568       // If this instruction's defs have special allocation requirement, don't
    569       // break this anti-dependency.
    570       AntiDepReg = 0;
    571     else if (AntiDepReg) {
    572       // If this instruction has a use of AntiDepReg, breaking it
    573       // is invalid.  If the instruction defines other registers,
    574       // save a list of them so that we don't pick a new register
    575       // that overlaps any of them.
    576       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    577         MachineOperand &MO = MI->getOperand(i);
    578         if (!MO.isReg()) continue;
    579         unsigned Reg = MO.getReg();
    580         if (Reg == 0) continue;
    581         if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
    582           AntiDepReg = 0;
    583           break;
    584         }
    585         if (MO.isDef() && Reg != AntiDepReg)
    586           ForbidRegs.push_back(Reg);
    587       }
    588     }
    589 
    590     // Determine AntiDepReg's register class, if it is live and is
    591     // consistently used within a single class.
    592     const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg] : 0;
    593     assert((AntiDepReg == 0 || RC != NULL) &&
    594            "Register should be live if it's causing an anti-dependence!");
    595     if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
    596       AntiDepReg = 0;
    597 
    598     // Look for a suitable register to use to break the anti-depenence.
    599     //
    600     // TODO: Instead of picking the first free register, consider which might
    601     // be the best.
    602     if (AntiDepReg != 0) {
    603       std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
    604                 std::multimap<unsigned, MachineOperand *>::iterator>
    605         Range = RegRefs.equal_range(AntiDepReg);
    606       if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
    607                                                      AntiDepReg,
    608                                                      LastNewReg[AntiDepReg],
    609                                                      RC, ForbidRegs)) {
    610         DEBUG(dbgs() << "Breaking anti-dependence edge on "
    611               << TRI->getName(AntiDepReg)
    612               << " with " << RegRefs.count(AntiDepReg) << " references"
    613               << " using " << TRI->getName(NewReg) << "!\n");
    614 
    615         // Update the references to the old register to refer to the new
    616         // register.
    617         for (std::multimap<unsigned, MachineOperand *>::iterator
    618              Q = Range.first, QE = Range.second; Q != QE; ++Q) {
    619           Q->second->setReg(NewReg);
    620           // If the SU for the instruction being updated has debug information
    621           // related to the anti-dependency register, make sure to update that
    622           // as well.
    623           const SUnit *SU = MISUnitMap[Q->second->getParent()];
    624           if (!SU) continue;
    625           for (DbgValueVector::iterator DVI = DbgValues.begin(),
    626                  DVE = DbgValues.end(); DVI != DVE; ++DVI)
    627             if (DVI->second == Q->second->getParent())
    628               UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
    629         }
    630 
    631         // We just went back in time and modified history; the
    632         // liveness information for the anti-dependence reg is now
    633         // inconsistent. Set the state as if it were dead.
    634         Classes[NewReg] = Classes[AntiDepReg];
    635         DefIndices[NewReg] = DefIndices[AntiDepReg];
    636         KillIndices[NewReg] = KillIndices[AntiDepReg];
    637         assert(((KillIndices[NewReg] == ~0u) !=
    638                 (DefIndices[NewReg] == ~0u)) &&
    639              "Kill and Def maps aren't consistent for NewReg!");
    640 
    641         Classes[AntiDepReg] = 0;
    642         DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
    643         KillIndices[AntiDepReg] = ~0u;
    644         assert(((KillIndices[AntiDepReg] == ~0u) !=
    645                 (DefIndices[AntiDepReg] == ~0u)) &&
    646              "Kill and Def maps aren't consistent for AntiDepReg!");
    647 
    648         RegRefs.erase(AntiDepReg);
    649         LastNewReg[AntiDepReg] = NewReg;
    650         ++Broken;
    651       }
    652     }
    653 
    654     ScanInstruction(MI, Count);
    655   }
    656 
    657   return Broken;
    658 }
    659