Home | History | Annotate | Download | only in ARM
      1 //===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the pass that transforms the ARM machine instructions into
     11 // relocatable machine code.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #define DEBUG_TYPE "jit"
     16 #include "ARM.h"
     17 #include "ARMBaseInstrInfo.h"
     18 #include "ARMConstantPoolValue.h"
     19 #include "ARMRelocations.h"
     20 #include "ARMSubtarget.h"
     21 #include "ARMTargetMachine.h"
     22 #include "MCTargetDesc/ARMAddressingModes.h"
     23 #include "llvm/ADT/Statistic.h"
     24 #include "llvm/CodeGen/JITCodeEmitter.h"
     25 #include "llvm/CodeGen/MachineConstantPool.h"
     26 #include "llvm/CodeGen/MachineFunctionPass.h"
     27 #include "llvm/CodeGen/MachineInstr.h"
     28 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     29 #include "llvm/CodeGen/MachineModuleInfo.h"
     30 #include "llvm/CodeGen/Passes.h"
     31 #include "llvm/IR/Constants.h"
     32 #include "llvm/IR/DerivedTypes.h"
     33 #include "llvm/IR/Function.h"
     34 #include "llvm/PassManager.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/Support/raw_ostream.h"
     38 #ifndef NDEBUG
     39 #include <iomanip>
     40 #endif
     41 using namespace llvm;
     42 
     43 STATISTIC(NumEmitted, "Number of machine instructions emitted");
     44 
     45 namespace {
     46 
     47   class ARMCodeEmitter : public MachineFunctionPass {
     48     ARMJITInfo                *JTI;
     49     const ARMBaseInstrInfo    *II;
     50     const DataLayout          *TD;
     51     const ARMSubtarget        *Subtarget;
     52     TargetMachine             &TM;
     53     JITCodeEmitter            &MCE;
     54     MachineModuleInfo *MMI;
     55     const std::vector<MachineConstantPoolEntry> *MCPEs;
     56     const std::vector<MachineJumpTableEntry> *MJTEs;
     57     bool IsPIC;
     58     bool IsThumb;
     59 
     60     void getAnalysisUsage(AnalysisUsage &AU) const {
     61       AU.addRequired<MachineModuleInfo>();
     62       MachineFunctionPass::getAnalysisUsage(AU);
     63     }
     64 
     65     static char ID;
     66   public:
     67     ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
     68       : MachineFunctionPass(ID), JTI(0),
     69         II((const ARMBaseInstrInfo *)tm.getInstrInfo()),
     70         TD(tm.getDataLayout()), TM(tm),
     71         MCE(mce), MCPEs(0), MJTEs(0),
     72         IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
     73 
     74     /// getBinaryCodeForInstr - This function, generated by the
     75     /// CodeEmitterGenerator using TableGen, produces the binary encoding for
     76     /// machine instructions.
     77     uint64_t getBinaryCodeForInstr(const MachineInstr &MI) const;
     78 
     79     bool runOnMachineFunction(MachineFunction &MF);
     80 
     81     virtual const char *getPassName() const {
     82       return "ARM Machine Code Emitter";
     83     }
     84 
     85     void emitInstruction(const MachineInstr &MI);
     86 
     87   private:
     88 
     89     void emitWordLE(unsigned Binary);
     90     void emitDWordLE(uint64_t Binary);
     91     void emitConstantToMemory(unsigned CPI, const Constant *CV);
     92     void emitConstPoolInstruction(const MachineInstr &MI);
     93     void emitMOVi32immInstruction(const MachineInstr &MI);
     94     void emitMOVi2piecesInstruction(const MachineInstr &MI);
     95     void emitLEApcrelInstruction(const MachineInstr &MI);
     96     void emitLEApcrelJTInstruction(const MachineInstr &MI);
     97     void emitPseudoMoveInstruction(const MachineInstr &MI);
     98     void addPCLabel(unsigned LabelID);
     99     void emitPseudoInstruction(const MachineInstr &MI);
    100     unsigned getMachineSoRegOpValue(const MachineInstr &MI,
    101                                     const MCInstrDesc &MCID,
    102                                     const MachineOperand &MO,
    103                                     unsigned OpIdx);
    104 
    105     unsigned getMachineSoImmOpValue(unsigned SoImm);
    106     unsigned getAddrModeSBit(const MachineInstr &MI,
    107                              const MCInstrDesc &MCID) const;
    108 
    109     void emitDataProcessingInstruction(const MachineInstr &MI,
    110                                        unsigned ImplicitRd = 0,
    111                                        unsigned ImplicitRn = 0);
    112 
    113     void emitLoadStoreInstruction(const MachineInstr &MI,
    114                                   unsigned ImplicitRd = 0,
    115                                   unsigned ImplicitRn = 0);
    116 
    117     void emitMiscLoadStoreInstruction(const MachineInstr &MI,
    118                                       unsigned ImplicitRn = 0);
    119 
    120     void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
    121 
    122     void emitMulFrmInstruction(const MachineInstr &MI);
    123 
    124     void emitExtendInstruction(const MachineInstr &MI);
    125 
    126     void emitMiscArithInstruction(const MachineInstr &MI);
    127 
    128     void emitSaturateInstruction(const MachineInstr &MI);
    129 
    130     void emitBranchInstruction(const MachineInstr &MI);
    131 
    132     void emitInlineJumpTable(unsigned JTIndex);
    133 
    134     void emitMiscBranchInstruction(const MachineInstr &MI);
    135 
    136     void emitVFPArithInstruction(const MachineInstr &MI);
    137 
    138     void emitVFPConversionInstruction(const MachineInstr &MI);
    139 
    140     void emitVFPLoadStoreInstruction(const MachineInstr &MI);
    141 
    142     void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
    143 
    144     void emitMiscInstruction(const MachineInstr &MI);
    145 
    146     void emitNEONLaneInstruction(const MachineInstr &MI);
    147     void emitNEONDupInstruction(const MachineInstr &MI);
    148     void emitNEON1RegModImmInstruction(const MachineInstr &MI);
    149     void emitNEON2RegInstruction(const MachineInstr &MI);
    150     void emitNEON3RegInstruction(const MachineInstr &MI);
    151 
    152     /// getMachineOpValue - Return binary encoding of operand. If the machine
    153     /// operand requires relocation, record the relocation and return zero.
    154     unsigned getMachineOpValue(const MachineInstr &MI,
    155                                const MachineOperand &MO) const;
    156     unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
    157       return getMachineOpValue(MI, MI.getOperand(OpIdx));
    158     }
    159 
    160     // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
    161     //  TableGen'erated getBinaryCodeForInstr() function to encode any
    162     //  operand values, instead querying getMachineOpValue() directly for
    163     //  each operand it needs to encode. Thus, any of the new encoder
    164     //  helper functions can simply return 0 as the values the return
    165     //  are already handled elsewhere. They are placeholders to allow this
    166     //  encoder to continue to function until the MC encoder is sufficiently
    167     //  far along that this one can be eliminated entirely.
    168     unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val)
    169       const { return 0; }
    170     unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val)
    171       const { return 0; }
    172     unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val)
    173       const { return 0; }
    174     unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val)
    175       const {
    176       if (IsThumb) {
    177         Val &= 0x0FFFFFFF;
    178         Val |= 0xE0000000;
    179       }
    180       return Val;
    181     }
    182     unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
    183       const { return 0; }
    184     unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
    185       const { return 0; }
    186     unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op)
    187       const { return 0; }
    188     unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
    189       const { return 0; }
    190     unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op)
    191       const { return 0; }
    192     unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op)
    193       const { return 0; }
    194     unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op)
    195       const { return 0; }
    196     unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
    197       const { return 0; }
    198     unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI,
    199       unsigned Op) const { return 0; }
    200     unsigned getARMBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
    201       const { return 0; }
    202     unsigned getARMBLTargetOpValue(const MachineInstr &MI, unsigned Op)
    203       const { return 0; }
    204     unsigned getARMBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
    205       const { return 0; }
    206     unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
    207       const { return 0; }
    208     unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
    209       const { return 0; }
    210     unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op)
    211       const { return 0; }
    212     unsigned getSORegRegOpValue(const MachineInstr &MI, unsigned Op)
    213       const { return 0; }
    214     unsigned getSORegImmOpValue(const MachineInstr &MI, unsigned Op)
    215       const { return 0; }
    216     unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op)
    217       const { return 0; }
    218     unsigned getT2AddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
    219       const { return 0; }
    220     unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op)
    221       const { return 0; }
    222     unsigned getT2Imm8s4OpValue(const MachineInstr &MI, unsigned Op)
    223       const { return 0; }
    224     unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op)
    225       const { return 0; }
    226     unsigned getT2AddrModeImm0_1020s4OpValue(const MachineInstr &MI,unsigned Op)
    227       const { return 0; }
    228     unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op)
    229       const { return 0; }
    230     unsigned getT2AddrModeImm12OffsetOpValue(const MachineInstr &MI,unsigned Op)
    231       const { return 0; }
    232     unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op)
    233       const { return 0; }
    234     unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op)
    235       const { return 0; }
    236     unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op)
    237       const { return 0; }
    238     unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
    239       const { return 0; }
    240     unsigned getAddrMode6OneLane32AddressOpValue(const MachineInstr &MI,
    241                                                  unsigned Op)
    242       const { return 0; }
    243     unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op)
    244       const { return 0; }
    245     unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
    246       const { return 0; }
    247     unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
    248                                             unsigned Op) const { return 0; }
    249     unsigned getSsatBitPosValue(const MachineInstr &MI,
    250                                 unsigned Op) const { return 0; }
    251     uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx)
    252       const {return 0; }
    253     uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
    254       const { return 0; }
    255 
    256     unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
    257       const {
    258       // {17-13} = reg
    259       // {12}    = (U)nsigned (add == '1', sub == '0')
    260       // {11-0}  = imm12
    261       const MachineOperand &MO  = MI.getOperand(Op);
    262       const MachineOperand &MO1 = MI.getOperand(Op + 1);
    263       if (!MO.isReg()) {
    264         emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
    265         return 0;
    266       }
    267       unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg());
    268       int32_t Imm12 = MO1.getImm();
    269       uint32_t Binary;
    270       Binary = Imm12 & 0xfff;
    271       if (Imm12 >= 0)
    272         Binary |= (1 << 12);
    273       Binary |= (Reg << 13);
    274       return Binary;
    275     }
    276 
    277     unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op)
    278       const {
    279       const MCInstrDesc &MCID = MI.getDesc();
    280       const MachineOperand &MO = MI.getOperand(Op);
    281 
    282       unsigned Reloc = (MCID.Opcode == ARM::MOVi16 ?
    283                        ARM::reloc_arm_movw : ARM::reloc_arm_movt);
    284 
    285       if (!MO.isImm()) {
    286         emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
    287         return 0;
    288       }
    289       unsigned Imm16 = static_cast<unsigned>(MO.getImm());
    290       return Imm16;
    291     }
    292 
    293     uint32_t getAddrMode2OpValue(const MachineInstr &MI, unsigned OpIdx)
    294       const { return 0;}
    295     uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
    296       const { return 0;}
    297     uint32_t getPostIdxRegOpValue(const MachineInstr &MI, unsigned OpIdx)
    298       const { return 0;}
    299     uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
    300       const { return 0;}
    301     uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op)
    302       const { return 0; }
    303     uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op)
    304       const { return 0; }
    305     uint32_t getAddrModeSOpValue(const MachineInstr &MI, unsigned Op)
    306       const { return 0; }
    307     uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op)
    308       const { return 0; }
    309     uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op)
    310       const { return 0; }
    311     uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
    312       // {12-9}  = reg
    313       // {8}     = (U)nsigned (add == '1', sub == '0')
    314       // {7-0}   = imm8
    315       uint32_t Binary = 0;
    316       const MachineOperand &MO  = MI.getOperand(Op);
    317       const MachineOperand &MO1 = MI.getOperand(Op + 1);
    318       if (!MO.isReg()) {
    319         emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
    320         return 0;
    321       }
    322       unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg());
    323       int32_t Imm12 = MO1.getImm();
    324 
    325       // Special value for #-0
    326       if (Imm12 == INT32_MIN)
    327         Imm12 = 0;
    328 
    329       // Immediate is always encoded as positive. The 'U' bit controls add vs
    330       // sub.
    331       bool isAdd = true;
    332       if (Imm12 < 0) {
    333         Imm12 = -Imm12;
    334         isAdd = false;
    335       }
    336 
    337       // If immediate offset is omitted, default to +0.
    338       Binary |= 1 << 8;
    339       return Binary;
    340     }
    341     unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
    342       const { return 0; }
    343 
    344     unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
    345       const { return 0; }
    346 
    347     unsigned getShiftRight8Imm(const MachineInstr &MI, unsigned Op)
    348       const { return 0; }
    349     unsigned getShiftRight16Imm(const MachineInstr &MI, unsigned Op)
    350       const { return 0; }
    351     unsigned getShiftRight32Imm(const MachineInstr &MI, unsigned Op)
    352       const { return 0; }
    353     unsigned getShiftRight64Imm(const MachineInstr &MI, unsigned Op)
    354       const { return 0; }
    355 
    356     /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
    357     /// machine operand requires relocation, record the relocation and return
    358     /// zero.
    359     unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
    360                             unsigned Reloc);
    361 
    362     /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
    363     ///
    364     unsigned getShiftOp(unsigned Imm) const ;
    365 
    366     /// Routines that handle operands which add machine relocations which are
    367     /// fixed up by the relocation stage.
    368     void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
    369                            bool MayNeedFarStub,  bool Indirect,
    370                            intptr_t ACPV = 0) const;
    371     void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
    372     void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
    373     void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
    374     void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
    375                                intptr_t JTBase = 0) const;
    376     unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) const;
    377     unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) const;
    378     unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) const;
    379     unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) const;
    380     unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) const;
    381     unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) const;
    382   };
    383 }
    384 
    385 char ARMCodeEmitter::ID = 0;
    386 
    387 /// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
    388 /// code to the specified MCE object.
    389 FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
    390                                                 JITCodeEmitter &JCE) {
    391   return new ARMCodeEmitter(TM, JCE);
    392 }
    393 
    394 bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
    395   TargetMachine &Target = const_cast<TargetMachine&>(MF.getTarget());
    396 
    397   assert((Target.getRelocationModel() != Reloc::Default ||
    398           Target.getRelocationModel() != Reloc::Static) &&
    399          "JIT relocation model must be set to static or default!");
    400 
    401   JTI = static_cast<ARMJITInfo*>(Target.getJITInfo());
    402   II = static_cast<const ARMBaseInstrInfo*>(Target.getInstrInfo());
    403   TD = Target.getDataLayout();
    404 
    405   Subtarget = &TM.getSubtarget<ARMSubtarget>();
    406   MCPEs = &MF.getConstantPool()->getConstants();
    407   MJTEs = 0;
    408   if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
    409   IsPIC = TM.getRelocationModel() == Reloc::PIC_;
    410   IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
    411   JTI->Initialize(MF, IsPIC);
    412   MMI = &getAnalysis<MachineModuleInfo>();
    413   MCE.setModuleInfo(MMI);
    414 
    415   do {
    416     DEBUG(errs() << "JITTing function '"
    417           << MF.getName() << "'\n");
    418     MCE.startFunction(MF);
    419     for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
    420          MBB != E; ++MBB) {
    421       MCE.StartMachineBasicBlock(MBB);
    422       for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
    423            I != E; ++I)
    424         emitInstruction(*I);
    425     }
    426   } while (MCE.finishFunction(MF));
    427 
    428   return false;
    429 }
    430 
    431 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
    432 ///
    433 unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
    434   switch (ARM_AM::getAM2ShiftOpc(Imm)) {
    435   default: llvm_unreachable("Unknown shift opc!");
    436   case ARM_AM::asr: return 2;
    437   case ARM_AM::lsl: return 0;
    438   case ARM_AM::lsr: return 1;
    439   case ARM_AM::ror:
    440   case ARM_AM::rrx: return 3;
    441   }
    442 }
    443 
    444 /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
    445 /// machine operand requires relocation, record the relocation and return zero.
    446 unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
    447                                         const MachineOperand &MO,
    448                                         unsigned Reloc) {
    449   assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
    450       && "Relocation to this function should be for movt or movw");
    451 
    452   if (MO.isImm())
    453     return static_cast<unsigned>(MO.getImm());
    454   else if (MO.isGlobal())
    455     emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
    456   else if (MO.isSymbol())
    457     emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
    458   else if (MO.isMBB())
    459     emitMachineBasicBlock(MO.getMBB(), Reloc);
    460   else {
    461 #ifndef NDEBUG
    462     errs() << MO;
    463 #endif
    464     llvm_unreachable("Unsupported operand type for movw/movt");
    465   }
    466   return 0;
    467 }
    468 
    469 /// getMachineOpValue - Return binary encoding of operand. If the machine
    470 /// operand requires relocation, record the relocation and return zero.
    471 unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
    472                                            const MachineOperand &MO) const {
    473   if (MO.isReg())
    474     return II->getRegisterInfo().getEncodingValue(MO.getReg());
    475   else if (MO.isImm())
    476     return static_cast<unsigned>(MO.getImm());
    477   else if (MO.isFPImm())
    478     return static_cast<unsigned>(MO.getFPImm()->getValueAPF()
    479                       .bitcastToAPInt().getHiBits(32).getLimitedValue());
    480   else if (MO.isGlobal())
    481     emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
    482   else if (MO.isSymbol())
    483     emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
    484   else if (MO.isCPI()) {
    485     const MCInstrDesc &MCID = MI.getDesc();
    486     // For VFP load, the immediate offset is multiplied by 4.
    487     unsigned Reloc =  ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
    488       ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
    489     emitConstPoolAddress(MO.getIndex(), Reloc);
    490   } else if (MO.isJTI())
    491     emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
    492   else if (MO.isMBB())
    493     emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
    494   else
    495     llvm_unreachable("Unable to encode MachineOperand!");
    496   return 0;
    497 }
    498 
    499 /// emitGlobalAddress - Emit the specified address to the code stream.
    500 ///
    501 void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
    502                                        bool MayNeedFarStub, bool Indirect,
    503                                        intptr_t ACPV) const {
    504   MachineRelocation MR = Indirect
    505     ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
    506                                            const_cast<GlobalValue *>(GV),
    507                                            ACPV, MayNeedFarStub)
    508     : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
    509                                const_cast<GlobalValue *>(GV), ACPV,
    510                                MayNeedFarStub);
    511   MCE.addRelocation(MR);
    512 }
    513 
    514 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
    515 /// be emitted to the current location in the function, and allow it to be PC
    516 /// relative.
    517 void ARMCodeEmitter::
    518 emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
    519   MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
    520                                                  Reloc, ES));
    521 }
    522 
    523 /// emitConstPoolAddress - Arrange for the address of an constant pool
    524 /// to be emitted to the current location in the function, and allow it to be PC
    525 /// relative.
    526 void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
    527   // Tell JIT emitter we'll resolve the address.
    528   MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
    529                                                     Reloc, CPI, 0, true));
    530 }
    531 
    532 /// emitJumpTableAddress - Arrange for the address of a jump table to
    533 /// be emitted to the current location in the function, and allow it to be PC
    534 /// relative.
    535 void ARMCodeEmitter::
    536 emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
    537   MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
    538                                                     Reloc, JTIndex, 0, true));
    539 }
    540 
    541 /// emitMachineBasicBlock - Emit the specified address basic block.
    542 void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
    543                                            unsigned Reloc,
    544                                            intptr_t JTBase) const {
    545   MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
    546                                              Reloc, BB, JTBase));
    547 }
    548 
    549 void ARMCodeEmitter::emitWordLE(unsigned Binary) {
    550   DEBUG(errs() << "  0x";
    551         errs().write_hex(Binary) << "\n");
    552   MCE.emitWordLE(Binary);
    553 }
    554 
    555 void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
    556   DEBUG(errs() << "  0x";
    557         errs().write_hex(Binary) << "\n");
    558   MCE.emitDWordLE(Binary);
    559 }
    560 
    561 void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
    562   DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
    563 
    564   MCE.processDebugLoc(MI.getDebugLoc(), true);
    565 
    566   ++NumEmitted;  // Keep track of the # of mi's emitted
    567   switch (MI.getDesc().TSFlags & ARMII::FormMask) {
    568   default: {
    569     llvm_unreachable("Unhandled instruction encoding format!");
    570   }
    571   case ARMII::MiscFrm:
    572     if (MI.getOpcode() == ARM::LEApcrelJT) {
    573       // Materialize jumptable address.
    574       emitLEApcrelJTInstruction(MI);
    575       break;
    576     }
    577     llvm_unreachable("Unhandled instruction encoding!");
    578   case ARMII::Pseudo:
    579     emitPseudoInstruction(MI);
    580     break;
    581   case ARMII::DPFrm:
    582   case ARMII::DPSoRegFrm:
    583     emitDataProcessingInstruction(MI);
    584     break;
    585   case ARMII::LdFrm:
    586   case ARMII::StFrm:
    587     emitLoadStoreInstruction(MI);
    588     break;
    589   case ARMII::LdMiscFrm:
    590   case ARMII::StMiscFrm:
    591     emitMiscLoadStoreInstruction(MI);
    592     break;
    593   case ARMII::LdStMulFrm:
    594     emitLoadStoreMultipleInstruction(MI);
    595     break;
    596   case ARMII::MulFrm:
    597     emitMulFrmInstruction(MI);
    598     break;
    599   case ARMII::ExtFrm:
    600     emitExtendInstruction(MI);
    601     break;
    602   case ARMII::ArithMiscFrm:
    603     emitMiscArithInstruction(MI);
    604     break;
    605   case ARMII::SatFrm:
    606     emitSaturateInstruction(MI);
    607     break;
    608   case ARMII::BrFrm:
    609     emitBranchInstruction(MI);
    610     break;
    611   case ARMII::BrMiscFrm:
    612     emitMiscBranchInstruction(MI);
    613     break;
    614   // VFP instructions.
    615   case ARMII::VFPUnaryFrm:
    616   case ARMII::VFPBinaryFrm:
    617     emitVFPArithInstruction(MI);
    618     break;
    619   case ARMII::VFPConv1Frm:
    620   case ARMII::VFPConv2Frm:
    621   case ARMII::VFPConv3Frm:
    622   case ARMII::VFPConv4Frm:
    623   case ARMII::VFPConv5Frm:
    624     emitVFPConversionInstruction(MI);
    625     break;
    626   case ARMII::VFPLdStFrm:
    627     emitVFPLoadStoreInstruction(MI);
    628     break;
    629   case ARMII::VFPLdStMulFrm:
    630     emitVFPLoadStoreMultipleInstruction(MI);
    631     break;
    632   case ARMII::VFPMiscFrm:
    633     emitMiscInstruction(MI);
    634     break;
    635   // NEON instructions.
    636   case ARMII::NGetLnFrm:
    637   case ARMII::NSetLnFrm:
    638     emitNEONLaneInstruction(MI);
    639     break;
    640   case ARMII::NDupFrm:
    641     emitNEONDupInstruction(MI);
    642     break;
    643   case ARMII::N1RegModImmFrm:
    644     emitNEON1RegModImmInstruction(MI);
    645     break;
    646   case ARMII::N2RegFrm:
    647     emitNEON2RegInstruction(MI);
    648     break;
    649   case ARMII::N3RegFrm:
    650     emitNEON3RegInstruction(MI);
    651     break;
    652   }
    653   MCE.processDebugLoc(MI.getDebugLoc(), false);
    654 }
    655 
    656 void ARMCodeEmitter::emitConstantToMemory(unsigned CPI, const Constant *C) {
    657   DEBUG({
    658       errs() << "  ** Constant pool #" << CPI << " @ "
    659              << (void*)MCE.getCurrentPCValue() << " ";
    660       if (const Function *F = dyn_cast<Function>(C))
    661         errs() << F->getName();
    662       else
    663         errs() << *C;
    664       errs() << '\n';
    665     });
    666 
    667   switch (C->getValueID()) {
    668   default: {
    669     llvm_unreachable("Unable to handle this constantpool entry!");
    670     break;
    671   }
    672   case Value::GlobalVariableVal: {
    673     emitGlobalAddress(static_cast<const GlobalValue*>(C),
    674                       ARM::reloc_arm_absolute, isa<Function>(C), false);
    675     emitWordLE(0);
    676     break;
    677   }
    678   case Value::ConstantIntVal: {
    679     const ConstantInt *CI = static_cast<const ConstantInt*>(C);
    680     uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
    681     emitWordLE(Val);
    682     break;
    683   }
    684   case Value::ConstantFPVal: {
    685     const ConstantFP *CFP = static_cast<const ConstantFP*>(C);
    686     if (CFP->getType()->isFloatTy())
    687       emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
    688     else if (CFP->getType()->isDoubleTy())
    689       emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
    690     else {
    691       llvm_unreachable("Unable to handle this constantpool entry!");
    692     }
    693     break;
    694   }
    695   case Value::ConstantArrayVal: {
    696     const ConstantArray *CA = static_cast<const ConstantArray*>(C);
    697     for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
    698       emitConstantToMemory(CPI, CA->getOperand(i));
    699     break;
    700   }
    701   }
    702 
    703   return;
    704 }
    705 
    706 void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
    707   unsigned CPI = MI.getOperand(0).getImm();       // CP instruction index.
    708   unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
    709   const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
    710 
    711   // Remember the CONSTPOOL_ENTRY address for later relocation.
    712   JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
    713 
    714   // Emit constpool island entry. In most cases, the actual values will be
    715   // resolved and relocated after code emission.
    716   if (MCPE.isMachineConstantPoolEntry()) {
    717     ARMConstantPoolValue *ACPV =
    718       static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
    719 
    720     DEBUG(errs() << "  ** ARM constant pool #" << CPI << " @ "
    721           << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
    722 
    723     assert(ACPV->isGlobalValue() && "unsupported constant pool value");
    724     const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
    725     if (GV) {
    726       Reloc::Model RelocM = TM.getRelocationModel();
    727       emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
    728                         isa<Function>(GV),
    729                         Subtarget->GVIsIndirectSymbol(GV, RelocM),
    730                         (intptr_t)ACPV);
    731     } else  {
    732       const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
    733       emitExternalSymbolAddress(Sym, ARM::reloc_arm_absolute);
    734     }
    735     emitWordLE(0);
    736   } else {
    737     emitConstantToMemory(CPI, MCPE.Val.ConstVal);
    738   }
    739 }
    740 
    741 void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
    742   const MachineOperand &MO0 = MI.getOperand(0);
    743   const MachineOperand &MO1 = MI.getOperand(1);
    744 
    745   // Emit the 'movw' instruction.
    746   unsigned Binary = 0x30 << 20;  // mov: Insts{27-20} = 0b00110000
    747 
    748   unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
    749 
    750   // Set the conditional execution predicate.
    751   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    752 
    753   // Encode Rd.
    754   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
    755 
    756   // Encode imm16 as imm4:imm12
    757   Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
    758   Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
    759   emitWordLE(Binary);
    760 
    761   unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
    762   // Emit the 'movt' instruction.
    763   Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
    764 
    765   // Set the conditional execution predicate.
    766   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    767 
    768   // Encode Rd.
    769   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
    770 
    771   // Encode imm16 as imm4:imm1, same as movw above.
    772   Binary |= Hi16 & 0xFFF;
    773   Binary |= ((Hi16 >> 12) & 0xF) << 16;
    774   emitWordLE(Binary);
    775 }
    776 
    777 void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
    778   const MachineOperand &MO0 = MI.getOperand(0);
    779   const MachineOperand &MO1 = MI.getOperand(1);
    780   assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
    781                                                   "Not a valid so_imm value!");
    782   unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
    783   unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
    784 
    785   // Emit the 'mov' instruction.
    786   unsigned Binary = 0xd << 21;  // mov: Insts{24-21} = 0b1101
    787 
    788   // Set the conditional execution predicate.
    789   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    790 
    791   // Encode Rd.
    792   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
    793 
    794   // Encode so_imm.
    795   // Set bit I(25) to identify this is the immediate form of <shifter_op>
    796   Binary |= 1 << ARMII::I_BitShift;
    797   Binary |= getMachineSoImmOpValue(V1);
    798   emitWordLE(Binary);
    799 
    800   // Now the 'orr' instruction.
    801   Binary = 0xc << 21;  // orr: Insts{24-21} = 0b1100
    802 
    803   // Set the conditional execution predicate.
    804   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    805 
    806   // Encode Rd.
    807   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
    808 
    809   // Encode Rn.
    810   Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
    811 
    812   // Encode so_imm.
    813   // Set bit I(25) to identify this is the immediate form of <shifter_op>
    814   Binary |= 1 << ARMII::I_BitShift;
    815   Binary |= getMachineSoImmOpValue(V2);
    816   emitWordLE(Binary);
    817 }
    818 
    819 void ARMCodeEmitter::emitLEApcrelInstruction(const MachineInstr &MI) {
    820   // It's basically add r, pc, (LCPI - $+8)
    821   const MCInstrDesc &MCID = MI.getDesc();
    822 
    823   unsigned Binary = 0;
    824 
    825   // Set the conditional execution predicate
    826   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    827 
    828   // Encode S bit if MI modifies CPSR.
    829   Binary |= getAddrModeSBit(MI, MCID);
    830 
    831   // Encode Rd.
    832   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
    833 
    834   // Encode Rn which is PC.
    835   Binary |= II->getRegisterInfo().getEncodingValue(ARM::PC) << ARMII::RegRnShift;
    836 
    837   // Encode the displacement which is a so_imm.
    838   // Set bit I(25) to identify this is the immediate form of <shifter_op>
    839   Binary |= 1 << ARMII::I_BitShift;
    840   emitConstPoolAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_so_imm_cp_entry);
    841 
    842   emitWordLE(Binary);
    843 }
    844 
    845 void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
    846   // It's basically add r, pc, (LJTI - $+8)
    847 
    848   const MCInstrDesc &MCID = MI.getDesc();
    849 
    850   // Emit the 'add' instruction.
    851   unsigned Binary = 0x4 << 21;  // add: Insts{24-21} = 0b0100
    852 
    853   // Set the conditional execution predicate
    854   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    855 
    856   // Encode S bit if MI modifies CPSR.
    857   Binary |= getAddrModeSBit(MI, MCID);
    858 
    859   // Encode Rd.
    860   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
    861 
    862   // Encode Rn which is PC.
    863   Binary |= II->getRegisterInfo().getEncodingValue(ARM::PC) << ARMII::RegRnShift;
    864 
    865   // Encode the displacement.
    866   Binary |= 1 << ARMII::I_BitShift;
    867   emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
    868 
    869   emitWordLE(Binary);
    870 }
    871 
    872 void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
    873   unsigned Opcode = MI.getDesc().Opcode;
    874 
    875   // Part of binary is determined by TableGn.
    876   unsigned Binary = getBinaryCodeForInstr(MI);
    877 
    878   // Set the conditional execution predicate
    879   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    880 
    881   // Encode S bit if MI modifies CPSR.
    882   if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
    883     Binary |= 1 << ARMII::S_BitShift;
    884 
    885   // Encode register def if there is one.
    886   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
    887 
    888   // Encode the shift operation.
    889   switch (Opcode) {
    890   default: break;
    891   case ARM::RRX:
    892     // rrx
    893     Binary |= 0x6 << 4;
    894     break;
    895   case ARM::MOVsrl_flag:
    896     // lsr #1
    897     Binary |= (0x2 << 4) | (1 << 7);
    898     break;
    899   case ARM::MOVsra_flag:
    900     // asr #1
    901     Binary |= (0x4 << 4) | (1 << 7);
    902     break;
    903   }
    904 
    905   // Encode register Rm.
    906   Binary |= getMachineOpValue(MI, 1);
    907 
    908   emitWordLE(Binary);
    909 }
    910 
    911 void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
    912   DEBUG(errs() << "  ** LPC" << LabelID << " @ "
    913         << (void*)MCE.getCurrentPCValue() << '\n');
    914   JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
    915 }
    916 
    917 void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
    918   unsigned Opcode = MI.getDesc().Opcode;
    919   switch (Opcode) {
    920   default:
    921     llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
    922   case ARM::B:
    923     emitBranchInstruction(MI);
    924     break;
    925   case ARM::BR_JTr:
    926   case ARM::BR_JTm:
    927   case ARM::BR_JTadd:
    928     emitMiscBranchInstruction(MI);
    929     break;
    930   case ARM::BX_CALL:
    931   case ARM::BMOVPCRX_CALL: {
    932     // First emit mov lr, pc
    933     unsigned Binary = 0x01a0e00f;
    934     Binary |= II->getPredicate(&MI) << ARMII::CondShift;
    935     emitWordLE(Binary);
    936 
    937     // and then emit the branch.
    938     emitMiscBranchInstruction(MI);
    939     break;
    940   }
    941   case TargetOpcode::INLINEASM: {
    942     // We allow inline assembler nodes with empty bodies - they can
    943     // implicitly define registers, which is ok for JIT.
    944     if (MI.getOperand(0).getSymbolName()[0]) {
    945       report_fatal_error("JIT does not support inline asm!");
    946     }
    947     break;
    948   }
    949   case TargetOpcode::PROLOG_LABEL:
    950   case TargetOpcode::EH_LABEL:
    951     MCE.emitLabel(MI.getOperand(0).getMCSymbol());
    952     break;
    953   case TargetOpcode::IMPLICIT_DEF:
    954   case TargetOpcode::KILL:
    955     // Do nothing.
    956     break;
    957   case ARM::CONSTPOOL_ENTRY:
    958     emitConstPoolInstruction(MI);
    959     break;
    960   case ARM::LDMIA_RET:
    961     emitLoadStoreMultipleInstruction(MI);
    962     break;
    963   case ARM::PICADD: {
    964     // Remember of the address of the PC label for relocation later.
    965     addPCLabel(MI.getOperand(2).getImm());
    966     // PICADD is just an add instruction that implicitly read pc.
    967     emitDataProcessingInstruction(MI, 0, ARM::PC);
    968     break;
    969   }
    970   case ARM::PICLDR:
    971   case ARM::PICLDRB:
    972   case ARM::PICSTR:
    973   case ARM::PICSTRB: {
    974     // Remember of the address of the PC label for relocation later.
    975     addPCLabel(MI.getOperand(2).getImm());
    976     // These are just load / store instructions that implicitly read pc.
    977     emitLoadStoreInstruction(MI, 0, ARM::PC);
    978     break;
    979   }
    980   case ARM::PICLDRH:
    981   case ARM::PICLDRSH:
    982   case ARM::PICLDRSB:
    983   case ARM::PICSTRH: {
    984     // Remember of the address of the PC label for relocation later.
    985     addPCLabel(MI.getOperand(2).getImm());
    986     // These are just load / store instructions that implicitly read pc.
    987     emitMiscLoadStoreInstruction(MI, ARM::PC);
    988     break;
    989   }
    990 
    991   case ARM::MOVi32imm:
    992     // Two instructions to materialize a constant.
    993     if (Subtarget->hasV6T2Ops())
    994       emitMOVi32immInstruction(MI);
    995     else
    996       emitMOVi2piecesInstruction(MI);
    997     break;
    998   case ARM::LEApcrel:
    999     // Materialize constantpool index address.
   1000     emitLEApcrelInstruction(MI);
   1001     break;
   1002   case ARM::LEApcrelJT:
   1003     // Materialize jumptable address.
   1004     emitLEApcrelJTInstruction(MI);
   1005     break;
   1006   case ARM::RRX:
   1007   case ARM::MOVsrl_flag:
   1008   case ARM::MOVsra_flag:
   1009     emitPseudoMoveInstruction(MI);
   1010     break;
   1011   }
   1012 }
   1013 
   1014 unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
   1015                                                 const MCInstrDesc &MCID,
   1016                                                 const MachineOperand &MO,
   1017                                                 unsigned OpIdx) {
   1018   unsigned Binary = getMachineOpValue(MI, MO);
   1019 
   1020   const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
   1021   const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
   1022   ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
   1023 
   1024   // Encode the shift opcode.
   1025   unsigned SBits = 0;
   1026   unsigned Rs = MO1.getReg();
   1027   if (Rs) {
   1028     // Set shift operand (bit[7:4]).
   1029     // LSL - 0001
   1030     // LSR - 0011
   1031     // ASR - 0101
   1032     // ROR - 0111
   1033     // RRX - 0110 and bit[11:8] clear.
   1034     switch (SOpc) {
   1035     default: llvm_unreachable("Unknown shift opc!");
   1036     case ARM_AM::lsl: SBits = 0x1; break;
   1037     case ARM_AM::lsr: SBits = 0x3; break;
   1038     case ARM_AM::asr: SBits = 0x5; break;
   1039     case ARM_AM::ror: SBits = 0x7; break;
   1040     case ARM_AM::rrx: SBits = 0x6; break;
   1041     }
   1042   } else {
   1043     // Set shift operand (bit[6:4]).
   1044     // LSL - 000
   1045     // LSR - 010
   1046     // ASR - 100
   1047     // ROR - 110
   1048     switch (SOpc) {
   1049     default: llvm_unreachable("Unknown shift opc!");
   1050     case ARM_AM::lsl: SBits = 0x0; break;
   1051     case ARM_AM::lsr: SBits = 0x2; break;
   1052     case ARM_AM::asr: SBits = 0x4; break;
   1053     case ARM_AM::ror: SBits = 0x6; break;
   1054     }
   1055   }
   1056   Binary |= SBits << 4;
   1057   if (SOpc == ARM_AM::rrx)
   1058     return Binary;
   1059 
   1060   // Encode the shift operation Rs or shift_imm (except rrx).
   1061   if (Rs) {
   1062     // Encode Rs bit[11:8].
   1063     assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
   1064     return Binary | (II->getRegisterInfo().getEncodingValue(Rs) << ARMII::RegRsShift);
   1065   }
   1066 
   1067   // Encode shift_imm bit[11:7].
   1068   return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
   1069 }
   1070 
   1071 unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
   1072   int SoImmVal = ARM_AM::getSOImmVal(SoImm);
   1073   assert(SoImmVal != -1 && "Not a valid so_imm value!");
   1074 
   1075   // Encode rotate_imm.
   1076   unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
   1077     << ARMII::SoRotImmShift;
   1078 
   1079   // Encode immed_8.
   1080   Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
   1081   return Binary;
   1082 }
   1083 
   1084 unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
   1085                                          const MCInstrDesc &MCID) const {
   1086   for (unsigned i = MI.getNumOperands(), e = MCID.getNumOperands(); i >= e;--i){
   1087     const MachineOperand &MO = MI.getOperand(i-1);
   1088     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
   1089       return 1 << ARMII::S_BitShift;
   1090   }
   1091   return 0;
   1092 }
   1093 
   1094 void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
   1095                                                    unsigned ImplicitRd,
   1096                                                    unsigned ImplicitRn) {
   1097   const MCInstrDesc &MCID = MI.getDesc();
   1098 
   1099   // Part of binary is determined by TableGn.
   1100   unsigned Binary = getBinaryCodeForInstr(MI);
   1101 
   1102   if (MCID.Opcode == ARM::MOVi16 || MCID.Opcode == ARM::MOVTi16) {
   1103       emitWordLE(Binary);
   1104       return;
   1105   }
   1106 
   1107   // Set the conditional execution predicate
   1108   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1109 
   1110   // Encode S bit if MI modifies CPSR.
   1111   Binary |= getAddrModeSBit(MI, MCID);
   1112 
   1113   // Encode register def if there is one.
   1114   unsigned NumDefs = MCID.getNumDefs();
   1115   unsigned OpIdx = 0;
   1116   if (NumDefs)
   1117     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
   1118   else if (ImplicitRd)
   1119     // Special handling for implicit use (e.g. PC).
   1120     Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift);
   1121 
   1122   if (MCID.Opcode == ARM::MOVi16) {
   1123       // Get immediate from MI.
   1124       unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
   1125                       ARM::reloc_arm_movw);
   1126       // Encode imm which is the same as in emitMOVi32immInstruction().
   1127       Binary |= Lo16 & 0xFFF;
   1128       Binary |= ((Lo16 >> 12) & 0xF) << 16;
   1129       emitWordLE(Binary);
   1130       return;
   1131   } else if(MCID.Opcode == ARM::MOVTi16) {
   1132       unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
   1133                        ARM::reloc_arm_movt) >> 16);
   1134       Binary |= Hi16 & 0xFFF;
   1135       Binary |= ((Hi16 >> 12) & 0xF) << 16;
   1136       emitWordLE(Binary);
   1137       return;
   1138   } else if ((MCID.Opcode == ARM::BFC) || (MCID.Opcode == ARM::BFI)) {
   1139       uint32_t v = ~MI.getOperand(2).getImm();
   1140       int32_t lsb = CountTrailingZeros_32(v);
   1141       int32_t msb = (32 - CountLeadingZeros_32(v)) - 1;
   1142       // Instr{20-16} = msb, Instr{11-7} = lsb
   1143       Binary |= (msb & 0x1F) << 16;
   1144       Binary |= (lsb & 0x1F) << 7;
   1145       emitWordLE(Binary);
   1146       return;
   1147   } else if ((MCID.Opcode == ARM::UBFX) || (MCID.Opcode == ARM::SBFX)) {
   1148       // Encode Rn in Instr{0-3}
   1149       Binary |= getMachineOpValue(MI, OpIdx++);
   1150 
   1151       uint32_t lsb = MI.getOperand(OpIdx++).getImm();
   1152       uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
   1153 
   1154       // Instr{20-16} = widthm1, Instr{11-7} = lsb
   1155       Binary |= (widthm1 & 0x1F) << 16;
   1156       Binary |= (lsb & 0x1F) << 7;
   1157       emitWordLE(Binary);
   1158       return;
   1159   }
   1160 
   1161   // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
   1162   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   1163     ++OpIdx;
   1164 
   1165   // Encode first non-shifter register operand if there is one.
   1166   bool isUnary = MCID.TSFlags & ARMII::UnaryDP;
   1167   if (!isUnary) {
   1168     if (ImplicitRn)
   1169       // Special handling for implicit use (e.g. PC).
   1170       Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
   1171     else {
   1172       Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
   1173       ++OpIdx;
   1174     }
   1175   }
   1176 
   1177   // Encode shifter operand.
   1178   const MachineOperand &MO = MI.getOperand(OpIdx);
   1179   if ((MCID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
   1180     // Encode SoReg.
   1181     emitWordLE(Binary | getMachineSoRegOpValue(MI, MCID, MO, OpIdx));
   1182     return;
   1183   }
   1184 
   1185   if (MO.isReg()) {
   1186     // Encode register Rm.
   1187     emitWordLE(Binary | II->getRegisterInfo().getEncodingValue(MO.getReg()));
   1188     return;
   1189   }
   1190 
   1191   // Encode so_imm.
   1192   Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
   1193 
   1194   emitWordLE(Binary);
   1195 }
   1196 
   1197 void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
   1198                                               unsigned ImplicitRd,
   1199                                               unsigned ImplicitRn) {
   1200   const MCInstrDesc &MCID = MI.getDesc();
   1201   unsigned Form = MCID.TSFlags & ARMII::FormMask;
   1202   bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
   1203 
   1204   // Part of binary is determined by TableGn.
   1205   unsigned Binary = getBinaryCodeForInstr(MI);
   1206 
   1207   // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
   1208   if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
   1209       MI.getOpcode() == ARM::STRi12 || MI.getOpcode() == ARM::LDRBi12 ||
   1210       MI.getOpcode() == ARM::STRBi12) {
   1211     emitWordLE(Binary);
   1212     return;
   1213   }
   1214 
   1215   if (MI.getOpcode() == ARM::BR_JTm)
   1216     Binary = 0x710F000;
   1217   else if (MI.getOpcode() == ARM::BR_JTr)
   1218     Binary = 0x1A0F000;
   1219 
   1220   // Set the conditional execution predicate
   1221   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1222 
   1223   unsigned OpIdx = 0;
   1224 
   1225   // Operand 0 of a pre- and post-indexed store is the address base
   1226   // writeback. Skip it.
   1227   bool Skipped = false;
   1228   if (IsPrePost && Form == ARMII::StFrm) {
   1229     ++OpIdx;
   1230     Skipped = true;
   1231   }
   1232 
   1233   // Set first operand
   1234   if (ImplicitRd)
   1235     // Special handling for implicit use (e.g. PC).
   1236     Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift);
   1237   else
   1238     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
   1239 
   1240   // Set second operand
   1241   if (ImplicitRn)
   1242     // Special handling for implicit use (e.g. PC).
   1243     Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
   1244   else
   1245     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
   1246 
   1247   // If this is a two-address operand, skip it. e.g. LDR_PRE.
   1248   if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   1249     ++OpIdx;
   1250 
   1251   const MachineOperand &MO2 = MI.getOperand(OpIdx);
   1252   unsigned AM2Opc = (ImplicitRn == ARM::PC)
   1253     ? 0 : MI.getOperand(OpIdx+1).getImm();
   1254 
   1255   // Set bit U(23) according to sign of immed value (positive or negative).
   1256   Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
   1257              ARMII::U_BitShift);
   1258   if (!MO2.getReg()) { // is immediate
   1259     if (ARM_AM::getAM2Offset(AM2Opc))
   1260       // Set the value of offset_12 field
   1261       Binary |= ARM_AM::getAM2Offset(AM2Opc);
   1262     emitWordLE(Binary);
   1263     return;
   1264   }
   1265 
   1266   // Set bit I(25), because this is not in immediate encoding.
   1267   Binary |= 1 << ARMII::I_BitShift;
   1268   assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
   1269   // Set bit[3:0] to the corresponding Rm register
   1270   Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg());
   1271 
   1272   // If this instr is in scaled register offset/index instruction, set
   1273   // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
   1274   if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
   1275     Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift;  // shift
   1276     Binary |= ShImm              << ARMII::ShiftShift;     // shift_immed
   1277   }
   1278 
   1279   emitWordLE(Binary);
   1280 }
   1281 
   1282 void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
   1283                                                   unsigned ImplicitRn) {
   1284   const MCInstrDesc &MCID = MI.getDesc();
   1285   unsigned Form = MCID.TSFlags & ARMII::FormMask;
   1286   bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
   1287 
   1288   // Part of binary is determined by TableGn.
   1289   unsigned Binary = getBinaryCodeForInstr(MI);
   1290 
   1291   // Set the conditional execution predicate
   1292   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1293 
   1294   unsigned OpIdx = 0;
   1295 
   1296   // Operand 0 of a pre- and post-indexed store is the address base
   1297   // writeback. Skip it.
   1298   bool Skipped = false;
   1299   if (IsPrePost && Form == ARMII::StMiscFrm) {
   1300     ++OpIdx;
   1301     Skipped = true;
   1302   }
   1303 
   1304   // Set first operand
   1305   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
   1306 
   1307   // Skip LDRD and STRD's second operand.
   1308   if (MCID.Opcode == ARM::LDRD || MCID.Opcode == ARM::STRD)
   1309     ++OpIdx;
   1310 
   1311   // Set second operand
   1312   if (ImplicitRn)
   1313     // Special handling for implicit use (e.g. PC).
   1314     Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
   1315   else
   1316     Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
   1317 
   1318   // If this is a two-address operand, skip it. e.g. LDRH_POST.
   1319   if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   1320     ++OpIdx;
   1321 
   1322   const MachineOperand &MO2 = MI.getOperand(OpIdx);
   1323   unsigned AM3Opc = (ImplicitRn == ARM::PC)
   1324     ? 0 : MI.getOperand(OpIdx+1).getImm();
   1325 
   1326   // Set bit U(23) according to sign of immed value (positive or negative)
   1327   Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
   1328              ARMII::U_BitShift);
   1329 
   1330   // If this instr is in register offset/index encoding, set bit[3:0]
   1331   // to the corresponding Rm register.
   1332   if (MO2.getReg()) {
   1333     Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg());
   1334     emitWordLE(Binary);
   1335     return;
   1336   }
   1337 
   1338   // This instr is in immediate offset/index encoding, set bit 22 to 1.
   1339   Binary |= 1 << ARMII::AM3_I_BitShift;
   1340   if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
   1341     // Set operands
   1342     Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift;  // immedH
   1343     Binary |= (ImmOffs & 0xF);                      // immedL
   1344   }
   1345 
   1346   emitWordLE(Binary);
   1347 }
   1348 
   1349 static unsigned getAddrModeUPBits(unsigned Mode) {
   1350   unsigned Binary = 0;
   1351 
   1352   // Set addressing mode by modifying bits U(23) and P(24)
   1353   // IA - Increment after  - bit U = 1 and bit P = 0
   1354   // IB - Increment before - bit U = 1 and bit P = 1
   1355   // DA - Decrement after  - bit U = 0 and bit P = 0
   1356   // DB - Decrement before - bit U = 0 and bit P = 1
   1357   switch (Mode) {
   1358   default: llvm_unreachable("Unknown addressing sub-mode!");
   1359   case ARM_AM::da:                                     break;
   1360   case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
   1361   case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
   1362   case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
   1363   }
   1364 
   1365   return Binary;
   1366 }
   1367 
   1368 void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
   1369   const MCInstrDesc &MCID = MI.getDesc();
   1370   bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
   1371 
   1372   // Part of binary is determined by TableGn.
   1373   unsigned Binary = getBinaryCodeForInstr(MI);
   1374 
   1375   if (MCID.getOpcode() == ARM::LDMIA_RET) {
   1376     IsUpdating = true;
   1377     Binary |= 0x8B00000;
   1378   }
   1379 
   1380   // Set the conditional execution predicate
   1381   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1382 
   1383   // Skip operand 0 of an instruction with base register update.
   1384   unsigned OpIdx = 0;
   1385   if (IsUpdating)
   1386     ++OpIdx;
   1387 
   1388   // Set base address operand
   1389   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
   1390 
   1391   // Set addressing mode by modifying bits U(23) and P(24)
   1392   ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
   1393   Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
   1394 
   1395   // Set bit W(21)
   1396   if (IsUpdating)
   1397     Binary |= 0x1 << ARMII::W_BitShift;
   1398 
   1399   // Set registers
   1400   for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
   1401     const MachineOperand &MO = MI.getOperand(i);
   1402     if (!MO.isReg() || MO.isImplicit())
   1403       break;
   1404     unsigned RegNum = II->getRegisterInfo().getEncodingValue(MO.getReg());
   1405     assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
   1406            RegNum < 16);
   1407     Binary |= 0x1 << RegNum;
   1408   }
   1409 
   1410   emitWordLE(Binary);
   1411 }
   1412 
   1413 void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
   1414   const MCInstrDesc &MCID = MI.getDesc();
   1415 
   1416   // Part of binary is determined by TableGn.
   1417   unsigned Binary = getBinaryCodeForInstr(MI);
   1418 
   1419   // Set the conditional execution predicate
   1420   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1421 
   1422   // Encode S bit if MI modifies CPSR.
   1423   Binary |= getAddrModeSBit(MI, MCID);
   1424 
   1425   // 32x32->64bit operations have two destination registers. The number
   1426   // of register definitions will tell us if that's what we're dealing with.
   1427   unsigned OpIdx = 0;
   1428   if (MCID.getNumDefs() == 2)
   1429     Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
   1430 
   1431   // Encode Rd
   1432   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
   1433 
   1434   // Encode Rm
   1435   Binary |= getMachineOpValue(MI, OpIdx++);
   1436 
   1437   // Encode Rs
   1438   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
   1439 
   1440   // Many multiple instructions (e.g. MLA) have three src operands. Encode
   1441   // it as Rn (for multiply, that's in the same offset as RdLo.
   1442   if (MCID.getNumOperands() > OpIdx &&
   1443       !MCID.OpInfo[OpIdx].isPredicate() &&
   1444       !MCID.OpInfo[OpIdx].isOptionalDef())
   1445     Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
   1446 
   1447   emitWordLE(Binary);
   1448 }
   1449 
   1450 void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
   1451   const MCInstrDesc &MCID = MI.getDesc();
   1452 
   1453   // Part of binary is determined by TableGn.
   1454   unsigned Binary = getBinaryCodeForInstr(MI);
   1455 
   1456   // Set the conditional execution predicate
   1457   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1458 
   1459   unsigned OpIdx = 0;
   1460 
   1461   // Encode Rd
   1462   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
   1463 
   1464   const MachineOperand &MO1 = MI.getOperand(OpIdx++);
   1465   const MachineOperand &MO2 = MI.getOperand(OpIdx);
   1466   if (MO2.isReg()) {
   1467     // Two register operand form.
   1468     // Encode Rn.
   1469     Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
   1470 
   1471     // Encode Rm.
   1472     Binary |= getMachineOpValue(MI, MO2);
   1473     ++OpIdx;
   1474   } else {
   1475     Binary |= getMachineOpValue(MI, MO1);
   1476   }
   1477 
   1478   // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
   1479   if (MI.getOperand(OpIdx).isImm() &&
   1480       !MCID.OpInfo[OpIdx].isPredicate() &&
   1481       !MCID.OpInfo[OpIdx].isOptionalDef())
   1482     Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
   1483 
   1484   emitWordLE(Binary);
   1485 }
   1486 
   1487 void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
   1488   const MCInstrDesc &MCID = MI.getDesc();
   1489 
   1490   // Part of binary is determined by TableGn.
   1491   unsigned Binary = getBinaryCodeForInstr(MI);
   1492 
   1493   // Set the conditional execution predicate
   1494   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1495 
   1496   // PKH instructions are finished at this point
   1497   if (MCID.Opcode == ARM::PKHBT || MCID.Opcode == ARM::PKHTB) {
   1498     emitWordLE(Binary);
   1499     return;
   1500   }
   1501 
   1502   unsigned OpIdx = 0;
   1503 
   1504   // Encode Rd
   1505   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
   1506 
   1507   const MachineOperand &MO = MI.getOperand(OpIdx++);
   1508   if (OpIdx == MCID.getNumOperands() ||
   1509       MCID.OpInfo[OpIdx].isPredicate() ||
   1510       MCID.OpInfo[OpIdx].isOptionalDef()) {
   1511     // Encode Rm and it's done.
   1512     Binary |= getMachineOpValue(MI, MO);
   1513     emitWordLE(Binary);
   1514     return;
   1515   }
   1516 
   1517   // Encode Rn.
   1518   Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
   1519 
   1520   // Encode Rm.
   1521   Binary |= getMachineOpValue(MI, OpIdx++);
   1522 
   1523   // Encode shift_imm.
   1524   unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
   1525   if (MCID.Opcode == ARM::PKHTB) {
   1526     assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
   1527     if (ShiftAmt == 32)
   1528       ShiftAmt = 0;
   1529   }
   1530   assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
   1531   Binary |= ShiftAmt << ARMII::ShiftShift;
   1532 
   1533   emitWordLE(Binary);
   1534 }
   1535 
   1536 void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
   1537   const MCInstrDesc &MCID = MI.getDesc();
   1538 
   1539   // Part of binary is determined by TableGen.
   1540   unsigned Binary = getBinaryCodeForInstr(MI);
   1541 
   1542   // Set the conditional execution predicate
   1543   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1544 
   1545   // Encode Rd
   1546   Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
   1547 
   1548   // Encode saturate bit position.
   1549   unsigned Pos = MI.getOperand(1).getImm();
   1550   if (MCID.Opcode == ARM::SSAT || MCID.Opcode == ARM::SSAT16)
   1551     Pos -= 1;
   1552   assert((Pos < 16 || (Pos < 32 &&
   1553                        MCID.Opcode != ARM::SSAT16 &&
   1554                        MCID.Opcode != ARM::USAT16)) &&
   1555          "saturate bit position out of range");
   1556   Binary |= Pos << 16;
   1557 
   1558   // Encode Rm
   1559   Binary |= getMachineOpValue(MI, 2);
   1560 
   1561   // Encode shift_imm.
   1562   if (MCID.getNumOperands() == 4) {
   1563     unsigned ShiftOp = MI.getOperand(3).getImm();
   1564     ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
   1565     if (Opc == ARM_AM::asr)
   1566       Binary |= (1 << 6);
   1567     unsigned ShiftAmt = MI.getOperand(3).getImm();
   1568     if (ShiftAmt == 32 && Opc == ARM_AM::asr)
   1569       ShiftAmt = 0;
   1570     assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
   1571     Binary |= ShiftAmt << ARMII::ShiftShift;
   1572   }
   1573 
   1574   emitWordLE(Binary);
   1575 }
   1576 
   1577 void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
   1578   const MCInstrDesc &MCID = MI.getDesc();
   1579 
   1580   if (MCID.Opcode == ARM::TPsoft) {
   1581     llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
   1582   }
   1583 
   1584   // Part of binary is determined by TableGn.
   1585   unsigned Binary = getBinaryCodeForInstr(MI);
   1586 
   1587   if (MCID.Opcode == ARM::B) {
   1588     Binary = 0xEA000000;
   1589   }
   1590 
   1591   // Set the conditional execution predicate
   1592   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1593 
   1594   // Set signed_immed_24 field
   1595   Binary |= getMachineOpValue(MI, 0);
   1596 
   1597   emitWordLE(Binary);
   1598 }
   1599 
   1600 void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
   1601   // Remember the base address of the inline jump table.
   1602   uintptr_t JTBase = MCE.getCurrentPCValue();
   1603   JTI->addJumpTableBaseAddr(JTIndex, JTBase);
   1604   DEBUG(errs() << "  ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
   1605                << '\n');
   1606 
   1607   // Now emit the jump table entries.
   1608   const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
   1609   for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
   1610     if (IsPIC)
   1611       // DestBB address - JT base.
   1612       emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
   1613     else
   1614       // Absolute DestBB address.
   1615       emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
   1616     emitWordLE(0);
   1617   }
   1618 }
   1619 
   1620 void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
   1621   const MCInstrDesc &MCID = MI.getDesc();
   1622 
   1623   // Handle jump tables.
   1624   if (MCID.Opcode == ARM::BR_JTr || MCID.Opcode == ARM::BR_JTadd) {
   1625     // First emit a ldr pc, [] instruction.
   1626     emitDataProcessingInstruction(MI, ARM::PC);
   1627 
   1628     // Then emit the inline jump table.
   1629     unsigned JTIndex =
   1630       (MCID.Opcode == ARM::BR_JTr)
   1631       ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
   1632     emitInlineJumpTable(JTIndex);
   1633     return;
   1634   } else if (MCID.Opcode == ARM::BR_JTm) {
   1635     // First emit a ldr pc, [] instruction.
   1636     emitLoadStoreInstruction(MI, ARM::PC);
   1637 
   1638     // Then emit the inline jump table.
   1639     emitInlineJumpTable(MI.getOperand(3).getIndex());
   1640     return;
   1641   }
   1642 
   1643   // Part of binary is determined by TableGn.
   1644   unsigned Binary = getBinaryCodeForInstr(MI);
   1645 
   1646   // Set the conditional execution predicate
   1647   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1648 
   1649   if (MCID.Opcode == ARM::BX_RET || MCID.Opcode == ARM::MOVPCLR)
   1650     // The return register is LR.
   1651     Binary |= II->getRegisterInfo().getEncodingValue(ARM::LR);
   1652   else
   1653     // otherwise, set the return register
   1654     Binary |= getMachineOpValue(MI, 0);
   1655 
   1656   emitWordLE(Binary);
   1657 }
   1658 
   1659 unsigned ARMCodeEmitter::encodeVFPRd(const MachineInstr &MI,
   1660                                      unsigned OpIdx) const {
   1661   unsigned RegD = MI.getOperand(OpIdx).getReg();
   1662   unsigned Binary = 0;
   1663   bool isSPVFP = ARM::SPRRegClass.contains(RegD);
   1664   RegD = II->getRegisterInfo().getEncodingValue(RegD);
   1665   if (!isSPVFP) {
   1666     Binary |=  (RegD & 0x0F)       << ARMII::RegRdShift;
   1667     Binary |= ((RegD & 0x10) >> 4) << ARMII::D_BitShift;
   1668   } else {
   1669     Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
   1670     Binary |=  (RegD & 0x01)       << ARMII::D_BitShift;
   1671   }
   1672   return Binary;
   1673 }
   1674 
   1675 unsigned ARMCodeEmitter::encodeVFPRn(const MachineInstr &MI,
   1676                                      unsigned OpIdx) const {
   1677   unsigned RegN = MI.getOperand(OpIdx).getReg();
   1678   unsigned Binary = 0;
   1679   bool isSPVFP = ARM::SPRRegClass.contains(RegN);
   1680   RegN = II->getRegisterInfo().getEncodingValue(RegN);
   1681   if (!isSPVFP) {
   1682     Binary |=  (RegN & 0x0F)       << ARMII::RegRnShift;
   1683     Binary |= ((RegN & 0x10) >> 4) << ARMII::N_BitShift;
   1684   } else {
   1685     Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
   1686     Binary |=  (RegN & 0x01)       << ARMII::N_BitShift;
   1687   }
   1688   return Binary;
   1689 }
   1690 
   1691 unsigned ARMCodeEmitter::encodeVFPRm(const MachineInstr &MI,
   1692                                      unsigned OpIdx) const {
   1693   unsigned RegM = MI.getOperand(OpIdx).getReg();
   1694   unsigned Binary = 0;
   1695   bool isSPVFP = ARM::SPRRegClass.contains(RegM);
   1696   RegM = II->getRegisterInfo().getEncodingValue(RegM);
   1697   if (!isSPVFP) {
   1698     Binary |=  (RegM & 0x0F);
   1699     Binary |= ((RegM & 0x10) >> 4) << ARMII::M_BitShift;
   1700   } else {
   1701     Binary |= ((RegM & 0x1E) >> 1);
   1702     Binary |=  (RegM & 0x01)       << ARMII::M_BitShift;
   1703   }
   1704   return Binary;
   1705 }
   1706 
   1707 void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
   1708   const MCInstrDesc &MCID = MI.getDesc();
   1709 
   1710   // Part of binary is determined by TableGn.
   1711   unsigned Binary = getBinaryCodeForInstr(MI);
   1712 
   1713   // Set the conditional execution predicate
   1714   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1715 
   1716   unsigned OpIdx = 0;
   1717 
   1718   // Encode Dd / Sd.
   1719   Binary |= encodeVFPRd(MI, OpIdx++);
   1720 
   1721   // If this is a two-address operand, skip it, e.g. FMACD.
   1722   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   1723     ++OpIdx;
   1724 
   1725   // Encode Dn / Sn.
   1726   if ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
   1727     Binary |= encodeVFPRn(MI, OpIdx++);
   1728 
   1729   if (OpIdx == MCID.getNumOperands() ||
   1730       MCID.OpInfo[OpIdx].isPredicate() ||
   1731       MCID.OpInfo[OpIdx].isOptionalDef()) {
   1732     // FCMPEZD etc. has only one operand.
   1733     emitWordLE(Binary);
   1734     return;
   1735   }
   1736 
   1737   // Encode Dm / Sm.
   1738   Binary |= encodeVFPRm(MI, OpIdx);
   1739 
   1740   emitWordLE(Binary);
   1741 }
   1742 
   1743 void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
   1744   const MCInstrDesc &MCID = MI.getDesc();
   1745   unsigned Form = MCID.TSFlags & ARMII::FormMask;
   1746 
   1747   // Part of binary is determined by TableGn.
   1748   unsigned Binary = getBinaryCodeForInstr(MI);
   1749 
   1750   // Set the conditional execution predicate
   1751   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1752 
   1753   switch (Form) {
   1754   default: break;
   1755   case ARMII::VFPConv1Frm:
   1756   case ARMII::VFPConv2Frm:
   1757   case ARMII::VFPConv3Frm:
   1758     // Encode Dd / Sd.
   1759     Binary |= encodeVFPRd(MI, 0);
   1760     break;
   1761   case ARMII::VFPConv4Frm:
   1762     // Encode Dn / Sn.
   1763     Binary |= encodeVFPRn(MI, 0);
   1764     break;
   1765   case ARMII::VFPConv5Frm:
   1766     // Encode Dm / Sm.
   1767     Binary |= encodeVFPRm(MI, 0);
   1768     break;
   1769   }
   1770 
   1771   switch (Form) {
   1772   default: break;
   1773   case ARMII::VFPConv1Frm:
   1774     // Encode Dm / Sm.
   1775     Binary |= encodeVFPRm(MI, 1);
   1776     break;
   1777   case ARMII::VFPConv2Frm:
   1778   case ARMII::VFPConv3Frm:
   1779     // Encode Dn / Sn.
   1780     Binary |= encodeVFPRn(MI, 1);
   1781     break;
   1782   case ARMII::VFPConv4Frm:
   1783   case ARMII::VFPConv5Frm:
   1784     // Encode Dd / Sd.
   1785     Binary |= encodeVFPRd(MI, 1);
   1786     break;
   1787   }
   1788 
   1789   if (Form == ARMII::VFPConv5Frm)
   1790     // Encode Dn / Sn.
   1791     Binary |= encodeVFPRn(MI, 2);
   1792   else if (Form == ARMII::VFPConv3Frm)
   1793     // Encode Dm / Sm.
   1794     Binary |= encodeVFPRm(MI, 2);
   1795 
   1796   emitWordLE(Binary);
   1797 }
   1798 
   1799 void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
   1800   // Part of binary is determined by TableGn.
   1801   unsigned Binary = getBinaryCodeForInstr(MI);
   1802 
   1803   // Set the conditional execution predicate
   1804   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1805 
   1806   if (MI.getOpcode() == ARM::VLDRS || MI.getOpcode() == ARM::VLDRD ||
   1807       MI.getOpcode() == ARM::VSTRS || MI.getOpcode() == ARM::VSTRD){
   1808     emitWordLE(Binary);
   1809     return;
   1810   }
   1811 
   1812   unsigned OpIdx = 0;
   1813 
   1814   // Encode Dd / Sd.
   1815   Binary |= encodeVFPRd(MI, OpIdx++);
   1816 
   1817   // Encode address base.
   1818   const MachineOperand &Base = MI.getOperand(OpIdx++);
   1819   Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
   1820 
   1821   // If there is a non-zero immediate offset, encode it.
   1822   if (Base.isReg()) {
   1823     const MachineOperand &Offset = MI.getOperand(OpIdx);
   1824     if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
   1825       if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
   1826         Binary |= 1 << ARMII::U_BitShift;
   1827       Binary |= ImmOffs;
   1828       emitWordLE(Binary);
   1829       return;
   1830     }
   1831   }
   1832 
   1833   // If immediate offset is omitted, default to +0.
   1834   Binary |= 1 << ARMII::U_BitShift;
   1835 
   1836   emitWordLE(Binary);
   1837 }
   1838 
   1839 void
   1840 ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
   1841   const MCInstrDesc &MCID = MI.getDesc();
   1842   bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
   1843 
   1844   // Part of binary is determined by TableGn.
   1845   unsigned Binary = getBinaryCodeForInstr(MI);
   1846 
   1847   // Set the conditional execution predicate
   1848   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1849 
   1850   // Skip operand 0 of an instruction with base register update.
   1851   unsigned OpIdx = 0;
   1852   if (IsUpdating)
   1853     ++OpIdx;
   1854 
   1855   // Set base address operand
   1856   Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
   1857 
   1858   // Set addressing mode by modifying bits U(23) and P(24)
   1859   ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
   1860   Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
   1861 
   1862   // Set bit W(21)
   1863   if (IsUpdating)
   1864     Binary |= 0x1 << ARMII::W_BitShift;
   1865 
   1866   // First register is encoded in Dd.
   1867   Binary |= encodeVFPRd(MI, OpIdx+2);
   1868 
   1869   // Count the number of registers.
   1870   unsigned NumRegs = 1;
   1871   for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
   1872     const MachineOperand &MO = MI.getOperand(i);
   1873     if (!MO.isReg() || MO.isImplicit())
   1874       break;
   1875     ++NumRegs;
   1876   }
   1877   // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
   1878   // Otherwise, it will be 0, in the case of 32-bit registers.
   1879   if(Binary & 0x100)
   1880     Binary |= NumRegs * 2;
   1881   else
   1882     Binary |= NumRegs;
   1883 
   1884   emitWordLE(Binary);
   1885 }
   1886 
   1887 void ARMCodeEmitter::emitMiscInstruction(const MachineInstr &MI) {
   1888   unsigned Opcode = MI.getDesc().Opcode;
   1889   // Part of binary is determined by TableGn.
   1890   unsigned Binary = getBinaryCodeForInstr(MI);
   1891 
   1892   if (Opcode == ARM::FCONSTS) {
   1893     unsigned Imm = getMachineOpValue(MI, 1);
   1894     Binary &= ~(0x780000 >> 19);
   1895     Binary |= (Imm & 0x780000) >> 19;
   1896     Binary &= ~(0x3800000 >> 7);
   1897     Binary |= (Imm & 0x3800000) >> 7;
   1898     Binary = VFPThumb2PostEncoder(MI, Binary);
   1899   }
   1900 
   1901   // Set the conditional execution predicate
   1902   Binary |= II->getPredicate(&MI) << ARMII::CondShift;
   1903 
   1904   emitWordLE(Binary);
   1905 }
   1906 
   1907 unsigned ARMCodeEmitter::encodeNEONRd(const MachineInstr &MI,
   1908                                       unsigned OpIdx) const {
   1909   unsigned RegD = MI.getOperand(OpIdx).getReg();
   1910   unsigned Binary = 0;
   1911   RegD = II->getRegisterInfo().getEncodingValue(RegD);
   1912   Binary |= (RegD & 0xf) << ARMII::RegRdShift;
   1913   Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
   1914   return Binary;
   1915 }
   1916 
   1917 unsigned ARMCodeEmitter::encodeNEONRn(const MachineInstr &MI,
   1918                                       unsigned OpIdx) const {
   1919   unsigned RegN = MI.getOperand(OpIdx).getReg();
   1920   unsigned Binary = 0;
   1921   RegN = II->getRegisterInfo().getEncodingValue(RegN);
   1922   Binary |= (RegN & 0xf) << ARMII::RegRnShift;
   1923   Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
   1924   return Binary;
   1925 }
   1926 
   1927 unsigned ARMCodeEmitter::encodeNEONRm(const MachineInstr &MI,
   1928                                       unsigned OpIdx) const {
   1929   unsigned RegM = MI.getOperand(OpIdx).getReg();
   1930   unsigned Binary = 0;
   1931   RegM = II->getRegisterInfo().getEncodingValue(RegM);
   1932   Binary |= (RegM & 0xf);
   1933   Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
   1934   return Binary;
   1935 }
   1936 
   1937 /// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
   1938 /// data-processing instruction to the corresponding Thumb encoding.
   1939 static unsigned convertNEONDataProcToThumb(unsigned Binary) {
   1940   assert((Binary & 0xfe000000) == 0xf2000000 &&
   1941          "not an ARM NEON data-processing instruction");
   1942   unsigned UBit = (Binary >> 24) & 1;
   1943   return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
   1944 }
   1945 
   1946 void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
   1947   unsigned Binary = getBinaryCodeForInstr(MI);
   1948 
   1949   unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
   1950   const MCInstrDesc &MCID = MI.getDesc();
   1951   if ((MCID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
   1952     RegTOpIdx = 0;
   1953     RegNOpIdx = 1;
   1954     LnOpIdx = 2;
   1955   } else { // ARMII::NSetLnFrm
   1956     RegTOpIdx = 2;
   1957     RegNOpIdx = 0;
   1958     LnOpIdx = 3;
   1959   }
   1960 
   1961   // Set the conditional execution predicate
   1962   Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
   1963 
   1964   unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
   1965   RegT = II->getRegisterInfo().getEncodingValue(RegT);
   1966   Binary |= (RegT << ARMII::RegRdShift);
   1967   Binary |= encodeNEONRn(MI, RegNOpIdx);
   1968 
   1969   unsigned LaneShift;
   1970   if ((Binary & (1 << 22)) != 0)
   1971     LaneShift = 0; // 8-bit elements
   1972   else if ((Binary & (1 << 5)) != 0)
   1973     LaneShift = 1; // 16-bit elements
   1974   else
   1975     LaneShift = 2; // 32-bit elements
   1976 
   1977   unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
   1978   unsigned Opc1 = Lane >> 2;
   1979   unsigned Opc2 = Lane & 3;
   1980   assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
   1981   Binary |= (Opc1 << 21);
   1982   Binary |= (Opc2 << 5);
   1983 
   1984   emitWordLE(Binary);
   1985 }
   1986 
   1987 void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
   1988   unsigned Binary = getBinaryCodeForInstr(MI);
   1989 
   1990   // Set the conditional execution predicate
   1991   Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
   1992 
   1993   unsigned RegT = MI.getOperand(1).getReg();
   1994   RegT = II->getRegisterInfo().getEncodingValue(RegT);
   1995   Binary |= (RegT << ARMII::RegRdShift);
   1996   Binary |= encodeNEONRn(MI, 0);
   1997   emitWordLE(Binary);
   1998 }
   1999 
   2000 void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
   2001   unsigned Binary = getBinaryCodeForInstr(MI);
   2002   // Destination register is encoded in Dd.
   2003   Binary |= encodeNEONRd(MI, 0);
   2004   // Immediate fields: Op, Cmode, I, Imm3, Imm4
   2005   unsigned Imm = MI.getOperand(1).getImm();
   2006   unsigned Op = (Imm >> 12) & 1;
   2007   unsigned Cmode = (Imm >> 8) & 0xf;
   2008   unsigned I = (Imm >> 7) & 1;
   2009   unsigned Imm3 = (Imm >> 4) & 0x7;
   2010   unsigned Imm4 = Imm & 0xf;
   2011   Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
   2012   if (IsThumb)
   2013     Binary = convertNEONDataProcToThumb(Binary);
   2014   emitWordLE(Binary);
   2015 }
   2016 
   2017 void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
   2018   const MCInstrDesc &MCID = MI.getDesc();
   2019   unsigned Binary = getBinaryCodeForInstr(MI);
   2020   // Destination register is encoded in Dd; source register in Dm.
   2021   unsigned OpIdx = 0;
   2022   Binary |= encodeNEONRd(MI, OpIdx++);
   2023   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   2024     ++OpIdx;
   2025   Binary |= encodeNEONRm(MI, OpIdx);
   2026   if (IsThumb)
   2027     Binary = convertNEONDataProcToThumb(Binary);
   2028   // FIXME: This does not handle VDUPfdf or VDUPfqf.
   2029   emitWordLE(Binary);
   2030 }
   2031 
   2032 void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
   2033   const MCInstrDesc &MCID = MI.getDesc();
   2034   unsigned Binary = getBinaryCodeForInstr(MI);
   2035   // Destination register is encoded in Dd; source registers in Dn and Dm.
   2036   unsigned OpIdx = 0;
   2037   Binary |= encodeNEONRd(MI, OpIdx++);
   2038   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   2039     ++OpIdx;
   2040   Binary |= encodeNEONRn(MI, OpIdx++);
   2041   if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
   2042     ++OpIdx;
   2043   Binary |= encodeNEONRm(MI, OpIdx);
   2044   if (IsThumb)
   2045     Binary = convertNEONDataProcToThumb(Binary);
   2046   // FIXME: This does not handle VMOVDneon or VMOVQ.
   2047   emitWordLE(Binary);
   2048 }
   2049 
   2050 #include "ARMGenCodeEmitter.inc"
   2051