Home | History | Annotate | Download | only in BitWriter_2_9
      1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Bitcode writer implementation.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "ReaderWriter_2_9.h"
     15 #include "ValueEnumerator.h"
     16 #include "llvm/ADT/Triple.h"
     17 #include "llvm/Bitcode/BitstreamWriter.h"
     18 #include "llvm/Bitcode/LLVMBitCodes.h"
     19 #include "llvm/IR/Constants.h"
     20 #include "llvm/IR/DerivedTypes.h"
     21 #include "llvm/IR/InlineAsm.h"
     22 #include "llvm/IR/Instructions.h"
     23 #include "llvm/IR/Module.h"
     24 #include "llvm/IR/Operator.h"
     25 #include "llvm/IR/ValueSymbolTable.h"
     26 #include "llvm/Support/ErrorHandling.h"
     27 #include "llvm/Support/MathExtras.h"
     28 #include "llvm/Support/Program.h"
     29 #include "llvm/Support/raw_ostream.h"
     30 #include <cctype>
     31 #include <map>
     32 using namespace llvm;
     33 
     34 // Redefine older bitcode opcodes for use here. Note that these come from
     35 // LLVM 2.7 (which is what HC shipped with).
     36 #define METADATA_NODE_2_7             2
     37 #define METADATA_FN_NODE_2_7          3
     38 #define METADATA_NAMED_NODE_2_7       5
     39 #define METADATA_ATTACHMENT_2_7       7
     40 #define FUNC_CODE_INST_CALL_2_7       22
     41 #define FUNC_CODE_DEBUG_LOC_2_7       32
     42 
     43 // Redefine older bitcode opcodes for use here. Note that these come from
     44 // LLVM 2.7 - 3.0.
     45 #define TYPE_BLOCK_ID_OLD_3_0 10
     46 #define TYPE_SYMTAB_BLOCK_ID_OLD_3_0 13
     47 #define TYPE_CODE_STRUCT_OLD_3_0 10
     48 
     49 /// These are manifest constants used by the bitcode writer. They do not need to
     50 /// be kept in sync with the reader, but need to be consistent within this file.
     51 enum {
     52   CurVersion = 0,
     53 
     54   // VALUE_SYMTAB_BLOCK abbrev id's.
     55   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     56   VST_ENTRY_7_ABBREV,
     57   VST_ENTRY_6_ABBREV,
     58   VST_BBENTRY_6_ABBREV,
     59 
     60   // CONSTANTS_BLOCK abbrev id's.
     61   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     62   CONSTANTS_INTEGER_ABBREV,
     63   CONSTANTS_CE_CAST_Abbrev,
     64   CONSTANTS_NULL_Abbrev,
     65 
     66   // FUNCTION_BLOCK abbrev id's.
     67   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     68   FUNCTION_INST_BINOP_ABBREV,
     69   FUNCTION_INST_BINOP_FLAGS_ABBREV,
     70   FUNCTION_INST_CAST_ABBREV,
     71   FUNCTION_INST_RET_VOID_ABBREV,
     72   FUNCTION_INST_RET_VAL_ABBREV,
     73   FUNCTION_INST_UNREACHABLE_ABBREV
     74 };
     75 
     76 
     77 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
     78   switch (Opcode) {
     79   default: llvm_unreachable("Unknown cast instruction!");
     80   case Instruction::Trunc   : return bitc::CAST_TRUNC;
     81   case Instruction::ZExt    : return bitc::CAST_ZEXT;
     82   case Instruction::SExt    : return bitc::CAST_SEXT;
     83   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
     84   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
     85   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
     86   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
     87   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
     88   case Instruction::FPExt   : return bitc::CAST_FPEXT;
     89   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
     90   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
     91   case Instruction::BitCast : return bitc::CAST_BITCAST;
     92   }
     93 }
     94 
     95 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
     96   switch (Opcode) {
     97   default: llvm_unreachable("Unknown binary instruction!");
     98   case Instruction::Add:
     99   case Instruction::FAdd: return bitc::BINOP_ADD;
    100   case Instruction::Sub:
    101   case Instruction::FSub: return bitc::BINOP_SUB;
    102   case Instruction::Mul:
    103   case Instruction::FMul: return bitc::BINOP_MUL;
    104   case Instruction::UDiv: return bitc::BINOP_UDIV;
    105   case Instruction::FDiv:
    106   case Instruction::SDiv: return bitc::BINOP_SDIV;
    107   case Instruction::URem: return bitc::BINOP_UREM;
    108   case Instruction::FRem:
    109   case Instruction::SRem: return bitc::BINOP_SREM;
    110   case Instruction::Shl:  return bitc::BINOP_SHL;
    111   case Instruction::LShr: return bitc::BINOP_LSHR;
    112   case Instruction::AShr: return bitc::BINOP_ASHR;
    113   case Instruction::And:  return bitc::BINOP_AND;
    114   case Instruction::Or:   return bitc::BINOP_OR;
    115   case Instruction::Xor:  return bitc::BINOP_XOR;
    116   }
    117 }
    118 
    119 static void WriteStringRecord(unsigned Code, StringRef Str,
    120                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
    121   SmallVector<unsigned, 64> Vals;
    122 
    123   // Code: [strchar x N]
    124   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
    125     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
    126       AbbrevToUse = 0;
    127     Vals.push_back(Str[i]);
    128   }
    129 
    130   // Emit the finished record.
    131   Stream.EmitRecord(Code, Vals, AbbrevToUse);
    132 }
    133 
    134 // Emit information about parameter attributes.
    135 static void WriteAttributeTable(const llvm_2_9::ValueEnumerator &VE,
    136                                 BitstreamWriter &Stream) {
    137   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
    138   if (Attrs.empty()) return;
    139 
    140   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
    141 
    142   SmallVector<uint64_t, 64> Record;
    143   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
    144     const AttributeSet &A = Attrs[i];
    145     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
    146       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
    147 
    148     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
    149     Record.clear();
    150   }
    151 
    152   Stream.ExitBlock();
    153 }
    154 
    155 static void WriteTypeSymbolTable(const llvm_2_9::ValueEnumerator &VE,
    156                                  BitstreamWriter &Stream) {
    157   const llvm_2_9::ValueEnumerator::TypeList &TypeList = VE.getTypes();
    158   Stream.EnterSubblock(TYPE_SYMTAB_BLOCK_ID_OLD_3_0, 3);
    159 
    160   // 7-bit fixed width VST_CODE_ENTRY strings.
    161   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    162   Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
    163   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    164                             Log2_32_Ceil(VE.getTypes().size()+1)));
    165   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    166   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
    167   unsigned V7Abbrev = Stream.EmitAbbrev(Abbv);
    168 
    169   SmallVector<unsigned, 64> NameVals;
    170 
    171   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
    172     Type *T = TypeList[i];
    173 
    174     switch (T->getTypeID()) {
    175     case Type::StructTyID: {
    176       StructType *ST = cast<StructType>(T);
    177       if (ST->isLiteral()) {
    178         // Skip anonymous struct definitions in type symbol table
    179         // FIXME(srhines)
    180         break;
    181       }
    182 
    183       // TST_ENTRY: [typeid, namechar x N]
    184       NameVals.push_back(i);
    185 
    186       const std::string &Str = ST->getName();
    187       bool is7Bit = true;
    188       for (unsigned i = 0, e = Str.size(); i != e; ++i) {
    189         NameVals.push_back((unsigned char)Str[i]);
    190         if (Str[i] & 128)
    191           is7Bit = false;
    192       }
    193 
    194       // Emit the finished record.
    195       Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
    196       NameVals.clear();
    197 
    198       break;
    199     }
    200     default: break;
    201     }
    202   }
    203 
    204 #if 0
    205   for (TypeSymbolTable::const_iterator TI = TST.begin(), TE = TST.end();
    206        TI != TE; ++TI) {
    207     // TST_ENTRY: [typeid, namechar x N]
    208     NameVals.push_back(VE.getTypeID(TI->second));
    209 
    210     const std::string &Str = TI->first;
    211     bool is7Bit = true;
    212     for (unsigned i = 0, e = Str.size(); i != e; ++i) {
    213       NameVals.push_back((unsigned char)Str[i]);
    214       if (Str[i] & 128)
    215         is7Bit = false;
    216     }
    217 
    218     // Emit the finished record.
    219     Stream.EmitRecord(bitc::VST_CODE_ENTRY, NameVals, is7Bit ? V7Abbrev : 0);
    220     NameVals.clear();
    221   }
    222 #endif
    223 
    224   Stream.ExitBlock();
    225 }
    226 
    227 /// WriteTypeTable - Write out the type table for a module.
    228 static void WriteTypeTable(const llvm_2_9::ValueEnumerator &VE,
    229                            BitstreamWriter &Stream) {
    230   const llvm_2_9::ValueEnumerator::TypeList &TypeList = VE.getTypes();
    231 
    232   Stream.EnterSubblock(TYPE_BLOCK_ID_OLD_3_0, 4 /*count from # abbrevs */);
    233   SmallVector<uint64_t, 64> TypeVals;
    234 
    235   // Abbrev for TYPE_CODE_POINTER.
    236   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    237   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
    238   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    239                             Log2_32_Ceil(VE.getTypes().size()+1)));
    240   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
    241   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
    242 
    243   // Abbrev for TYPE_CODE_FUNCTION.
    244   Abbv = new BitCodeAbbrev();
    245   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION_OLD));
    246   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
    247   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
    248   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    249   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    250                             Log2_32_Ceil(VE.getTypes().size()+1)));
    251   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
    252 
    253 #if 0
    254   // Abbrev for TYPE_CODE_STRUCT_ANON.
    255   Abbv = new BitCodeAbbrev();
    256   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
    257   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
    258   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    259   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    260                             Log2_32_Ceil(VE.getTypes().size()+1)));
    261   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
    262 
    263   // Abbrev for TYPE_CODE_STRUCT_NAME.
    264   Abbv = new BitCodeAbbrev();
    265   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
    266   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    267   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
    268   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
    269 
    270   // Abbrev for TYPE_CODE_STRUCT_NAMED.
    271   Abbv = new BitCodeAbbrev();
    272   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
    273   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
    274   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    275   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    276                             Log2_32_Ceil(VE.getTypes().size()+1)));
    277   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
    278 #endif
    279 
    280   // Abbrev for TYPE_CODE_STRUCT.
    281   Abbv = new BitCodeAbbrev();
    282   Abbv->Add(BitCodeAbbrevOp(TYPE_CODE_STRUCT_OLD_3_0));
    283   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
    284   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    285   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    286                             Log2_32_Ceil(VE.getTypes().size()+1)));
    287   unsigned StructAbbrev = Stream.EmitAbbrev(Abbv);
    288 
    289   // Abbrev for TYPE_CODE_ARRAY.
    290   Abbv = new BitCodeAbbrev();
    291   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
    292   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
    293   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    294                             Log2_32_Ceil(VE.getTypes().size()+1)));
    295   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
    296 
    297   // Emit an entry count so the reader can reserve space.
    298   TypeVals.push_back(TypeList.size());
    299   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
    300   TypeVals.clear();
    301 
    302   // Loop over all of the types, emitting each in turn.
    303   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
    304     Type *T = TypeList[i];
    305     int AbbrevToUse = 0;
    306     unsigned Code = 0;
    307 
    308     switch (T->getTypeID()) {
    309     default: llvm_unreachable("Unknown type!");
    310     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;   break;
    311     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;  break;
    312     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE; break;
    313     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80; break;
    314     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128; break;
    315     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
    316     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;  break;
    317     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA; break;
    318     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX; break;
    319     case Type::IntegerTyID:
    320       // INTEGER: [width]
    321       Code = bitc::TYPE_CODE_INTEGER;
    322       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
    323       break;
    324     case Type::PointerTyID: {
    325       PointerType *PTy = cast<PointerType>(T);
    326       // POINTER: [pointee type, address space]
    327       Code = bitc::TYPE_CODE_POINTER;
    328       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
    329       unsigned AddressSpace = PTy->getAddressSpace();
    330       TypeVals.push_back(AddressSpace);
    331       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
    332       break;
    333     }
    334     case Type::FunctionTyID: {
    335       FunctionType *FT = cast<FunctionType>(T);
    336       // FUNCTION: [isvararg, attrid, retty, paramty x N]
    337       Code = bitc::TYPE_CODE_FUNCTION_OLD;
    338       TypeVals.push_back(FT->isVarArg());
    339       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
    340       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
    341       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
    342         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
    343       AbbrevToUse = FunctionAbbrev;
    344       break;
    345     }
    346     case Type::StructTyID: {
    347       StructType *ST = cast<StructType>(T);
    348       // STRUCT: [ispacked, eltty x N]
    349       TypeVals.push_back(ST->isPacked());
    350       // Output all of the element types.
    351       for (StructType::element_iterator I = ST->element_begin(),
    352            E = ST->element_end(); I != E; ++I)
    353         TypeVals.push_back(VE.getTypeID(*I));
    354       AbbrevToUse = StructAbbrev;
    355       break;
    356     }
    357     case Type::ArrayTyID: {
    358       ArrayType *AT = cast<ArrayType>(T);
    359       // ARRAY: [numelts, eltty]
    360       Code = bitc::TYPE_CODE_ARRAY;
    361       TypeVals.push_back(AT->getNumElements());
    362       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
    363       AbbrevToUse = ArrayAbbrev;
    364       break;
    365     }
    366     case Type::VectorTyID: {
    367       VectorType *VT = cast<VectorType>(T);
    368       // VECTOR [numelts, eltty]
    369       Code = bitc::TYPE_CODE_VECTOR;
    370       TypeVals.push_back(VT->getNumElements());
    371       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
    372       break;
    373     }
    374     }
    375 
    376     // Emit the finished record.
    377     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
    378     TypeVals.clear();
    379   }
    380 
    381   Stream.ExitBlock();
    382 
    383   WriteTypeSymbolTable(VE, Stream);
    384 }
    385 
    386 static unsigned getEncodedLinkage(const GlobalValue *GV) {
    387   switch (GV->getLinkage()) {
    388   case GlobalValue::ExternalLinkage:                 return 0;
    389   case GlobalValue::WeakAnyLinkage:                  return 1;
    390   case GlobalValue::AppendingLinkage:                return 2;
    391   case GlobalValue::InternalLinkage:                 return 3;
    392   case GlobalValue::LinkOnceAnyLinkage:              return 4;
    393   case GlobalValue::DLLImportLinkage:                return 5;
    394   case GlobalValue::DLLExportLinkage:                return 6;
    395   case GlobalValue::ExternalWeakLinkage:             return 7;
    396   case GlobalValue::CommonLinkage:                   return 8;
    397   case GlobalValue::PrivateLinkage:                  return 9;
    398   case GlobalValue::WeakODRLinkage:                  return 10;
    399   case GlobalValue::LinkOnceODRLinkage:              return 11;
    400   case GlobalValue::AvailableExternallyLinkage:      return 12;
    401   case GlobalValue::LinkerPrivateLinkage:            return 13;
    402   case GlobalValue::LinkerPrivateWeakLinkage:        return 14;
    403   case GlobalValue::LinkOnceODRAutoHideLinkage:      return 15;
    404   }
    405   llvm_unreachable("Invalid linkage");
    406 }
    407 
    408 static unsigned getEncodedVisibility(const GlobalValue *GV) {
    409   switch (GV->getVisibility()) {
    410   default: llvm_unreachable("Invalid visibility!");
    411   case GlobalValue::DefaultVisibility:   return 0;
    412   case GlobalValue::HiddenVisibility:    return 1;
    413   case GlobalValue::ProtectedVisibility: return 2;
    414   }
    415 }
    416 
    417 // Emit top-level description of module, including target triple, inline asm,
    418 // descriptors for global variables, and function prototype info.
    419 static void WriteModuleInfo(const Module *M,
    420                             const llvm_2_9::ValueEnumerator &VE,
    421                             BitstreamWriter &Stream) {
    422   // Emit various pieces of data attached to a module.
    423   if (!M->getTargetTriple().empty())
    424     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
    425                       0/*TODO*/, Stream);
    426   if (!M->getDataLayout().empty())
    427     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
    428                       0/*TODO*/, Stream);
    429   if (!M->getModuleInlineAsm().empty())
    430     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
    431                       0/*TODO*/, Stream);
    432 
    433   // Emit information about sections and GC, computing how many there are. Also
    434   // compute the maximum alignment value.
    435   std::map<std::string, unsigned> SectionMap;
    436   std::map<std::string, unsigned> GCMap;
    437   unsigned MaxAlignment = 0;
    438   unsigned MaxGlobalType = 0;
    439   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
    440        GV != E; ++GV) {
    441     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
    442     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
    443 
    444     if (!GV->hasSection()) continue;
    445     // Give section names unique ID's.
    446     unsigned &Entry = SectionMap[GV->getSection()];
    447     if (Entry != 0) continue;
    448     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
    449                       0/*TODO*/, Stream);
    450     Entry = SectionMap.size();
    451   }
    452   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
    453     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
    454     if (F->hasSection()) {
    455       // Give section names unique ID's.
    456       unsigned &Entry = SectionMap[F->getSection()];
    457       if (!Entry) {
    458         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
    459                           0/*TODO*/, Stream);
    460         Entry = SectionMap.size();
    461       }
    462     }
    463     if (F->hasGC()) {
    464       // Same for GC names.
    465       unsigned &Entry = GCMap[F->getGC()];
    466       if (!Entry) {
    467         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
    468                           0/*TODO*/, Stream);
    469         Entry = GCMap.size();
    470       }
    471     }
    472   }
    473 
    474   // Emit abbrev for globals, now that we know # sections and max alignment.
    475   unsigned SimpleGVarAbbrev = 0;
    476   if (!M->global_empty()) {
    477     // Add an abbrev for common globals with no visibility or thread localness.
    478     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    479     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
    480     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    481                               Log2_32_Ceil(MaxGlobalType+1)));
    482     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
    483     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
    484     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
    485     if (MaxAlignment == 0)                                      // Alignment.
    486       Abbv->Add(BitCodeAbbrevOp(0));
    487     else {
    488       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
    489       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    490                                Log2_32_Ceil(MaxEncAlignment+1)));
    491     }
    492     if (SectionMap.empty())                                    // Section.
    493       Abbv->Add(BitCodeAbbrevOp(0));
    494     else
    495       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    496                                Log2_32_Ceil(SectionMap.size()+1)));
    497     // Don't bother emitting vis + thread local.
    498     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
    499   }
    500 
    501   // Emit the global variable information.
    502   SmallVector<unsigned, 64> Vals;
    503   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
    504        GV != E; ++GV) {
    505     unsigned AbbrevToUse = 0;
    506 
    507     // GLOBALVAR: [type, isconst, initid,
    508     //             linkage, alignment, section, visibility, threadlocal,
    509     //             unnamed_addr]
    510     Vals.push_back(VE.getTypeID(GV->getType()));
    511     Vals.push_back(GV->isConstant());
    512     Vals.push_back(GV->isDeclaration() ? 0 :
    513                    (VE.getValueID(GV->getInitializer()) + 1));
    514     Vals.push_back(getEncodedLinkage(GV));
    515     Vals.push_back(Log2_32(GV->getAlignment())+1);
    516     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
    517     if (GV->isThreadLocal() ||
    518         GV->getVisibility() != GlobalValue::DefaultVisibility ||
    519         GV->hasUnnamedAddr()) {
    520       Vals.push_back(getEncodedVisibility(GV));
    521       Vals.push_back(GV->isThreadLocal());
    522       Vals.push_back(GV->hasUnnamedAddr());
    523     } else {
    524       AbbrevToUse = SimpleGVarAbbrev;
    525     }
    526 
    527     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
    528     Vals.clear();
    529   }
    530 
    531   // Emit the function proto information.
    532   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
    533     // FUNCTION:  [type, callingconv, isproto, paramattr,
    534     //             linkage, alignment, section, visibility, gc, unnamed_addr]
    535     Vals.push_back(VE.getTypeID(F->getType()));
    536     Vals.push_back(F->getCallingConv());
    537     Vals.push_back(F->isDeclaration());
    538     Vals.push_back(getEncodedLinkage(F));
    539     Vals.push_back(VE.getAttributeID(F->getAttributes()));
    540     Vals.push_back(Log2_32(F->getAlignment())+1);
    541     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
    542     Vals.push_back(getEncodedVisibility(F));
    543     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
    544     Vals.push_back(F->hasUnnamedAddr());
    545 
    546     unsigned AbbrevToUse = 0;
    547     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
    548     Vals.clear();
    549   }
    550 
    551   // Emit the alias information.
    552   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
    553        AI != E; ++AI) {
    554     Vals.push_back(VE.getTypeID(AI->getType()));
    555     Vals.push_back(VE.getValueID(AI->getAliasee()));
    556     Vals.push_back(getEncodedLinkage(AI));
    557     Vals.push_back(getEncodedVisibility(AI));
    558     unsigned AbbrevToUse = 0;
    559     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
    560     Vals.clear();
    561   }
    562 }
    563 
    564 static uint64_t GetOptimizationFlags(const Value *V) {
    565   uint64_t Flags = 0;
    566 
    567   if (const OverflowingBinaryOperator *OBO =
    568         dyn_cast<OverflowingBinaryOperator>(V)) {
    569     if (OBO->hasNoSignedWrap())
    570       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
    571     if (OBO->hasNoUnsignedWrap())
    572       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
    573   } else if (const PossiblyExactOperator *PEO =
    574                dyn_cast<PossiblyExactOperator>(V)) {
    575     if (PEO->isExact())
    576       Flags |= 1 << bitc::PEO_EXACT;
    577   }
    578 
    579   return Flags;
    580 }
    581 
    582 static void WriteMDNode(const MDNode *N,
    583                         const llvm_2_9::ValueEnumerator &VE,
    584                         BitstreamWriter &Stream,
    585                         SmallVector<uint64_t, 64> &Record) {
    586   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    587     if (N->getOperand(i)) {
    588       Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
    589       Record.push_back(VE.getValueID(N->getOperand(i)));
    590     } else {
    591       Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
    592       Record.push_back(0);
    593     }
    594   }
    595   unsigned MDCode = N->isFunctionLocal() ? METADATA_FN_NODE_2_7 :
    596                                            METADATA_NODE_2_7;
    597   Stream.EmitRecord(MDCode, Record, 0);
    598   Record.clear();
    599 }
    600 
    601 static void WriteModuleMetadata(const Module *M,
    602                                 const llvm_2_9::ValueEnumerator &VE,
    603                                 BitstreamWriter &Stream) {
    604   const llvm_2_9::ValueEnumerator::ValueList &Vals = VE.getMDValues();
    605   bool StartedMetadataBlock = false;
    606   unsigned MDSAbbrev = 0;
    607   SmallVector<uint64_t, 64> Record;
    608   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
    609 
    610     if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
    611       if (!N->isFunctionLocal() || !N->getFunction()) {
    612         if (!StartedMetadataBlock) {
    613           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    614           StartedMetadataBlock = true;
    615         }
    616         WriteMDNode(N, VE, Stream, Record);
    617       }
    618     } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
    619       if (!StartedMetadataBlock)  {
    620         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    621 
    622         // Abbrev for METADATA_STRING.
    623         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    624         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
    625         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    626         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
    627         MDSAbbrev = Stream.EmitAbbrev(Abbv);
    628         StartedMetadataBlock = true;
    629       }
    630 
    631       // Code: [strchar x N]
    632       Record.append(MDS->begin(), MDS->end());
    633 
    634       // Emit the finished record.
    635       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
    636       Record.clear();
    637     }
    638   }
    639 
    640   // Write named metadata.
    641   for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
    642        E = M->named_metadata_end(); I != E; ++I) {
    643     const NamedMDNode *NMD = I;
    644     if (!StartedMetadataBlock)  {
    645       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    646       StartedMetadataBlock = true;
    647     }
    648 
    649     // Write name.
    650     StringRef Str = NMD->getName();
    651     for (unsigned i = 0, e = Str.size(); i != e; ++i)
    652       Record.push_back(Str[i]);
    653     Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
    654     Record.clear();
    655 
    656     // Write named metadata operands.
    657     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
    658       Record.push_back(VE.getValueID(NMD->getOperand(i)));
    659     Stream.EmitRecord(METADATA_NAMED_NODE_2_7, Record, 0);
    660     Record.clear();
    661   }
    662 
    663   if (StartedMetadataBlock)
    664     Stream.ExitBlock();
    665 }
    666 
    667 static void WriteFunctionLocalMetadata(const Function &F,
    668                                        const llvm_2_9::ValueEnumerator &VE,
    669                                        BitstreamWriter &Stream) {
    670   bool StartedMetadataBlock = false;
    671   SmallVector<uint64_t, 64> Record;
    672   const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
    673   for (unsigned i = 0, e = Vals.size(); i != e; ++i)
    674     if (const MDNode *N = Vals[i])
    675       if (N->isFunctionLocal() && N->getFunction() == &F) {
    676         if (!StartedMetadataBlock) {
    677           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    678           StartedMetadataBlock = true;
    679         }
    680         WriteMDNode(N, VE, Stream, Record);
    681       }
    682 
    683   if (StartedMetadataBlock)
    684     Stream.ExitBlock();
    685 }
    686 
    687 static void WriteMetadataAttachment(const Function &F,
    688                                     const llvm_2_9::ValueEnumerator &VE,
    689                                     BitstreamWriter &Stream) {
    690   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
    691 
    692   SmallVector<uint64_t, 64> Record;
    693 
    694   // Write metadata attachments
    695   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
    696   SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
    697 
    698   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    699     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
    700          I != E; ++I) {
    701       MDs.clear();
    702       I->getAllMetadataOtherThanDebugLoc(MDs);
    703 
    704       // If no metadata, ignore instruction.
    705       if (MDs.empty()) continue;
    706 
    707       Record.push_back(VE.getInstructionID(I));
    708 
    709       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
    710         Record.push_back(MDs[i].first);
    711         Record.push_back(VE.getValueID(MDs[i].second));
    712       }
    713       Stream.EmitRecord(METADATA_ATTACHMENT_2_7, Record, 0);
    714       Record.clear();
    715     }
    716 
    717   Stream.ExitBlock();
    718 }
    719 
    720 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
    721   SmallVector<uint64_t, 64> Record;
    722 
    723   // Write metadata kinds
    724   // METADATA_KIND - [n x [id, name]]
    725   SmallVector<StringRef, 4> Names;
    726   M->getMDKindNames(Names);
    727 
    728   if (Names.empty()) return;
    729 
    730   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    731 
    732   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
    733     Record.push_back(MDKindID);
    734     StringRef KName = Names[MDKindID];
    735     Record.append(KName.begin(), KName.end());
    736 
    737     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
    738     Record.clear();
    739   }
    740 
    741   Stream.ExitBlock();
    742 }
    743 
    744 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
    745                            const llvm_2_9::ValueEnumerator &VE,
    746                            BitstreamWriter &Stream, bool isGlobal) {
    747   if (FirstVal == LastVal) return;
    748 
    749   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
    750 
    751   unsigned AggregateAbbrev = 0;
    752   unsigned String8Abbrev = 0;
    753   unsigned CString7Abbrev = 0;
    754   unsigned CString6Abbrev = 0;
    755   // If this is a constant pool for the module, emit module-specific abbrevs.
    756   if (isGlobal) {
    757     // Abbrev for CST_CODE_AGGREGATE.
    758     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    759     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
    760     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    761     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
    762     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
    763 
    764     // Abbrev for CST_CODE_STRING.
    765     Abbv = new BitCodeAbbrev();
    766     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
    767     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    768     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
    769     String8Abbrev = Stream.EmitAbbrev(Abbv);
    770     // Abbrev for CST_CODE_CSTRING.
    771     Abbv = new BitCodeAbbrev();
    772     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
    773     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    774     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
    775     CString7Abbrev = Stream.EmitAbbrev(Abbv);
    776     // Abbrev for CST_CODE_CSTRING.
    777     Abbv = new BitCodeAbbrev();
    778     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
    779     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    780     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
    781     CString6Abbrev = Stream.EmitAbbrev(Abbv);
    782   }
    783 
    784   SmallVector<uint64_t, 64> Record;
    785 
    786   const llvm_2_9::ValueEnumerator::ValueList &Vals = VE.getValues();
    787   Type *LastTy = 0;
    788   for (unsigned i = FirstVal; i != LastVal; ++i) {
    789     const Value *V = Vals[i].first;
    790     // If we need to switch types, do so now.
    791     if (V->getType() != LastTy) {
    792       LastTy = V->getType();
    793       Record.push_back(VE.getTypeID(LastTy));
    794       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
    795                         CONSTANTS_SETTYPE_ABBREV);
    796       Record.clear();
    797     }
    798 
    799     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
    800       Record.push_back(unsigned(IA->hasSideEffects()) |
    801                        unsigned(IA->isAlignStack()) << 1);
    802 
    803       // Add the asm string.
    804       const std::string &AsmStr = IA->getAsmString();
    805       Record.push_back(AsmStr.size());
    806       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
    807         Record.push_back(AsmStr[i]);
    808 
    809       // Add the constraint string.
    810       const std::string &ConstraintStr = IA->getConstraintString();
    811       Record.push_back(ConstraintStr.size());
    812       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
    813         Record.push_back(ConstraintStr[i]);
    814       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
    815       Record.clear();
    816       continue;
    817     }
    818     const Constant *C = cast<Constant>(V);
    819     unsigned Code = -1U;
    820     unsigned AbbrevToUse = 0;
    821     if (C->isNullValue()) {
    822       Code = bitc::CST_CODE_NULL;
    823     } else if (isa<UndefValue>(C)) {
    824       Code = bitc::CST_CODE_UNDEF;
    825     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
    826       if (IV->getBitWidth() <= 64) {
    827         uint64_t V = IV->getSExtValue();
    828         if ((int64_t)V >= 0)
    829           Record.push_back(V << 1);
    830         else
    831           Record.push_back((-V << 1) | 1);
    832         Code = bitc::CST_CODE_INTEGER;
    833         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
    834       } else {                             // Wide integers, > 64 bits in size.
    835         // We have an arbitrary precision integer value to write whose
    836         // bit width is > 64. However, in canonical unsigned integer
    837         // format it is likely that the high bits are going to be zero.
    838         // So, we only write the number of active words.
    839         unsigned NWords = IV->getValue().getActiveWords();
    840         const uint64_t *RawWords = IV->getValue().getRawData();
    841         for (unsigned i = 0; i != NWords; ++i) {
    842           int64_t V = RawWords[i];
    843           if (V >= 0)
    844             Record.push_back(V << 1);
    845           else
    846             Record.push_back((-V << 1) | 1);
    847         }
    848         Code = bitc::CST_CODE_WIDE_INTEGER;
    849       }
    850     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
    851       Code = bitc::CST_CODE_FLOAT;
    852       Type *Ty = CFP->getType();
    853       if (Ty->isFloatTy() || Ty->isDoubleTy()) {
    854         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
    855       } else if (Ty->isX86_FP80Ty()) {
    856         // api needed to prevent premature destruction
    857         // bits are not in the same order as a normal i80 APInt, compensate.
    858         APInt api = CFP->getValueAPF().bitcastToAPInt();
    859         const uint64_t *p = api.getRawData();
    860         Record.push_back((p[1] << 48) | (p[0] >> 16));
    861         Record.push_back(p[0] & 0xffffLL);
    862       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
    863         APInt api = CFP->getValueAPF().bitcastToAPInt();
    864         const uint64_t *p = api.getRawData();
    865         Record.push_back(p[0]);
    866         Record.push_back(p[1]);
    867       } else {
    868         assert (0 && "Unknown FP type!");
    869       }
    870     } else if (isa<ConstantDataSequential>(C) &&
    871                cast<ConstantDataSequential>(C)->isString()) {
    872       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
    873       // Emit constant strings specially.
    874       unsigned NumElts = Str->getNumElements();
    875       // If this is a null-terminated string, use the denser CSTRING encoding.
    876       if (Str->isCString()) {
    877         Code = bitc::CST_CODE_CSTRING;
    878         --NumElts;  // Don't encode the null, which isn't allowed by char6.
    879       } else {
    880         Code = bitc::CST_CODE_STRING;
    881         AbbrevToUse = String8Abbrev;
    882       }
    883       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
    884       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
    885       for (unsigned i = 0; i != NumElts; ++i) {
    886         unsigned char V = Str->getElementAsInteger(i);
    887         Record.push_back(V);
    888         isCStr7 &= (V & 128) == 0;
    889         if (isCStrChar6)
    890           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
    891       }
    892 
    893       if (isCStrChar6)
    894         AbbrevToUse = CString6Abbrev;
    895       else if (isCStr7)
    896         AbbrevToUse = CString7Abbrev;
    897     } else if (const ConstantDataSequential *CDS =
    898                   dyn_cast<ConstantDataSequential>(C)) {
    899       // We must replace ConstantDataSequential's representation with the
    900       // legacy ConstantArray/ConstantVector/ConstantStruct version.
    901       // ValueEnumerator is similarly modified to mark the appropriate
    902       // Constants as used (so they are emitted).
    903       Code = bitc::CST_CODE_AGGREGATE;
    904       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
    905         Record.push_back(VE.getValueID(CDS->getElementAsConstant(i)));
    906       AbbrevToUse = AggregateAbbrev;
    907     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
    908                isa<ConstantVector>(C)) {
    909       Code = bitc::CST_CODE_AGGREGATE;
    910       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
    911         Record.push_back(VE.getValueID(C->getOperand(i)));
    912       AbbrevToUse = AggregateAbbrev;
    913     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    914       switch (CE->getOpcode()) {
    915       default:
    916         if (Instruction::isCast(CE->getOpcode())) {
    917           Code = bitc::CST_CODE_CE_CAST;
    918           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
    919           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    920           Record.push_back(VE.getValueID(C->getOperand(0)));
    921           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
    922         } else {
    923           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
    924           Code = bitc::CST_CODE_CE_BINOP;
    925           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
    926           Record.push_back(VE.getValueID(C->getOperand(0)));
    927           Record.push_back(VE.getValueID(C->getOperand(1)));
    928           uint64_t Flags = GetOptimizationFlags(CE);
    929           if (Flags != 0)
    930             Record.push_back(Flags);
    931         }
    932         break;
    933       case Instruction::GetElementPtr:
    934         Code = bitc::CST_CODE_CE_GEP;
    935         if (cast<GEPOperator>(C)->isInBounds())
    936           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
    937         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
    938           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
    939           Record.push_back(VE.getValueID(C->getOperand(i)));
    940         }
    941         break;
    942       case Instruction::Select:
    943         Code = bitc::CST_CODE_CE_SELECT;
    944         Record.push_back(VE.getValueID(C->getOperand(0)));
    945         Record.push_back(VE.getValueID(C->getOperand(1)));
    946         Record.push_back(VE.getValueID(C->getOperand(2)));
    947         break;
    948       case Instruction::ExtractElement:
    949         Code = bitc::CST_CODE_CE_EXTRACTELT;
    950         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    951         Record.push_back(VE.getValueID(C->getOperand(0)));
    952         Record.push_back(VE.getValueID(C->getOperand(1)));
    953         break;
    954       case Instruction::InsertElement:
    955         Code = bitc::CST_CODE_CE_INSERTELT;
    956         Record.push_back(VE.getValueID(C->getOperand(0)));
    957         Record.push_back(VE.getValueID(C->getOperand(1)));
    958         Record.push_back(VE.getValueID(C->getOperand(2)));
    959         break;
    960       case Instruction::ShuffleVector:
    961         // If the return type and argument types are the same, this is a
    962         // standard shufflevector instruction.  If the types are different,
    963         // then the shuffle is widening or truncating the input vectors, and
    964         // the argument type must also be encoded.
    965         if (C->getType() == C->getOperand(0)->getType()) {
    966           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
    967         } else {
    968           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
    969           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    970         }
    971         Record.push_back(VE.getValueID(C->getOperand(0)));
    972         Record.push_back(VE.getValueID(C->getOperand(1)));
    973         Record.push_back(VE.getValueID(C->getOperand(2)));
    974         break;
    975       case Instruction::ICmp:
    976       case Instruction::FCmp:
    977         Code = bitc::CST_CODE_CE_CMP;
    978         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    979         Record.push_back(VE.getValueID(C->getOperand(0)));
    980         Record.push_back(VE.getValueID(C->getOperand(1)));
    981         Record.push_back(CE->getPredicate());
    982         break;
    983       }
    984     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
    985       Code = bitc::CST_CODE_BLOCKADDRESS;
    986       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
    987       Record.push_back(VE.getValueID(BA->getFunction()));
    988       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
    989     } else {
    990 #ifndef NDEBUG
    991       C->dump();
    992 #endif
    993       llvm_unreachable("Unknown constant!");
    994     }
    995     Stream.EmitRecord(Code, Record, AbbrevToUse);
    996     Record.clear();
    997   }
    998 
    999   Stream.ExitBlock();
   1000 }
   1001 
   1002 static void WriteModuleConstants(const llvm_2_9::ValueEnumerator &VE,
   1003                                  BitstreamWriter &Stream) {
   1004   const llvm_2_9::ValueEnumerator::ValueList &Vals = VE.getValues();
   1005 
   1006   // Find the first constant to emit, which is the first non-globalvalue value.
   1007   // We know globalvalues have been emitted by WriteModuleInfo.
   1008   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
   1009     if (!isa<GlobalValue>(Vals[i].first)) {
   1010       WriteConstants(i, Vals.size(), VE, Stream, true);
   1011       return;
   1012     }
   1013   }
   1014 }
   1015 
   1016 /// PushValueAndType - The file has to encode both the value and type id for
   1017 /// many values, because we need to know what type to create for forward
   1018 /// references.  However, most operands are not forward references, so this type
   1019 /// field is not needed.
   1020 ///
   1021 /// This function adds V's value ID to Vals.  If the value ID is higher than the
   1022 /// instruction ID, then it is a forward reference, and it also includes the
   1023 /// type ID.
   1024 static bool PushValueAndType(const Value *V, unsigned InstID,
   1025                              SmallVector<unsigned, 64> &Vals,
   1026                              llvm_2_9::ValueEnumerator &VE) {
   1027   unsigned ValID = VE.getValueID(V);
   1028   Vals.push_back(ValID);
   1029   if (ValID >= InstID) {
   1030     Vals.push_back(VE.getTypeID(V->getType()));
   1031     return true;
   1032   }
   1033   return false;
   1034 }
   1035 
   1036 /// WriteInstruction - Emit an instruction to the specified stream.
   1037 static void WriteInstruction(const Instruction &I, unsigned InstID,
   1038                              llvm_2_9::ValueEnumerator &VE,
   1039                              BitstreamWriter &Stream,
   1040                              SmallVector<unsigned, 64> &Vals) {
   1041   unsigned Code = 0;
   1042   unsigned AbbrevToUse = 0;
   1043   VE.setInstructionID(&I);
   1044   switch (I.getOpcode()) {
   1045   default:
   1046     if (Instruction::isCast(I.getOpcode())) {
   1047       Code = bitc::FUNC_CODE_INST_CAST;
   1048       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
   1049         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
   1050       Vals.push_back(VE.getTypeID(I.getType()));
   1051       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
   1052     } else {
   1053       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
   1054       Code = bitc::FUNC_CODE_INST_BINOP;
   1055       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
   1056         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
   1057       Vals.push_back(VE.getValueID(I.getOperand(1)));
   1058       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
   1059       uint64_t Flags = GetOptimizationFlags(&I);
   1060       if (Flags != 0) {
   1061         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
   1062           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
   1063         Vals.push_back(Flags);
   1064       }
   1065     }
   1066     break;
   1067 
   1068   case Instruction::GetElementPtr:
   1069     Code = bitc::FUNC_CODE_INST_GEP;
   1070     if (cast<GEPOperator>(&I)->isInBounds())
   1071       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
   1072     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
   1073       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
   1074     break;
   1075   case Instruction::ExtractValue: {
   1076     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
   1077     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1078     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
   1079     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
   1080       Vals.push_back(*i);
   1081     break;
   1082   }
   1083   case Instruction::InsertValue: {
   1084     Code = bitc::FUNC_CODE_INST_INSERTVAL;
   1085     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1086     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
   1087     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
   1088     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
   1089       Vals.push_back(*i);
   1090     break;
   1091   }
   1092   case Instruction::Select:
   1093     Code = bitc::FUNC_CODE_INST_VSELECT;
   1094     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
   1095     Vals.push_back(VE.getValueID(I.getOperand(2)));
   1096     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1097     break;
   1098   case Instruction::ExtractElement:
   1099     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
   1100     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1101     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1102     break;
   1103   case Instruction::InsertElement:
   1104     Code = bitc::FUNC_CODE_INST_INSERTELT;
   1105     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1106     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1107     Vals.push_back(VE.getValueID(I.getOperand(2)));
   1108     break;
   1109   case Instruction::ShuffleVector:
   1110     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
   1111     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1112     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1113     Vals.push_back(VE.getValueID(I.getOperand(2)));
   1114     break;
   1115   case Instruction::ICmp:
   1116   case Instruction::FCmp:
   1117     // compare returning Int1Ty or vector of Int1Ty
   1118     Code = bitc::FUNC_CODE_INST_CMP2;
   1119     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1120     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1121     Vals.push_back(cast<CmpInst>(I).getPredicate());
   1122     break;
   1123 
   1124   case Instruction::Ret:
   1125     {
   1126       Code = bitc::FUNC_CODE_INST_RET;
   1127       unsigned NumOperands = I.getNumOperands();
   1128       if (NumOperands == 0)
   1129         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
   1130       else if (NumOperands == 1) {
   1131         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
   1132           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
   1133       } else {
   1134         for (unsigned i = 0, e = NumOperands; i != e; ++i)
   1135           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
   1136       }
   1137     }
   1138     break;
   1139   case Instruction::Br:
   1140     {
   1141       Code = bitc::FUNC_CODE_INST_BR;
   1142       const BranchInst &II = cast<BranchInst>(I);
   1143       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
   1144       if (II.isConditional()) {
   1145         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
   1146         Vals.push_back(VE.getValueID(II.getCondition()));
   1147       }
   1148     }
   1149     break;
   1150   case Instruction::Switch:
   1151     {
   1152       Code = bitc::FUNC_CODE_INST_SWITCH;
   1153       const SwitchInst &SI = cast<SwitchInst>(I);
   1154 
   1155       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
   1156       Vals.push_back(VE.getValueID(SI.getCondition()));
   1157       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
   1158       for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
   1159            i != e; ++i) {
   1160         const IntegersSubset& CaseRanges = i.getCaseValueEx();
   1161 
   1162         if (CaseRanges.isSingleNumber()) {
   1163           Vals.push_back(VE.getValueID(CaseRanges.getSingleNumber(0).toConstantInt()));
   1164           Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
   1165         } else if (CaseRanges.isSingleNumbersOnly()) {
   1166           for (unsigned ri = 0, rn = CaseRanges.getNumItems();
   1167                ri != rn; ++ri) {
   1168             Vals.push_back(VE.getValueID(CaseRanges.getSingleNumber(ri).toConstantInt()));
   1169             Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
   1170           }
   1171         } else {
   1172           llvm_unreachable("Not single number?");
   1173         }
   1174       }
   1175     }
   1176     break;
   1177   case Instruction::IndirectBr:
   1178     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
   1179     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
   1180     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
   1181       Vals.push_back(VE.getValueID(I.getOperand(i)));
   1182     break;
   1183 
   1184   case Instruction::Invoke: {
   1185     const InvokeInst *II = cast<InvokeInst>(&I);
   1186     const Value *Callee(II->getCalledValue());
   1187     PointerType *PTy = cast<PointerType>(Callee->getType());
   1188     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1189     Code = bitc::FUNC_CODE_INST_INVOKE;
   1190 
   1191     Vals.push_back(VE.getAttributeID(II->getAttributes()));
   1192     Vals.push_back(II->getCallingConv());
   1193     Vals.push_back(VE.getValueID(II->getNormalDest()));
   1194     Vals.push_back(VE.getValueID(II->getUnwindDest()));
   1195     PushValueAndType(Callee, InstID, Vals, VE);
   1196 
   1197     // Emit value #'s for the fixed parameters.
   1198     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
   1199       Vals.push_back(VE.getValueID(I.getOperand(i)));  // fixed param.
   1200 
   1201     // Emit type/value pairs for varargs params.
   1202     if (FTy->isVarArg()) {
   1203       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
   1204            i != e; ++i)
   1205         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
   1206     }
   1207     break;
   1208   }
   1209   case Instruction::Unreachable:
   1210     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
   1211     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
   1212     break;
   1213 
   1214   case Instruction::PHI: {
   1215     const PHINode &PN = cast<PHINode>(I);
   1216     Code = bitc::FUNC_CODE_INST_PHI;
   1217     Vals.push_back(VE.getTypeID(PN.getType()));
   1218     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
   1219       Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
   1220       Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
   1221     }
   1222     break;
   1223   }
   1224 
   1225   case Instruction::Alloca:
   1226     Code = bitc::FUNC_CODE_INST_ALLOCA;
   1227     Vals.push_back(VE.getTypeID(I.getType()));
   1228     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
   1229     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
   1230     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
   1231     break;
   1232 
   1233   case Instruction::Load:
   1234     Code = bitc::FUNC_CODE_INST_LOAD;
   1235     if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
   1236       AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
   1237 
   1238     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
   1239     Vals.push_back(cast<LoadInst>(I).isVolatile());
   1240     break;
   1241   case Instruction::Store:
   1242     Code = bitc::FUNC_CODE_INST_STORE;
   1243     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
   1244     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
   1245     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
   1246     Vals.push_back(cast<StoreInst>(I).isVolatile());
   1247     break;
   1248   case Instruction::Call: {
   1249     const CallInst &CI = cast<CallInst>(I);
   1250     PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
   1251     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1252 
   1253     Code = FUNC_CODE_INST_CALL_2_7;
   1254 
   1255     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
   1256     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
   1257     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
   1258 
   1259     // Emit value #'s for the fixed parameters.
   1260     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
   1261       Vals.push_back(VE.getValueID(CI.getArgOperand(i)));  // fixed param.
   1262 
   1263     // Emit type/value pairs for varargs params.
   1264     if (FTy->isVarArg()) {
   1265       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
   1266            i != e; ++i)
   1267         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
   1268     }
   1269     break;
   1270   }
   1271   case Instruction::VAArg:
   1272     Code = bitc::FUNC_CODE_INST_VAARG;
   1273     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
   1274     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
   1275     Vals.push_back(VE.getTypeID(I.getType())); // restype.
   1276     break;
   1277   }
   1278 
   1279   Stream.EmitRecord(Code, Vals, AbbrevToUse);
   1280   Vals.clear();
   1281 }
   1282 
   1283 // Emit names for globals/functions etc.
   1284 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
   1285                                   const llvm_2_9::ValueEnumerator &VE,
   1286                                   BitstreamWriter &Stream) {
   1287   if (VST.empty()) return;
   1288   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
   1289 
   1290   // FIXME: Set up the abbrev, we know how many values there are!
   1291   // FIXME: We know if the type names can use 7-bit ascii.
   1292   SmallVector<unsigned, 64> NameVals;
   1293 
   1294   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
   1295        SI != SE; ++SI) {
   1296 
   1297     const ValueName &Name = *SI;
   1298 
   1299     // Figure out the encoding to use for the name.
   1300     bool is7Bit = true;
   1301     bool isChar6 = true;
   1302     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
   1303          C != E; ++C) {
   1304       if (isChar6)
   1305         isChar6 = BitCodeAbbrevOp::isChar6(*C);
   1306       if ((unsigned char)*C & 128) {
   1307         is7Bit = false;
   1308         break;  // don't bother scanning the rest.
   1309       }
   1310     }
   1311 
   1312     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
   1313 
   1314     // VST_ENTRY:   [valueid, namechar x N]
   1315     // VST_BBENTRY: [bbid, namechar x N]
   1316     unsigned Code;
   1317     if (isa<BasicBlock>(SI->getValue())) {
   1318       Code = bitc::VST_CODE_BBENTRY;
   1319       if (isChar6)
   1320         AbbrevToUse = VST_BBENTRY_6_ABBREV;
   1321     } else {
   1322       Code = bitc::VST_CODE_ENTRY;
   1323       if (isChar6)
   1324         AbbrevToUse = VST_ENTRY_6_ABBREV;
   1325       else if (is7Bit)
   1326         AbbrevToUse = VST_ENTRY_7_ABBREV;
   1327     }
   1328 
   1329     NameVals.push_back(VE.getValueID(SI->getValue()));
   1330     for (const char *P = Name.getKeyData(),
   1331          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
   1332       NameVals.push_back((unsigned char)*P);
   1333 
   1334     // Emit the finished record.
   1335     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
   1336     NameVals.clear();
   1337   }
   1338   Stream.ExitBlock();
   1339 }
   1340 
   1341 /// WriteFunction - Emit a function body to the module stream.
   1342 static void WriteFunction(const Function &F, llvm_2_9::ValueEnumerator &VE,
   1343                           BitstreamWriter &Stream) {
   1344   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
   1345   VE.incorporateFunction(F);
   1346 
   1347   SmallVector<unsigned, 64> Vals;
   1348 
   1349   // Emit the number of basic blocks, so the reader can create them ahead of
   1350   // time.
   1351   Vals.push_back(VE.getBasicBlocks().size());
   1352   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
   1353   Vals.clear();
   1354 
   1355   // If there are function-local constants, emit them now.
   1356   unsigned CstStart, CstEnd;
   1357   VE.getFunctionConstantRange(CstStart, CstEnd);
   1358   WriteConstants(CstStart, CstEnd, VE, Stream, false);
   1359 
   1360   // If there is function-local metadata, emit it now.
   1361   WriteFunctionLocalMetadata(F, VE, Stream);
   1362 
   1363   // Keep a running idea of what the instruction ID is.
   1364   unsigned InstID = CstEnd;
   1365 
   1366   bool NeedsMetadataAttachment = false;
   1367 
   1368   DebugLoc LastDL;
   1369 
   1370   // Finally, emit all the instructions, in order.
   1371   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
   1372     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
   1373          I != E; ++I) {
   1374       WriteInstruction(*I, InstID, VE, Stream, Vals);
   1375 
   1376       if (!I->getType()->isVoidTy())
   1377         ++InstID;
   1378 
   1379       // If the instruction has metadata, write a metadata attachment later.
   1380       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
   1381 
   1382       // If the instruction has a debug location, emit it.
   1383       DebugLoc DL = I->getDebugLoc();
   1384       if (DL.isUnknown()) {
   1385         // nothing todo.
   1386       } else if (DL == LastDL) {
   1387         // Just repeat the same debug loc as last time.
   1388         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
   1389       } else {
   1390         MDNode *Scope, *IA;
   1391         DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
   1392 
   1393         Vals.push_back(DL.getLine());
   1394         Vals.push_back(DL.getCol());
   1395         Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
   1396         Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
   1397         Stream.EmitRecord(FUNC_CODE_DEBUG_LOC_2_7, Vals);
   1398         Vals.clear();
   1399 
   1400         LastDL = DL;
   1401       }
   1402     }
   1403 
   1404   // Emit names for all the instructions etc.
   1405   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
   1406 
   1407   if (NeedsMetadataAttachment)
   1408     WriteMetadataAttachment(F, VE, Stream);
   1409   VE.purgeFunction();
   1410   Stream.ExitBlock();
   1411 }
   1412 
   1413 // Emit blockinfo, which defines the standard abbreviations etc.
   1414 static void WriteBlockInfo(const llvm_2_9::ValueEnumerator &VE,
   1415                            BitstreamWriter &Stream) {
   1416   // We only want to emit block info records for blocks that have multiple
   1417   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
   1418   // blocks can defined their abbrevs inline.
   1419   Stream.EnterBlockInfoBlock(2);
   1420 
   1421   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
   1422     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1423     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
   1424     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1425     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1426     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
   1427     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1428                                    Abbv) != VST_ENTRY_8_ABBREV)
   1429       llvm_unreachable("Unexpected abbrev ordering!");
   1430   }
   1431 
   1432   { // 7-bit fixed width VST_ENTRY strings.
   1433     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1434     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
   1435     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1436     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1437     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
   1438     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1439                                    Abbv) != VST_ENTRY_7_ABBREV)
   1440       llvm_unreachable("Unexpected abbrev ordering!");
   1441   }
   1442   { // 6-bit char6 VST_ENTRY strings.
   1443     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1444     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
   1445     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1446     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1447     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   1448     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1449                                    Abbv) != VST_ENTRY_6_ABBREV)
   1450       llvm_unreachable("Unexpected abbrev ordering!");
   1451   }
   1452   { // 6-bit char6 VST_BBENTRY strings.
   1453     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1454     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
   1455     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1456     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1457     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   1458     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1459                                    Abbv) != VST_BBENTRY_6_ABBREV)
   1460       llvm_unreachable("Unexpected abbrev ordering!");
   1461   }
   1462 
   1463 
   1464 
   1465   { // SETTYPE abbrev for CONSTANTS_BLOCK.
   1466     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1467     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
   1468     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
   1469                               Log2_32_Ceil(VE.getTypes().size()+1)));
   1470     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1471                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
   1472       llvm_unreachable("Unexpected abbrev ordering!");
   1473   }
   1474 
   1475   { // INTEGER abbrev for CONSTANTS_BLOCK.
   1476     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1477     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
   1478     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1479     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1480                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
   1481       llvm_unreachable("Unexpected abbrev ordering!");
   1482   }
   1483 
   1484   { // CE_CAST abbrev for CONSTANTS_BLOCK.
   1485     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1486     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
   1487     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
   1488     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
   1489                               Log2_32_Ceil(VE.getTypes().size()+1)));
   1490     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
   1491 
   1492     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1493                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
   1494       llvm_unreachable("Unexpected abbrev ordering!");
   1495   }
   1496   { // NULL abbrev for CONSTANTS_BLOCK.
   1497     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1498     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
   1499     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1500                                    Abbv) != CONSTANTS_NULL_Abbrev)
   1501       llvm_unreachable("Unexpected abbrev ordering!");
   1502   }
   1503 
   1504   // FIXME: This should only use space for first class types!
   1505 
   1506   { // INST_LOAD abbrev for FUNCTION_BLOCK.
   1507     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1508     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
   1509     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
   1510     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
   1511     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
   1512     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1513                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
   1514       llvm_unreachable("Unexpected abbrev ordering!");
   1515   }
   1516   { // INST_BINOP abbrev for FUNCTION_BLOCK.
   1517     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1518     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
   1519     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
   1520     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
   1521     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
   1522     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1523                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
   1524       llvm_unreachable("Unexpected abbrev ordering!");
   1525   }
   1526   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
   1527     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1528     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
   1529     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
   1530     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
   1531     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
   1532     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
   1533     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1534                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
   1535       llvm_unreachable("Unexpected abbrev ordering!");
   1536   }
   1537   { // INST_CAST abbrev for FUNCTION_BLOCK.
   1538     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1539     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
   1540     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
   1541     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
   1542                               Log2_32_Ceil(VE.getTypes().size()+1)));
   1543     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
   1544     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1545                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
   1546       llvm_unreachable("Unexpected abbrev ordering!");
   1547   }
   1548 
   1549   { // INST_RET abbrev for FUNCTION_BLOCK.
   1550     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1551     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
   1552     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1553                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
   1554       llvm_unreachable("Unexpected abbrev ordering!");
   1555   }
   1556   { // INST_RET abbrev for FUNCTION_BLOCK.
   1557     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1558     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
   1559     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
   1560     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1561                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
   1562       llvm_unreachable("Unexpected abbrev ordering!");
   1563   }
   1564   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
   1565     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1566     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
   1567     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1568                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
   1569       llvm_unreachable("Unexpected abbrev ordering!");
   1570   }
   1571 
   1572   Stream.ExitBlock();
   1573 }
   1574 
   1575 
   1576 /// WriteModule - Emit the specified module to the bitstream.
   1577 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
   1578   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
   1579 
   1580   // Emit the version number if it is non-zero.
   1581   if (CurVersion) {
   1582     SmallVector<unsigned, 1> Vals;
   1583     Vals.push_back(CurVersion);
   1584     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
   1585   }
   1586 
   1587   // Analyze the module, enumerating globals, functions, etc.
   1588   llvm_2_9::ValueEnumerator VE(M);
   1589 
   1590   // Emit blockinfo, which defines the standard abbreviations etc.
   1591   WriteBlockInfo(VE, Stream);
   1592 
   1593   // Emit information about parameter attributes.
   1594   WriteAttributeTable(VE, Stream);
   1595 
   1596   // Emit information describing all of the types in the module.
   1597   WriteTypeTable(VE, Stream);
   1598 
   1599   // Emit top-level description of module, including target triple, inline asm,
   1600   // descriptors for global variables, and function prototype info.
   1601   WriteModuleInfo(M, VE, Stream);
   1602 
   1603   // Emit constants.
   1604   WriteModuleConstants(VE, Stream);
   1605 
   1606   // Emit metadata.
   1607   WriteModuleMetadata(M, VE, Stream);
   1608 
   1609   // Emit function bodies.
   1610   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
   1611     if (!F->isDeclaration())
   1612       WriteFunction(*F, VE, Stream);
   1613 
   1614   // Emit metadata.
   1615   WriteModuleMetadataStore(M, Stream);
   1616 
   1617   // Emit names for globals/functions etc.
   1618   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
   1619 
   1620   Stream.ExitBlock();
   1621 }
   1622 
   1623 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
   1624 /// header and trailer to make it compatible with the system archiver.  To do
   1625 /// this we emit the following header, and then emit a trailer that pads the
   1626 /// file out to be a multiple of 16 bytes.
   1627 ///
   1628 /// struct bc_header {
   1629 ///   uint32_t Magic;         // 0x0B17C0DE
   1630 ///   uint32_t Version;       // Version, currently always 0.
   1631 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
   1632 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
   1633 ///   uint32_t CPUType;       // CPU specifier.
   1634 ///   ... potentially more later ...
   1635 /// };
   1636 enum {
   1637   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
   1638   DarwinBCHeaderSize = 5*4
   1639 };
   1640 
   1641 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
   1642                                uint32_t &Position) {
   1643   Buffer[Position + 0] = (unsigned char) (Value >>  0);
   1644   Buffer[Position + 1] = (unsigned char) (Value >>  8);
   1645   Buffer[Position + 2] = (unsigned char) (Value >> 16);
   1646   Buffer[Position + 3] = (unsigned char) (Value >> 24);
   1647   Position += 4;
   1648 }
   1649 
   1650 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
   1651                                          const Triple &TT) {
   1652   unsigned CPUType = ~0U;
   1653 
   1654   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
   1655   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
   1656   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
   1657   // specific constants here because they are implicitly part of the Darwin ABI.
   1658   enum {
   1659     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
   1660     DARWIN_CPU_TYPE_X86        = 7,
   1661     DARWIN_CPU_TYPE_ARM        = 12,
   1662     DARWIN_CPU_TYPE_POWERPC    = 18
   1663   };
   1664 
   1665   Triple::ArchType Arch = TT.getArch();
   1666   if (Arch == Triple::x86_64)
   1667     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
   1668   else if (Arch == Triple::x86)
   1669     CPUType = DARWIN_CPU_TYPE_X86;
   1670   else if (Arch == Triple::ppc)
   1671     CPUType = DARWIN_CPU_TYPE_POWERPC;
   1672   else if (Arch == Triple::ppc64)
   1673     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
   1674   else if (Arch == Triple::arm || Arch == Triple::thumb)
   1675     CPUType = DARWIN_CPU_TYPE_ARM;
   1676 
   1677   // Traditional Bitcode starts after header.
   1678   assert(Buffer.size() >= DarwinBCHeaderSize &&
   1679          "Expected header size to be reserved");
   1680   unsigned BCOffset = DarwinBCHeaderSize;
   1681   unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
   1682 
   1683   // Write the magic and version.
   1684   unsigned Position = 0;
   1685   WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
   1686   WriteInt32ToBuffer(0          , Buffer, Position); // Version.
   1687   WriteInt32ToBuffer(BCOffset   , Buffer, Position);
   1688   WriteInt32ToBuffer(BCSize     , Buffer, Position);
   1689   WriteInt32ToBuffer(CPUType    , Buffer, Position);
   1690 
   1691   // If the file is not a multiple of 16 bytes, insert dummy padding.
   1692   while (Buffer.size() & 15)
   1693     Buffer.push_back(0);
   1694 }
   1695 
   1696 /// WriteBitcodeToFile - Write the specified module to the specified output
   1697 /// stream.
   1698 void llvm_2_9::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
   1699   SmallVector<char, 1024> Buffer;
   1700   Buffer.reserve(256*1024);
   1701 
   1702   // If this is darwin or another generic macho target, reserve space for the
   1703   // header.
   1704   Triple TT(M->getTargetTriple());
   1705   if (TT.isOSDarwin())
   1706     Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
   1707 
   1708   // Emit the module into the buffer.
   1709   {
   1710     BitstreamWriter Stream(Buffer);
   1711 
   1712     // Emit the file header.
   1713     Stream.Emit((unsigned)'B', 8);
   1714     Stream.Emit((unsigned)'C', 8);
   1715     Stream.Emit(0x0, 4);
   1716     Stream.Emit(0xC, 4);
   1717     Stream.Emit(0xE, 4);
   1718     Stream.Emit(0xD, 4);
   1719 
   1720     // Emit the module.
   1721     WriteModule(M, Stream);
   1722   }
   1723 
   1724   if (TT.isOSDarwin())
   1725     EmitDarwinBCHeaderAndTrailer(Buffer, TT);
   1726 
   1727   // Write the generated bitstream to "Out".
   1728   Out.write((char*)&Buffer.front(), Buffer.size());
   1729 }
   1730