Home | History | Annotate | Download | only in BitWriter_2_9_func
      1 //===--- Bitcode/Writer/BitcodeWriter.cpp - Bitcode Writer ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // Bitcode writer implementation.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "ReaderWriter_2_9_func.h"
     15 #include "ValueEnumerator.h"
     16 #include "llvm/ADT/Triple.h"
     17 #include "llvm/Bitcode/BitstreamWriter.h"
     18 #include "llvm/Bitcode/LLVMBitCodes.h"
     19 #include "llvm/IR/Constants.h"
     20 #include "llvm/IR/DerivedTypes.h"
     21 #include "llvm/IR/InlineAsm.h"
     22 #include "llvm/IR/Instructions.h"
     23 #include "llvm/IR/Module.h"
     24 #include "llvm/IR/Operator.h"
     25 #include "llvm/IR/ValueSymbolTable.h"
     26 #include "llvm/Support/ErrorHandling.h"
     27 #include "llvm/Support/MathExtras.h"
     28 #include "llvm/Support/Program.h"
     29 #include "llvm/Support/raw_ostream.h"
     30 #include <cctype>
     31 #include <map>
     32 using namespace llvm;
     33 
     34 /// These are manifest constants used by the bitcode writer. They do not need to
     35 /// be kept in sync with the reader, but need to be consistent within this file.
     36 enum {
     37   CurVersion = 0,
     38 
     39   // VALUE_SYMTAB_BLOCK abbrev id's.
     40   VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     41   VST_ENTRY_7_ABBREV,
     42   VST_ENTRY_6_ABBREV,
     43   VST_BBENTRY_6_ABBREV,
     44 
     45   // CONSTANTS_BLOCK abbrev id's.
     46   CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     47   CONSTANTS_INTEGER_ABBREV,
     48   CONSTANTS_CE_CAST_Abbrev,
     49   CONSTANTS_NULL_Abbrev,
     50 
     51   // FUNCTION_BLOCK abbrev id's.
     52   FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
     53   FUNCTION_INST_BINOP_ABBREV,
     54   FUNCTION_INST_BINOP_FLAGS_ABBREV,
     55   FUNCTION_INST_CAST_ABBREV,
     56   FUNCTION_INST_RET_VOID_ABBREV,
     57   FUNCTION_INST_RET_VAL_ABBREV,
     58   FUNCTION_INST_UNREACHABLE_ABBREV
     59 };
     60 
     61 
     62 static unsigned GetEncodedCastOpcode(unsigned Opcode) {
     63   switch (Opcode) {
     64   default: llvm_unreachable("Unknown cast instruction!");
     65   case Instruction::Trunc   : return bitc::CAST_TRUNC;
     66   case Instruction::ZExt    : return bitc::CAST_ZEXT;
     67   case Instruction::SExt    : return bitc::CAST_SEXT;
     68   case Instruction::FPToUI  : return bitc::CAST_FPTOUI;
     69   case Instruction::FPToSI  : return bitc::CAST_FPTOSI;
     70   case Instruction::UIToFP  : return bitc::CAST_UITOFP;
     71   case Instruction::SIToFP  : return bitc::CAST_SITOFP;
     72   case Instruction::FPTrunc : return bitc::CAST_FPTRUNC;
     73   case Instruction::FPExt   : return bitc::CAST_FPEXT;
     74   case Instruction::PtrToInt: return bitc::CAST_PTRTOINT;
     75   case Instruction::IntToPtr: return bitc::CAST_INTTOPTR;
     76   case Instruction::BitCast : return bitc::CAST_BITCAST;
     77   }
     78 }
     79 
     80 static unsigned GetEncodedBinaryOpcode(unsigned Opcode) {
     81   switch (Opcode) {
     82   default: llvm_unreachable("Unknown binary instruction!");
     83   case Instruction::Add:
     84   case Instruction::FAdd: return bitc::BINOP_ADD;
     85   case Instruction::Sub:
     86   case Instruction::FSub: return bitc::BINOP_SUB;
     87   case Instruction::Mul:
     88   case Instruction::FMul: return bitc::BINOP_MUL;
     89   case Instruction::UDiv: return bitc::BINOP_UDIV;
     90   case Instruction::FDiv:
     91   case Instruction::SDiv: return bitc::BINOP_SDIV;
     92   case Instruction::URem: return bitc::BINOP_UREM;
     93   case Instruction::FRem:
     94   case Instruction::SRem: return bitc::BINOP_SREM;
     95   case Instruction::Shl:  return bitc::BINOP_SHL;
     96   case Instruction::LShr: return bitc::BINOP_LSHR;
     97   case Instruction::AShr: return bitc::BINOP_ASHR;
     98   case Instruction::And:  return bitc::BINOP_AND;
     99   case Instruction::Or:   return bitc::BINOP_OR;
    100   case Instruction::Xor:  return bitc::BINOP_XOR;
    101   }
    102 }
    103 
    104 static unsigned GetEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
    105   switch (Op) {
    106   default: llvm_unreachable("Unknown RMW operation!");
    107   case AtomicRMWInst::Xchg: return bitc::RMW_XCHG;
    108   case AtomicRMWInst::Add: return bitc::RMW_ADD;
    109   case AtomicRMWInst::Sub: return bitc::RMW_SUB;
    110   case AtomicRMWInst::And: return bitc::RMW_AND;
    111   case AtomicRMWInst::Nand: return bitc::RMW_NAND;
    112   case AtomicRMWInst::Or: return bitc::RMW_OR;
    113   case AtomicRMWInst::Xor: return bitc::RMW_XOR;
    114   case AtomicRMWInst::Max: return bitc::RMW_MAX;
    115   case AtomicRMWInst::Min: return bitc::RMW_MIN;
    116   case AtomicRMWInst::UMax: return bitc::RMW_UMAX;
    117   case AtomicRMWInst::UMin: return bitc::RMW_UMIN;
    118   }
    119 }
    120 
    121 static unsigned GetEncodedOrdering(AtomicOrdering Ordering) {
    122   switch (Ordering) {
    123   default: llvm_unreachable("Unknown atomic ordering");
    124   case NotAtomic: return bitc::ORDERING_NOTATOMIC;
    125   case Unordered: return bitc::ORDERING_UNORDERED;
    126   case Monotonic: return bitc::ORDERING_MONOTONIC;
    127   case Acquire: return bitc::ORDERING_ACQUIRE;
    128   case Release: return bitc::ORDERING_RELEASE;
    129   case AcquireRelease: return bitc::ORDERING_ACQREL;
    130   case SequentiallyConsistent: return bitc::ORDERING_SEQCST;
    131   }
    132 }
    133 
    134 static unsigned GetEncodedSynchScope(SynchronizationScope SynchScope) {
    135   switch (SynchScope) {
    136   default: llvm_unreachable("Unknown synchronization scope");
    137   case SingleThread: return bitc::SYNCHSCOPE_SINGLETHREAD;
    138   case CrossThread: return bitc::SYNCHSCOPE_CROSSTHREAD;
    139   }
    140 }
    141 
    142 static void WriteStringRecord(unsigned Code, StringRef Str,
    143                               unsigned AbbrevToUse, BitstreamWriter &Stream) {
    144   SmallVector<unsigned, 64> Vals;
    145 
    146   // Code: [strchar x N]
    147   for (unsigned i = 0, e = Str.size(); i != e; ++i) {
    148     if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(Str[i]))
    149       AbbrevToUse = 0;
    150     Vals.push_back(Str[i]);
    151   }
    152 
    153   // Emit the finished record.
    154   Stream.EmitRecord(Code, Vals, AbbrevToUse);
    155 }
    156 
    157 // Emit information about parameter attributes.
    158 static void WriteAttributeTable(const llvm_2_9_func::ValueEnumerator &VE,
    159                                 BitstreamWriter &Stream) {
    160   const std::vector<AttributeSet> &Attrs = VE.getAttributes();
    161   if (Attrs.empty()) return;
    162 
    163   Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
    164 
    165   SmallVector<uint64_t, 64> Record;
    166   for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
    167     const AttributeSet &A = Attrs[i];
    168     for (unsigned i = 0, e = A.getNumSlots(); i != e; ++i)
    169       Record.push_back(VE.getAttributeGroupID(A.getSlotAttributes(i)));
    170 
    171     Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
    172     Record.clear();
    173   }
    174 
    175   Stream.ExitBlock();
    176 }
    177 
    178 /// WriteTypeTable - Write out the type table for a module.
    179 static void WriteTypeTable(const llvm_2_9_func::ValueEnumerator &VE,
    180                            BitstreamWriter &Stream) {
    181   const llvm_2_9_func::ValueEnumerator::TypeList &TypeList = VE.getTypes();
    182 
    183   Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
    184   SmallVector<uint64_t, 64> TypeVals;
    185 
    186   // Abbrev for TYPE_CODE_POINTER.
    187   BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    188   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
    189   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    190                             Log2_32_Ceil(VE.getTypes().size()+1)));
    191   Abbv->Add(BitCodeAbbrevOp(0));  // Addrspace = 0
    192   unsigned PtrAbbrev = Stream.EmitAbbrev(Abbv);
    193 
    194   // Abbrev for TYPE_CODE_FUNCTION.
    195   Abbv = new BitCodeAbbrev();
    196   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION_OLD));
    197   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // isvararg
    198   Abbv->Add(BitCodeAbbrevOp(0));  // FIXME: DEAD value, remove in LLVM 3.0
    199   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    200   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    201                             Log2_32_Ceil(VE.getTypes().size()+1)));
    202   unsigned FunctionAbbrev = Stream.EmitAbbrev(Abbv);
    203 
    204   // Abbrev for TYPE_CODE_STRUCT_ANON.
    205   Abbv = new BitCodeAbbrev();
    206   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
    207   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
    208   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    209   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    210                             Log2_32_Ceil(VE.getTypes().size()+1)));
    211   unsigned StructAnonAbbrev = Stream.EmitAbbrev(Abbv);
    212 
    213   // Abbrev for TYPE_CODE_STRUCT_NAME.
    214   Abbv = new BitCodeAbbrev();
    215   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
    216   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    217   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
    218   unsigned StructNameAbbrev = Stream.EmitAbbrev(Abbv);
    219 
    220   // Abbrev for TYPE_CODE_STRUCT_NAMED.
    221   Abbv = new BitCodeAbbrev();
    222   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
    223   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));  // ispacked
    224   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    225   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    226                             Log2_32_Ceil(VE.getTypes().size()+1)));
    227   unsigned StructNamedAbbrev = Stream.EmitAbbrev(Abbv);
    228 
    229   // Abbrev for TYPE_CODE_ARRAY.
    230   Abbv = new BitCodeAbbrev();
    231   Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
    232   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));   // size
    233   Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    234                             Log2_32_Ceil(VE.getTypes().size()+1)));
    235   unsigned ArrayAbbrev = Stream.EmitAbbrev(Abbv);
    236 
    237   // Emit an entry count so the reader can reserve space.
    238   TypeVals.push_back(TypeList.size());
    239   Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
    240   TypeVals.clear();
    241 
    242   // Loop over all of the types, emitting each in turn.
    243   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
    244     Type *T = TypeList[i];
    245     int AbbrevToUse = 0;
    246     unsigned Code = 0;
    247 
    248     switch (T->getTypeID()) {
    249     default: llvm_unreachable("Unknown type!");
    250     case Type::VoidTyID:      Code = bitc::TYPE_CODE_VOID;   break;
    251     case Type::FloatTyID:     Code = bitc::TYPE_CODE_FLOAT;  break;
    252     case Type::DoubleTyID:    Code = bitc::TYPE_CODE_DOUBLE; break;
    253     case Type::X86_FP80TyID:  Code = bitc::TYPE_CODE_X86_FP80; break;
    254     case Type::FP128TyID:     Code = bitc::TYPE_CODE_FP128; break;
    255     case Type::PPC_FP128TyID: Code = bitc::TYPE_CODE_PPC_FP128; break;
    256     case Type::LabelTyID:     Code = bitc::TYPE_CODE_LABEL;  break;
    257     case Type::MetadataTyID:  Code = bitc::TYPE_CODE_METADATA; break;
    258     case Type::X86_MMXTyID:   Code = bitc::TYPE_CODE_X86_MMX; break;
    259     case Type::IntegerTyID:
    260       // INTEGER: [width]
    261       Code = bitc::TYPE_CODE_INTEGER;
    262       TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
    263       break;
    264     case Type::PointerTyID: {
    265       PointerType *PTy = cast<PointerType>(T);
    266       // POINTER: [pointee type, address space]
    267       Code = bitc::TYPE_CODE_POINTER;
    268       TypeVals.push_back(VE.getTypeID(PTy->getElementType()));
    269       unsigned AddressSpace = PTy->getAddressSpace();
    270       TypeVals.push_back(AddressSpace);
    271       if (AddressSpace == 0) AbbrevToUse = PtrAbbrev;
    272       break;
    273     }
    274     case Type::FunctionTyID: {
    275       FunctionType *FT = cast<FunctionType>(T);
    276       // FUNCTION: [isvararg, attrid, retty, paramty x N]
    277       Code = bitc::TYPE_CODE_FUNCTION_OLD;
    278       TypeVals.push_back(FT->isVarArg());
    279       TypeVals.push_back(0);  // FIXME: DEAD: remove in llvm 3.0
    280       TypeVals.push_back(VE.getTypeID(FT->getReturnType()));
    281       for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i)
    282         TypeVals.push_back(VE.getTypeID(FT->getParamType(i)));
    283       AbbrevToUse = FunctionAbbrev;
    284       break;
    285     }
    286     case Type::StructTyID: {
    287       StructType *ST = cast<StructType>(T);
    288       // STRUCT: [ispacked, eltty x N]
    289       TypeVals.push_back(ST->isPacked());
    290       // Output all of the element types.
    291       for (StructType::element_iterator I = ST->element_begin(),
    292            E = ST->element_end(); I != E; ++I)
    293         TypeVals.push_back(VE.getTypeID(*I));
    294 
    295       if (ST->isLiteral()) {
    296         Code = bitc::TYPE_CODE_STRUCT_ANON;
    297         AbbrevToUse = StructAnonAbbrev;
    298       } else {
    299         if (ST->isOpaque()) {
    300           Code = bitc::TYPE_CODE_OPAQUE;
    301         } else {
    302           Code = bitc::TYPE_CODE_STRUCT_NAMED;
    303           AbbrevToUse = StructNamedAbbrev;
    304         }
    305 
    306         // Emit the name if it is present.
    307         if (!ST->getName().empty())
    308           WriteStringRecord(bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
    309                             StructNameAbbrev, Stream);
    310       }
    311       break;
    312     }
    313     case Type::ArrayTyID: {
    314       ArrayType *AT = cast<ArrayType>(T);
    315       // ARRAY: [numelts, eltty]
    316       Code = bitc::TYPE_CODE_ARRAY;
    317       TypeVals.push_back(AT->getNumElements());
    318       TypeVals.push_back(VE.getTypeID(AT->getElementType()));
    319       AbbrevToUse = ArrayAbbrev;
    320       break;
    321     }
    322     case Type::VectorTyID: {
    323       VectorType *VT = cast<VectorType>(T);
    324       // VECTOR [numelts, eltty]
    325       Code = bitc::TYPE_CODE_VECTOR;
    326       TypeVals.push_back(VT->getNumElements());
    327       TypeVals.push_back(VE.getTypeID(VT->getElementType()));
    328       break;
    329     }
    330     }
    331 
    332     // Emit the finished record.
    333     Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
    334     TypeVals.clear();
    335   }
    336 
    337   Stream.ExitBlock();
    338 }
    339 
    340 static unsigned getEncodedLinkage(const GlobalValue *GV) {
    341   switch (GV->getLinkage()) {
    342   case GlobalValue::ExternalLinkage:                 return 0;
    343   case GlobalValue::WeakAnyLinkage:                  return 1;
    344   case GlobalValue::AppendingLinkage:                return 2;
    345   case GlobalValue::InternalLinkage:                 return 3;
    346   case GlobalValue::LinkOnceAnyLinkage:              return 4;
    347   case GlobalValue::DLLImportLinkage:                return 5;
    348   case GlobalValue::DLLExportLinkage:                return 6;
    349   case GlobalValue::ExternalWeakLinkage:             return 7;
    350   case GlobalValue::CommonLinkage:                   return 8;
    351   case GlobalValue::PrivateLinkage:                  return 9;
    352   case GlobalValue::WeakODRLinkage:                  return 10;
    353   case GlobalValue::LinkOnceODRLinkage:              return 11;
    354   case GlobalValue::AvailableExternallyLinkage:      return 12;
    355   case GlobalValue::LinkerPrivateLinkage:            return 13;
    356   case GlobalValue::LinkerPrivateWeakLinkage:        return 14;
    357   case GlobalValue::LinkOnceODRAutoHideLinkage:      return 15;
    358   }
    359   llvm_unreachable("Invalid linkage");
    360 }
    361 
    362 static unsigned getEncodedVisibility(const GlobalValue *GV) {
    363   switch (GV->getVisibility()) {
    364   default: llvm_unreachable("Invalid visibility!");
    365   case GlobalValue::DefaultVisibility:   return 0;
    366   case GlobalValue::HiddenVisibility:    return 1;
    367   case GlobalValue::ProtectedVisibility: return 2;
    368   }
    369 }
    370 
    371 // Emit top-level description of module, including target triple, inline asm,
    372 // descriptors for global variables, and function prototype info.
    373 static void WriteModuleInfo(const Module *M,
    374                             const llvm_2_9_func::ValueEnumerator &VE,
    375                             BitstreamWriter &Stream) {
    376   // Emit various pieces of data attached to a module.
    377   if (!M->getTargetTriple().empty())
    378     WriteStringRecord(bitc::MODULE_CODE_TRIPLE, M->getTargetTriple(),
    379                       0/*TODO*/, Stream);
    380   if (!M->getDataLayout().empty())
    381     WriteStringRecord(bitc::MODULE_CODE_DATALAYOUT, M->getDataLayout(),
    382                       0/*TODO*/, Stream);
    383   if (!M->getModuleInlineAsm().empty())
    384     WriteStringRecord(bitc::MODULE_CODE_ASM, M->getModuleInlineAsm(),
    385                       0/*TODO*/, Stream);
    386 
    387   // Emit information about sections and GC, computing how many there are. Also
    388   // compute the maximum alignment value.
    389   std::map<std::string, unsigned> SectionMap;
    390   std::map<std::string, unsigned> GCMap;
    391   unsigned MaxAlignment = 0;
    392   unsigned MaxGlobalType = 0;
    393   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
    394        GV != E; ++GV) {
    395     MaxAlignment = std::max(MaxAlignment, GV->getAlignment());
    396     MaxGlobalType = std::max(MaxGlobalType, VE.getTypeID(GV->getType()));
    397 
    398     if (!GV->hasSection()) continue;
    399     // Give section names unique ID's.
    400     unsigned &Entry = SectionMap[GV->getSection()];
    401     if (Entry != 0) continue;
    402     WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, GV->getSection(),
    403                       0/*TODO*/, Stream);
    404     Entry = SectionMap.size();
    405   }
    406   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
    407     MaxAlignment = std::max(MaxAlignment, F->getAlignment());
    408     if (F->hasSection()) {
    409       // Give section names unique ID's.
    410       unsigned &Entry = SectionMap[F->getSection()];
    411       if (!Entry) {
    412         WriteStringRecord(bitc::MODULE_CODE_SECTIONNAME, F->getSection(),
    413                           0/*TODO*/, Stream);
    414         Entry = SectionMap.size();
    415       }
    416     }
    417     if (F->hasGC()) {
    418       // Same for GC names.
    419       unsigned &Entry = GCMap[F->getGC()];
    420       if (!Entry) {
    421         WriteStringRecord(bitc::MODULE_CODE_GCNAME, F->getGC(),
    422                           0/*TODO*/, Stream);
    423         Entry = GCMap.size();
    424       }
    425     }
    426   }
    427 
    428   // Emit abbrev for globals, now that we know # sections and max alignment.
    429   unsigned SimpleGVarAbbrev = 0;
    430   if (!M->global_empty()) {
    431     // Add an abbrev for common globals with no visibility or thread localness.
    432     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    433     Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
    434     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    435                               Log2_32_Ceil(MaxGlobalType+1)));
    436     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));      // Constant.
    437     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));        // Initializer.
    438     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));      // Linkage.
    439     if (MaxAlignment == 0)                                      // Alignment.
    440       Abbv->Add(BitCodeAbbrevOp(0));
    441     else {
    442       unsigned MaxEncAlignment = Log2_32(MaxAlignment)+1;
    443       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    444                                Log2_32_Ceil(MaxEncAlignment+1)));
    445     }
    446     if (SectionMap.empty())                                    // Section.
    447       Abbv->Add(BitCodeAbbrevOp(0));
    448     else
    449       Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
    450                                Log2_32_Ceil(SectionMap.size()+1)));
    451     // Don't bother emitting vis + thread local.
    452     SimpleGVarAbbrev = Stream.EmitAbbrev(Abbv);
    453   }
    454 
    455   // Emit the global variable information.
    456   SmallVector<unsigned, 64> Vals;
    457   for (Module::const_global_iterator GV = M->global_begin(),E = M->global_end();
    458        GV != E; ++GV) {
    459     unsigned AbbrevToUse = 0;
    460 
    461     // GLOBALVAR: [type, isconst, initid,
    462     //             linkage, alignment, section, visibility, threadlocal,
    463     //             unnamed_addr]
    464     Vals.push_back(VE.getTypeID(GV->getType()));
    465     Vals.push_back(GV->isConstant());
    466     Vals.push_back(GV->isDeclaration() ? 0 :
    467                    (VE.getValueID(GV->getInitializer()) + 1));
    468     Vals.push_back(getEncodedLinkage(GV));
    469     Vals.push_back(Log2_32(GV->getAlignment())+1);
    470     Vals.push_back(GV->hasSection() ? SectionMap[GV->getSection()] : 0);
    471     if (GV->isThreadLocal() ||
    472         GV->getVisibility() != GlobalValue::DefaultVisibility ||
    473         GV->hasUnnamedAddr()) {
    474       Vals.push_back(getEncodedVisibility(GV));
    475       Vals.push_back(GV->isThreadLocal());
    476       Vals.push_back(GV->hasUnnamedAddr());
    477     } else {
    478       AbbrevToUse = SimpleGVarAbbrev;
    479     }
    480 
    481     Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
    482     Vals.clear();
    483   }
    484 
    485   // Emit the function proto information.
    486   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
    487     // FUNCTION:  [type, callingconv, isproto, paramattr,
    488     //             linkage, alignment, section, visibility, gc, unnamed_addr]
    489     Vals.push_back(VE.getTypeID(F->getType()));
    490     Vals.push_back(F->getCallingConv());
    491     Vals.push_back(F->isDeclaration());
    492     Vals.push_back(getEncodedLinkage(F));
    493     Vals.push_back(VE.getAttributeID(F->getAttributes()));
    494     Vals.push_back(Log2_32(F->getAlignment())+1);
    495     Vals.push_back(F->hasSection() ? SectionMap[F->getSection()] : 0);
    496     Vals.push_back(getEncodedVisibility(F));
    497     Vals.push_back(F->hasGC() ? GCMap[F->getGC()] : 0);
    498     Vals.push_back(F->hasUnnamedAddr());
    499 
    500     unsigned AbbrevToUse = 0;
    501     Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
    502     Vals.clear();
    503   }
    504 
    505   // Emit the alias information.
    506   for (Module::const_alias_iterator AI = M->alias_begin(), E = M->alias_end();
    507        AI != E; ++AI) {
    508     Vals.push_back(VE.getTypeID(AI->getType()));
    509     Vals.push_back(VE.getValueID(AI->getAliasee()));
    510     Vals.push_back(getEncodedLinkage(AI));
    511     Vals.push_back(getEncodedVisibility(AI));
    512     unsigned AbbrevToUse = 0;
    513     Stream.EmitRecord(bitc::MODULE_CODE_ALIAS, Vals, AbbrevToUse);
    514     Vals.clear();
    515   }
    516 }
    517 
    518 static uint64_t GetOptimizationFlags(const Value *V) {
    519   uint64_t Flags = 0;
    520 
    521   if (const OverflowingBinaryOperator *OBO =
    522         dyn_cast<OverflowingBinaryOperator>(V)) {
    523     if (OBO->hasNoSignedWrap())
    524       Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
    525     if (OBO->hasNoUnsignedWrap())
    526       Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
    527   } else if (const PossiblyExactOperator *PEO =
    528                dyn_cast<PossiblyExactOperator>(V)) {
    529     if (PEO->isExact())
    530       Flags |= 1 << bitc::PEO_EXACT;
    531   }
    532 
    533   return Flags;
    534 }
    535 
    536 static void WriteMDNode(const MDNode *N,
    537                         const llvm_2_9_func::ValueEnumerator &VE,
    538                         BitstreamWriter &Stream,
    539                         SmallVector<uint64_t, 64> &Record) {
    540   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
    541     if (N->getOperand(i)) {
    542       Record.push_back(VE.getTypeID(N->getOperand(i)->getType()));
    543       Record.push_back(VE.getValueID(N->getOperand(i)));
    544     } else {
    545       Record.push_back(VE.getTypeID(Type::getVoidTy(N->getContext())));
    546       Record.push_back(0);
    547     }
    548   }
    549   unsigned MDCode = N->isFunctionLocal() ? bitc::METADATA_FN_NODE :
    550                                            bitc::METADATA_NODE;
    551   Stream.EmitRecord(MDCode, Record, 0);
    552   Record.clear();
    553 }
    554 
    555 static void WriteModuleMetadata(const Module *M,
    556                                 const llvm_2_9_func::ValueEnumerator &VE,
    557                                 BitstreamWriter &Stream) {
    558   const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getMDValues();
    559   bool StartedMetadataBlock = false;
    560   unsigned MDSAbbrev = 0;
    561   SmallVector<uint64_t, 64> Record;
    562   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
    563 
    564     if (const MDNode *N = dyn_cast<MDNode>(Vals[i].first)) {
    565       if (!N->isFunctionLocal() || !N->getFunction()) {
    566         if (!StartedMetadataBlock) {
    567           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    568           StartedMetadataBlock = true;
    569         }
    570         WriteMDNode(N, VE, Stream, Record);
    571       }
    572     } else if (const MDString *MDS = dyn_cast<MDString>(Vals[i].first)) {
    573       if (!StartedMetadataBlock)  {
    574         Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    575 
    576         // Abbrev for METADATA_STRING.
    577         BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    578         Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING));
    579         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    580         Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
    581         MDSAbbrev = Stream.EmitAbbrev(Abbv);
    582         StartedMetadataBlock = true;
    583       }
    584 
    585       // Code: [strchar x N]
    586       Record.append(MDS->begin(), MDS->end());
    587 
    588       // Emit the finished record.
    589       Stream.EmitRecord(bitc::METADATA_STRING, Record, MDSAbbrev);
    590       Record.clear();
    591     }
    592   }
    593 
    594   // Write named metadata.
    595   for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
    596        E = M->named_metadata_end(); I != E; ++I) {
    597     const NamedMDNode *NMD = I;
    598     if (!StartedMetadataBlock)  {
    599       Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    600       StartedMetadataBlock = true;
    601     }
    602 
    603     // Write name.
    604     StringRef Str = NMD->getName();
    605     for (unsigned i = 0, e = Str.size(); i != e; ++i)
    606       Record.push_back(Str[i]);
    607     Stream.EmitRecord(bitc::METADATA_NAME, Record, 0/*TODO*/);
    608     Record.clear();
    609 
    610     // Write named metadata operands.
    611     for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i)
    612       Record.push_back(VE.getValueID(NMD->getOperand(i)));
    613     Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
    614     Record.clear();
    615   }
    616 
    617   if (StartedMetadataBlock)
    618     Stream.ExitBlock();
    619 }
    620 
    621 static void WriteFunctionLocalMetadata(const Function &F,
    622                                        const llvm_2_9_func::ValueEnumerator &VE,
    623                                        BitstreamWriter &Stream) {
    624   bool StartedMetadataBlock = false;
    625   SmallVector<uint64_t, 64> Record;
    626   const SmallVector<const MDNode *, 8> &Vals = VE.getFunctionLocalMDValues();
    627   for (unsigned i = 0, e = Vals.size(); i != e; ++i)
    628     if (const MDNode *N = Vals[i])
    629       if (N->isFunctionLocal() && N->getFunction() == &F) {
    630         if (!StartedMetadataBlock) {
    631           Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    632           StartedMetadataBlock = true;
    633         }
    634         WriteMDNode(N, VE, Stream, Record);
    635       }
    636 
    637   if (StartedMetadataBlock)
    638     Stream.ExitBlock();
    639 }
    640 
    641 static void WriteMetadataAttachment(const Function &F,
    642                                     const llvm_2_9_func::ValueEnumerator &VE,
    643                                     BitstreamWriter &Stream) {
    644   Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
    645 
    646   SmallVector<uint64_t, 64> Record;
    647 
    648   // Write metadata attachments
    649   // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
    650   SmallVector<std::pair<unsigned, MDNode*>, 4> MDs;
    651 
    652   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
    653     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
    654          I != E; ++I) {
    655       MDs.clear();
    656       I->getAllMetadataOtherThanDebugLoc(MDs);
    657 
    658       // If no metadata, ignore instruction.
    659       if (MDs.empty()) continue;
    660 
    661       Record.push_back(VE.getInstructionID(I));
    662 
    663       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
    664         Record.push_back(MDs[i].first);
    665         Record.push_back(VE.getValueID(MDs[i].second));
    666       }
    667       Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
    668       Record.clear();
    669     }
    670 
    671   Stream.ExitBlock();
    672 }
    673 
    674 static void WriteModuleMetadataStore(const Module *M, BitstreamWriter &Stream) {
    675   SmallVector<uint64_t, 64> Record;
    676 
    677   // Write metadata kinds
    678   // METADATA_KIND - [n x [id, name]]
    679   SmallVector<StringRef, 4> Names;
    680   M->getMDKindNames(Names);
    681 
    682   if (Names.empty()) return;
    683 
    684   Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
    685 
    686   for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
    687     Record.push_back(MDKindID);
    688     StringRef KName = Names[MDKindID];
    689     Record.append(KName.begin(), KName.end());
    690 
    691     Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
    692     Record.clear();
    693   }
    694 
    695   Stream.ExitBlock();
    696 }
    697 
    698 static void WriteConstants(unsigned FirstVal, unsigned LastVal,
    699                            const llvm_2_9_func::ValueEnumerator &VE,
    700                            BitstreamWriter &Stream, bool isGlobal) {
    701   if (FirstVal == LastVal) return;
    702 
    703   Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
    704 
    705   unsigned AggregateAbbrev = 0;
    706   unsigned String8Abbrev = 0;
    707   unsigned CString7Abbrev = 0;
    708   unsigned CString6Abbrev = 0;
    709   // If this is a constant pool for the module, emit module-specific abbrevs.
    710   if (isGlobal) {
    711     // Abbrev for CST_CODE_AGGREGATE.
    712     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
    713     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
    714     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    715     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal+1)));
    716     AggregateAbbrev = Stream.EmitAbbrev(Abbv);
    717 
    718     // Abbrev for CST_CODE_STRING.
    719     Abbv = new BitCodeAbbrev();
    720     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
    721     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    722     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
    723     String8Abbrev = Stream.EmitAbbrev(Abbv);
    724     // Abbrev for CST_CODE_CSTRING.
    725     Abbv = new BitCodeAbbrev();
    726     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
    727     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    728     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
    729     CString7Abbrev = Stream.EmitAbbrev(Abbv);
    730     // Abbrev for CST_CODE_CSTRING.
    731     Abbv = new BitCodeAbbrev();
    732     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
    733     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
    734     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
    735     CString6Abbrev = Stream.EmitAbbrev(Abbv);
    736   }
    737 
    738   SmallVector<uint64_t, 64> Record;
    739 
    740   const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getValues();
    741   Type *LastTy = 0;
    742   for (unsigned i = FirstVal; i != LastVal; ++i) {
    743     const Value *V = Vals[i].first;
    744     // If we need to switch types, do so now.
    745     if (V->getType() != LastTy) {
    746       LastTy = V->getType();
    747       Record.push_back(VE.getTypeID(LastTy));
    748       Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
    749                         CONSTANTS_SETTYPE_ABBREV);
    750       Record.clear();
    751     }
    752 
    753     if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
    754       Record.push_back(unsigned(IA->hasSideEffects()) |
    755                        unsigned(IA->isAlignStack()) << 1);
    756 
    757       // Add the asm string.
    758       const std::string &AsmStr = IA->getAsmString();
    759       Record.push_back(AsmStr.size());
    760       for (unsigned i = 0, e = AsmStr.size(); i != e; ++i)
    761         Record.push_back(AsmStr[i]);
    762 
    763       // Add the constraint string.
    764       const std::string &ConstraintStr = IA->getConstraintString();
    765       Record.push_back(ConstraintStr.size());
    766       for (unsigned i = 0, e = ConstraintStr.size(); i != e; ++i)
    767         Record.push_back(ConstraintStr[i]);
    768       Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
    769       Record.clear();
    770       continue;
    771     }
    772     const Constant *C = cast<Constant>(V);
    773     unsigned Code = -1U;
    774     unsigned AbbrevToUse = 0;
    775     if (C->isNullValue()) {
    776       Code = bitc::CST_CODE_NULL;
    777     } else if (isa<UndefValue>(C)) {
    778       Code = bitc::CST_CODE_UNDEF;
    779     } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
    780       if (IV->getBitWidth() <= 64) {
    781         uint64_t V = IV->getSExtValue();
    782         if ((int64_t)V >= 0)
    783           Record.push_back(V << 1);
    784         else
    785           Record.push_back((-V << 1) | 1);
    786         Code = bitc::CST_CODE_INTEGER;
    787         AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
    788       } else {                             // Wide integers, > 64 bits in size.
    789         // We have an arbitrary precision integer value to write whose
    790         // bit width is > 64. However, in canonical unsigned integer
    791         // format it is likely that the high bits are going to be zero.
    792         // So, we only write the number of active words.
    793         unsigned NWords = IV->getValue().getActiveWords();
    794         const uint64_t *RawWords = IV->getValue().getRawData();
    795         for (unsigned i = 0; i != NWords; ++i) {
    796           int64_t V = RawWords[i];
    797           if (V >= 0)
    798             Record.push_back(V << 1);
    799           else
    800             Record.push_back((-V << 1) | 1);
    801         }
    802         Code = bitc::CST_CODE_WIDE_INTEGER;
    803       }
    804     } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
    805       Code = bitc::CST_CODE_FLOAT;
    806       Type *Ty = CFP->getType();
    807       if (Ty->isFloatTy() || Ty->isDoubleTy()) {
    808         Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
    809       } else if (Ty->isX86_FP80Ty()) {
    810         // api needed to prevent premature destruction
    811         // bits are not in the same order as a normal i80 APInt, compensate.
    812         APInt api = CFP->getValueAPF().bitcastToAPInt();
    813         const uint64_t *p = api.getRawData();
    814         Record.push_back((p[1] << 48) | (p[0] >> 16));
    815         Record.push_back(p[0] & 0xffffLL);
    816       } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
    817         APInt api = CFP->getValueAPF().bitcastToAPInt();
    818         const uint64_t *p = api.getRawData();
    819         Record.push_back(p[0]);
    820         Record.push_back(p[1]);
    821       } else {
    822         assert (0 && "Unknown FP type!");
    823       }
    824     } else if (isa<ConstantDataSequential>(C) &&
    825                cast<ConstantDataSequential>(C)->isString()) {
    826       const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
    827       // Emit constant strings specially.
    828       unsigned NumElts = Str->getNumElements();
    829       // If this is a null-terminated string, use the denser CSTRING encoding.
    830       if (Str->isCString()) {
    831         Code = bitc::CST_CODE_CSTRING;
    832         --NumElts;  // Don't encode the null, which isn't allowed by char6.
    833       } else {
    834         Code = bitc::CST_CODE_STRING;
    835         AbbrevToUse = String8Abbrev;
    836       }
    837       bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
    838       bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
    839       for (unsigned i = 0; i != NumElts; ++i) {
    840         unsigned char V = Str->getElementAsInteger(i);
    841         Record.push_back(V);
    842         isCStr7 &= (V & 128) == 0;
    843         if (isCStrChar6)
    844           isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
    845       }
    846 
    847       if (isCStrChar6)
    848         AbbrevToUse = CString6Abbrev;
    849       else if (isCStr7)
    850         AbbrevToUse = CString7Abbrev;
    851     } else if (const ConstantDataSequential *CDS =
    852                   dyn_cast<ConstantDataSequential>(C)) {
    853       // We must replace ConstantDataSequential's representation with the
    854       // legacy ConstantArray/ConstantVector/ConstantStruct version.
    855       // ValueEnumerator is similarly modified to mark the appropriate
    856       // Constants as used (so they are emitted).
    857       Code = bitc::CST_CODE_AGGREGATE;
    858       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
    859         Record.push_back(VE.getValueID(CDS->getElementAsConstant(i)));
    860       AbbrevToUse = AggregateAbbrev;
    861     } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
    862                isa<ConstantVector>(C)) {
    863       Code = bitc::CST_CODE_AGGREGATE;
    864       for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i)
    865         Record.push_back(VE.getValueID(C->getOperand(i)));
    866       AbbrevToUse = AggregateAbbrev;
    867     } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
    868       switch (CE->getOpcode()) {
    869       default:
    870         if (Instruction::isCast(CE->getOpcode())) {
    871           Code = bitc::CST_CODE_CE_CAST;
    872           Record.push_back(GetEncodedCastOpcode(CE->getOpcode()));
    873           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    874           Record.push_back(VE.getValueID(C->getOperand(0)));
    875           AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
    876         } else {
    877           assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
    878           Code = bitc::CST_CODE_CE_BINOP;
    879           Record.push_back(GetEncodedBinaryOpcode(CE->getOpcode()));
    880           Record.push_back(VE.getValueID(C->getOperand(0)));
    881           Record.push_back(VE.getValueID(C->getOperand(1)));
    882           uint64_t Flags = GetOptimizationFlags(CE);
    883           if (Flags != 0)
    884             Record.push_back(Flags);
    885         }
    886         break;
    887       case Instruction::GetElementPtr:
    888         Code = bitc::CST_CODE_CE_GEP;
    889         if (cast<GEPOperator>(C)->isInBounds())
    890           Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
    891         for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
    892           Record.push_back(VE.getTypeID(C->getOperand(i)->getType()));
    893           Record.push_back(VE.getValueID(C->getOperand(i)));
    894         }
    895         break;
    896       case Instruction::Select:
    897         Code = bitc::CST_CODE_CE_SELECT;
    898         Record.push_back(VE.getValueID(C->getOperand(0)));
    899         Record.push_back(VE.getValueID(C->getOperand(1)));
    900         Record.push_back(VE.getValueID(C->getOperand(2)));
    901         break;
    902       case Instruction::ExtractElement:
    903         Code = bitc::CST_CODE_CE_EXTRACTELT;
    904         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    905         Record.push_back(VE.getValueID(C->getOperand(0)));
    906         Record.push_back(VE.getValueID(C->getOperand(1)));
    907         break;
    908       case Instruction::InsertElement:
    909         Code = bitc::CST_CODE_CE_INSERTELT;
    910         Record.push_back(VE.getValueID(C->getOperand(0)));
    911         Record.push_back(VE.getValueID(C->getOperand(1)));
    912         Record.push_back(VE.getValueID(C->getOperand(2)));
    913         break;
    914       case Instruction::ShuffleVector:
    915         // If the return type and argument types are the same, this is a
    916         // standard shufflevector instruction.  If the types are different,
    917         // then the shuffle is widening or truncating the input vectors, and
    918         // the argument type must also be encoded.
    919         if (C->getType() == C->getOperand(0)->getType()) {
    920           Code = bitc::CST_CODE_CE_SHUFFLEVEC;
    921         } else {
    922           Code = bitc::CST_CODE_CE_SHUFVEC_EX;
    923           Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    924         }
    925         Record.push_back(VE.getValueID(C->getOperand(0)));
    926         Record.push_back(VE.getValueID(C->getOperand(1)));
    927         Record.push_back(VE.getValueID(C->getOperand(2)));
    928         break;
    929       case Instruction::ICmp:
    930       case Instruction::FCmp:
    931         Code = bitc::CST_CODE_CE_CMP;
    932         Record.push_back(VE.getTypeID(C->getOperand(0)->getType()));
    933         Record.push_back(VE.getValueID(C->getOperand(0)));
    934         Record.push_back(VE.getValueID(C->getOperand(1)));
    935         Record.push_back(CE->getPredicate());
    936         break;
    937       }
    938     } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
    939       Code = bitc::CST_CODE_BLOCKADDRESS;
    940       Record.push_back(VE.getTypeID(BA->getFunction()->getType()));
    941       Record.push_back(VE.getValueID(BA->getFunction()));
    942       Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
    943     } else {
    944 #ifndef NDEBUG
    945       C->dump();
    946 #endif
    947       llvm_unreachable("Unknown constant!");
    948     }
    949     Stream.EmitRecord(Code, Record, AbbrevToUse);
    950     Record.clear();
    951   }
    952 
    953   Stream.ExitBlock();
    954 }
    955 
    956 static void WriteModuleConstants(const llvm_2_9_func::ValueEnumerator &VE,
    957                                  BitstreamWriter &Stream) {
    958   const llvm_2_9_func::ValueEnumerator::ValueList &Vals = VE.getValues();
    959 
    960   // Find the first constant to emit, which is the first non-globalvalue value.
    961   // We know globalvalues have been emitted by WriteModuleInfo.
    962   for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
    963     if (!isa<GlobalValue>(Vals[i].first)) {
    964       WriteConstants(i, Vals.size(), VE, Stream, true);
    965       return;
    966     }
    967   }
    968 }
    969 
    970 /// PushValueAndType - The file has to encode both the value and type id for
    971 /// many values, because we need to know what type to create for forward
    972 /// references.  However, most operands are not forward references, so this type
    973 /// field is not needed.
    974 ///
    975 /// This function adds V's value ID to Vals.  If the value ID is higher than the
    976 /// instruction ID, then it is a forward reference, and it also includes the
    977 /// type ID.
    978 static bool PushValueAndType(const Value *V, unsigned InstID,
    979                              SmallVector<unsigned, 64> &Vals,
    980                              llvm_2_9_func::ValueEnumerator &VE) {
    981   unsigned ValID = VE.getValueID(V);
    982   Vals.push_back(ValID);
    983   if (ValID >= InstID) {
    984     Vals.push_back(VE.getTypeID(V->getType()));
    985     return true;
    986   }
    987   return false;
    988 }
    989 
    990 /// WriteInstruction - Emit an instruction to the specified stream.
    991 static void WriteInstruction(const Instruction &I, unsigned InstID,
    992                              llvm_2_9_func::ValueEnumerator &VE,
    993                              BitstreamWriter &Stream,
    994                              SmallVector<unsigned, 64> &Vals) {
    995   unsigned Code = 0;
    996   unsigned AbbrevToUse = 0;
    997   VE.setInstructionID(&I);
    998   switch (I.getOpcode()) {
    999   default:
   1000     if (Instruction::isCast(I.getOpcode())) {
   1001       Code = bitc::FUNC_CODE_INST_CAST;
   1002       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
   1003         AbbrevToUse = FUNCTION_INST_CAST_ABBREV;
   1004       Vals.push_back(VE.getTypeID(I.getType()));
   1005       Vals.push_back(GetEncodedCastOpcode(I.getOpcode()));
   1006     } else {
   1007       assert(isa<BinaryOperator>(I) && "Unknown instruction!");
   1008       Code = bitc::FUNC_CODE_INST_BINOP;
   1009       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
   1010         AbbrevToUse = FUNCTION_INST_BINOP_ABBREV;
   1011       Vals.push_back(VE.getValueID(I.getOperand(1)));
   1012       Vals.push_back(GetEncodedBinaryOpcode(I.getOpcode()));
   1013       uint64_t Flags = GetOptimizationFlags(&I);
   1014       if (Flags != 0) {
   1015         if (AbbrevToUse == FUNCTION_INST_BINOP_ABBREV)
   1016           AbbrevToUse = FUNCTION_INST_BINOP_FLAGS_ABBREV;
   1017         Vals.push_back(Flags);
   1018       }
   1019     }
   1020     break;
   1021 
   1022   case Instruction::GetElementPtr:
   1023     Code = bitc::FUNC_CODE_INST_GEP;
   1024     if (cast<GEPOperator>(&I)->isInBounds())
   1025       Code = bitc::FUNC_CODE_INST_INBOUNDS_GEP;
   1026     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
   1027       PushValueAndType(I.getOperand(i), InstID, Vals, VE);
   1028     break;
   1029   case Instruction::ExtractValue: {
   1030     Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
   1031     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1032     const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
   1033     for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
   1034       Vals.push_back(*i);
   1035     break;
   1036   }
   1037   case Instruction::InsertValue: {
   1038     Code = bitc::FUNC_CODE_INST_INSERTVAL;
   1039     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1040     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
   1041     const InsertValueInst *IVI = cast<InsertValueInst>(&I);
   1042     for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
   1043       Vals.push_back(*i);
   1044     break;
   1045   }
   1046   case Instruction::Select:
   1047     Code = bitc::FUNC_CODE_INST_VSELECT;
   1048     PushValueAndType(I.getOperand(1), InstID, Vals, VE);
   1049     Vals.push_back(VE.getValueID(I.getOperand(2)));
   1050     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1051     break;
   1052   case Instruction::ExtractElement:
   1053     Code = bitc::FUNC_CODE_INST_EXTRACTELT;
   1054     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1055     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1056     break;
   1057   case Instruction::InsertElement:
   1058     Code = bitc::FUNC_CODE_INST_INSERTELT;
   1059     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1060     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1061     Vals.push_back(VE.getValueID(I.getOperand(2)));
   1062     break;
   1063   case Instruction::ShuffleVector:
   1064     Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
   1065     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1066     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1067     Vals.push_back(VE.getValueID(I.getOperand(2)));
   1068     break;
   1069   case Instruction::ICmp:
   1070   case Instruction::FCmp:
   1071     // compare returning Int1Ty or vector of Int1Ty
   1072     Code = bitc::FUNC_CODE_INST_CMP2;
   1073     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1074     Vals.push_back(VE.getValueID(I.getOperand(1)));
   1075     Vals.push_back(cast<CmpInst>(I).getPredicate());
   1076     break;
   1077 
   1078   case Instruction::Ret:
   1079     {
   1080       Code = bitc::FUNC_CODE_INST_RET;
   1081       unsigned NumOperands = I.getNumOperands();
   1082       if (NumOperands == 0)
   1083         AbbrevToUse = FUNCTION_INST_RET_VOID_ABBREV;
   1084       else if (NumOperands == 1) {
   1085         if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))
   1086           AbbrevToUse = FUNCTION_INST_RET_VAL_ABBREV;
   1087       } else {
   1088         for (unsigned i = 0, e = NumOperands; i != e; ++i)
   1089           PushValueAndType(I.getOperand(i), InstID, Vals, VE);
   1090       }
   1091     }
   1092     break;
   1093   case Instruction::Br:
   1094     {
   1095       Code = bitc::FUNC_CODE_INST_BR;
   1096       const BranchInst &II = cast<BranchInst>(I);
   1097       Vals.push_back(VE.getValueID(II.getSuccessor(0)));
   1098       if (II.isConditional()) {
   1099         Vals.push_back(VE.getValueID(II.getSuccessor(1)));
   1100         Vals.push_back(VE.getValueID(II.getCondition()));
   1101       }
   1102     }
   1103     break;
   1104   case Instruction::Switch:
   1105     {
   1106       Code = bitc::FUNC_CODE_INST_SWITCH;
   1107       const SwitchInst &SI = cast<SwitchInst>(I);
   1108 
   1109       Vals.push_back(VE.getTypeID(SI.getCondition()->getType()));
   1110       Vals.push_back(VE.getValueID(SI.getCondition()));
   1111       Vals.push_back(VE.getValueID(SI.getDefaultDest()));
   1112       for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
   1113            i != e; ++i) {
   1114         const IntegersSubset& CaseRanges = i.getCaseValueEx();
   1115 
   1116         if (CaseRanges.isSingleNumber()) {
   1117           Vals.push_back(VE.getValueID(CaseRanges.getSingleNumber(0).toConstantInt()));
   1118           Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
   1119         } else if (CaseRanges.isSingleNumbersOnly()) {
   1120           for (unsigned ri = 0, rn = CaseRanges.getNumItems();
   1121                ri != rn; ++ri) {
   1122             Vals.push_back(VE.getValueID(CaseRanges.getSingleNumber(ri).toConstantInt()));
   1123             Vals.push_back(VE.getValueID(i.getCaseSuccessor()));
   1124           }
   1125         } else {
   1126           llvm_unreachable("Not single number?");
   1127         }
   1128       }
   1129     }
   1130     break;
   1131   case Instruction::IndirectBr:
   1132     Code = bitc::FUNC_CODE_INST_INDIRECTBR;
   1133     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
   1134     for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
   1135       Vals.push_back(VE.getValueID(I.getOperand(i)));
   1136     break;
   1137 
   1138   case Instruction::Invoke: {
   1139     const InvokeInst *II = cast<InvokeInst>(&I);
   1140     const Value *Callee(II->getCalledValue());
   1141     PointerType *PTy = cast<PointerType>(Callee->getType());
   1142     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1143     Code = bitc::FUNC_CODE_INST_INVOKE;
   1144 
   1145     Vals.push_back(VE.getAttributeID(II->getAttributes()));
   1146     Vals.push_back(II->getCallingConv());
   1147     Vals.push_back(VE.getValueID(II->getNormalDest()));
   1148     Vals.push_back(VE.getValueID(II->getUnwindDest()));
   1149     PushValueAndType(Callee, InstID, Vals, VE);
   1150 
   1151     // Emit value #'s for the fixed parameters.
   1152     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
   1153       Vals.push_back(VE.getValueID(I.getOperand(i)));  // fixed param.
   1154 
   1155     // Emit type/value pairs for varargs params.
   1156     if (FTy->isVarArg()) {
   1157       for (unsigned i = FTy->getNumParams(), e = I.getNumOperands()-3;
   1158            i != e; ++i)
   1159         PushValueAndType(I.getOperand(i), InstID, Vals, VE); // vararg
   1160     }
   1161     break;
   1162   }
   1163   case Instruction::Resume:
   1164     Code = bitc::FUNC_CODE_INST_RESUME;
   1165     PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1166     break;
   1167   case Instruction::Unreachable:
   1168     Code = bitc::FUNC_CODE_INST_UNREACHABLE;
   1169     AbbrevToUse = FUNCTION_INST_UNREACHABLE_ABBREV;
   1170     break;
   1171 
   1172   case Instruction::PHI: {
   1173     const PHINode &PN = cast<PHINode>(I);
   1174     Code = bitc::FUNC_CODE_INST_PHI;
   1175     Vals.push_back(VE.getTypeID(PN.getType()));
   1176     for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
   1177       Vals.push_back(VE.getValueID(PN.getIncomingValue(i)));
   1178       Vals.push_back(VE.getValueID(PN.getIncomingBlock(i)));
   1179     }
   1180     break;
   1181   }
   1182 
   1183   case Instruction::LandingPad: {
   1184     const LandingPadInst &LP = cast<LandingPadInst>(I);
   1185     Code = bitc::FUNC_CODE_INST_LANDINGPAD;
   1186     Vals.push_back(VE.getTypeID(LP.getType()));
   1187     PushValueAndType(LP.getPersonalityFn(), InstID, Vals, VE);
   1188     Vals.push_back(LP.isCleanup());
   1189     Vals.push_back(LP.getNumClauses());
   1190     for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
   1191       if (LP.isCatch(I))
   1192         Vals.push_back(LandingPadInst::Catch);
   1193       else
   1194         Vals.push_back(LandingPadInst::Filter);
   1195       PushValueAndType(LP.getClause(I), InstID, Vals, VE);
   1196     }
   1197     break;
   1198   }
   1199 
   1200   case Instruction::Alloca:
   1201     Code = bitc::FUNC_CODE_INST_ALLOCA;
   1202     Vals.push_back(VE.getTypeID(I.getType()));
   1203     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));
   1204     Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
   1205     Vals.push_back(Log2_32(cast<AllocaInst>(I).getAlignment())+1);
   1206     break;
   1207 
   1208   case Instruction::Load:
   1209     if (cast<LoadInst>(I).isAtomic()) {
   1210       Code = bitc::FUNC_CODE_INST_LOADATOMIC;
   1211       PushValueAndType(I.getOperand(0), InstID, Vals, VE);
   1212     } else {
   1213       Code = bitc::FUNC_CODE_INST_LOAD;
   1214       if (!PushValueAndType(I.getOperand(0), InstID, Vals, VE))  // ptr
   1215         AbbrevToUse = FUNCTION_INST_LOAD_ABBREV;
   1216     }
   1217     Vals.push_back(Log2_32(cast<LoadInst>(I).getAlignment())+1);
   1218     Vals.push_back(cast<LoadInst>(I).isVolatile());
   1219     if (cast<LoadInst>(I).isAtomic()) {
   1220       Vals.push_back(GetEncodedOrdering(cast<LoadInst>(I).getOrdering()));
   1221       Vals.push_back(GetEncodedSynchScope(cast<LoadInst>(I).getSynchScope()));
   1222     }
   1223     break;
   1224   case Instruction::Store:
   1225     if (cast<StoreInst>(I).isAtomic())
   1226       Code = bitc::FUNC_CODE_INST_STOREATOMIC;
   1227     else
   1228       Code = bitc::FUNC_CODE_INST_STORE;
   1229     PushValueAndType(I.getOperand(1), InstID, Vals, VE);  // ptrty + ptr
   1230     Vals.push_back(VE.getValueID(I.getOperand(0)));       // val.
   1231     Vals.push_back(Log2_32(cast<StoreInst>(I).getAlignment())+1);
   1232     Vals.push_back(cast<StoreInst>(I).isVolatile());
   1233     if (cast<StoreInst>(I).isAtomic()) {
   1234       Vals.push_back(GetEncodedOrdering(cast<StoreInst>(I).getOrdering()));
   1235       Vals.push_back(GetEncodedSynchScope(cast<StoreInst>(I).getSynchScope()));
   1236     }
   1237     break;
   1238   case Instruction::AtomicCmpXchg:
   1239     Code = bitc::FUNC_CODE_INST_CMPXCHG;
   1240     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
   1241     Vals.push_back(VE.getValueID(I.getOperand(1)));       // cmp.
   1242     Vals.push_back(VE.getValueID(I.getOperand(2)));       // newval.
   1243     Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
   1244     Vals.push_back(GetEncodedOrdering(
   1245                      cast<AtomicCmpXchgInst>(I).getOrdering()));
   1246     Vals.push_back(GetEncodedSynchScope(
   1247                      cast<AtomicCmpXchgInst>(I).getSynchScope()));
   1248     break;
   1249   case Instruction::AtomicRMW:
   1250     Code = bitc::FUNC_CODE_INST_ATOMICRMW;
   1251     PushValueAndType(I.getOperand(0), InstID, Vals, VE);  // ptrty + ptr
   1252     Vals.push_back(VE.getValueID(I.getOperand(1)));       // val.
   1253     Vals.push_back(GetEncodedRMWOperation(
   1254                      cast<AtomicRMWInst>(I).getOperation()));
   1255     Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
   1256     Vals.push_back(GetEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
   1257     Vals.push_back(GetEncodedSynchScope(
   1258                      cast<AtomicRMWInst>(I).getSynchScope()));
   1259     break;
   1260   case Instruction::Fence:
   1261     Code = bitc::FUNC_CODE_INST_FENCE;
   1262     Vals.push_back(GetEncodedOrdering(cast<FenceInst>(I).getOrdering()));
   1263     Vals.push_back(GetEncodedSynchScope(cast<FenceInst>(I).getSynchScope()));
   1264     break;
   1265   case Instruction::Call: {
   1266     const CallInst &CI = cast<CallInst>(I);
   1267     PointerType *PTy = cast<PointerType>(CI.getCalledValue()->getType());
   1268     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1269 
   1270     Code = bitc::FUNC_CODE_INST_CALL;
   1271 
   1272     Vals.push_back(VE.getAttributeID(CI.getAttributes()));
   1273     Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()));
   1274     PushValueAndType(CI.getCalledValue(), InstID, Vals, VE);  // Callee
   1275 
   1276     // Emit value #'s for the fixed parameters.
   1277     for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
   1278       Vals.push_back(VE.getValueID(CI.getArgOperand(i)));  // fixed param.
   1279 
   1280     // Emit type/value pairs for varargs params.
   1281     if (FTy->isVarArg()) {
   1282       for (unsigned i = FTy->getNumParams(), e = CI.getNumArgOperands();
   1283            i != e; ++i)
   1284         PushValueAndType(CI.getArgOperand(i), InstID, Vals, VE);  // varargs
   1285     }
   1286     break;
   1287   }
   1288   case Instruction::VAArg:
   1289     Code = bitc::FUNC_CODE_INST_VAARG;
   1290     Vals.push_back(VE.getTypeID(I.getOperand(0)->getType()));   // valistty
   1291     Vals.push_back(VE.getValueID(I.getOperand(0))); // valist.
   1292     Vals.push_back(VE.getTypeID(I.getType())); // restype.
   1293     break;
   1294   }
   1295 
   1296   Stream.EmitRecord(Code, Vals, AbbrevToUse);
   1297   Vals.clear();
   1298 }
   1299 
   1300 // Emit names for globals/functions etc.
   1301 static void WriteValueSymbolTable(const ValueSymbolTable &VST,
   1302                                   const llvm_2_9_func::ValueEnumerator &VE,
   1303                                   BitstreamWriter &Stream) {
   1304   if (VST.empty()) return;
   1305   Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
   1306 
   1307   // FIXME: Set up the abbrev, we know how many values there are!
   1308   // FIXME: We know if the type names can use 7-bit ascii.
   1309   SmallVector<unsigned, 64> NameVals;
   1310 
   1311   for (ValueSymbolTable::const_iterator SI = VST.begin(), SE = VST.end();
   1312        SI != SE; ++SI) {
   1313 
   1314     const ValueName &Name = *SI;
   1315 
   1316     // Figure out the encoding to use for the name.
   1317     bool is7Bit = true;
   1318     bool isChar6 = true;
   1319     for (const char *C = Name.getKeyData(), *E = C+Name.getKeyLength();
   1320          C != E; ++C) {
   1321       if (isChar6)
   1322         isChar6 = BitCodeAbbrevOp::isChar6(*C);
   1323       if ((unsigned char)*C & 128) {
   1324         is7Bit = false;
   1325         break;  // don't bother scanning the rest.
   1326       }
   1327     }
   1328 
   1329     unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
   1330 
   1331     // VST_ENTRY:   [valueid, namechar x N]
   1332     // VST_BBENTRY: [bbid, namechar x N]
   1333     unsigned Code;
   1334     if (isa<BasicBlock>(SI->getValue())) {
   1335       Code = bitc::VST_CODE_BBENTRY;
   1336       if (isChar6)
   1337         AbbrevToUse = VST_BBENTRY_6_ABBREV;
   1338     } else {
   1339       Code = bitc::VST_CODE_ENTRY;
   1340       if (isChar6)
   1341         AbbrevToUse = VST_ENTRY_6_ABBREV;
   1342       else if (is7Bit)
   1343         AbbrevToUse = VST_ENTRY_7_ABBREV;
   1344     }
   1345 
   1346     NameVals.push_back(VE.getValueID(SI->getValue()));
   1347     for (const char *P = Name.getKeyData(),
   1348          *E = Name.getKeyData()+Name.getKeyLength(); P != E; ++P)
   1349       NameVals.push_back((unsigned char)*P);
   1350 
   1351     // Emit the finished record.
   1352     Stream.EmitRecord(Code, NameVals, AbbrevToUse);
   1353     NameVals.clear();
   1354   }
   1355   Stream.ExitBlock();
   1356 }
   1357 
   1358 /// WriteFunction - Emit a function body to the module stream.
   1359 static void WriteFunction(const Function &F, llvm_2_9_func::ValueEnumerator &VE,
   1360                           BitstreamWriter &Stream) {
   1361   Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
   1362   VE.incorporateFunction(F);
   1363 
   1364   SmallVector<unsigned, 64> Vals;
   1365 
   1366   // Emit the number of basic blocks, so the reader can create them ahead of
   1367   // time.
   1368   Vals.push_back(VE.getBasicBlocks().size());
   1369   Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
   1370   Vals.clear();
   1371 
   1372   // If there are function-local constants, emit them now.
   1373   unsigned CstStart, CstEnd;
   1374   VE.getFunctionConstantRange(CstStart, CstEnd);
   1375   WriteConstants(CstStart, CstEnd, VE, Stream, false);
   1376 
   1377   // If there is function-local metadata, emit it now.
   1378   WriteFunctionLocalMetadata(F, VE, Stream);
   1379 
   1380   // Keep a running idea of what the instruction ID is.
   1381   unsigned InstID = CstEnd;
   1382 
   1383   bool NeedsMetadataAttachment = false;
   1384 
   1385   DebugLoc LastDL;
   1386 
   1387   // Finally, emit all the instructions, in order.
   1388   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
   1389     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
   1390          I != E; ++I) {
   1391       WriteInstruction(*I, InstID, VE, Stream, Vals);
   1392 
   1393       if (!I->getType()->isVoidTy())
   1394         ++InstID;
   1395 
   1396       // If the instruction has metadata, write a metadata attachment later.
   1397       NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
   1398 
   1399       // If the instruction has a debug location, emit it.
   1400       DebugLoc DL = I->getDebugLoc();
   1401       if (DL.isUnknown()) {
   1402         // nothing todo.
   1403       } else if (DL == LastDL) {
   1404         // Just repeat the same debug loc as last time.
   1405         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
   1406       } else {
   1407         MDNode *Scope, *IA;
   1408         DL.getScopeAndInlinedAt(Scope, IA, I->getContext());
   1409 
   1410         Vals.push_back(DL.getLine());
   1411         Vals.push_back(DL.getCol());
   1412         Vals.push_back(Scope ? VE.getValueID(Scope)+1 : 0);
   1413         Vals.push_back(IA ? VE.getValueID(IA)+1 : 0);
   1414         Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
   1415         Vals.clear();
   1416 
   1417         LastDL = DL;
   1418       }
   1419     }
   1420 
   1421   // Emit names for all the instructions etc.
   1422   WriteValueSymbolTable(F.getValueSymbolTable(), VE, Stream);
   1423 
   1424   if (NeedsMetadataAttachment)
   1425     WriteMetadataAttachment(F, VE, Stream);
   1426   VE.purgeFunction();
   1427   Stream.ExitBlock();
   1428 }
   1429 
   1430 // Emit blockinfo, which defines the standard abbreviations etc.
   1431 static void WriteBlockInfo(const llvm_2_9_func::ValueEnumerator &VE,
   1432                            BitstreamWriter &Stream) {
   1433   // We only want to emit block info records for blocks that have multiple
   1434   // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.  Other
   1435   // blocks can defined their abbrevs inline.
   1436   Stream.EnterBlockInfoBlock(2);
   1437 
   1438   { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
   1439     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1440     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
   1441     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1442     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1443     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
   1444     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1445                                    Abbv) != VST_ENTRY_8_ABBREV)
   1446       llvm_unreachable("Unexpected abbrev ordering!");
   1447   }
   1448 
   1449   { // 7-bit fixed width VST_ENTRY strings.
   1450     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1451     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
   1452     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1453     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1454     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
   1455     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1456                                    Abbv) != VST_ENTRY_7_ABBREV)
   1457       llvm_unreachable("Unexpected abbrev ordering!");
   1458   }
   1459   { // 6-bit char6 VST_ENTRY strings.
   1460     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1461     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
   1462     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1463     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1464     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   1465     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1466                                    Abbv) != VST_ENTRY_6_ABBREV)
   1467       llvm_unreachable("Unexpected abbrev ordering!");
   1468   }
   1469   { // 6-bit char6 VST_BBENTRY strings.
   1470     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1471     Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
   1472     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1473     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
   1474     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
   1475     if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
   1476                                    Abbv) != VST_BBENTRY_6_ABBREV)
   1477       llvm_unreachable("Unexpected abbrev ordering!");
   1478   }
   1479 
   1480 
   1481 
   1482   { // SETTYPE abbrev for CONSTANTS_BLOCK.
   1483     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1484     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
   1485     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
   1486                               Log2_32_Ceil(VE.getTypes().size()+1)));
   1487     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1488                                    Abbv) != CONSTANTS_SETTYPE_ABBREV)
   1489       llvm_unreachable("Unexpected abbrev ordering!");
   1490   }
   1491 
   1492   { // INTEGER abbrev for CONSTANTS_BLOCK.
   1493     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1494     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
   1495     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
   1496     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1497                                    Abbv) != CONSTANTS_INTEGER_ABBREV)
   1498       llvm_unreachable("Unexpected abbrev ordering!");
   1499   }
   1500 
   1501   { // CE_CAST abbrev for CONSTANTS_BLOCK.
   1502     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1503     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
   1504     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // cast opc
   1505     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // typeid
   1506                               Log2_32_Ceil(VE.getTypes().size()+1)));
   1507     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));    // value id
   1508 
   1509     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1510                                    Abbv) != CONSTANTS_CE_CAST_Abbrev)
   1511       llvm_unreachable("Unexpected abbrev ordering!");
   1512   }
   1513   { // NULL abbrev for CONSTANTS_BLOCK.
   1514     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1515     Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
   1516     if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID,
   1517                                    Abbv) != CONSTANTS_NULL_Abbrev)
   1518       llvm_unreachable("Unexpected abbrev ordering!");
   1519   }
   1520 
   1521   // FIXME: This should only use space for first class types!
   1522 
   1523   { // INST_LOAD abbrev for FUNCTION_BLOCK.
   1524     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1525     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
   1526     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
   1527     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
   1528     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
   1529     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1530                                    Abbv) != FUNCTION_INST_LOAD_ABBREV)
   1531       llvm_unreachable("Unexpected abbrev ordering!");
   1532   }
   1533   { // INST_BINOP abbrev for FUNCTION_BLOCK.
   1534     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1535     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
   1536     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
   1537     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
   1538     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
   1539     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1540                                    Abbv) != FUNCTION_INST_BINOP_ABBREV)
   1541       llvm_unreachable("Unexpected abbrev ordering!");
   1542   }
   1543   { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
   1544     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1545     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
   1546     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
   1547     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
   1548     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
   1549     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
   1550     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1551                                    Abbv) != FUNCTION_INST_BINOP_FLAGS_ABBREV)
   1552       llvm_unreachable("Unexpected abbrev ordering!");
   1553   }
   1554   { // INST_CAST abbrev for FUNCTION_BLOCK.
   1555     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1556     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
   1557     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));    // OpVal
   1558     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,       // dest ty
   1559                               Log2_32_Ceil(VE.getTypes().size()+1)));
   1560     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4));  // opc
   1561     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1562                                    Abbv) != FUNCTION_INST_CAST_ABBREV)
   1563       llvm_unreachable("Unexpected abbrev ordering!");
   1564   }
   1565 
   1566   { // INST_RET abbrev for FUNCTION_BLOCK.
   1567     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1568     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
   1569     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1570                                    Abbv) != FUNCTION_INST_RET_VOID_ABBREV)
   1571       llvm_unreachable("Unexpected abbrev ordering!");
   1572   }
   1573   { // INST_RET abbrev for FUNCTION_BLOCK.
   1574     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1575     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
   1576     Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
   1577     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1578                                    Abbv) != FUNCTION_INST_RET_VAL_ABBREV)
   1579       llvm_unreachable("Unexpected abbrev ordering!");
   1580   }
   1581   { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
   1582     BitCodeAbbrev *Abbv = new BitCodeAbbrev();
   1583     Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
   1584     if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID,
   1585                                    Abbv) != FUNCTION_INST_UNREACHABLE_ABBREV)
   1586       llvm_unreachable("Unexpected abbrev ordering!");
   1587   }
   1588 
   1589   Stream.ExitBlock();
   1590 }
   1591 
   1592 
   1593 /// WriteModule - Emit the specified module to the bitstream.
   1594 static void WriteModule(const Module *M, BitstreamWriter &Stream) {
   1595   Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
   1596 
   1597   // Emit the version number if it is non-zero.
   1598   if (CurVersion) {
   1599     SmallVector<unsigned, 1> Vals;
   1600     Vals.push_back(CurVersion);
   1601     Stream.EmitRecord(bitc::MODULE_CODE_VERSION, Vals);
   1602   }
   1603 
   1604   // Analyze the module, enumerating globals, functions, etc.
   1605   llvm_2_9_func::ValueEnumerator VE(M);
   1606 
   1607   // Emit blockinfo, which defines the standard abbreviations etc.
   1608   WriteBlockInfo(VE, Stream);
   1609 
   1610   // Emit information about parameter attributes.
   1611   WriteAttributeTable(VE, Stream);
   1612 
   1613   // Emit information describing all of the types in the module.
   1614   WriteTypeTable(VE, Stream);
   1615 
   1616   // Emit top-level description of module, including target triple, inline asm,
   1617   // descriptors for global variables, and function prototype info.
   1618   WriteModuleInfo(M, VE, Stream);
   1619 
   1620   // Emit constants.
   1621   WriteModuleConstants(VE, Stream);
   1622 
   1623   // Emit metadata.
   1624   WriteModuleMetadata(M, VE, Stream);
   1625 
   1626   // Emit function bodies.
   1627   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F)
   1628     if (!F->isDeclaration())
   1629       WriteFunction(*F, VE, Stream);
   1630 
   1631   // Emit metadata.
   1632   WriteModuleMetadataStore(M, Stream);
   1633 
   1634   // Emit names for globals/functions etc.
   1635   WriteValueSymbolTable(M->getValueSymbolTable(), VE, Stream);
   1636 
   1637   Stream.ExitBlock();
   1638 }
   1639 
   1640 /// EmitDarwinBCHeader - If generating a bc file on darwin, we have to emit a
   1641 /// header and trailer to make it compatible with the system archiver.  To do
   1642 /// this we emit the following header, and then emit a trailer that pads the
   1643 /// file out to be a multiple of 16 bytes.
   1644 ///
   1645 /// struct bc_header {
   1646 ///   uint32_t Magic;         // 0x0B17C0DE
   1647 ///   uint32_t Version;       // Version, currently always 0.
   1648 ///   uint32_t BitcodeOffset; // Offset to traditional bitcode file.
   1649 ///   uint32_t BitcodeSize;   // Size of traditional bitcode file.
   1650 ///   uint32_t CPUType;       // CPU specifier.
   1651 ///   ... potentially more later ...
   1652 /// };
   1653 enum {
   1654   DarwinBCSizeFieldOffset = 3*4, // Offset to bitcode_size.
   1655   DarwinBCHeaderSize = 5*4
   1656 };
   1657 
   1658 static void WriteInt32ToBuffer(uint32_t Value, SmallVectorImpl<char> &Buffer,
   1659                                uint32_t &Position) {
   1660   Buffer[Position + 0] = (unsigned char) (Value >>  0);
   1661   Buffer[Position + 1] = (unsigned char) (Value >>  8);
   1662   Buffer[Position + 2] = (unsigned char) (Value >> 16);
   1663   Buffer[Position + 3] = (unsigned char) (Value >> 24);
   1664   Position += 4;
   1665 }
   1666 
   1667 static void EmitDarwinBCHeaderAndTrailer(SmallVectorImpl<char> &Buffer,
   1668                                          const Triple &TT) {
   1669   unsigned CPUType = ~0U;
   1670 
   1671   // Match x86_64-*, i[3-9]86-*, powerpc-*, powerpc64-*, arm-*, thumb-*,
   1672   // armv[0-9]-*, thumbv[0-9]-*, armv5te-*, or armv6t2-*. The CPUType is a magic
   1673   // number from /usr/include/mach/machine.h.  It is ok to reproduce the
   1674   // specific constants here because they are implicitly part of the Darwin ABI.
   1675   enum {
   1676     DARWIN_CPU_ARCH_ABI64      = 0x01000000,
   1677     DARWIN_CPU_TYPE_X86        = 7,
   1678     DARWIN_CPU_TYPE_ARM        = 12,
   1679     DARWIN_CPU_TYPE_POWERPC    = 18
   1680   };
   1681 
   1682   Triple::ArchType Arch = TT.getArch();
   1683   if (Arch == Triple::x86_64)
   1684     CPUType = DARWIN_CPU_TYPE_X86 | DARWIN_CPU_ARCH_ABI64;
   1685   else if (Arch == Triple::x86)
   1686     CPUType = DARWIN_CPU_TYPE_X86;
   1687   else if (Arch == Triple::ppc)
   1688     CPUType = DARWIN_CPU_TYPE_POWERPC;
   1689   else if (Arch == Triple::ppc64)
   1690     CPUType = DARWIN_CPU_TYPE_POWERPC | DARWIN_CPU_ARCH_ABI64;
   1691   else if (Arch == Triple::arm || Arch == Triple::thumb)
   1692     CPUType = DARWIN_CPU_TYPE_ARM;
   1693 
   1694   // Traditional Bitcode starts after header.
   1695   assert(Buffer.size() >= DarwinBCHeaderSize &&
   1696          "Expected header size to be reserved");
   1697   unsigned BCOffset = DarwinBCHeaderSize;
   1698   unsigned BCSize = Buffer.size()-DarwinBCHeaderSize;
   1699 
   1700   // Write the magic and version.
   1701   unsigned Position = 0;
   1702   WriteInt32ToBuffer(0x0B17C0DE , Buffer, Position);
   1703   WriteInt32ToBuffer(0          , Buffer, Position); // Version.
   1704   WriteInt32ToBuffer(BCOffset   , Buffer, Position);
   1705   WriteInt32ToBuffer(BCSize     , Buffer, Position);
   1706   WriteInt32ToBuffer(CPUType    , Buffer, Position);
   1707 
   1708   // If the file is not a multiple of 16 bytes, insert dummy padding.
   1709   while (Buffer.size() & 15)
   1710     Buffer.push_back(0);
   1711 }
   1712 
   1713 /// WriteBitcodeToFile - Write the specified module to the specified output
   1714 /// stream.
   1715 void llvm_2_9_func::WriteBitcodeToFile(const Module *M, raw_ostream &Out) {
   1716   SmallVector<char, 1024> Buffer;
   1717   Buffer.reserve(256*1024);
   1718 
   1719   // If this is darwin or another generic macho target, reserve space for the
   1720   // header.
   1721   Triple TT(M->getTargetTriple());
   1722   if (TT.isOSDarwin())
   1723     Buffer.insert(Buffer.begin(), DarwinBCHeaderSize, 0);
   1724 
   1725   // Emit the module into the buffer.
   1726   {
   1727     BitstreamWriter Stream(Buffer);
   1728 
   1729     // Emit the file header.
   1730     Stream.Emit((unsigned)'B', 8);
   1731     Stream.Emit((unsigned)'C', 8);
   1732     Stream.Emit(0x0, 4);
   1733     Stream.Emit(0xC, 4);
   1734     Stream.Emit(0xE, 4);
   1735     Stream.Emit(0xD, 4);
   1736 
   1737     // Emit the module.
   1738     WriteModule(M, Stream);
   1739   }
   1740 
   1741   if (TT.isOSDarwin())
   1742     EmitDarwinBCHeaderAndTrailer(Buffer, TT);
   1743 
   1744   // Write the generated bitstream to "Out".
   1745   Out.write((char*)&Buffer.front(), Buffer.size());
   1746 }
   1747