Home | History | Annotate | Download | only in MC
      1 //===-- llvm/MC/MCInstrItineraries.h - Scheduling ---------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes the structures used for instruction
     11 // itineraries, stages, and operand reads/writes.  This is used by
     12 // schedulers to determine instruction stages and latencies.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_MC_MCINSTRITINERARIES_H
     17 #define LLVM_MC_MCINSTRITINERARIES_H
     18 
     19 #include "llvm/MC/MCSchedule.h"
     20 #include <algorithm>
     21 
     22 namespace llvm {
     23 
     24 //===----------------------------------------------------------------------===//
     25 /// Instruction stage - These values represent a non-pipelined step in
     26 /// the execution of an instruction.  Cycles represents the number of
     27 /// discrete time slots needed to complete the stage.  Units represent
     28 /// the choice of functional units that can be used to complete the
     29 /// stage.  Eg. IntUnit1, IntUnit2. NextCycles indicates how many
     30 /// cycles should elapse from the start of this stage to the start of
     31 /// the next stage in the itinerary. A value of -1 indicates that the
     32 /// next stage should start immediately after the current one.
     33 /// For example:
     34 ///
     35 ///   { 1, x, -1 }
     36 ///      indicates that the stage occupies FU x for 1 cycle and that
     37 ///      the next stage starts immediately after this one.
     38 ///
     39 ///   { 2, x|y, 1 }
     40 ///      indicates that the stage occupies either FU x or FU y for 2
     41 ///      consecuative cycles and that the next stage starts one cycle
     42 ///      after this stage starts. That is, the stage requirements
     43 ///      overlap in time.
     44 ///
     45 ///   { 1, x, 0 }
     46 ///      indicates that the stage occupies FU x for 1 cycle and that
     47 ///      the next stage starts in this same cycle. This can be used to
     48 ///      indicate that the instruction requires multiple stages at the
     49 ///      same time.
     50 ///
     51 /// FU reservation can be of two different kinds:
     52 ///  - FUs which instruction actually requires
     53 ///  - FUs which instruction just reserves. Reserved unit is not available for
     54 ///    execution of other instruction. However, several instructions can reserve
     55 ///    the same unit several times.
     56 /// Such two types of units reservation is used to model instruction domain
     57 /// change stalls, FUs using the same resource (e.g. same register file), etc.
     58 
     59 struct InstrStage {
     60   enum ReservationKinds {
     61     Required = 0,
     62     Reserved = 1
     63   };
     64 
     65   unsigned Cycles_;  ///< Length of stage in machine cycles
     66   unsigned Units_;   ///< Choice of functional units
     67   int NextCycles_;   ///< Number of machine cycles to next stage
     68   ReservationKinds Kind_; ///< Kind of the FU reservation
     69 
     70   /// getCycles - returns the number of cycles the stage is occupied
     71   unsigned getCycles() const {
     72     return Cycles_;
     73   }
     74 
     75   /// getUnits - returns the choice of FUs
     76   unsigned getUnits() const {
     77     return Units_;
     78   }
     79 
     80   ReservationKinds getReservationKind() const {
     81     return Kind_;
     82   }
     83 
     84   /// getNextCycles - returns the number of cycles from the start of
     85   /// this stage to the start of the next stage in the itinerary
     86   unsigned getNextCycles() const {
     87     return (NextCycles_ >= 0) ? (unsigned)NextCycles_ : Cycles_;
     88   }
     89 };
     90 
     91 
     92 //===----------------------------------------------------------------------===//
     93 /// Instruction itinerary - An itinerary represents the scheduling
     94 /// information for an instruction. This includes a set of stages
     95 /// occupies by the instruction, and the pipeline cycle in which
     96 /// operands are read and written.
     97 ///
     98 struct InstrItinerary {
     99   int      NumMicroOps;        ///< # of micro-ops, -1 means it's variable
    100   unsigned FirstStage;         ///< Index of first stage in itinerary
    101   unsigned LastStage;          ///< Index of last + 1 stage in itinerary
    102   unsigned FirstOperandCycle;  ///< Index of first operand rd/wr
    103   unsigned LastOperandCycle;   ///< Index of last + 1 operand rd/wr
    104 };
    105 
    106 
    107 //===----------------------------------------------------------------------===//
    108 /// Instruction itinerary Data - Itinerary data supplied by a subtarget to be
    109 /// used by a target.
    110 ///
    111 class InstrItineraryData {
    112 public:
    113   const MCSchedModel   *SchedModel;     ///< Basic machine properties.
    114   const InstrStage     *Stages;         ///< Array of stages selected
    115   const unsigned       *OperandCycles;  ///< Array of operand cycles selected
    116   const unsigned       *Forwardings;    ///< Array of pipeline forwarding pathes
    117   const InstrItinerary *Itineraries;    ///< Array of itineraries selected
    118 
    119   /// Ctors.
    120   ///
    121   InstrItineraryData() : SchedModel(&MCSchedModel::DefaultSchedModel),
    122                          Stages(0), OperandCycles(0),
    123                          Forwardings(0), Itineraries(0) {}
    124 
    125   InstrItineraryData(const MCSchedModel *SM, const InstrStage *S,
    126                      const unsigned *OS, const unsigned *F)
    127     : SchedModel(SM), Stages(S), OperandCycles(OS), Forwardings(F),
    128       Itineraries(SchedModel->InstrItineraries) {}
    129 
    130   /// isEmpty - Returns true if there are no itineraries.
    131   ///
    132   bool isEmpty() const { return Itineraries == 0; }
    133 
    134   /// isEndMarker - Returns true if the index is for the end marker
    135   /// itinerary.
    136   ///
    137   bool isEndMarker(unsigned ItinClassIndx) const {
    138     return ((Itineraries[ItinClassIndx].FirstStage == ~0U) &&
    139             (Itineraries[ItinClassIndx].LastStage == ~0U));
    140   }
    141 
    142   /// beginStage - Return the first stage of the itinerary.
    143   ///
    144   const InstrStage *beginStage(unsigned ItinClassIndx) const {
    145     unsigned StageIdx = Itineraries[ItinClassIndx].FirstStage;
    146     return Stages + StageIdx;
    147   }
    148 
    149   /// endStage - Return the last+1 stage of the itinerary.
    150   ///
    151   const InstrStage *endStage(unsigned ItinClassIndx) const {
    152     unsigned StageIdx = Itineraries[ItinClassIndx].LastStage;
    153     return Stages + StageIdx;
    154   }
    155 
    156   /// getStageLatency - Return the total stage latency of the given
    157   /// class.  The latency is the maximum completion time for any stage
    158   /// in the itinerary.
    159   ///
    160   /// InstrStages override the itinerary's MinLatency property. In fact, if the
    161   /// stage latencies, which may be zero, are less than MinLatency,
    162   /// getStageLatency returns a value less than MinLatency.
    163   ///
    164   /// If no stages exist, MinLatency is used. If MinLatency is invalid (<0),
    165   /// then it defaults to one cycle.
    166   unsigned getStageLatency(unsigned ItinClassIndx) const {
    167     // If the target doesn't provide itinerary information, use a simple
    168     // non-zero default value for all instructions.
    169     if (isEmpty())
    170       return SchedModel->MinLatency < 0 ? 1 : SchedModel->MinLatency;
    171 
    172     // Calculate the maximum completion time for any stage.
    173     unsigned Latency = 0, StartCycle = 0;
    174     for (const InstrStage *IS = beginStage(ItinClassIndx),
    175            *E = endStage(ItinClassIndx); IS != E; ++IS) {
    176       Latency = std::max(Latency, StartCycle + IS->getCycles());
    177       StartCycle += IS->getNextCycles();
    178     }
    179 
    180     return Latency;
    181   }
    182 
    183   /// getOperandCycle - Return the cycle for the given class and
    184   /// operand. Return -1 if no cycle is specified for the operand.
    185   ///
    186   int getOperandCycle(unsigned ItinClassIndx, unsigned OperandIdx) const {
    187     if (isEmpty())
    188       return -1;
    189 
    190     unsigned FirstIdx = Itineraries[ItinClassIndx].FirstOperandCycle;
    191     unsigned LastIdx = Itineraries[ItinClassIndx].LastOperandCycle;
    192     if ((FirstIdx + OperandIdx) >= LastIdx)
    193       return -1;
    194 
    195     return (int)OperandCycles[FirstIdx + OperandIdx];
    196   }
    197 
    198   /// hasPipelineForwarding - Return true if there is a pipeline forwarding
    199   /// between instructions of itinerary classes DefClass and UseClasses so that
    200   /// value produced by an instruction of itinerary class DefClass, operand
    201   /// index DefIdx can be bypassed when it's read by an instruction of
    202   /// itinerary class UseClass, operand index UseIdx.
    203   bool hasPipelineForwarding(unsigned DefClass, unsigned DefIdx,
    204                              unsigned UseClass, unsigned UseIdx) const {
    205     unsigned FirstDefIdx = Itineraries[DefClass].FirstOperandCycle;
    206     unsigned LastDefIdx = Itineraries[DefClass].LastOperandCycle;
    207     if ((FirstDefIdx + DefIdx) >= LastDefIdx)
    208       return false;
    209     if (Forwardings[FirstDefIdx + DefIdx] == 0)
    210       return false;
    211 
    212     unsigned FirstUseIdx = Itineraries[UseClass].FirstOperandCycle;
    213     unsigned LastUseIdx = Itineraries[UseClass].LastOperandCycle;
    214     if ((FirstUseIdx + UseIdx) >= LastUseIdx)
    215       return false;
    216 
    217     return Forwardings[FirstDefIdx + DefIdx] ==
    218       Forwardings[FirstUseIdx + UseIdx];
    219   }
    220 
    221   /// getOperandLatency - Compute and return the use operand latency of a given
    222   /// itinerary class and operand index if the value is produced by an
    223   /// instruction of the specified itinerary class and def operand index.
    224   int getOperandLatency(unsigned DefClass, unsigned DefIdx,
    225                         unsigned UseClass, unsigned UseIdx) const {
    226     if (isEmpty())
    227       return -1;
    228 
    229     int DefCycle = getOperandCycle(DefClass, DefIdx);
    230     if (DefCycle == -1)
    231       return -1;
    232 
    233     int UseCycle = getOperandCycle(UseClass, UseIdx);
    234     if (UseCycle == -1)
    235       return -1;
    236 
    237     UseCycle = DefCycle - UseCycle + 1;
    238     if (UseCycle > 0 &&
    239         hasPipelineForwarding(DefClass, DefIdx, UseClass, UseIdx))
    240       // FIXME: This assumes one cycle benefit for every pipeline forwarding.
    241       --UseCycle;
    242     return UseCycle;
    243   }
    244 
    245   /// getNumMicroOps - Return the number of micro-ops that the given class
    246   /// decodes to. Return -1 for classes that require dynamic lookup via
    247   /// TargetInstrInfo.
    248   int getNumMicroOps(unsigned ItinClassIndx) const {
    249     if (isEmpty())
    250       return 1;
    251     return Itineraries[ItinClassIndx].NumMicroOps;
    252   }
    253 };
    254 
    255 } // End llvm namespace
    256 
    257 #endif
    258