Home | History | Annotate | Download | only in Target
      1 //=== Target/TargetRegisterInfo.h - Target Register Information -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file describes an abstract interface used to get information about a
     11 // target machines register file.  This information is used for a variety of
     12 // purposed, especially register allocation.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_TARGET_TARGETREGISTERINFO_H
     17 #define LLVM_TARGET_TARGETREGISTERINFO_H
     18 
     19 #include "llvm/ADT/ArrayRef.h"
     20 #include "llvm/CodeGen/MachineBasicBlock.h"
     21 #include "llvm/CodeGen/ValueTypes.h"
     22 #include "llvm/IR/CallingConv.h"
     23 #include "llvm/MC/MCRegisterInfo.h"
     24 #include <cassert>
     25 #include <functional>
     26 
     27 namespace llvm {
     28 
     29 class BitVector;
     30 class MachineFunction;
     31 class RegScavenger;
     32 template<class T> class SmallVectorImpl;
     33 class VirtRegMap;
     34 class raw_ostream;
     35 
     36 class TargetRegisterClass {
     37 public:
     38   typedef const MCPhysReg* iterator;
     39   typedef const MCPhysReg* const_iterator;
     40   typedef const MVT::SimpleValueType* vt_iterator;
     41   typedef const TargetRegisterClass* const * sc_iterator;
     42 
     43   // Instance variables filled by tablegen, do not use!
     44   const MCRegisterClass *MC;
     45   const vt_iterator VTs;
     46   const uint32_t *SubClassMask;
     47   const uint16_t *SuperRegIndices;
     48   const sc_iterator SuperClasses;
     49   ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
     50 
     51   /// getID() - Return the register class ID number.
     52   ///
     53   unsigned getID() const { return MC->getID(); }
     54 
     55   /// getName() - Return the register class name for debugging.
     56   ///
     57   const char *getName() const { return MC->getName(); }
     58 
     59   /// begin/end - Return all of the registers in this class.
     60   ///
     61   iterator       begin() const { return MC->begin(); }
     62   iterator         end() const { return MC->end(); }
     63 
     64   /// getNumRegs - Return the number of registers in this class.
     65   ///
     66   unsigned getNumRegs() const { return MC->getNumRegs(); }
     67 
     68   /// getRegister - Return the specified register in the class.
     69   ///
     70   unsigned getRegister(unsigned i) const {
     71     return MC->getRegister(i);
     72   }
     73 
     74   /// contains - Return true if the specified register is included in this
     75   /// register class.  This does not include virtual registers.
     76   bool contains(unsigned Reg) const {
     77     return MC->contains(Reg);
     78   }
     79 
     80   /// contains - Return true if both registers are in this class.
     81   bool contains(unsigned Reg1, unsigned Reg2) const {
     82     return MC->contains(Reg1, Reg2);
     83   }
     84 
     85   /// getSize - Return the size of the register in bytes, which is also the size
     86   /// of a stack slot allocated to hold a spilled copy of this register.
     87   unsigned getSize() const { return MC->getSize(); }
     88 
     89   /// getAlignment - Return the minimum required alignment for a register of
     90   /// this class.
     91   unsigned getAlignment() const { return MC->getAlignment(); }
     92 
     93   /// getCopyCost - Return the cost of copying a value between two registers in
     94   /// this class. A negative number means the register class is very expensive
     95   /// to copy e.g. status flag register classes.
     96   int getCopyCost() const { return MC->getCopyCost(); }
     97 
     98   /// isAllocatable - Return true if this register class may be used to create
     99   /// virtual registers.
    100   bool isAllocatable() const { return MC->isAllocatable(); }
    101 
    102   /// hasType - return true if this TargetRegisterClass has the ValueType vt.
    103   ///
    104   bool hasType(EVT vt) const {
    105     for(int i = 0; VTs[i] != MVT::Other; ++i)
    106       if (EVT(VTs[i]) == vt)
    107         return true;
    108     return false;
    109   }
    110 
    111   /// vt_begin / vt_end - Loop over all of the value types that can be
    112   /// represented by values in this register class.
    113   vt_iterator vt_begin() const {
    114     return VTs;
    115   }
    116 
    117   vt_iterator vt_end() const {
    118     vt_iterator I = VTs;
    119     while (*I != MVT::Other) ++I;
    120     return I;
    121   }
    122 
    123   /// hasSubClass - return true if the specified TargetRegisterClass
    124   /// is a proper sub-class of this TargetRegisterClass.
    125   bool hasSubClass(const TargetRegisterClass *RC) const {
    126     return RC != this && hasSubClassEq(RC);
    127   }
    128 
    129   /// hasSubClassEq - Returns true if RC is a sub-class of or equal to this
    130   /// class.
    131   bool hasSubClassEq(const TargetRegisterClass *RC) const {
    132     unsigned ID = RC->getID();
    133     return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
    134   }
    135 
    136   /// hasSuperClass - return true if the specified TargetRegisterClass is a
    137   /// proper super-class of this TargetRegisterClass.
    138   bool hasSuperClass(const TargetRegisterClass *RC) const {
    139     return RC->hasSubClass(this);
    140   }
    141 
    142   /// hasSuperClassEq - Returns true if RC is a super-class of or equal to this
    143   /// class.
    144   bool hasSuperClassEq(const TargetRegisterClass *RC) const {
    145     return RC->hasSubClassEq(this);
    146   }
    147 
    148   /// getSubClassMask - Returns a bit vector of subclasses, including this one.
    149   /// The vector is indexed by class IDs, see hasSubClassEq() above for how to
    150   /// use it.
    151   const uint32_t *getSubClassMask() const {
    152     return SubClassMask;
    153   }
    154 
    155   /// getSuperRegIndices - Returns a 0-terminated list of sub-register indices
    156   /// that project some super-register class into this register class. The list
    157   /// has an entry for each Idx such that:
    158   ///
    159   ///   There exists SuperRC where:
    160   ///     For all Reg in SuperRC:
    161   ///       this->contains(Reg:Idx)
    162   ///
    163   const uint16_t *getSuperRegIndices() const {
    164     return SuperRegIndices;
    165   }
    166 
    167   /// getSuperClasses - Returns a NULL terminated list of super-classes.  The
    168   /// classes are ordered by ID which is also a topological ordering from large
    169   /// to small classes.  The list does NOT include the current class.
    170   sc_iterator getSuperClasses() const {
    171     return SuperClasses;
    172   }
    173 
    174   /// isASubClass - return true if this TargetRegisterClass is a subset
    175   /// class of at least one other TargetRegisterClass.
    176   bool isASubClass() const {
    177     return SuperClasses[0] != 0;
    178   }
    179 
    180   /// getRawAllocationOrder - Returns the preferred order for allocating
    181   /// registers from this register class in MF. The raw order comes directly
    182   /// from the .td file and may include reserved registers that are not
    183   /// allocatable. Register allocators should also make sure to allocate
    184   /// callee-saved registers only after all the volatiles are used. The
    185   /// RegisterClassInfo class provides filtered allocation orders with
    186   /// callee-saved registers moved to the end.
    187   ///
    188   /// The MachineFunction argument can be used to tune the allocatable
    189   /// registers based on the characteristics of the function, subtarget, or
    190   /// other criteria.
    191   ///
    192   /// By default, this method returns all registers in the class.
    193   ///
    194   ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
    195     return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
    196   }
    197 };
    198 
    199 /// TargetRegisterInfoDesc - Extra information, not in MCRegisterDesc, about
    200 /// registers. These are used by codegen, not by MC.
    201 struct TargetRegisterInfoDesc {
    202   unsigned CostPerUse;          // Extra cost of instructions using register.
    203   bool inAllocatableClass;      // Register belongs to an allocatable regclass.
    204 };
    205 
    206 /// Each TargetRegisterClass has a per register weight, and weight
    207 /// limit which must be less than the limits of its pressure sets.
    208 struct RegClassWeight {
    209   unsigned RegWeight;
    210   unsigned WeightLimit;
    211 };
    212 
    213 /// TargetRegisterInfo base class - We assume that the target defines a static
    214 /// array of TargetRegisterDesc objects that represent all of the machine
    215 /// registers that the target has.  As such, we simply have to track a pointer
    216 /// to this array so that we can turn register number into a register
    217 /// descriptor.
    218 ///
    219 class TargetRegisterInfo : public MCRegisterInfo {
    220 public:
    221   typedef const TargetRegisterClass * const * regclass_iterator;
    222 private:
    223   const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
    224   const char *const *SubRegIndexNames;        // Names of subreg indexes.
    225   // Pointer to array of lane masks, one per sub-reg index.
    226   const unsigned *SubRegIndexLaneMasks;
    227 
    228   regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
    229 
    230 protected:
    231   TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
    232                      regclass_iterator RegClassBegin,
    233                      regclass_iterator RegClassEnd,
    234                      const char *const *SRINames,
    235                      const unsigned *SRILaneMasks);
    236   virtual ~TargetRegisterInfo();
    237 public:
    238 
    239   // Register numbers can represent physical registers, virtual registers, and
    240   // sometimes stack slots. The unsigned values are divided into these ranges:
    241   //
    242   //   0           Not a register, can be used as a sentinel.
    243   //   [1;2^30)    Physical registers assigned by TableGen.
    244   //   [2^30;2^31) Stack slots. (Rarely used.)
    245   //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
    246   //
    247   // Further sentinels can be allocated from the small negative integers.
    248   // DenseMapInfo<unsigned> uses -1u and -2u.
    249 
    250   /// isStackSlot - Sometimes it is useful the be able to store a non-negative
    251   /// frame index in a variable that normally holds a register. isStackSlot()
    252   /// returns true if Reg is in the range used for stack slots.
    253   ///
    254   /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
    255   /// slots, so if a variable may contains a stack slot, always check
    256   /// isStackSlot() first.
    257   ///
    258   static bool isStackSlot(unsigned Reg) {
    259     return int(Reg) >= (1 << 30);
    260   }
    261 
    262   /// stackSlot2Index - Compute the frame index from a register value
    263   /// representing a stack slot.
    264   static int stackSlot2Index(unsigned Reg) {
    265     assert(isStackSlot(Reg) && "Not a stack slot");
    266     return int(Reg - (1u << 30));
    267   }
    268 
    269   /// index2StackSlot - Convert a non-negative frame index to a stack slot
    270   /// register value.
    271   static unsigned index2StackSlot(int FI) {
    272     assert(FI >= 0 && "Cannot hold a negative frame index.");
    273     return FI + (1u << 30);
    274   }
    275 
    276   /// isPhysicalRegister - Return true if the specified register number is in
    277   /// the physical register namespace.
    278   static bool isPhysicalRegister(unsigned Reg) {
    279     assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
    280     return int(Reg) > 0;
    281   }
    282 
    283   /// isVirtualRegister - Return true if the specified register number is in
    284   /// the virtual register namespace.
    285   static bool isVirtualRegister(unsigned Reg) {
    286     assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
    287     return int(Reg) < 0;
    288   }
    289 
    290   /// virtReg2Index - Convert a virtual register number to a 0-based index.
    291   /// The first virtual register in a function will get the index 0.
    292   static unsigned virtReg2Index(unsigned Reg) {
    293     assert(isVirtualRegister(Reg) && "Not a virtual register");
    294     return Reg & ~(1u << 31);
    295   }
    296 
    297   /// index2VirtReg - Convert a 0-based index to a virtual register number.
    298   /// This is the inverse operation of VirtReg2IndexFunctor below.
    299   static unsigned index2VirtReg(unsigned Index) {
    300     return Index | (1u << 31);
    301   }
    302 
    303   /// getMinimalPhysRegClass - Returns the Register Class of a physical
    304   /// register of the given type, picking the most sub register class of
    305   /// the right type that contains this physreg.
    306   const TargetRegisterClass *
    307     getMinimalPhysRegClass(unsigned Reg, EVT VT = MVT::Other) const;
    308 
    309   /// getAllocatableClass - Return the maximal subclass of the given register
    310   /// class that is alloctable, or NULL.
    311   const TargetRegisterClass *
    312     getAllocatableClass(const TargetRegisterClass *RC) const;
    313 
    314   /// getAllocatableSet - Returns a bitset indexed by register number
    315   /// indicating if a register is allocatable or not. If a register class is
    316   /// specified, returns the subset for the class.
    317   BitVector getAllocatableSet(const MachineFunction &MF,
    318                               const TargetRegisterClass *RC = NULL) const;
    319 
    320   /// getCostPerUse - Return the additional cost of using this register instead
    321   /// of other registers in its class.
    322   unsigned getCostPerUse(unsigned RegNo) const {
    323     return InfoDesc[RegNo].CostPerUse;
    324   }
    325 
    326   /// isInAllocatableClass - Return true if the register is in the allocation
    327   /// of any register class.
    328   bool isInAllocatableClass(unsigned RegNo) const {
    329     return InfoDesc[RegNo].inAllocatableClass;
    330   }
    331 
    332   /// getSubRegIndexName - Return the human-readable symbolic target-specific
    333   /// name for the specified SubRegIndex.
    334   const char *getSubRegIndexName(unsigned SubIdx) const {
    335     assert(SubIdx && SubIdx < getNumSubRegIndices() &&
    336            "This is not a subregister index");
    337     return SubRegIndexNames[SubIdx-1];
    338   }
    339 
    340   /// getSubRegIndexLaneMask - Return a bitmask representing the parts of a
    341   /// register that are covered by SubIdx.
    342   ///
    343   /// Lane masks for sub-register indices are similar to register units for
    344   /// physical registers. The individual bits in a lane mask can't be assigned
    345   /// any specific meaning. They can be used to check if two sub-register
    346   /// indices overlap.
    347   ///
    348   /// If the target has a register such that:
    349   ///
    350   ///   getSubReg(Reg, A) overlaps getSubReg(Reg, B)
    351   ///
    352   /// then:
    353   ///
    354   ///   getSubRegIndexLaneMask(A) & getSubRegIndexLaneMask(B) != 0
    355   ///
    356   /// The converse is not necessarily true. If two lane masks have a common
    357   /// bit, the corresponding sub-registers may not overlap, but it can be
    358   /// assumed that they usually will.
    359   unsigned getSubRegIndexLaneMask(unsigned SubIdx) const {
    360     // SubIdx == 0 is allowed, it has the lane mask ~0u.
    361     assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
    362     return SubRegIndexLaneMasks[SubIdx];
    363   }
    364 
    365   /// regsOverlap - Returns true if the two registers are equal or alias each
    366   /// other. The registers may be virtual register.
    367   bool regsOverlap(unsigned regA, unsigned regB) const {
    368     if (regA == regB) return true;
    369     if (isVirtualRegister(regA) || isVirtualRegister(regB))
    370       return false;
    371 
    372     // Regunits are numerically ordered. Find a common unit.
    373     MCRegUnitIterator RUA(regA, this);
    374     MCRegUnitIterator RUB(regB, this);
    375     do {
    376       if (*RUA == *RUB) return true;
    377       if (*RUA < *RUB) ++RUA;
    378       else             ++RUB;
    379     } while (RUA.isValid() && RUB.isValid());
    380     return false;
    381   }
    382 
    383   /// hasRegUnit - Returns true if Reg contains RegUnit.
    384   bool hasRegUnit(unsigned Reg, unsigned RegUnit) const {
    385     for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units)
    386       if (*Units == RegUnit)
    387         return true;
    388     return false;
    389   }
    390 
    391   /// getCalleeSavedRegs - Return a null-terminated list of all of the
    392   /// callee saved registers on this target. The register should be in the
    393   /// order of desired callee-save stack frame offset. The first register is
    394   /// closest to the incoming stack pointer if stack grows down, and vice versa.
    395   ///
    396   virtual const MCPhysReg* getCalleeSavedRegs(const MachineFunction *MF = 0)
    397                                                                       const = 0;
    398 
    399   /// getCallPreservedMask - Return a mask of call-preserved registers for the
    400   /// given calling convention on the current sub-target.  The mask should
    401   /// include all call-preserved aliases.  This is used by the register
    402   /// allocator to determine which registers can be live across a call.
    403   ///
    404   /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
    405   /// A set bit indicates that all bits of the corresponding register are
    406   /// preserved across the function call.  The bit mask is expected to be
    407   /// sub-register complete, i.e. if A is preserved, so are all its
    408   /// sub-registers.
    409   ///
    410   /// Bits are numbered from the LSB, so the bit for physical register Reg can
    411   /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
    412   ///
    413   /// A NULL pointer means that no register mask will be used, and call
    414   /// instructions should use implicit-def operands to indicate call clobbered
    415   /// registers.
    416   ///
    417   virtual const uint32_t *getCallPreservedMask(CallingConv::ID) const {
    418     // The default mask clobbers everything.  All targets should override.
    419     return 0;
    420   }
    421 
    422   /// getReservedRegs - Returns a bitset indexed by physical register number
    423   /// indicating if a register is a special register that has particular uses
    424   /// and should be considered unavailable at all times, e.g. SP, RA. This is
    425   /// used by register scavenger to determine what registers are free.
    426   virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
    427 
    428   /// getMatchingSuperReg - Return a super-register of the specified register
    429   /// Reg so its sub-register of index SubIdx is Reg.
    430   unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
    431                                const TargetRegisterClass *RC) const {
    432     return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
    433   }
    434 
    435   /// getMatchingSuperRegClass - Return a subclass of the specified register
    436   /// class A so that each register in it has a sub-register of the
    437   /// specified sub-register index which is in the specified register class B.
    438   ///
    439   /// TableGen will synthesize missing A sub-classes.
    440   virtual const TargetRegisterClass *
    441   getMatchingSuperRegClass(const TargetRegisterClass *A,
    442                            const TargetRegisterClass *B, unsigned Idx) const;
    443 
    444   /// getSubClassWithSubReg - Returns the largest legal sub-class of RC that
    445   /// supports the sub-register index Idx.
    446   /// If no such sub-class exists, return NULL.
    447   /// If all registers in RC already have an Idx sub-register, return RC.
    448   ///
    449   /// TableGen generates a version of this function that is good enough in most
    450   /// cases.  Targets can override if they have constraints that TableGen
    451   /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
    452   /// supported by the full GR32 register class in 64-bit mode, but only by the
    453   /// GR32_ABCD regiister class in 32-bit mode.
    454   ///
    455   /// TableGen will synthesize missing RC sub-classes.
    456   virtual const TargetRegisterClass *
    457   getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
    458     assert(Idx == 0 && "Target has no sub-registers");
    459     return RC;
    460   }
    461 
    462   /// composeSubRegIndices - Return the subregister index you get from composing
    463   /// two subregister indices.
    464   ///
    465   /// The special null sub-register index composes as the identity.
    466   ///
    467   /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
    468   /// returns c. Note that composeSubRegIndices does not tell you about illegal
    469   /// compositions. If R does not have a subreg a, or R:a does not have a subreg
    470   /// b, composeSubRegIndices doesn't tell you.
    471   ///
    472   /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
    473   /// ssub_0:S0 - ssub_3:S3 subregs.
    474   /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
    475   ///
    476   unsigned composeSubRegIndices(unsigned a, unsigned b) const {
    477     if (!a) return b;
    478     if (!b) return a;
    479     return composeSubRegIndicesImpl(a, b);
    480   }
    481 
    482 protected:
    483   /// Overridden by TableGen in targets that have sub-registers.
    484   virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
    485     llvm_unreachable("Target has no sub-registers");
    486   }
    487 
    488 public:
    489   /// getCommonSuperRegClass - Find a common super-register class if it exists.
    490   ///
    491   /// Find a register class, SuperRC and two sub-register indices, PreA and
    492   /// PreB, such that:
    493   ///
    494   ///   1. PreA + SubA == PreB + SubB  (using composeSubRegIndices()), and
    495   ///
    496   ///   2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
    497   ///
    498   ///   3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
    499   ///
    500   /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
    501   /// requirements, and there is no register class with a smaller spill size
    502   /// that satisfies the requirements.
    503   ///
    504   /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
    505   ///
    506   /// Either of the PreA and PreB sub-register indices may be returned as 0. In
    507   /// that case, the returned register class will be a sub-class of the
    508   /// corresponding argument register class.
    509   ///
    510   /// The function returns NULL if no register class can be found.
    511   ///
    512   const TargetRegisterClass*
    513   getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
    514                          const TargetRegisterClass *RCB, unsigned SubB,
    515                          unsigned &PreA, unsigned &PreB) const;
    516 
    517   //===--------------------------------------------------------------------===//
    518   // Register Class Information
    519   //
    520 
    521   /// Register class iterators
    522   ///
    523   regclass_iterator regclass_begin() const { return RegClassBegin; }
    524   regclass_iterator regclass_end() const { return RegClassEnd; }
    525 
    526   unsigned getNumRegClasses() const {
    527     return (unsigned)(regclass_end()-regclass_begin());
    528   }
    529 
    530   /// getRegClass - Returns the register class associated with the enumeration
    531   /// value.  See class MCOperandInfo.
    532   const TargetRegisterClass *getRegClass(unsigned i) const {
    533     assert(i < getNumRegClasses() && "Register Class ID out of range");
    534     return RegClassBegin[i];
    535   }
    536 
    537   /// getCommonSubClass - find the largest common subclass of A and B. Return
    538   /// NULL if there is no common subclass.
    539   const TargetRegisterClass *
    540   getCommonSubClass(const TargetRegisterClass *A,
    541                     const TargetRegisterClass *B) const;
    542 
    543   /// getPointerRegClass - Returns a TargetRegisterClass used for pointer
    544   /// values.  If a target supports multiple different pointer register classes,
    545   /// kind specifies which one is indicated.
    546   virtual const TargetRegisterClass *
    547   getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
    548     llvm_unreachable("Target didn't implement getPointerRegClass!");
    549   }
    550 
    551   /// getCrossCopyRegClass - Returns a legal register class to copy a register
    552   /// in the specified class to or from. If it is possible to copy the register
    553   /// directly without using a cross register class copy, return the specified
    554   /// RC. Returns NULL if it is not possible to copy between a two registers of
    555   /// the specified class.
    556   virtual const TargetRegisterClass *
    557   getCrossCopyRegClass(const TargetRegisterClass *RC) const {
    558     return RC;
    559   }
    560 
    561   /// getLargestLegalSuperClass - Returns the largest super class of RC that is
    562   /// legal to use in the current sub-target and has the same spill size.
    563   /// The returned register class can be used to create virtual registers which
    564   /// means that all its registers can be copied and spilled.
    565   virtual const TargetRegisterClass*
    566   getLargestLegalSuperClass(const TargetRegisterClass *RC) const {
    567     /// The default implementation is very conservative and doesn't allow the
    568     /// register allocator to inflate register classes.
    569     return RC;
    570   }
    571 
    572   /// getRegPressureLimit - Return the register pressure "high water mark" for
    573   /// the specific register class. The scheduler is in high register pressure
    574   /// mode (for the specific register class) if it goes over the limit.
    575   ///
    576   /// Note: this is the old register pressure model that relies on a manually
    577   /// specified representative register class per value type.
    578   virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
    579                                        MachineFunction &MF) const {
    580     return 0;
    581   }
    582 
    583   /// Get the weight in units of pressure for this register class.
    584   virtual const RegClassWeight &getRegClassWeight(
    585     const TargetRegisterClass *RC) const = 0;
    586 
    587   /// Get the weight in units of pressure for this register unit.
    588   virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
    589 
    590   /// Get the number of dimensions of register pressure.
    591   virtual unsigned getNumRegPressureSets() const = 0;
    592 
    593   /// Get the name of this register unit pressure set.
    594   virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
    595 
    596   /// Get the register unit pressure limit for this dimension.
    597   /// This limit must be adjusted dynamically for reserved registers.
    598   virtual unsigned getRegPressureSetLimit(unsigned Idx) const = 0;
    599 
    600   /// Get the dimensions of register pressure impacted by this register class.
    601   /// Returns a -1 terminated array of pressure set IDs.
    602   virtual const int *getRegClassPressureSets(
    603     const TargetRegisterClass *RC) const = 0;
    604 
    605   /// Get the dimensions of register pressure impacted by this register unit.
    606   /// Returns a -1 terminated array of pressure set IDs.
    607   virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
    608 
    609   /// Get a list of 'hint' registers that the register allocator should try
    610   /// first when allocating a physical register for the virtual register
    611   /// VirtReg. These registers are effectively moved to the front of the
    612   /// allocation order.
    613   ///
    614   /// The Order argument is the allocation order for VirtReg's register class
    615   /// as returned from RegisterClassInfo::getOrder(). The hint registers must
    616   /// come from Order, and they must not be reserved.
    617   ///
    618   /// The default implementation of this function can resolve
    619   /// target-independent hints provided to MRI::setRegAllocationHint with
    620   /// HintType == 0. Targets that override this function should defer to the
    621   /// default implementation if they have no reason to change the allocation
    622   /// order for VirtReg. There may be target-independent hints.
    623   virtual void getRegAllocationHints(unsigned VirtReg,
    624                                      ArrayRef<MCPhysReg> Order,
    625                                      SmallVectorImpl<MCPhysReg> &Hints,
    626                                      const MachineFunction &MF,
    627                                      const VirtRegMap *VRM = 0) const;
    628 
    629   /// avoidWriteAfterWrite - Return true if the register allocator should avoid
    630   /// writing a register from RC in two consecutive instructions.
    631   /// This can avoid pipeline stalls on certain architectures.
    632   /// It does cause increased register pressure, though.
    633   virtual bool avoidWriteAfterWrite(const TargetRegisterClass *RC) const {
    634     return false;
    635   }
    636 
    637   /// UpdateRegAllocHint - A callback to allow target a chance to update
    638   /// register allocation hints when a register is "changed" (e.g. coalesced)
    639   /// to another register. e.g. On ARM, some virtual registers should target
    640   /// register pairs, if one of pair is coalesced to another register, the
    641   /// allocation hint of the other half of the pair should be changed to point
    642   /// to the new register.
    643   virtual void UpdateRegAllocHint(unsigned Reg, unsigned NewReg,
    644                                   MachineFunction &MF) const {
    645     // Do nothing.
    646   }
    647 
    648   /// requiresRegisterScavenging - returns true if the target requires (and can
    649   /// make use of) the register scavenger.
    650   virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
    651     return false;
    652   }
    653 
    654   /// useFPForScavengingIndex - returns true if the target wants to use
    655   /// frame pointer based accesses to spill to the scavenger emergency spill
    656   /// slot.
    657   virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
    658     return true;
    659   }
    660 
    661   /// requiresFrameIndexScavenging - returns true if the target requires post
    662   /// PEI scavenging of registers for materializing frame index constants.
    663   virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
    664     return false;
    665   }
    666 
    667   /// requiresVirtualBaseRegisters - Returns true if the target wants the
    668   /// LocalStackAllocation pass to be run and virtual base registers
    669   /// used for more efficient stack access.
    670   virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
    671     return false;
    672   }
    673 
    674   /// hasReservedSpillSlot - Return true if target has reserved a spill slot in
    675   /// the stack frame of the given function for the specified register. e.g. On
    676   /// x86, if the frame register is required, the first fixed stack object is
    677   /// reserved as its spill slot. This tells PEI not to create a new stack frame
    678   /// object for the given register. It should be called only after
    679   /// processFunctionBeforeCalleeSavedScan().
    680   virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
    681                                     int &FrameIdx) const {
    682     return false;
    683   }
    684 
    685   /// trackLivenessAfterRegAlloc - returns true if the live-ins should be tracked
    686   /// after register allocation.
    687   virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
    688     return false;
    689   }
    690 
    691   /// needsStackRealignment - true if storage within the function requires the
    692   /// stack pointer to be aligned more than the normal calling convention calls
    693   /// for.
    694   virtual bool needsStackRealignment(const MachineFunction &MF) const {
    695     return false;
    696   }
    697 
    698   /// getFrameIndexInstrOffset - Get the offset from the referenced frame
    699   /// index in the instruction, if there is one.
    700   virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
    701                                            int Idx) const {
    702     return 0;
    703   }
    704 
    705   /// needsFrameBaseReg - Returns true if the instruction's frame index
    706   /// reference would be better served by a base register other than FP
    707   /// or SP. Used by LocalStackFrameAllocation to determine which frame index
    708   /// references it should create new base registers for.
    709   virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
    710     return false;
    711   }
    712 
    713   /// materializeFrameBaseRegister - Insert defining instruction(s) for
    714   /// BaseReg to be a pointer to FrameIdx before insertion point I.
    715   virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
    716                                             unsigned BaseReg, int FrameIdx,
    717                                             int64_t Offset) const {
    718     llvm_unreachable("materializeFrameBaseRegister does not exist on this "
    719                      "target");
    720   }
    721 
    722   /// resolveFrameIndex - Resolve a frame index operand of an instruction
    723   /// to reference the indicated base register plus offset instead.
    724   virtual void resolveFrameIndex(MachineBasicBlock::iterator I,
    725                                  unsigned BaseReg, int64_t Offset) const {
    726     llvm_unreachable("resolveFrameIndex does not exist on this target");
    727   }
    728 
    729   /// isFrameOffsetLegal - Determine whether a given offset immediate is
    730   /// encodable to resolve a frame index.
    731   virtual bool isFrameOffsetLegal(const MachineInstr *MI,
    732                                   int64_t Offset) const {
    733     llvm_unreachable("isFrameOffsetLegal does not exist on this target");
    734   }
    735 
    736 
    737   /// saveScavengerRegister - Spill the register so it can be used by the
    738   /// register scavenger. Return true if the register was spilled, false
    739   /// otherwise. If this function does not spill the register, the scavenger
    740   /// will instead spill it to the emergency spill slot.
    741   ///
    742   virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
    743                                      MachineBasicBlock::iterator I,
    744                                      MachineBasicBlock::iterator &UseMI,
    745                                      const TargetRegisterClass *RC,
    746                                      unsigned Reg) const {
    747     return false;
    748   }
    749 
    750   /// eliminateFrameIndex - This method must be overriden to eliminate abstract
    751   /// frame indices from instructions which may use them.  The instruction
    752   /// referenced by the iterator contains an MO_FrameIndex operand which must be
    753   /// eliminated by this method.  This method may modify or replace the
    754   /// specified instruction, as long as it keeps the iterator pointing at the
    755   /// finished product.  SPAdj is the SP adjustment due to call frame setup
    756   /// instruction.  FIOperandNum is the FI operand number.
    757   virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
    758                                    int SPAdj, unsigned FIOperandNum,
    759                                    RegScavenger *RS = NULL) const = 0;
    760 
    761   //===--------------------------------------------------------------------===//
    762   /// Debug information queries.
    763 
    764   /// getFrameRegister - This method should return the register used as a base
    765   /// for values allocated in the current stack frame.
    766   virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
    767 
    768   /// getCompactUnwindRegNum - This function maps the register to the number for
    769   /// compact unwind encoding. Return -1 if the register isn't valid.
    770   virtual int getCompactUnwindRegNum(unsigned, bool) const {
    771     return -1;
    772   }
    773 };
    774 
    775 
    776 //===----------------------------------------------------------------------===//
    777 //                           SuperRegClassIterator
    778 //===----------------------------------------------------------------------===//
    779 //
    780 // Iterate over the possible super-registers for a given register class. The
    781 // iterator will visit a list of pairs (Idx, Mask) corresponding to the
    782 // possible classes of super-registers.
    783 //
    784 // Each bit mask will have at least one set bit, and each set bit in Mask
    785 // corresponds to a SuperRC such that:
    786 //
    787 //   For all Reg in SuperRC: Reg:Idx is in RC.
    788 //
    789 // The iterator can include (O, RC->getSubClassMask()) as the first entry which
    790 // also satisfies the above requirement, assuming Reg:0 == Reg.
    791 //
    792 class SuperRegClassIterator {
    793   const unsigned RCMaskWords;
    794   unsigned SubReg;
    795   const uint16_t *Idx;
    796   const uint32_t *Mask;
    797 
    798 public:
    799   /// Create a SuperRegClassIterator that visits all the super-register classes
    800   /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
    801   SuperRegClassIterator(const TargetRegisterClass *RC,
    802                         const TargetRegisterInfo *TRI,
    803                         bool IncludeSelf = false)
    804     : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
    805       SubReg(0),
    806       Idx(RC->getSuperRegIndices()),
    807       Mask(RC->getSubClassMask()) {
    808     if (!IncludeSelf)
    809       ++*this;
    810   }
    811 
    812   /// Returns true if this iterator is still pointing at a valid entry.
    813   bool isValid() const { return Idx; }
    814 
    815   /// Returns the current sub-register index.
    816   unsigned getSubReg() const { return SubReg; }
    817 
    818   /// Returns the bit mask if register classes that getSubReg() projects into
    819   /// RC.
    820   const uint32_t *getMask() const { return Mask; }
    821 
    822   /// Advance iterator to the next entry.
    823   void operator++() {
    824     assert(isValid() && "Cannot move iterator past end.");
    825     Mask += RCMaskWords;
    826     SubReg = *Idx++;
    827     if (!SubReg)
    828       Idx = 0;
    829   }
    830 };
    831 
    832 // This is useful when building IndexedMaps keyed on virtual registers
    833 struct VirtReg2IndexFunctor : public std::unary_function<unsigned, unsigned> {
    834   unsigned operator()(unsigned Reg) const {
    835     return TargetRegisterInfo::virtReg2Index(Reg);
    836   }
    837 };
    838 
    839 /// PrintReg - Helper class for printing registers on a raw_ostream.
    840 /// Prints virtual and physical registers with or without a TRI instance.
    841 ///
    842 /// The format is:
    843 ///   %noreg          - NoRegister
    844 ///   %vreg5          - a virtual register.
    845 ///   %vreg5:sub_8bit - a virtual register with sub-register index (with TRI).
    846 ///   %EAX            - a physical register
    847 ///   %physreg17      - a physical register when no TRI instance given.
    848 ///
    849 /// Usage: OS << PrintReg(Reg, TRI) << '\n';
    850 ///
    851 class PrintReg {
    852   const TargetRegisterInfo *TRI;
    853   unsigned Reg;
    854   unsigned SubIdx;
    855 public:
    856   explicit PrintReg(unsigned reg, const TargetRegisterInfo *tri = 0,
    857                     unsigned subidx = 0)
    858     : TRI(tri), Reg(reg), SubIdx(subidx) {}
    859   void print(raw_ostream&) const;
    860 };
    861 
    862 static inline raw_ostream &operator<<(raw_ostream &OS, const PrintReg &PR) {
    863   PR.print(OS);
    864   return OS;
    865 }
    866 
    867 /// PrintRegUnit - Helper class for printing register units on a raw_ostream.
    868 ///
    869 /// Register units are named after their root registers:
    870 ///
    871 ///   AL      - Single root.
    872 ///   FP0~ST7 - Dual roots.
    873 ///
    874 /// Usage: OS << PrintRegUnit(Unit, TRI) << '\n';
    875 ///
    876 class PrintRegUnit {
    877   const TargetRegisterInfo *TRI;
    878   unsigned Unit;
    879 public:
    880   PrintRegUnit(unsigned unit, const TargetRegisterInfo *tri)
    881     : TRI(tri), Unit(unit) {}
    882   void print(raw_ostream&) const;
    883 };
    884 
    885 static inline raw_ostream &operator<<(raw_ostream &OS, const PrintRegUnit &PR) {
    886   PR.print(OS);
    887   return OS;
    888 }
    889 
    890 } // End llvm namespace
    891 
    892 #endif
    893