1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Decl nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CGOpenCLRuntime.h" 17 #include "CodeGenModule.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/CharUnits.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/Basic/SourceManager.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/Type.h" 29 using namespace clang; 30 using namespace CodeGen; 31 32 33 void CodeGenFunction::EmitDecl(const Decl &D) { 34 switch (D.getKind()) { 35 case Decl::TranslationUnit: 36 case Decl::Namespace: 37 case Decl::UnresolvedUsingTypename: 38 case Decl::ClassTemplateSpecialization: 39 case Decl::ClassTemplatePartialSpecialization: 40 case Decl::TemplateTypeParm: 41 case Decl::UnresolvedUsingValue: 42 case Decl::NonTypeTemplateParm: 43 case Decl::CXXMethod: 44 case Decl::CXXConstructor: 45 case Decl::CXXDestructor: 46 case Decl::CXXConversion: 47 case Decl::Field: 48 case Decl::IndirectField: 49 case Decl::ObjCIvar: 50 case Decl::ObjCAtDefsField: 51 case Decl::ParmVar: 52 case Decl::ImplicitParam: 53 case Decl::ClassTemplate: 54 case Decl::FunctionTemplate: 55 case Decl::TypeAliasTemplate: 56 case Decl::TemplateTemplateParm: 57 case Decl::ObjCMethod: 58 case Decl::ObjCCategory: 59 case Decl::ObjCProtocol: 60 case Decl::ObjCInterface: 61 case Decl::ObjCCategoryImpl: 62 case Decl::ObjCImplementation: 63 case Decl::ObjCProperty: 64 case Decl::ObjCCompatibleAlias: 65 case Decl::AccessSpec: 66 case Decl::LinkageSpec: 67 case Decl::ObjCPropertyImpl: 68 case Decl::FileScopeAsm: 69 case Decl::Friend: 70 case Decl::FriendTemplate: 71 case Decl::Block: 72 case Decl::ClassScopeFunctionSpecialization: 73 llvm_unreachable("Declaration should not be in declstmts!"); 74 case Decl::Function: // void X(); 75 case Decl::Record: // struct/union/class X; 76 case Decl::Enum: // enum X; 77 case Decl::EnumConstant: // enum ? { X = ? } 78 case Decl::CXXRecord: // struct/union/class X; [C++] 79 case Decl::Using: // using X; [C++] 80 case Decl::UsingShadow: 81 case Decl::UsingDirective: // using namespace X; [C++] 82 case Decl::NamespaceAlias: 83 case Decl::StaticAssert: // static_assert(X, ""); [C++0x] 84 case Decl::Label: // __label__ x; 85 case Decl::Import: 86 case Decl::Empty: 87 // None of these decls require codegen support. 88 return; 89 90 case Decl::Var: { 91 const VarDecl &VD = cast<VarDecl>(D); 92 assert(VD.isLocalVarDecl() && 93 "Should not see file-scope variables inside a function!"); 94 return EmitVarDecl(VD); 95 } 96 97 case Decl::Typedef: // typedef int X; 98 case Decl::TypeAlias: { // using X = int; [C++0x] 99 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); 100 QualType Ty = TD.getUnderlyingType(); 101 102 if (Ty->isVariablyModifiedType()) 103 EmitVariablyModifiedType(Ty); 104 } 105 } 106 } 107 108 /// EmitVarDecl - This method handles emission of any variable declaration 109 /// inside a function, including static vars etc. 110 void CodeGenFunction::EmitVarDecl(const VarDecl &D) { 111 switch (D.getStorageClassAsWritten()) { 112 case SC_None: 113 case SC_Auto: 114 case SC_Register: 115 return EmitAutoVarDecl(D); 116 case SC_Static: { 117 llvm::GlobalValue::LinkageTypes Linkage = 118 llvm::GlobalValue::InternalLinkage; 119 120 // If the function definition has some sort of weak linkage, its 121 // static variables should also be weak so that they get properly 122 // uniqued. We can't do this in C, though, because there's no 123 // standard way to agree on which variables are the same (i.e. 124 // there's no mangling). 125 if (getLangOpts().CPlusPlus) 126 if (llvm::GlobalValue::isWeakForLinker(CurFn->getLinkage())) 127 Linkage = CurFn->getLinkage(); 128 129 return EmitStaticVarDecl(D, Linkage); 130 } 131 case SC_Extern: 132 case SC_PrivateExtern: 133 // Don't emit it now, allow it to be emitted lazily on its first use. 134 return; 135 case SC_OpenCLWorkGroupLocal: 136 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); 137 } 138 139 llvm_unreachable("Unknown storage class"); 140 } 141 142 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D, 143 const char *Separator) { 144 CodeGenModule &CGM = CGF.CGM; 145 if (CGF.getLangOpts().CPlusPlus) { 146 StringRef Name = CGM.getMangledName(&D); 147 return Name.str(); 148 } 149 150 std::string ContextName; 151 if (!CGF.CurFuncDecl) { 152 // Better be in a block declared in global scope. 153 const NamedDecl *ND = cast<NamedDecl>(&D); 154 const DeclContext *DC = ND->getDeclContext(); 155 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) { 156 MangleBuffer Name; 157 CGM.getBlockMangledName(GlobalDecl(), Name, BD); 158 ContextName = Name.getString(); 159 } 160 else 161 llvm_unreachable("Unknown context for block static var decl"); 162 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) { 163 StringRef Name = CGM.getMangledName(FD); 164 ContextName = Name.str(); 165 } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl)) 166 ContextName = CGF.CurFn->getName(); 167 else 168 llvm_unreachable("Unknown context for static var decl"); 169 170 return ContextName + Separator + D.getNameAsString(); 171 } 172 173 llvm::GlobalVariable * 174 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D, 175 const char *Separator, 176 llvm::GlobalValue::LinkageTypes Linkage) { 177 QualType Ty = D.getType(); 178 assert(Ty->isConstantSizeType() && "VLAs can't be static"); 179 180 // Use the label if the variable is renamed with the asm-label extension. 181 std::string Name; 182 if (D.hasAttr<AsmLabelAttr>()) 183 Name = CGM.getMangledName(&D); 184 else 185 Name = GetStaticDeclName(*this, D, Separator); 186 187 llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty); 188 unsigned AddrSpace = 189 CGM.GetGlobalVarAddressSpace(&D, CGM.getContext().getTargetAddressSpace(Ty)); 190 llvm::GlobalVariable *GV = 191 new llvm::GlobalVariable(CGM.getModule(), LTy, 192 Ty.isConstant(getContext()), Linkage, 193 CGM.EmitNullConstant(D.getType()), Name, 0, 194 llvm::GlobalVariable::NotThreadLocal, 195 AddrSpace); 196 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 197 if (Linkage != llvm::GlobalValue::InternalLinkage) 198 GV->setVisibility(CurFn->getVisibility()); 199 200 if (D.isThreadSpecified()) 201 CGM.setTLSMode(GV, D); 202 203 return GV; 204 } 205 206 /// hasNontrivialDestruction - Determine whether a type's destruction is 207 /// non-trivial. If so, and the variable uses static initialization, we must 208 /// register its destructor to run on exit. 209 static bool hasNontrivialDestruction(QualType T) { 210 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 211 return RD && !RD->hasTrivialDestructor(); 212 } 213 214 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 215 /// global variable that has already been created for it. If the initializer 216 /// has a different type than GV does, this may free GV and return a different 217 /// one. Otherwise it just returns GV. 218 llvm::GlobalVariable * 219 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, 220 llvm::GlobalVariable *GV) { 221 llvm::Constant *Init = CGM.EmitConstantInit(D, this); 222 223 // If constant emission failed, then this should be a C++ static 224 // initializer. 225 if (!Init) { 226 if (!getLangOpts().CPlusPlus) 227 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); 228 else if (Builder.GetInsertBlock()) { 229 // Since we have a static initializer, this global variable can't 230 // be constant. 231 GV->setConstant(false); 232 233 EmitCXXGuardedInit(D, GV, /*PerformInit*/true); 234 } 235 return GV; 236 } 237 238 // The initializer may differ in type from the global. Rewrite 239 // the global to match the initializer. (We have to do this 240 // because some types, like unions, can't be completely represented 241 // in the LLVM type system.) 242 if (GV->getType()->getElementType() != Init->getType()) { 243 llvm::GlobalVariable *OldGV = GV; 244 245 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), 246 OldGV->isConstant(), 247 OldGV->getLinkage(), Init, "", 248 /*InsertBefore*/ OldGV, 249 OldGV->getThreadLocalMode(), 250 CGM.getContext().getTargetAddressSpace(D.getType())); 251 GV->setVisibility(OldGV->getVisibility()); 252 253 // Steal the name of the old global 254 GV->takeName(OldGV); 255 256 // Replace all uses of the old global with the new global 257 llvm::Constant *NewPtrForOldDecl = 258 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 259 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 260 261 // Erase the old global, since it is no longer used. 262 OldGV->eraseFromParent(); 263 } 264 265 GV->setConstant(CGM.isTypeConstant(D.getType(), true)); 266 GV->setInitializer(Init); 267 268 if (hasNontrivialDestruction(D.getType())) { 269 // We have a constant initializer, but a nontrivial destructor. We still 270 // need to perform a guarded "initialization" in order to register the 271 // destructor. 272 EmitCXXGuardedInit(D, GV, /*PerformInit*/false); 273 } 274 275 return GV; 276 } 277 278 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, 279 llvm::GlobalValue::LinkageTypes Linkage) { 280 llvm::Value *&DMEntry = LocalDeclMap[&D]; 281 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 282 283 // Check to see if we already have a global variable for this 284 // declaration. This can happen when double-emitting function 285 // bodies, e.g. with complete and base constructors. 286 llvm::Constant *addr = 287 CGM.getStaticLocalDeclAddress(&D); 288 289 llvm::GlobalVariable *var; 290 if (addr) { 291 var = cast<llvm::GlobalVariable>(addr->stripPointerCasts()); 292 } else { 293 addr = var = CreateStaticVarDecl(D, ".", Linkage); 294 } 295 296 // Store into LocalDeclMap before generating initializer to handle 297 // circular references. 298 DMEntry = addr; 299 CGM.setStaticLocalDeclAddress(&D, addr); 300 301 // We can't have a VLA here, but we can have a pointer to a VLA, 302 // even though that doesn't really make any sense. 303 // Make sure to evaluate VLA bounds now so that we have them for later. 304 if (D.getType()->isVariablyModifiedType()) 305 EmitVariablyModifiedType(D.getType()); 306 307 // Save the type in case adding the initializer forces a type change. 308 llvm::Type *expectedType = addr->getType(); 309 310 // If this value has an initializer, emit it. 311 if (D.getInit()) 312 var = AddInitializerToStaticVarDecl(D, var); 313 314 var->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 315 316 if (D.hasAttr<AnnotateAttr>()) 317 CGM.AddGlobalAnnotations(&D, var); 318 319 if (const SectionAttr *SA = D.getAttr<SectionAttr>()) 320 var->setSection(SA->getName()); 321 322 if (D.hasAttr<UsedAttr>()) 323 CGM.AddUsedGlobal(var); 324 325 // We may have to cast the constant because of the initializer 326 // mismatch above. 327 // 328 // FIXME: It is really dangerous to store this in the map; if anyone 329 // RAUW's the GV uses of this constant will be invalid. 330 llvm::Constant *castedAddr = llvm::ConstantExpr::getBitCast(var, expectedType); 331 DMEntry = castedAddr; 332 CGM.setStaticLocalDeclAddress(&D, castedAddr); 333 334 // Emit global variable debug descriptor for static vars. 335 CGDebugInfo *DI = getDebugInfo(); 336 if (DI && 337 CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) { 338 DI->setLocation(D.getLocation()); 339 DI->EmitGlobalVariable(var, &D); 340 } 341 } 342 343 namespace { 344 struct DestroyObject : EHScopeStack::Cleanup { 345 DestroyObject(llvm::Value *addr, QualType type, 346 CodeGenFunction::Destroyer *destroyer, 347 bool useEHCleanupForArray) 348 : addr(addr), type(type), destroyer(destroyer), 349 useEHCleanupForArray(useEHCleanupForArray) {} 350 351 llvm::Value *addr; 352 QualType type; 353 CodeGenFunction::Destroyer *destroyer; 354 bool useEHCleanupForArray; 355 356 void Emit(CodeGenFunction &CGF, Flags flags) { 357 // Don't use an EH cleanup recursively from an EH cleanup. 358 bool useEHCleanupForArray = 359 flags.isForNormalCleanup() && this->useEHCleanupForArray; 360 361 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); 362 } 363 }; 364 365 struct DestroyNRVOVariable : EHScopeStack::Cleanup { 366 DestroyNRVOVariable(llvm::Value *addr, 367 const CXXDestructorDecl *Dtor, 368 llvm::Value *NRVOFlag) 369 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {} 370 371 const CXXDestructorDecl *Dtor; 372 llvm::Value *NRVOFlag; 373 llvm::Value *Loc; 374 375 void Emit(CodeGenFunction &CGF, Flags flags) { 376 // Along the exceptions path we always execute the dtor. 377 bool NRVO = flags.isForNormalCleanup() && NRVOFlag; 378 379 llvm::BasicBlock *SkipDtorBB = 0; 380 if (NRVO) { 381 // If we exited via NRVO, we skip the destructor call. 382 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); 383 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); 384 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val"); 385 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); 386 CGF.EmitBlock(RunDtorBB); 387 } 388 389 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, 390 /*ForVirtualBase=*/false, 391 /*Delegating=*/false, 392 Loc); 393 394 if (NRVO) CGF.EmitBlock(SkipDtorBB); 395 } 396 }; 397 398 struct CallStackRestore : EHScopeStack::Cleanup { 399 llvm::Value *Stack; 400 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {} 401 void Emit(CodeGenFunction &CGF, Flags flags) { 402 llvm::Value *V = CGF.Builder.CreateLoad(Stack); 403 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 404 CGF.Builder.CreateCall(F, V); 405 } 406 }; 407 408 struct ExtendGCLifetime : EHScopeStack::Cleanup { 409 const VarDecl &Var; 410 ExtendGCLifetime(const VarDecl *var) : Var(*var) {} 411 412 void Emit(CodeGenFunction &CGF, Flags flags) { 413 // Compute the address of the local variable, in case it's a 414 // byref or something. 415 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 416 Var.getType(), VK_LValue, SourceLocation()); 417 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE)); 418 CGF.EmitExtendGCLifetime(value); 419 } 420 }; 421 422 struct CallCleanupFunction : EHScopeStack::Cleanup { 423 llvm::Constant *CleanupFn; 424 const CGFunctionInfo &FnInfo; 425 const VarDecl &Var; 426 427 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, 428 const VarDecl *Var) 429 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} 430 431 void Emit(CodeGenFunction &CGF, Flags flags) { 432 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false, 433 Var.getType(), VK_LValue, SourceLocation()); 434 // Compute the address of the local variable, in case it's a byref 435 // or something. 436 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress(); 437 438 // In some cases, the type of the function argument will be different from 439 // the type of the pointer. An example of this is 440 // void f(void* arg); 441 // __attribute__((cleanup(f))) void *g; 442 // 443 // To fix this we insert a bitcast here. 444 QualType ArgTy = FnInfo.arg_begin()->type; 445 llvm::Value *Arg = 446 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); 447 448 CallArgList Args; 449 Args.add(RValue::get(Arg), 450 CGF.getContext().getPointerType(Var.getType())); 451 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args); 452 } 453 }; 454 } 455 456 /// EmitAutoVarWithLifetime - Does the setup required for an automatic 457 /// variable with lifetime. 458 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, 459 llvm::Value *addr, 460 Qualifiers::ObjCLifetime lifetime) { 461 switch (lifetime) { 462 case Qualifiers::OCL_None: 463 llvm_unreachable("present but none"); 464 465 case Qualifiers::OCL_ExplicitNone: 466 // nothing to do 467 break; 468 469 case Qualifiers::OCL_Strong: { 470 CodeGenFunction::Destroyer *destroyer = 471 (var.hasAttr<ObjCPreciseLifetimeAttr>() 472 ? CodeGenFunction::destroyARCStrongPrecise 473 : CodeGenFunction::destroyARCStrongImprecise); 474 475 CleanupKind cleanupKind = CGF.getARCCleanupKind(); 476 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, 477 cleanupKind & EHCleanup); 478 break; 479 } 480 case Qualifiers::OCL_Autoreleasing: 481 // nothing to do 482 break; 483 484 case Qualifiers::OCL_Weak: 485 // __weak objects always get EH cleanups; otherwise, exceptions 486 // could cause really nasty crashes instead of mere leaks. 487 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), 488 CodeGenFunction::destroyARCWeak, 489 /*useEHCleanup*/ true); 490 break; 491 } 492 } 493 494 static bool isAccessedBy(const VarDecl &var, const Stmt *s) { 495 if (const Expr *e = dyn_cast<Expr>(s)) { 496 // Skip the most common kinds of expressions that make 497 // hierarchy-walking expensive. 498 s = e = e->IgnoreParenCasts(); 499 500 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) 501 return (ref->getDecl() == &var); 502 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 503 const BlockDecl *block = be->getBlockDecl(); 504 for (BlockDecl::capture_const_iterator i = block->capture_begin(), 505 e = block->capture_end(); i != e; ++i) { 506 if (i->getVariable() == &var) 507 return true; 508 } 509 } 510 } 511 512 for (Stmt::const_child_range children = s->children(); children; ++children) 513 // children might be null; as in missing decl or conditional of an if-stmt. 514 if ((*children) && isAccessedBy(var, *children)) 515 return true; 516 517 return false; 518 } 519 520 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { 521 if (!decl) return false; 522 if (!isa<VarDecl>(decl)) return false; 523 const VarDecl *var = cast<VarDecl>(decl); 524 return isAccessedBy(*var, e); 525 } 526 527 static void drillIntoBlockVariable(CodeGenFunction &CGF, 528 LValue &lvalue, 529 const VarDecl *var) { 530 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var)); 531 } 532 533 void CodeGenFunction::EmitScalarInit(const Expr *init, 534 const ValueDecl *D, 535 LValue lvalue, 536 bool capturedByInit) { 537 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 538 if (!lifetime) { 539 llvm::Value *value = EmitScalarExpr(init); 540 if (capturedByInit) 541 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 542 EmitStoreThroughLValue(RValue::get(value), lvalue, true); 543 return; 544 } 545 546 // If we're emitting a value with lifetime, we have to do the 547 // initialization *before* we leave the cleanup scopes. 548 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) { 549 enterFullExpression(ewc); 550 init = ewc->getSubExpr(); 551 } 552 CodeGenFunction::RunCleanupsScope Scope(*this); 553 554 // We have to maintain the illusion that the variable is 555 // zero-initialized. If the variable might be accessed in its 556 // initializer, zero-initialize before running the initializer, then 557 // actually perform the initialization with an assign. 558 bool accessedByInit = false; 559 if (lifetime != Qualifiers::OCL_ExplicitNone) 560 accessedByInit = (capturedByInit || isAccessedBy(D, init)); 561 if (accessedByInit) { 562 LValue tempLV = lvalue; 563 // Drill down to the __block object if necessary. 564 if (capturedByInit) { 565 // We can use a simple GEP for this because it can't have been 566 // moved yet. 567 tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(), 568 getByRefValueLLVMField(cast<VarDecl>(D)))); 569 } 570 571 llvm::PointerType *ty 572 = cast<llvm::PointerType>(tempLV.getAddress()->getType()); 573 ty = cast<llvm::PointerType>(ty->getElementType()); 574 575 llvm::Value *zero = llvm::ConstantPointerNull::get(ty); 576 577 // If __weak, we want to use a barrier under certain conditions. 578 if (lifetime == Qualifiers::OCL_Weak) 579 EmitARCInitWeak(tempLV.getAddress(), zero); 580 581 // Otherwise just do a simple store. 582 else 583 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); 584 } 585 586 // Emit the initializer. 587 llvm::Value *value = 0; 588 589 switch (lifetime) { 590 case Qualifiers::OCL_None: 591 llvm_unreachable("present but none"); 592 593 case Qualifiers::OCL_ExplicitNone: 594 // nothing to do 595 value = EmitScalarExpr(init); 596 break; 597 598 case Qualifiers::OCL_Strong: { 599 value = EmitARCRetainScalarExpr(init); 600 break; 601 } 602 603 case Qualifiers::OCL_Weak: { 604 // No way to optimize a producing initializer into this. It's not 605 // worth optimizing for, because the value will immediately 606 // disappear in the common case. 607 value = EmitScalarExpr(init); 608 609 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 610 if (accessedByInit) 611 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); 612 else 613 EmitARCInitWeak(lvalue.getAddress(), value); 614 return; 615 } 616 617 case Qualifiers::OCL_Autoreleasing: 618 value = EmitARCRetainAutoreleaseScalarExpr(init); 619 break; 620 } 621 622 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 623 624 // If the variable might have been accessed by its initializer, we 625 // might have to initialize with a barrier. We have to do this for 626 // both __weak and __strong, but __weak got filtered out above. 627 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { 628 llvm::Value *oldValue = EmitLoadOfScalar(lvalue); 629 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 630 EmitARCRelease(oldValue, ARCImpreciseLifetime); 631 return; 632 } 633 634 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); 635 } 636 637 /// EmitScalarInit - Initialize the given lvalue with the given object. 638 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) { 639 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); 640 if (!lifetime) 641 return EmitStoreThroughLValue(RValue::get(init), lvalue, true); 642 643 switch (lifetime) { 644 case Qualifiers::OCL_None: 645 llvm_unreachable("present but none"); 646 647 case Qualifiers::OCL_ExplicitNone: 648 // nothing to do 649 break; 650 651 case Qualifiers::OCL_Strong: 652 init = EmitARCRetain(lvalue.getType(), init); 653 break; 654 655 case Qualifiers::OCL_Weak: 656 // Initialize and then skip the primitive store. 657 EmitARCInitWeak(lvalue.getAddress(), init); 658 return; 659 660 case Qualifiers::OCL_Autoreleasing: 661 init = EmitARCRetainAutorelease(lvalue.getType(), init); 662 break; 663 } 664 665 EmitStoreOfScalar(init, lvalue, /* isInitialization */ true); 666 } 667 668 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the 669 /// non-zero parts of the specified initializer with equal or fewer than 670 /// NumStores scalar stores. 671 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init, 672 unsigned &NumStores) { 673 // Zero and Undef never requires any extra stores. 674 if (isa<llvm::ConstantAggregateZero>(Init) || 675 isa<llvm::ConstantPointerNull>(Init) || 676 isa<llvm::UndefValue>(Init)) 677 return true; 678 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 679 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 680 isa<llvm::ConstantExpr>(Init)) 681 return Init->isNullValue() || NumStores--; 682 683 // See if we can emit each element. 684 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { 685 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 686 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 687 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 688 return false; 689 } 690 return true; 691 } 692 693 if (llvm::ConstantDataSequential *CDS = 694 dyn_cast<llvm::ConstantDataSequential>(Init)) { 695 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 696 llvm::Constant *Elt = CDS->getElementAsConstant(i); 697 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores)) 698 return false; 699 } 700 return true; 701 } 702 703 // Anything else is hard and scary. 704 return false; 705 } 706 707 /// emitStoresForInitAfterMemset - For inits that 708 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar 709 /// stores that would be required. 710 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc, 711 bool isVolatile, CGBuilderTy &Builder) { 712 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && 713 "called emitStoresForInitAfterMemset for zero or undef value."); 714 715 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || 716 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || 717 isa<llvm::ConstantExpr>(Init)) { 718 Builder.CreateStore(Init, Loc, isVolatile); 719 return; 720 } 721 722 if (llvm::ConstantDataSequential *CDS = 723 dyn_cast<llvm::ConstantDataSequential>(Init)) { 724 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 725 llvm::Constant *Elt = CDS->getElementAsConstant(i); 726 727 // If necessary, get a pointer to the element and emit it. 728 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 729 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 730 isVolatile, Builder); 731 } 732 return; 733 } 734 735 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && 736 "Unknown value type!"); 737 738 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { 739 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); 740 741 // If necessary, get a pointer to the element and emit it. 742 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) 743 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i), 744 isVolatile, Builder); 745 } 746 } 747 748 749 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset 750 /// plus some stores to initialize a local variable instead of using a memcpy 751 /// from a constant global. It is beneficial to use memset if the global is all 752 /// zeros, or mostly zeros and large. 753 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init, 754 uint64_t GlobalSize) { 755 // If a global is all zeros, always use a memset. 756 if (isa<llvm::ConstantAggregateZero>(Init)) return true; 757 758 759 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, 760 // do it if it will require 6 or fewer scalar stores. 761 // TODO: Should budget depends on the size? Avoiding a large global warrants 762 // plopping in more stores. 763 unsigned StoreBudget = 6; 764 uint64_t SizeLimit = 32; 765 766 return GlobalSize > SizeLimit && 767 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget); 768 } 769 770 771 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a 772 /// variable declaration with auto, register, or no storage class specifier. 773 /// These turn into simple stack objects, or GlobalValues depending on target. 774 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { 775 AutoVarEmission emission = EmitAutoVarAlloca(D); 776 EmitAutoVarInit(emission); 777 EmitAutoVarCleanups(emission); 778 } 779 780 /// EmitAutoVarAlloca - Emit the alloca and debug information for a 781 /// local variable. Does not emit initalization or destruction. 782 CodeGenFunction::AutoVarEmission 783 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { 784 QualType Ty = D.getType(); 785 786 AutoVarEmission emission(D); 787 788 bool isByRef = D.hasAttr<BlocksAttr>(); 789 emission.IsByRef = isByRef; 790 791 CharUnits alignment = getContext().getDeclAlign(&D); 792 emission.Alignment = alignment; 793 794 // If the type is variably-modified, emit all the VLA sizes for it. 795 if (Ty->isVariablyModifiedType()) 796 EmitVariablyModifiedType(Ty); 797 798 llvm::Value *DeclPtr; 799 if (Ty->isConstantSizeType()) { 800 if (!Target.useGlobalsForAutomaticVariables()) { 801 bool NRVO = getLangOpts().ElideConstructors && 802 D.isNRVOVariable(); 803 804 // If this value is a POD array or struct with a statically 805 // determinable constant initializer, there are optimizations we can do. 806 // 807 // TODO: We should constant-evaluate the initializer of any variable, 808 // as long as it is initialized by a constant expression. Currently, 809 // isConstantInitializer produces wrong answers for structs with 810 // reference or bitfield members, and a few other cases, and checking 811 // for POD-ness protects us from some of these. 812 if (D.getInit() && 813 (Ty->isArrayType() || Ty->isRecordType()) && 814 (Ty.isPODType(getContext()) || 815 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && 816 D.getInit()->isConstantInitializer(getContext(), false)) { 817 818 // If the variable's a const type, and it's neither an NRVO 819 // candidate nor a __block variable and has no mutable members, 820 // emit it as a global instead. 821 if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef && 822 CGM.isTypeConstant(Ty, true)) { 823 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); 824 825 emission.Address = 0; // signal this condition to later callbacks 826 assert(emission.wasEmittedAsGlobal()); 827 return emission; 828 } 829 830 // Otherwise, tell the initialization code that we're in this case. 831 emission.IsConstantAggregate = true; 832 } 833 834 // A normal fixed sized variable becomes an alloca in the entry block, 835 // unless it's an NRVO variable. 836 llvm::Type *LTy = ConvertTypeForMem(Ty); 837 838 if (NRVO) { 839 // The named return value optimization: allocate this variable in the 840 // return slot, so that we can elide the copy when returning this 841 // variable (C++0x [class.copy]p34). 842 DeclPtr = ReturnValue; 843 844 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { 845 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) { 846 // Create a flag that is used to indicate when the NRVO was applied 847 // to this variable. Set it to zero to indicate that NRVO was not 848 // applied. 849 llvm::Value *Zero = Builder.getFalse(); 850 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo"); 851 EnsureInsertPoint(); 852 Builder.CreateStore(Zero, NRVOFlag); 853 854 // Record the NRVO flag for this variable. 855 NRVOFlags[&D] = NRVOFlag; 856 emission.NRVOFlag = NRVOFlag; 857 } 858 } 859 } else { 860 if (isByRef) 861 LTy = BuildByRefType(&D); 862 863 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy); 864 Alloc->setName(D.getName()); 865 866 CharUnits allocaAlignment = alignment; 867 if (isByRef) 868 allocaAlignment = std::max(allocaAlignment, 869 getContext().toCharUnitsFromBits(Target.getPointerAlign(0))); 870 Alloc->setAlignment(allocaAlignment.getQuantity()); 871 DeclPtr = Alloc; 872 } 873 } else { 874 // Targets that don't support recursion emit locals as globals. 875 const char *Class = 876 D.getStorageClass() == SC_Register ? ".reg." : ".auto."; 877 DeclPtr = CreateStaticVarDecl(D, Class, 878 llvm::GlobalValue::InternalLinkage); 879 } 880 } else { 881 EnsureInsertPoint(); 882 883 if (!DidCallStackSave) { 884 // Save the stack. 885 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack"); 886 887 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); 888 llvm::Value *V = Builder.CreateCall(F); 889 890 Builder.CreateStore(V, Stack); 891 892 DidCallStackSave = true; 893 894 // Push a cleanup block and restore the stack there. 895 // FIXME: in general circumstances, this should be an EH cleanup. 896 EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack); 897 } 898 899 llvm::Value *elementCount; 900 QualType elementType; 901 llvm::tie(elementCount, elementType) = getVLASize(Ty); 902 903 llvm::Type *llvmTy = ConvertTypeForMem(elementType); 904 905 // Allocate memory for the array. 906 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla"); 907 vla->setAlignment(alignment.getQuantity()); 908 909 DeclPtr = vla; 910 } 911 912 llvm::Value *&DMEntry = LocalDeclMap[&D]; 913 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 914 DMEntry = DeclPtr; 915 emission.Address = DeclPtr; 916 917 // Emit debug info for local var declaration. 918 if (HaveInsertPoint()) 919 if (CGDebugInfo *DI = getDebugInfo()) { 920 if (CGM.getCodeGenOpts().getDebugInfo() 921 >= CodeGenOptions::LimitedDebugInfo) { 922 DI->setLocation(D.getLocation()); 923 if (Target.useGlobalsForAutomaticVariables()) { 924 DI->EmitGlobalVariable(static_cast<llvm::GlobalVariable *>(DeclPtr), 925 &D); 926 } else 927 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder); 928 } 929 } 930 931 if (D.hasAttr<AnnotateAttr>()) 932 EmitVarAnnotations(&D, emission.Address); 933 934 return emission; 935 } 936 937 /// Determines whether the given __block variable is potentially 938 /// captured by the given expression. 939 static bool isCapturedBy(const VarDecl &var, const Expr *e) { 940 // Skip the most common kinds of expressions that make 941 // hierarchy-walking expensive. 942 e = e->IgnoreParenCasts(); 943 944 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { 945 const BlockDecl *block = be->getBlockDecl(); 946 for (BlockDecl::capture_const_iterator i = block->capture_begin(), 947 e = block->capture_end(); i != e; ++i) { 948 if (i->getVariable() == &var) 949 return true; 950 } 951 952 // No need to walk into the subexpressions. 953 return false; 954 } 955 956 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) { 957 const CompoundStmt *CS = SE->getSubStmt(); 958 for (CompoundStmt::const_body_iterator BI = CS->body_begin(), 959 BE = CS->body_end(); BI != BE; ++BI) 960 if (Expr *E = dyn_cast<Expr>((*BI))) { 961 if (isCapturedBy(var, E)) 962 return true; 963 } 964 else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) { 965 // special case declarations 966 for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end(); 967 I != E; ++I) { 968 if (VarDecl *VD = dyn_cast<VarDecl>((*I))) { 969 Expr *Init = VD->getInit(); 970 if (Init && isCapturedBy(var, Init)) 971 return true; 972 } 973 } 974 } 975 else 976 // FIXME. Make safe assumption assuming arbitrary statements cause capturing. 977 // Later, provide code to poke into statements for capture analysis. 978 return true; 979 return false; 980 } 981 982 for (Stmt::const_child_range children = e->children(); children; ++children) 983 if (isCapturedBy(var, cast<Expr>(*children))) 984 return true; 985 986 return false; 987 } 988 989 /// \brief Determine whether the given initializer is trivial in the sense 990 /// that it requires no code to be generated. 991 static bool isTrivialInitializer(const Expr *Init) { 992 if (!Init) 993 return true; 994 995 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) 996 if (CXXConstructorDecl *Constructor = Construct->getConstructor()) 997 if (Constructor->isTrivial() && 998 Constructor->isDefaultConstructor() && 999 !Construct->requiresZeroInitialization()) 1000 return true; 1001 1002 return false; 1003 } 1004 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { 1005 assert(emission.Variable && "emission was not valid!"); 1006 1007 // If this was emitted as a global constant, we're done. 1008 if (emission.wasEmittedAsGlobal()) return; 1009 1010 const VarDecl &D = *emission.Variable; 1011 QualType type = D.getType(); 1012 1013 // If this local has an initializer, emit it now. 1014 const Expr *Init = D.getInit(); 1015 1016 // If we are at an unreachable point, we don't need to emit the initializer 1017 // unless it contains a label. 1018 if (!HaveInsertPoint()) { 1019 if (!Init || !ContainsLabel(Init)) return; 1020 EnsureInsertPoint(); 1021 } 1022 1023 // Initialize the structure of a __block variable. 1024 if (emission.IsByRef) 1025 emitByrefStructureInit(emission); 1026 1027 if (isTrivialInitializer(Init)) 1028 return; 1029 1030 CharUnits alignment = emission.Alignment; 1031 1032 // Check whether this is a byref variable that's potentially 1033 // captured and moved by its own initializer. If so, we'll need to 1034 // emit the initializer first, then copy into the variable. 1035 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init); 1036 1037 llvm::Value *Loc = 1038 capturedByInit ? emission.Address : emission.getObjectAddress(*this); 1039 1040 llvm::Constant *constant = 0; 1041 if (emission.IsConstantAggregate) { 1042 assert(!capturedByInit && "constant init contains a capturing block?"); 1043 constant = CGM.EmitConstantInit(D, this); 1044 } 1045 1046 if (!constant) { 1047 LValue lv = MakeAddrLValue(Loc, type, alignment); 1048 lv.setNonGC(true); 1049 return EmitExprAsInit(Init, &D, lv, capturedByInit); 1050 } 1051 1052 // If this is a simple aggregate initialization, we can optimize it 1053 // in various ways. 1054 bool isVolatile = type.isVolatileQualified(); 1055 1056 llvm::Value *SizeVal = 1057 llvm::ConstantInt::get(IntPtrTy, 1058 getContext().getTypeSizeInChars(type).getQuantity()); 1059 1060 llvm::Type *BP = Int8PtrTy; 1061 if (Loc->getType() != BP) 1062 Loc = Builder.CreateBitCast(Loc, BP); 1063 1064 // If the initializer is all or mostly zeros, codegen with memset then do 1065 // a few stores afterward. 1066 if (shouldUseMemSetPlusStoresToInitialize(constant, 1067 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) { 1068 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, 1069 alignment.getQuantity(), isVolatile); 1070 // Zero and undef don't require a stores. 1071 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) { 1072 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo()); 1073 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder); 1074 } 1075 } else { 1076 // Otherwise, create a temporary global with the initializer then 1077 // memcpy from the global to the alloca. 1078 std::string Name = GetStaticDeclName(*this, D, "."); 1079 llvm::GlobalVariable *GV = 1080 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true, 1081 llvm::GlobalValue::PrivateLinkage, 1082 constant, Name); 1083 GV->setAlignment(alignment.getQuantity()); 1084 GV->setUnnamedAddr(true); 1085 1086 llvm::Value *SrcPtr = GV; 1087 if (SrcPtr->getType() != BP) 1088 SrcPtr = Builder.CreateBitCast(SrcPtr, BP); 1089 1090 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(), 1091 isVolatile); 1092 } 1093 } 1094 1095 /// Emit an expression as an initializer for a variable at the given 1096 /// location. The expression is not necessarily the normal 1097 /// initializer for the variable, and the address is not necessarily 1098 /// its normal location. 1099 /// 1100 /// \param init the initializing expression 1101 /// \param var the variable to act as if we're initializing 1102 /// \param loc the address to initialize; its type is a pointer 1103 /// to the LLVM mapping of the variable's type 1104 /// \param alignment the alignment of the address 1105 /// \param capturedByInit true if the variable is a __block variable 1106 /// whose address is potentially changed by the initializer 1107 void CodeGenFunction::EmitExprAsInit(const Expr *init, 1108 const ValueDecl *D, 1109 LValue lvalue, 1110 bool capturedByInit) { 1111 QualType type = D->getType(); 1112 1113 if (type->isReferenceType()) { 1114 RValue rvalue = EmitReferenceBindingToExpr(init, D); 1115 if (capturedByInit) 1116 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1117 EmitStoreThroughLValue(rvalue, lvalue, true); 1118 return; 1119 } 1120 switch (getEvaluationKind(type)) { 1121 case TEK_Scalar: 1122 EmitScalarInit(init, D, lvalue, capturedByInit); 1123 return; 1124 case TEK_Complex: { 1125 ComplexPairTy complex = EmitComplexExpr(init); 1126 if (capturedByInit) 1127 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); 1128 EmitStoreOfComplex(complex, lvalue, /*init*/ true); 1129 return; 1130 } 1131 case TEK_Aggregate: 1132 if (type->isAtomicType()) { 1133 EmitAtomicInit(const_cast<Expr*>(init), lvalue); 1134 } else { 1135 // TODO: how can we delay here if D is captured by its initializer? 1136 EmitAggExpr(init, AggValueSlot::forLValue(lvalue, 1137 AggValueSlot::IsDestructed, 1138 AggValueSlot::DoesNotNeedGCBarriers, 1139 AggValueSlot::IsNotAliased)); 1140 } 1141 MaybeEmitStdInitializerListCleanup(lvalue.getAddress(), init); 1142 return; 1143 } 1144 llvm_unreachable("bad evaluation kind"); 1145 } 1146 1147 /// Enter a destroy cleanup for the given local variable. 1148 void CodeGenFunction::emitAutoVarTypeCleanup( 1149 const CodeGenFunction::AutoVarEmission &emission, 1150 QualType::DestructionKind dtorKind) { 1151 assert(dtorKind != QualType::DK_none); 1152 1153 // Note that for __block variables, we want to destroy the 1154 // original stack object, not the possibly forwarded object. 1155 llvm::Value *addr = emission.getObjectAddress(*this); 1156 1157 const VarDecl *var = emission.Variable; 1158 QualType type = var->getType(); 1159 1160 CleanupKind cleanupKind = NormalAndEHCleanup; 1161 CodeGenFunction::Destroyer *destroyer = 0; 1162 1163 switch (dtorKind) { 1164 case QualType::DK_none: 1165 llvm_unreachable("no cleanup for trivially-destructible variable"); 1166 1167 case QualType::DK_cxx_destructor: 1168 // If there's an NRVO flag on the emission, we need a different 1169 // cleanup. 1170 if (emission.NRVOFlag) { 1171 assert(!type->isArrayType()); 1172 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); 1173 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor, 1174 emission.NRVOFlag); 1175 return; 1176 } 1177 break; 1178 1179 case QualType::DK_objc_strong_lifetime: 1180 // Suppress cleanups for pseudo-strong variables. 1181 if (var->isARCPseudoStrong()) return; 1182 1183 // Otherwise, consider whether to use an EH cleanup or not. 1184 cleanupKind = getARCCleanupKind(); 1185 1186 // Use the imprecise destroyer by default. 1187 if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) 1188 destroyer = CodeGenFunction::destroyARCStrongImprecise; 1189 break; 1190 1191 case QualType::DK_objc_weak_lifetime: 1192 break; 1193 } 1194 1195 // If we haven't chosen a more specific destroyer, use the default. 1196 if (!destroyer) destroyer = getDestroyer(dtorKind); 1197 1198 // Use an EH cleanup in array destructors iff the destructor itself 1199 // is being pushed as an EH cleanup. 1200 bool useEHCleanup = (cleanupKind & EHCleanup); 1201 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, 1202 useEHCleanup); 1203 } 1204 1205 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { 1206 assert(emission.Variable && "emission was not valid!"); 1207 1208 // If this was emitted as a global constant, we're done. 1209 if (emission.wasEmittedAsGlobal()) return; 1210 1211 // If we don't have an insertion point, we're done. Sema prevents 1212 // us from jumping into any of these scopes anyway. 1213 if (!HaveInsertPoint()) return; 1214 1215 const VarDecl &D = *emission.Variable; 1216 1217 // Check the type for a cleanup. 1218 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) 1219 emitAutoVarTypeCleanup(emission, dtorKind); 1220 1221 // In GC mode, honor objc_precise_lifetime. 1222 if (getLangOpts().getGC() != LangOptions::NonGC && 1223 D.hasAttr<ObjCPreciseLifetimeAttr>()) { 1224 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); 1225 } 1226 1227 // Handle the cleanup attribute. 1228 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { 1229 const FunctionDecl *FD = CA->getFunctionDecl(); 1230 1231 llvm::Constant *F = CGM.GetAddrOfFunction(FD); 1232 assert(F && "Could not find function!"); 1233 1234 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); 1235 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); 1236 } 1237 1238 // If this is a block variable, call _Block_object_destroy 1239 // (on the unforwarded address). 1240 if (emission.IsByRef) 1241 enterByrefCleanup(emission); 1242 } 1243 1244 CodeGenFunction::Destroyer * 1245 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { 1246 switch (kind) { 1247 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); 1248 case QualType::DK_cxx_destructor: 1249 return destroyCXXObject; 1250 case QualType::DK_objc_strong_lifetime: 1251 return destroyARCStrongPrecise; 1252 case QualType::DK_objc_weak_lifetime: 1253 return destroyARCWeak; 1254 } 1255 llvm_unreachable("Unknown DestructionKind"); 1256 } 1257 1258 /// pushEHDestroy - Push the standard destructor for the given type as 1259 /// an EH-only cleanup. 1260 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, 1261 llvm::Value *addr, QualType type) { 1262 assert(dtorKind && "cannot push destructor for trivial type"); 1263 assert(needsEHCleanup(dtorKind)); 1264 1265 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); 1266 } 1267 1268 /// pushDestroy - Push the standard destructor for the given type as 1269 /// at least a normal cleanup. 1270 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, 1271 llvm::Value *addr, QualType type) { 1272 assert(dtorKind && "cannot push destructor for trivial type"); 1273 1274 CleanupKind cleanupKind = getCleanupKind(dtorKind); 1275 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), 1276 cleanupKind & EHCleanup); 1277 } 1278 1279 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr, 1280 QualType type, Destroyer *destroyer, 1281 bool useEHCleanupForArray) { 1282 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, 1283 destroyer, useEHCleanupForArray); 1284 } 1285 1286 /// emitDestroy - Immediately perform the destruction of the given 1287 /// object. 1288 /// 1289 /// \param addr - the address of the object; a type* 1290 /// \param type - the type of the object; if an array type, all 1291 /// objects are destroyed in reverse order 1292 /// \param destroyer - the function to call to destroy individual 1293 /// elements 1294 /// \param useEHCleanupForArray - whether an EH cleanup should be 1295 /// used when destroying array elements, in case one of the 1296 /// destructions throws an exception 1297 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type, 1298 Destroyer *destroyer, 1299 bool useEHCleanupForArray) { 1300 const ArrayType *arrayType = getContext().getAsArrayType(type); 1301 if (!arrayType) 1302 return destroyer(*this, addr, type); 1303 1304 llvm::Value *begin = addr; 1305 llvm::Value *length = emitArrayLength(arrayType, type, begin); 1306 1307 // Normally we have to check whether the array is zero-length. 1308 bool checkZeroLength = true; 1309 1310 // But if the array length is constant, we can suppress that. 1311 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { 1312 // ...and if it's constant zero, we can just skip the entire thing. 1313 if (constLength->isZero()) return; 1314 checkZeroLength = false; 1315 } 1316 1317 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); 1318 emitArrayDestroy(begin, end, type, destroyer, 1319 checkZeroLength, useEHCleanupForArray); 1320 } 1321 1322 /// emitArrayDestroy - Destroys all the elements of the given array, 1323 /// beginning from last to first. The array cannot be zero-length. 1324 /// 1325 /// \param begin - a type* denoting the first element of the array 1326 /// \param end - a type* denoting one past the end of the array 1327 /// \param type - the element type of the array 1328 /// \param destroyer - the function to call to destroy elements 1329 /// \param useEHCleanup - whether to push an EH cleanup to destroy 1330 /// the remaining elements in case the destruction of a single 1331 /// element throws 1332 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, 1333 llvm::Value *end, 1334 QualType type, 1335 Destroyer *destroyer, 1336 bool checkZeroLength, 1337 bool useEHCleanup) { 1338 assert(!type->isArrayType()); 1339 1340 // The basic structure here is a do-while loop, because we don't 1341 // need to check for the zero-element case. 1342 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); 1343 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); 1344 1345 if (checkZeroLength) { 1346 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, 1347 "arraydestroy.isempty"); 1348 Builder.CreateCondBr(isEmpty, doneBB, bodyBB); 1349 } 1350 1351 // Enter the loop body, making that address the current address. 1352 llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); 1353 EmitBlock(bodyBB); 1354 llvm::PHINode *elementPast = 1355 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); 1356 elementPast->addIncoming(end, entryBB); 1357 1358 // Shift the address back by one element. 1359 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); 1360 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, 1361 "arraydestroy.element"); 1362 1363 if (useEHCleanup) 1364 pushRegularPartialArrayCleanup(begin, element, type, destroyer); 1365 1366 // Perform the actual destruction there. 1367 destroyer(*this, element, type); 1368 1369 if (useEHCleanup) 1370 PopCleanupBlock(); 1371 1372 // Check whether we've reached the end. 1373 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); 1374 Builder.CreateCondBr(done, doneBB, bodyBB); 1375 elementPast->addIncoming(element, Builder.GetInsertBlock()); 1376 1377 // Done. 1378 EmitBlock(doneBB); 1379 } 1380 1381 /// Perform partial array destruction as if in an EH cleanup. Unlike 1382 /// emitArrayDestroy, the element type here may still be an array type. 1383 static void emitPartialArrayDestroy(CodeGenFunction &CGF, 1384 llvm::Value *begin, llvm::Value *end, 1385 QualType type, 1386 CodeGenFunction::Destroyer *destroyer) { 1387 // If the element type is itself an array, drill down. 1388 unsigned arrayDepth = 0; 1389 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { 1390 // VLAs don't require a GEP index to walk into. 1391 if (!isa<VariableArrayType>(arrayType)) 1392 arrayDepth++; 1393 type = arrayType->getElementType(); 1394 } 1395 1396 if (arrayDepth) { 1397 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1); 1398 1399 SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero); 1400 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); 1401 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); 1402 } 1403 1404 // Destroy the array. We don't ever need an EH cleanup because we 1405 // assume that we're in an EH cleanup ourselves, so a throwing 1406 // destructor causes an immediate terminate. 1407 CGF.emitArrayDestroy(begin, end, type, destroyer, 1408 /*checkZeroLength*/ true, /*useEHCleanup*/ false); 1409 } 1410 1411 namespace { 1412 /// RegularPartialArrayDestroy - a cleanup which performs a partial 1413 /// array destroy where the end pointer is regularly determined and 1414 /// does not need to be loaded from a local. 1415 class RegularPartialArrayDestroy : public EHScopeStack::Cleanup { 1416 llvm::Value *ArrayBegin; 1417 llvm::Value *ArrayEnd; 1418 QualType ElementType; 1419 CodeGenFunction::Destroyer *Destroyer; 1420 public: 1421 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, 1422 QualType elementType, 1423 CodeGenFunction::Destroyer *destroyer) 1424 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), 1425 ElementType(elementType), Destroyer(destroyer) {} 1426 1427 void Emit(CodeGenFunction &CGF, Flags flags) { 1428 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, 1429 ElementType, Destroyer); 1430 } 1431 }; 1432 1433 /// IrregularPartialArrayDestroy - a cleanup which performs a 1434 /// partial array destroy where the end pointer is irregularly 1435 /// determined and must be loaded from a local. 1436 class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup { 1437 llvm::Value *ArrayBegin; 1438 llvm::Value *ArrayEndPointer; 1439 QualType ElementType; 1440 CodeGenFunction::Destroyer *Destroyer; 1441 public: 1442 IrregularPartialArrayDestroy(llvm::Value *arrayBegin, 1443 llvm::Value *arrayEndPointer, 1444 QualType elementType, 1445 CodeGenFunction::Destroyer *destroyer) 1446 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), 1447 ElementType(elementType), Destroyer(destroyer) {} 1448 1449 void Emit(CodeGenFunction &CGF, Flags flags) { 1450 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); 1451 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, 1452 ElementType, Destroyer); 1453 } 1454 }; 1455 } 1456 1457 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy 1458 /// already-constructed elements of the given array. The cleanup 1459 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1460 /// 1461 /// \param elementType - the immediate element type of the array; 1462 /// possibly still an array type 1463 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1464 llvm::Value *arrayEndPointer, 1465 QualType elementType, 1466 Destroyer *destroyer) { 1467 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, 1468 arrayBegin, arrayEndPointer, 1469 elementType, destroyer); 1470 } 1471 1472 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy 1473 /// already-constructed elements of the given array. The cleanup 1474 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock. 1475 /// 1476 /// \param elementType - the immediate element type of the array; 1477 /// possibly still an array type 1478 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1479 llvm::Value *arrayEnd, 1480 QualType elementType, 1481 Destroyer *destroyer) { 1482 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, 1483 arrayBegin, arrayEnd, 1484 elementType, destroyer); 1485 } 1486 1487 namespace { 1488 /// A cleanup to perform a release of an object at the end of a 1489 /// function. This is used to balance out the incoming +1 of a 1490 /// ns_consumed argument when we can't reasonably do that just by 1491 /// not doing the initial retain for a __block argument. 1492 struct ConsumeARCParameter : EHScopeStack::Cleanup { 1493 ConsumeARCParameter(llvm::Value *param, 1494 ARCPreciseLifetime_t precise) 1495 : Param(param), Precise(precise) {} 1496 1497 llvm::Value *Param; 1498 ARCPreciseLifetime_t Precise; 1499 1500 void Emit(CodeGenFunction &CGF, Flags flags) { 1501 CGF.EmitARCRelease(Param, Precise); 1502 } 1503 }; 1504 } 1505 1506 /// Emit an alloca (or GlobalValue depending on target) 1507 /// for the specified parameter and set up LocalDeclMap. 1508 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg, 1509 unsigned ArgNo) { 1510 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? 1511 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && 1512 "Invalid argument to EmitParmDecl"); 1513 1514 Arg->setName(D.getName()); 1515 1516 QualType Ty = D.getType(); 1517 1518 // Use better IR generation for certain implicit parameters. 1519 if (isa<ImplicitParamDecl>(D)) { 1520 // The only implicit argument a block has is its literal. 1521 if (BlockInfo) { 1522 LocalDeclMap[&D] = Arg; 1523 llvm::Value *LocalAddr = 0; 1524 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1525 // Allocate a stack slot to let debug info survive the RA. 1526 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1527 D.getName() + ".addr"); 1528 Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity()); 1529 LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D)); 1530 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); 1531 LocalAddr = Builder.CreateLoad(Alloc); 1532 } 1533 1534 if (CGDebugInfo *DI = getDebugInfo()) { 1535 if (CGM.getCodeGenOpts().getDebugInfo() 1536 >= CodeGenOptions::LimitedDebugInfo) { 1537 DI->setLocation(D.getLocation()); 1538 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, LocalAddr, Builder); 1539 } 1540 } 1541 1542 return; 1543 } 1544 } 1545 1546 llvm::Value *DeclPtr; 1547 // If this is an aggregate or variable sized value, reuse the input pointer. 1548 if (!Ty->isConstantSizeType() || 1549 !CodeGenFunction::hasScalarEvaluationKind(Ty)) { 1550 DeclPtr = Arg; 1551 } else { 1552 // Otherwise, create a temporary to hold the value. 1553 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), 1554 D.getName() + ".addr"); 1555 CharUnits Align = getContext().getDeclAlign(&D); 1556 Alloc->setAlignment(Align.getQuantity()); 1557 DeclPtr = Alloc; 1558 1559 bool doStore = true; 1560 1561 Qualifiers qs = Ty.getQualifiers(); 1562 LValue lv = MakeAddrLValue(DeclPtr, Ty, Align); 1563 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { 1564 // We honor __attribute__((ns_consumed)) for types with lifetime. 1565 // For __strong, it's handled by just skipping the initial retain; 1566 // otherwise we have to balance out the initial +1 with an extra 1567 // cleanup to do the release at the end of the function. 1568 bool isConsumed = D.hasAttr<NSConsumedAttr>(); 1569 1570 // 'self' is always formally __strong, but if this is not an 1571 // init method then we don't want to retain it. 1572 if (D.isARCPseudoStrong()) { 1573 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl); 1574 assert(&D == method->getSelfDecl()); 1575 assert(lt == Qualifiers::OCL_Strong); 1576 assert(qs.hasConst()); 1577 assert(method->getMethodFamily() != OMF_init); 1578 (void) method; 1579 lt = Qualifiers::OCL_ExplicitNone; 1580 } 1581 1582 if (lt == Qualifiers::OCL_Strong) { 1583 if (!isConsumed) { 1584 if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1585 // use objc_storeStrong(&dest, value) for retaining the 1586 // object. But first, store a null into 'dest' because 1587 // objc_storeStrong attempts to release its old value. 1588 llvm::Value * Null = CGM.EmitNullConstant(D.getType()); 1589 EmitStoreOfScalar(Null, lv, /* isInitialization */ true); 1590 EmitARCStoreStrongCall(lv.getAddress(), Arg, true); 1591 doStore = false; 1592 } 1593 else 1594 // Don't use objc_retainBlock for block pointers, because we 1595 // don't want to Block_copy something just because we got it 1596 // as a parameter. 1597 Arg = EmitARCRetainNonBlock(Arg); 1598 } 1599 } else { 1600 // Push the cleanup for a consumed parameter. 1601 if (isConsumed) { 1602 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() 1603 ? ARCPreciseLifetime : ARCImpreciseLifetime); 1604 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg, 1605 precise); 1606 } 1607 1608 if (lt == Qualifiers::OCL_Weak) { 1609 EmitARCInitWeak(DeclPtr, Arg); 1610 doStore = false; // The weak init is a store, no need to do two. 1611 } 1612 } 1613 1614 // Enter the cleanup scope. 1615 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); 1616 } 1617 1618 // Store the initial value into the alloca. 1619 if (doStore) 1620 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true); 1621 } 1622 1623 llvm::Value *&DMEntry = LocalDeclMap[&D]; 1624 assert(DMEntry == 0 && "Decl already exists in localdeclmap!"); 1625 DMEntry = DeclPtr; 1626 1627 // Emit debug info for param declaration. 1628 if (CGDebugInfo *DI = getDebugInfo()) { 1629 if (CGM.getCodeGenOpts().getDebugInfo() 1630 >= CodeGenOptions::LimitedDebugInfo) { 1631 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder); 1632 } 1633 } 1634 1635 if (D.hasAttr<AnnotateAttr>()) 1636 EmitVarAnnotations(&D, DeclPtr); 1637 } 1638