Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements the SelectionDAGISel class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "isel"
     15 #include "llvm/CodeGen/SelectionDAGISel.h"
     16 #include "ScheduleDAGSDNodes.h"
     17 #include "SelectionDAGBuilder.h"
     18 #include "llvm/ADT/PostOrderIterator.h"
     19 #include "llvm/ADT/Statistic.h"
     20 #include "llvm/Analysis/AliasAnalysis.h"
     21 #include "llvm/Analysis/BranchProbabilityInfo.h"
     22 #include "llvm/Analysis/TargetTransformInfo.h"
     23 #include "llvm/CodeGen/FastISel.h"
     24 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     25 #include "llvm/CodeGen/GCMetadata.h"
     26 #include "llvm/CodeGen/GCStrategy.h"
     27 #include "llvm/CodeGen/MachineFrameInfo.h"
     28 #include "llvm/CodeGen/MachineFunction.h"
     29 #include "llvm/CodeGen/MachineInstrBuilder.h"
     30 #include "llvm/CodeGen/MachineModuleInfo.h"
     31 #include "llvm/CodeGen/MachineRegisterInfo.h"
     32 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
     33 #include "llvm/CodeGen/SchedulerRegistry.h"
     34 #include "llvm/CodeGen/SelectionDAG.h"
     35 #include "llvm/DebugInfo.h"
     36 #include "llvm/IR/Constants.h"
     37 #include "llvm/IR/Function.h"
     38 #include "llvm/IR/InlineAsm.h"
     39 #include "llvm/IR/Instructions.h"
     40 #include "llvm/IR/IntrinsicInst.h"
     41 #include "llvm/IR/Intrinsics.h"
     42 #include "llvm/IR/LLVMContext.h"
     43 #include "llvm/IR/Module.h"
     44 #include "llvm/Support/Compiler.h"
     45 #include "llvm/Support/Debug.h"
     46 #include "llvm/Support/ErrorHandling.h"
     47 #include "llvm/Support/Timer.h"
     48 #include "llvm/Support/raw_ostream.h"
     49 #include "llvm/Target/TargetInstrInfo.h"
     50 #include "llvm/Target/TargetIntrinsicInfo.h"
     51 #include "llvm/Target/TargetLibraryInfo.h"
     52 #include "llvm/Target/TargetLowering.h"
     53 #include "llvm/Target/TargetMachine.h"
     54 #include "llvm/Target/TargetOptions.h"
     55 #include "llvm/Target/TargetRegisterInfo.h"
     56 #include "llvm/Target/TargetSubtargetInfo.h"
     57 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     58 #include <algorithm>
     59 using namespace llvm;
     60 
     61 STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
     62 STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
     63 STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
     64 STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
     65 STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
     66 
     67 #ifndef NDEBUG
     68 static cl::opt<bool>
     69 EnableFastISelVerbose2("fast-isel-verbose2", cl::Hidden,
     70           cl::desc("Enable extra verbose messages in the \"fast\" "
     71                    "instruction selector"));
     72   // Terminators
     73 STATISTIC(NumFastIselFailRet,"Fast isel fails on Ret");
     74 STATISTIC(NumFastIselFailBr,"Fast isel fails on Br");
     75 STATISTIC(NumFastIselFailSwitch,"Fast isel fails on Switch");
     76 STATISTIC(NumFastIselFailIndirectBr,"Fast isel fails on IndirectBr");
     77 STATISTIC(NumFastIselFailInvoke,"Fast isel fails on Invoke");
     78 STATISTIC(NumFastIselFailResume,"Fast isel fails on Resume");
     79 STATISTIC(NumFastIselFailUnreachable,"Fast isel fails on Unreachable");
     80 
     81   // Standard binary operators...
     82 STATISTIC(NumFastIselFailAdd,"Fast isel fails on Add");
     83 STATISTIC(NumFastIselFailFAdd,"Fast isel fails on FAdd");
     84 STATISTIC(NumFastIselFailSub,"Fast isel fails on Sub");
     85 STATISTIC(NumFastIselFailFSub,"Fast isel fails on FSub");
     86 STATISTIC(NumFastIselFailMul,"Fast isel fails on Mul");
     87 STATISTIC(NumFastIselFailFMul,"Fast isel fails on FMul");
     88 STATISTIC(NumFastIselFailUDiv,"Fast isel fails on UDiv");
     89 STATISTIC(NumFastIselFailSDiv,"Fast isel fails on SDiv");
     90 STATISTIC(NumFastIselFailFDiv,"Fast isel fails on FDiv");
     91 STATISTIC(NumFastIselFailURem,"Fast isel fails on URem");
     92 STATISTIC(NumFastIselFailSRem,"Fast isel fails on SRem");
     93 STATISTIC(NumFastIselFailFRem,"Fast isel fails on FRem");
     94 
     95   // Logical operators...
     96 STATISTIC(NumFastIselFailAnd,"Fast isel fails on And");
     97 STATISTIC(NumFastIselFailOr,"Fast isel fails on Or");
     98 STATISTIC(NumFastIselFailXor,"Fast isel fails on Xor");
     99 
    100   // Memory instructions...
    101 STATISTIC(NumFastIselFailAlloca,"Fast isel fails on Alloca");
    102 STATISTIC(NumFastIselFailLoad,"Fast isel fails on Load");
    103 STATISTIC(NumFastIselFailStore,"Fast isel fails on Store");
    104 STATISTIC(NumFastIselFailAtomicCmpXchg,"Fast isel fails on AtomicCmpXchg");
    105 STATISTIC(NumFastIselFailAtomicRMW,"Fast isel fails on AtomicRWM");
    106 STATISTIC(NumFastIselFailFence,"Fast isel fails on Frence");
    107 STATISTIC(NumFastIselFailGetElementPtr,"Fast isel fails on GetElementPtr");
    108 
    109   // Convert instructions...
    110 STATISTIC(NumFastIselFailTrunc,"Fast isel fails on Trunc");
    111 STATISTIC(NumFastIselFailZExt,"Fast isel fails on ZExt");
    112 STATISTIC(NumFastIselFailSExt,"Fast isel fails on SExt");
    113 STATISTIC(NumFastIselFailFPTrunc,"Fast isel fails on FPTrunc");
    114 STATISTIC(NumFastIselFailFPExt,"Fast isel fails on FPExt");
    115 STATISTIC(NumFastIselFailFPToUI,"Fast isel fails on FPToUI");
    116 STATISTIC(NumFastIselFailFPToSI,"Fast isel fails on FPToSI");
    117 STATISTIC(NumFastIselFailUIToFP,"Fast isel fails on UIToFP");
    118 STATISTIC(NumFastIselFailSIToFP,"Fast isel fails on SIToFP");
    119 STATISTIC(NumFastIselFailIntToPtr,"Fast isel fails on IntToPtr");
    120 STATISTIC(NumFastIselFailPtrToInt,"Fast isel fails on PtrToInt");
    121 STATISTIC(NumFastIselFailBitCast,"Fast isel fails on BitCast");
    122 
    123   // Other instructions...
    124 STATISTIC(NumFastIselFailICmp,"Fast isel fails on ICmp");
    125 STATISTIC(NumFastIselFailFCmp,"Fast isel fails on FCmp");
    126 STATISTIC(NumFastIselFailPHI,"Fast isel fails on PHI");
    127 STATISTIC(NumFastIselFailSelect,"Fast isel fails on Select");
    128 STATISTIC(NumFastIselFailCall,"Fast isel fails on Call");
    129 STATISTIC(NumFastIselFailShl,"Fast isel fails on Shl");
    130 STATISTIC(NumFastIselFailLShr,"Fast isel fails on LShr");
    131 STATISTIC(NumFastIselFailAShr,"Fast isel fails on AShr");
    132 STATISTIC(NumFastIselFailVAArg,"Fast isel fails on VAArg");
    133 STATISTIC(NumFastIselFailExtractElement,"Fast isel fails on ExtractElement");
    134 STATISTIC(NumFastIselFailInsertElement,"Fast isel fails on InsertElement");
    135 STATISTIC(NumFastIselFailShuffleVector,"Fast isel fails on ShuffleVector");
    136 STATISTIC(NumFastIselFailExtractValue,"Fast isel fails on ExtractValue");
    137 STATISTIC(NumFastIselFailInsertValue,"Fast isel fails on InsertValue");
    138 STATISTIC(NumFastIselFailLandingPad,"Fast isel fails on LandingPad");
    139 #endif
    140 
    141 static cl::opt<bool>
    142 EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
    143           cl::desc("Enable verbose messages in the \"fast\" "
    144                    "instruction selector"));
    145 static cl::opt<bool>
    146 EnableFastISelAbort("fast-isel-abort", cl::Hidden,
    147           cl::desc("Enable abort calls when \"fast\" instruction selection "
    148                    "fails to lower an instruction"));
    149 static cl::opt<bool>
    150 EnableFastISelAbortArgs("fast-isel-abort-args", cl::Hidden,
    151           cl::desc("Enable abort calls when \"fast\" instruction selection "
    152                    "fails to lower a formal argument"));
    153 
    154 static cl::opt<bool>
    155 UseMBPI("use-mbpi",
    156         cl::desc("use Machine Branch Probability Info"),
    157         cl::init(true), cl::Hidden);
    158 
    159 #ifndef NDEBUG
    160 static cl::opt<bool>
    161 ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
    162           cl::desc("Pop up a window to show dags before the first "
    163                    "dag combine pass"));
    164 static cl::opt<bool>
    165 ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
    166           cl::desc("Pop up a window to show dags before legalize types"));
    167 static cl::opt<bool>
    168 ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
    169           cl::desc("Pop up a window to show dags before legalize"));
    170 static cl::opt<bool>
    171 ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
    172           cl::desc("Pop up a window to show dags before the second "
    173                    "dag combine pass"));
    174 static cl::opt<bool>
    175 ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
    176           cl::desc("Pop up a window to show dags before the post legalize types"
    177                    " dag combine pass"));
    178 static cl::opt<bool>
    179 ViewISelDAGs("view-isel-dags", cl::Hidden,
    180           cl::desc("Pop up a window to show isel dags as they are selected"));
    181 static cl::opt<bool>
    182 ViewSchedDAGs("view-sched-dags", cl::Hidden,
    183           cl::desc("Pop up a window to show sched dags as they are processed"));
    184 static cl::opt<bool>
    185 ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
    186       cl::desc("Pop up a window to show SUnit dags after they are processed"));
    187 #else
    188 static const bool ViewDAGCombine1 = false,
    189                   ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
    190                   ViewDAGCombine2 = false,
    191                   ViewDAGCombineLT = false,
    192                   ViewISelDAGs = false, ViewSchedDAGs = false,
    193                   ViewSUnitDAGs = false;
    194 #endif
    195 
    196 //===---------------------------------------------------------------------===//
    197 ///
    198 /// RegisterScheduler class - Track the registration of instruction schedulers.
    199 ///
    200 //===---------------------------------------------------------------------===//
    201 MachinePassRegistry RegisterScheduler::Registry;
    202 
    203 //===---------------------------------------------------------------------===//
    204 ///
    205 /// ISHeuristic command line option for instruction schedulers.
    206 ///
    207 //===---------------------------------------------------------------------===//
    208 static cl::opt<RegisterScheduler::FunctionPassCtor, false,
    209                RegisterPassParser<RegisterScheduler> >
    210 ISHeuristic("pre-RA-sched",
    211             cl::init(&createDefaultScheduler),
    212             cl::desc("Instruction schedulers available (before register"
    213                      " allocation):"));
    214 
    215 static RegisterScheduler
    216 defaultListDAGScheduler("default", "Best scheduler for the target",
    217                         createDefaultScheduler);
    218 
    219 namespace llvm {
    220   //===--------------------------------------------------------------------===//
    221   /// createDefaultScheduler - This creates an instruction scheduler appropriate
    222   /// for the target.
    223   ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
    224                                              CodeGenOpt::Level OptLevel) {
    225     const TargetLowering &TLI = IS->getTargetLowering();
    226     const TargetSubtargetInfo &ST = IS->TM.getSubtarget<TargetSubtargetInfo>();
    227 
    228     if (OptLevel == CodeGenOpt::None || ST.enableMachineScheduler() ||
    229         TLI.getSchedulingPreference() == Sched::Source)
    230       return createSourceListDAGScheduler(IS, OptLevel);
    231     if (TLI.getSchedulingPreference() == Sched::RegPressure)
    232       return createBURRListDAGScheduler(IS, OptLevel);
    233     if (TLI.getSchedulingPreference() == Sched::Hybrid)
    234       return createHybridListDAGScheduler(IS, OptLevel);
    235     if (TLI.getSchedulingPreference() == Sched::VLIW)
    236       return createVLIWDAGScheduler(IS, OptLevel);
    237     assert(TLI.getSchedulingPreference() == Sched::ILP &&
    238            "Unknown sched type!");
    239     return createILPListDAGScheduler(IS, OptLevel);
    240   }
    241 }
    242 
    243 // EmitInstrWithCustomInserter - This method should be implemented by targets
    244 // that mark instructions with the 'usesCustomInserter' flag.  These
    245 // instructions are special in various ways, which require special support to
    246 // insert.  The specified MachineInstr is created but not inserted into any
    247 // basic blocks, and this method is called to expand it into a sequence of
    248 // instructions, potentially also creating new basic blocks and control flow.
    249 // When new basic blocks are inserted and the edges from MBB to its successors
    250 // are modified, the method should insert pairs of <OldSucc, NewSucc> into the
    251 // DenseMap.
    252 MachineBasicBlock *
    253 TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
    254                                             MachineBasicBlock *MBB) const {
    255 #ifndef NDEBUG
    256   dbgs() << "If a target marks an instruction with "
    257           "'usesCustomInserter', it must implement "
    258           "TargetLowering::EmitInstrWithCustomInserter!";
    259 #endif
    260   llvm_unreachable(0);
    261 }
    262 
    263 void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
    264                                                    SDNode *Node) const {
    265   assert(!MI->hasPostISelHook() &&
    266          "If a target marks an instruction with 'hasPostISelHook', "
    267          "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
    268 }
    269 
    270 //===----------------------------------------------------------------------===//
    271 // SelectionDAGISel code
    272 //===----------------------------------------------------------------------===//
    273 
    274 SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm,
    275                                    CodeGenOpt::Level OL) :
    276   MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
    277   FuncInfo(new FunctionLoweringInfo(TLI)),
    278   CurDAG(new SelectionDAG(tm, OL)),
    279   SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
    280   GFI(),
    281   OptLevel(OL),
    282   DAGSize(0) {
    283     initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
    284     initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
    285     initializeBranchProbabilityInfoPass(*PassRegistry::getPassRegistry());
    286     initializeTargetLibraryInfoPass(*PassRegistry::getPassRegistry());
    287   }
    288 
    289 SelectionDAGISel::~SelectionDAGISel() {
    290   delete SDB;
    291   delete CurDAG;
    292   delete FuncInfo;
    293 }
    294 
    295 void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
    296   AU.addRequired<AliasAnalysis>();
    297   AU.addPreserved<AliasAnalysis>();
    298   AU.addRequired<GCModuleInfo>();
    299   AU.addPreserved<GCModuleInfo>();
    300   AU.addRequired<TargetLibraryInfo>();
    301   if (UseMBPI && OptLevel != CodeGenOpt::None)
    302     AU.addRequired<BranchProbabilityInfo>();
    303   MachineFunctionPass::getAnalysisUsage(AU);
    304 }
    305 
    306 /// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
    307 /// may trap on it.  In this case we have to split the edge so that the path
    308 /// through the predecessor block that doesn't go to the phi block doesn't
    309 /// execute the possibly trapping instruction.
    310 ///
    311 /// This is required for correctness, so it must be done at -O0.
    312 ///
    313 static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
    314   // Loop for blocks with phi nodes.
    315   for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
    316     PHINode *PN = dyn_cast<PHINode>(BB->begin());
    317     if (PN == 0) continue;
    318 
    319   ReprocessBlock:
    320     // For each block with a PHI node, check to see if any of the input values
    321     // are potentially trapping constant expressions.  Constant expressions are
    322     // the only potentially trapping value that can occur as the argument to a
    323     // PHI.
    324     for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
    325       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
    326         ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
    327         if (CE == 0 || !CE->canTrap()) continue;
    328 
    329         // The only case we have to worry about is when the edge is critical.
    330         // Since this block has a PHI Node, we assume it has multiple input
    331         // edges: check to see if the pred has multiple successors.
    332         BasicBlock *Pred = PN->getIncomingBlock(i);
    333         if (Pred->getTerminator()->getNumSuccessors() == 1)
    334           continue;
    335 
    336         // Okay, we have to split this edge.
    337         SplitCriticalEdge(Pred->getTerminator(),
    338                           GetSuccessorNumber(Pred, BB), SDISel, true);
    339         goto ReprocessBlock;
    340       }
    341   }
    342 }
    343 
    344 bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
    345   // Do some sanity-checking on the command-line options.
    346   assert((!EnableFastISelVerbose || TM.Options.EnableFastISel) &&
    347          "-fast-isel-verbose requires -fast-isel");
    348   assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
    349          "-fast-isel-abort requires -fast-isel");
    350 
    351   const Function &Fn = *mf.getFunction();
    352   const TargetInstrInfo &TII = *TM.getInstrInfo();
    353   const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
    354 
    355   MF = &mf;
    356   RegInfo = &MF->getRegInfo();
    357   AA = &getAnalysis<AliasAnalysis>();
    358   LibInfo = &getAnalysis<TargetLibraryInfo>();
    359   TTI = getAnalysisIfAvailable<TargetTransformInfo>();
    360   GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
    361 
    362   TargetSubtargetInfo &ST =
    363     const_cast<TargetSubtargetInfo&>(TM.getSubtarget<TargetSubtargetInfo>());
    364   ST.resetSubtargetFeatures(MF);
    365   TM.resetTargetOptions(MF);
    366 
    367   DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
    368 
    369   SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
    370 
    371   CurDAG->init(*MF, TTI);
    372   FuncInfo->set(Fn, *MF);
    373 
    374   if (UseMBPI && OptLevel != CodeGenOpt::None)
    375     FuncInfo->BPI = &getAnalysis<BranchProbabilityInfo>();
    376   else
    377     FuncInfo->BPI = 0;
    378 
    379   SDB->init(GFI, *AA, LibInfo);
    380 
    381   MF->setHasMSInlineAsm(false);
    382   SelectAllBasicBlocks(Fn);
    383 
    384   // If the first basic block in the function has live ins that need to be
    385   // copied into vregs, emit the copies into the top of the block before
    386   // emitting the code for the block.
    387   MachineBasicBlock *EntryMBB = MF->begin();
    388   RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
    389 
    390   DenseMap<unsigned, unsigned> LiveInMap;
    391   if (!FuncInfo->ArgDbgValues.empty())
    392     for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
    393            E = RegInfo->livein_end(); LI != E; ++LI)
    394       if (LI->second)
    395         LiveInMap.insert(std::make_pair(LI->first, LI->second));
    396 
    397   // Insert DBG_VALUE instructions for function arguments to the entry block.
    398   for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
    399     MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
    400     unsigned Reg = MI->getOperand(0).getReg();
    401     if (TargetRegisterInfo::isPhysicalRegister(Reg))
    402       EntryMBB->insert(EntryMBB->begin(), MI);
    403     else {
    404       MachineInstr *Def = RegInfo->getVRegDef(Reg);
    405       MachineBasicBlock::iterator InsertPos = Def;
    406       // FIXME: VR def may not be in entry block.
    407       Def->getParent()->insert(llvm::next(InsertPos), MI);
    408     }
    409 
    410     // If Reg is live-in then update debug info to track its copy in a vreg.
    411     DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
    412     if (LDI != LiveInMap.end()) {
    413       MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
    414       MachineBasicBlock::iterator InsertPos = Def;
    415       const MDNode *Variable =
    416         MI->getOperand(MI->getNumOperands()-1).getMetadata();
    417       unsigned Offset = MI->getOperand(1).getImm();
    418       // Def is never a terminator here, so it is ok to increment InsertPos.
    419       BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
    420               TII.get(TargetOpcode::DBG_VALUE))
    421         .addReg(LDI->second, RegState::Debug)
    422         .addImm(Offset).addMetadata(Variable);
    423 
    424       // If this vreg is directly copied into an exported register then
    425       // that COPY instructions also need DBG_VALUE, if it is the only
    426       // user of LDI->second.
    427       MachineInstr *CopyUseMI = NULL;
    428       for (MachineRegisterInfo::use_iterator
    429              UI = RegInfo->use_begin(LDI->second);
    430            MachineInstr *UseMI = UI.skipInstruction();) {
    431         if (UseMI->isDebugValue()) continue;
    432         if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
    433           CopyUseMI = UseMI; continue;
    434         }
    435         // Otherwise this is another use or second copy use.
    436         CopyUseMI = NULL; break;
    437       }
    438       if (CopyUseMI) {
    439         MachineInstr *NewMI =
    440           BuildMI(*MF, CopyUseMI->getDebugLoc(),
    441                   TII.get(TargetOpcode::DBG_VALUE))
    442           .addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
    443           .addImm(Offset).addMetadata(Variable);
    444         MachineBasicBlock::iterator Pos = CopyUseMI;
    445         EntryMBB->insertAfter(Pos, NewMI);
    446       }
    447     }
    448   }
    449 
    450   // Determine if there are any calls in this machine function.
    451   MachineFrameInfo *MFI = MF->getFrameInfo();
    452   for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E;
    453        ++I) {
    454 
    455     if (MFI->hasCalls() && MF->hasMSInlineAsm())
    456       break;
    457 
    458     const MachineBasicBlock *MBB = I;
    459     for (MachineBasicBlock::const_iterator II = MBB->begin(), IE = MBB->end();
    460          II != IE; ++II) {
    461       const MCInstrDesc &MCID = TM.getInstrInfo()->get(II->getOpcode());
    462       if ((MCID.isCall() && !MCID.isReturn()) ||
    463           II->isStackAligningInlineAsm()) {
    464         MFI->setHasCalls(true);
    465       }
    466       if (II->isMSInlineAsm()) {
    467         MF->setHasMSInlineAsm(true);
    468       }
    469     }
    470   }
    471 
    472   // Determine if there is a call to setjmp in the machine function.
    473   MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
    474 
    475   // Replace forward-declared registers with the registers containing
    476   // the desired value.
    477   MachineRegisterInfo &MRI = MF->getRegInfo();
    478   for (DenseMap<unsigned, unsigned>::iterator
    479        I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
    480        I != E; ++I) {
    481     unsigned From = I->first;
    482     unsigned To = I->second;
    483     // If To is also scheduled to be replaced, find what its ultimate
    484     // replacement is.
    485     for (;;) {
    486       DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
    487       if (J == E) break;
    488       To = J->second;
    489     }
    490     // Replace it.
    491     MRI.replaceRegWith(From, To);
    492   }
    493 
    494   // Freeze the set of reserved registers now that MachineFrameInfo has been
    495   // set up. All the information required by getReservedRegs() should be
    496   // available now.
    497   MRI.freezeReservedRegs(*MF);
    498 
    499   // Release function-specific state. SDB and CurDAG are already cleared
    500   // at this point.
    501   FuncInfo->clear();
    502 
    503   return true;
    504 }
    505 
    506 void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
    507                                         BasicBlock::const_iterator End,
    508                                         bool &HadTailCall) {
    509   // Lower all of the non-terminator instructions. If a call is emitted
    510   // as a tail call, cease emitting nodes for this block. Terminators
    511   // are handled below.
    512   for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
    513     SDB->visit(*I);
    514 
    515   // Make sure the root of the DAG is up-to-date.
    516   CurDAG->setRoot(SDB->getControlRoot());
    517   HadTailCall = SDB->HasTailCall;
    518   SDB->clear();
    519 
    520   // Final step, emit the lowered DAG as machine code.
    521   CodeGenAndEmitDAG();
    522 }
    523 
    524 void SelectionDAGISel::ComputeLiveOutVRegInfo() {
    525   SmallPtrSet<SDNode*, 128> VisitedNodes;
    526   SmallVector<SDNode*, 128> Worklist;
    527 
    528   Worklist.push_back(CurDAG->getRoot().getNode());
    529 
    530   APInt KnownZero;
    531   APInt KnownOne;
    532 
    533   do {
    534     SDNode *N = Worklist.pop_back_val();
    535 
    536     // If we've already seen this node, ignore it.
    537     if (!VisitedNodes.insert(N))
    538       continue;
    539 
    540     // Otherwise, add all chain operands to the worklist.
    541     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
    542       if (N->getOperand(i).getValueType() == MVT::Other)
    543         Worklist.push_back(N->getOperand(i).getNode());
    544 
    545     // If this is a CopyToReg with a vreg dest, process it.
    546     if (N->getOpcode() != ISD::CopyToReg)
    547       continue;
    548 
    549     unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
    550     if (!TargetRegisterInfo::isVirtualRegister(DestReg))
    551       continue;
    552 
    553     // Ignore non-scalar or non-integer values.
    554     SDValue Src = N->getOperand(2);
    555     EVT SrcVT = Src.getValueType();
    556     if (!SrcVT.isInteger() || SrcVT.isVector())
    557       continue;
    558 
    559     unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
    560     CurDAG->ComputeMaskedBits(Src, KnownZero, KnownOne);
    561     FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, KnownZero, KnownOne);
    562   } while (!Worklist.empty());
    563 }
    564 
    565 void SelectionDAGISel::CodeGenAndEmitDAG() {
    566   std::string GroupName;
    567   if (TimePassesIsEnabled)
    568     GroupName = "Instruction Selection and Scheduling";
    569   std::string BlockName;
    570   int BlockNumber = -1;
    571   (void)BlockNumber;
    572 #ifdef NDEBUG
    573   if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
    574       ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
    575       ViewSUnitDAGs)
    576 #endif
    577   {
    578     BlockNumber = FuncInfo->MBB->getNumber();
    579     BlockName = MF->getName().str() + ":" +
    580                 FuncInfo->MBB->getBasicBlock()->getName().str();
    581   }
    582   DEBUG(dbgs() << "Initial selection DAG: BB#" << BlockNumber
    583         << " '" << BlockName << "'\n"; CurDAG->dump());
    584 
    585   if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
    586 
    587   // Run the DAG combiner in pre-legalize mode.
    588   {
    589     NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
    590     CurDAG->Combine(BeforeLegalizeTypes, *AA, OptLevel);
    591   }
    592 
    593   DEBUG(dbgs() << "Optimized lowered selection DAG: BB#" << BlockNumber
    594         << " '" << BlockName << "'\n"; CurDAG->dump());
    595 
    596   // Second step, hack on the DAG until it only uses operations and types that
    597   // the target supports.
    598   if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
    599                                                BlockName);
    600 
    601   bool Changed;
    602   {
    603     NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
    604     Changed = CurDAG->LegalizeTypes();
    605   }
    606 
    607   DEBUG(dbgs() << "Type-legalized selection DAG: BB#" << BlockNumber
    608         << " '" << BlockName << "'\n"; CurDAG->dump());
    609 
    610   if (Changed) {
    611     if (ViewDAGCombineLT)
    612       CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
    613 
    614     // Run the DAG combiner in post-type-legalize mode.
    615     {
    616       NamedRegionTimer T("DAG Combining after legalize types", GroupName,
    617                          TimePassesIsEnabled);
    618       CurDAG->Combine(AfterLegalizeTypes, *AA, OptLevel);
    619     }
    620 
    621     DEBUG(dbgs() << "Optimized type-legalized selection DAG: BB#" << BlockNumber
    622           << " '" << BlockName << "'\n"; CurDAG->dump());
    623   }
    624 
    625   {
    626     NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
    627     Changed = CurDAG->LegalizeVectors();
    628   }
    629 
    630   if (Changed) {
    631     {
    632       NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
    633       CurDAG->LegalizeTypes();
    634     }
    635 
    636     if (ViewDAGCombineLT)
    637       CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
    638 
    639     // Run the DAG combiner in post-type-legalize mode.
    640     {
    641       NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
    642                          TimePassesIsEnabled);
    643       CurDAG->Combine(AfterLegalizeVectorOps, *AA, OptLevel);
    644     }
    645 
    646     DEBUG(dbgs() << "Optimized vector-legalized selection DAG: BB#"
    647           << BlockNumber << " '" << BlockName << "'\n"; CurDAG->dump());
    648   }
    649 
    650   if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
    651 
    652   {
    653     NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
    654     CurDAG->Legalize();
    655   }
    656 
    657   DEBUG(dbgs() << "Legalized selection DAG: BB#" << BlockNumber
    658         << " '" << BlockName << "'\n"; CurDAG->dump());
    659 
    660   if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
    661 
    662   // Run the DAG combiner in post-legalize mode.
    663   {
    664     NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
    665     CurDAG->Combine(AfterLegalizeDAG, *AA, OptLevel);
    666   }
    667 
    668   DEBUG(dbgs() << "Optimized legalized selection DAG: BB#" << BlockNumber
    669         << " '" << BlockName << "'\n"; CurDAG->dump());
    670 
    671   if (OptLevel != CodeGenOpt::None)
    672     ComputeLiveOutVRegInfo();
    673 
    674   if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
    675 
    676   // Third, instruction select all of the operations to machine code, adding the
    677   // code to the MachineBasicBlock.
    678   {
    679     NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
    680     DoInstructionSelection();
    681   }
    682 
    683   DEBUG(dbgs() << "Selected selection DAG: BB#" << BlockNumber
    684         << " '" << BlockName << "'\n"; CurDAG->dump());
    685 
    686   if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
    687 
    688   // Schedule machine code.
    689   ScheduleDAGSDNodes *Scheduler = CreateScheduler();
    690   {
    691     NamedRegionTimer T("Instruction Scheduling", GroupName,
    692                        TimePassesIsEnabled);
    693     Scheduler->Run(CurDAG, FuncInfo->MBB);
    694   }
    695 
    696   if (ViewSUnitDAGs) Scheduler->viewGraph();
    697 
    698   // Emit machine code to BB.  This can change 'BB' to the last block being
    699   // inserted into.
    700   MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
    701   {
    702     NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
    703 
    704     // FuncInfo->InsertPt is passed by reference and set to the end of the
    705     // scheduled instructions.
    706     LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
    707   }
    708 
    709   // If the block was split, make sure we update any references that are used to
    710   // update PHI nodes later on.
    711   if (FirstMBB != LastMBB)
    712     SDB->UpdateSplitBlock(FirstMBB, LastMBB);
    713 
    714   // Free the scheduler state.
    715   {
    716     NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
    717                        TimePassesIsEnabled);
    718     delete Scheduler;
    719   }
    720 
    721   // Free the SelectionDAG state, now that we're finished with it.
    722   CurDAG->clear();
    723 }
    724 
    725 namespace {
    726 /// ISelUpdater - helper class to handle updates of the instruction selection
    727 /// graph.
    728 class ISelUpdater : public SelectionDAG::DAGUpdateListener {
    729   SelectionDAG::allnodes_iterator &ISelPosition;
    730 public:
    731   ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
    732     : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
    733 
    734   /// NodeDeleted - Handle nodes deleted from the graph. If the node being
    735   /// deleted is the current ISelPosition node, update ISelPosition.
    736   ///
    737   virtual void NodeDeleted(SDNode *N, SDNode *E) {
    738     if (ISelPosition == SelectionDAG::allnodes_iterator(N))
    739       ++ISelPosition;
    740   }
    741 };
    742 } // end anonymous namespace
    743 
    744 void SelectionDAGISel::DoInstructionSelection() {
    745   DEBUG(errs() << "===== Instruction selection begins: BB#"
    746         << FuncInfo->MBB->getNumber()
    747         << " '" << FuncInfo->MBB->getName() << "'\n");
    748 
    749   PreprocessISelDAG();
    750 
    751   // Select target instructions for the DAG.
    752   {
    753     // Number all nodes with a topological order and set DAGSize.
    754     DAGSize = CurDAG->AssignTopologicalOrder();
    755 
    756     // Create a dummy node (which is not added to allnodes), that adds
    757     // a reference to the root node, preventing it from being deleted,
    758     // and tracking any changes of the root.
    759     HandleSDNode Dummy(CurDAG->getRoot());
    760     SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
    761     ++ISelPosition;
    762 
    763     // Make sure that ISelPosition gets properly updated when nodes are deleted
    764     // in calls made from this function.
    765     ISelUpdater ISU(*CurDAG, ISelPosition);
    766 
    767     // The AllNodes list is now topological-sorted. Visit the
    768     // nodes by starting at the end of the list (the root of the
    769     // graph) and preceding back toward the beginning (the entry
    770     // node).
    771     while (ISelPosition != CurDAG->allnodes_begin()) {
    772       SDNode *Node = --ISelPosition;
    773       // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
    774       // but there are currently some corner cases that it misses. Also, this
    775       // makes it theoretically possible to disable the DAGCombiner.
    776       if (Node->use_empty())
    777         continue;
    778 
    779       SDNode *ResNode = Select(Node);
    780 
    781       // FIXME: This is pretty gross.  'Select' should be changed to not return
    782       // anything at all and this code should be nuked with a tactical strike.
    783 
    784       // If node should not be replaced, continue with the next one.
    785       if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
    786         continue;
    787       // Replace node.
    788       if (ResNode)
    789         ReplaceUses(Node, ResNode);
    790 
    791       // If after the replacement this node is not used any more,
    792       // remove this dead node.
    793       if (Node->use_empty()) // Don't delete EntryToken, etc.
    794         CurDAG->RemoveDeadNode(Node);
    795     }
    796 
    797     CurDAG->setRoot(Dummy.getValue());
    798   }
    799 
    800   DEBUG(errs() << "===== Instruction selection ends:\n");
    801 
    802   PostprocessISelDAG();
    803 }
    804 
    805 /// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
    806 /// do other setup for EH landing-pad blocks.
    807 void SelectionDAGISel::PrepareEHLandingPad() {
    808   MachineBasicBlock *MBB = FuncInfo->MBB;
    809 
    810   // Add a label to mark the beginning of the landing pad.  Deletion of the
    811   // landing pad can thus be detected via the MachineModuleInfo.
    812   MCSymbol *Label = MF->getMMI().addLandingPad(MBB);
    813 
    814   // Assign the call site to the landing pad's begin label.
    815   MF->getMMI().setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
    816 
    817   const MCInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
    818   BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
    819     .addSym(Label);
    820 
    821   // Mark exception register as live in.
    822   unsigned Reg = TLI.getExceptionPointerRegister();
    823   if (Reg) MBB->addLiveIn(Reg);
    824 
    825   // Mark exception selector register as live in.
    826   Reg = TLI.getExceptionSelectorRegister();
    827   if (Reg) MBB->addLiveIn(Reg);
    828 }
    829 
    830 /// TryToFoldFastISelLoad - We're checking to see if we can fold the specified
    831 /// load into the specified FoldInst.  Note that we could have a sequence where
    832 /// multiple LLVM IR instructions are folded into the same machineinstr.  For
    833 /// example we could have:
    834 ///   A: x = load i32 *P
    835 ///   B: y = icmp A, 42
    836 ///   C: br y, ...
    837 ///
    838 /// In this scenario, LI is "A", and FoldInst is "C".  We know about "B" (and
    839 /// any other folded instructions) because it is between A and C.
    840 ///
    841 /// If we succeed in folding the load into the operation, return true.
    842 ///
    843 bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
    844                                              const Instruction *FoldInst,
    845                                              FastISel *FastIS) {
    846   // We know that the load has a single use, but don't know what it is.  If it
    847   // isn't one of the folded instructions, then we can't succeed here.  Handle
    848   // this by scanning the single-use users of the load until we get to FoldInst.
    849   unsigned MaxUsers = 6;  // Don't scan down huge single-use chains of instrs.
    850 
    851   const Instruction *TheUser = LI->use_back();
    852   while (TheUser != FoldInst &&   // Scan up until we find FoldInst.
    853          // Stay in the right block.
    854          TheUser->getParent() == FoldInst->getParent() &&
    855          --MaxUsers) {  // Don't scan too far.
    856     // If there are multiple or no uses of this instruction, then bail out.
    857     if (!TheUser->hasOneUse())
    858       return false;
    859 
    860     TheUser = TheUser->use_back();
    861   }
    862 
    863   // If we didn't find the fold instruction, then we failed to collapse the
    864   // sequence.
    865   if (TheUser != FoldInst)
    866     return false;
    867 
    868   // Don't try to fold volatile loads.  Target has to deal with alignment
    869   // constraints.
    870   if (LI->isVolatile()) return false;
    871 
    872   // Figure out which vreg this is going into.  If there is no assigned vreg yet
    873   // then there actually was no reference to it.  Perhaps the load is referenced
    874   // by a dead instruction.
    875   unsigned LoadReg = FastIS->getRegForValue(LI);
    876   if (LoadReg == 0)
    877     return false;
    878 
    879   // Check to see what the uses of this vreg are.  If it has no uses, or more
    880   // than one use (at the machine instr level) then we can't fold it.
    881   MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
    882   if (RI == RegInfo->reg_end())
    883     return false;
    884 
    885   // See if there is exactly one use of the vreg.  If there are multiple uses,
    886   // then the instruction got lowered to multiple machine instructions or the
    887   // use of the loaded value ended up being multiple operands of the result, in
    888   // either case, we can't fold this.
    889   MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
    890   if (PostRI != RegInfo->reg_end())
    891     return false;
    892 
    893   assert(RI.getOperand().isUse() &&
    894          "The only use of the vreg must be a use, we haven't emitted the def!");
    895 
    896   MachineInstr *User = &*RI;
    897 
    898   // Set the insertion point properly.  Folding the load can cause generation of
    899   // other random instructions (like sign extends) for addressing modes, make
    900   // sure they get inserted in a logical place before the new instruction.
    901   FuncInfo->InsertPt = User;
    902   FuncInfo->MBB = User->getParent();
    903 
    904   // Ask the target to try folding the load.
    905   return FastIS->TryToFoldLoad(User, RI.getOperandNo(), LI);
    906 }
    907 
    908 /// isFoldedOrDeadInstruction - Return true if the specified instruction is
    909 /// side-effect free and is either dead or folded into a generated instruction.
    910 /// Return false if it needs to be emitted.
    911 static bool isFoldedOrDeadInstruction(const Instruction *I,
    912                                       FunctionLoweringInfo *FuncInfo) {
    913   return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
    914          !isa<TerminatorInst>(I) && // Terminators aren't folded.
    915          !isa<DbgInfoIntrinsic>(I) &&  // Debug instructions aren't folded.
    916          !isa<LandingPadInst>(I) &&    // Landingpad instructions aren't folded.
    917          !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
    918 }
    919 
    920 #ifndef NDEBUG
    921 // Collect per Instruction statistics for fast-isel misses.  Only those
    922 // instructions that cause the bail are accounted for.  It does not account for
    923 // instructions higher in the block.  Thus, summing the per instructions stats
    924 // will not add up to what is reported by NumFastIselFailures.
    925 static void collectFailStats(const Instruction *I) {
    926   switch (I->getOpcode()) {
    927   default: assert (0 && "<Invalid operator> ");
    928 
    929   // Terminators
    930   case Instruction::Ret:         NumFastIselFailRet++; return;
    931   case Instruction::Br:          NumFastIselFailBr++; return;
    932   case Instruction::Switch:      NumFastIselFailSwitch++; return;
    933   case Instruction::IndirectBr:  NumFastIselFailIndirectBr++; return;
    934   case Instruction::Invoke:      NumFastIselFailInvoke++; return;
    935   case Instruction::Resume:      NumFastIselFailResume++; return;
    936   case Instruction::Unreachable: NumFastIselFailUnreachable++; return;
    937 
    938   // Standard binary operators...
    939   case Instruction::Add:  NumFastIselFailAdd++; return;
    940   case Instruction::FAdd: NumFastIselFailFAdd++; return;
    941   case Instruction::Sub:  NumFastIselFailSub++; return;
    942   case Instruction::FSub: NumFastIselFailFSub++; return;
    943   case Instruction::Mul:  NumFastIselFailMul++; return;
    944   case Instruction::FMul: NumFastIselFailFMul++; return;
    945   case Instruction::UDiv: NumFastIselFailUDiv++; return;
    946   case Instruction::SDiv: NumFastIselFailSDiv++; return;
    947   case Instruction::FDiv: NumFastIselFailFDiv++; return;
    948   case Instruction::URem: NumFastIselFailURem++; return;
    949   case Instruction::SRem: NumFastIselFailSRem++; return;
    950   case Instruction::FRem: NumFastIselFailFRem++; return;
    951 
    952   // Logical operators...
    953   case Instruction::And: NumFastIselFailAnd++; return;
    954   case Instruction::Or:  NumFastIselFailOr++; return;
    955   case Instruction::Xor: NumFastIselFailXor++; return;
    956 
    957   // Memory instructions...
    958   case Instruction::Alloca:        NumFastIselFailAlloca++; return;
    959   case Instruction::Load:          NumFastIselFailLoad++; return;
    960   case Instruction::Store:         NumFastIselFailStore++; return;
    961   case Instruction::AtomicCmpXchg: NumFastIselFailAtomicCmpXchg++; return;
    962   case Instruction::AtomicRMW:     NumFastIselFailAtomicRMW++; return;
    963   case Instruction::Fence:         NumFastIselFailFence++; return;
    964   case Instruction::GetElementPtr: NumFastIselFailGetElementPtr++; return;
    965 
    966   // Convert instructions...
    967   case Instruction::Trunc:    NumFastIselFailTrunc++; return;
    968   case Instruction::ZExt:     NumFastIselFailZExt++; return;
    969   case Instruction::SExt:     NumFastIselFailSExt++; return;
    970   case Instruction::FPTrunc:  NumFastIselFailFPTrunc++; return;
    971   case Instruction::FPExt:    NumFastIselFailFPExt++; return;
    972   case Instruction::FPToUI:   NumFastIselFailFPToUI++; return;
    973   case Instruction::FPToSI:   NumFastIselFailFPToSI++; return;
    974   case Instruction::UIToFP:   NumFastIselFailUIToFP++; return;
    975   case Instruction::SIToFP:   NumFastIselFailSIToFP++; return;
    976   case Instruction::IntToPtr: NumFastIselFailIntToPtr++; return;
    977   case Instruction::PtrToInt: NumFastIselFailPtrToInt++; return;
    978   case Instruction::BitCast:  NumFastIselFailBitCast++; return;
    979 
    980   // Other instructions...
    981   case Instruction::ICmp:           NumFastIselFailICmp++; return;
    982   case Instruction::FCmp:           NumFastIselFailFCmp++; return;
    983   case Instruction::PHI:            NumFastIselFailPHI++; return;
    984   case Instruction::Select:         NumFastIselFailSelect++; return;
    985   case Instruction::Call:           NumFastIselFailCall++; return;
    986   case Instruction::Shl:            NumFastIselFailShl++; return;
    987   case Instruction::LShr:           NumFastIselFailLShr++; return;
    988   case Instruction::AShr:           NumFastIselFailAShr++; return;
    989   case Instruction::VAArg:          NumFastIselFailVAArg++; return;
    990   case Instruction::ExtractElement: NumFastIselFailExtractElement++; return;
    991   case Instruction::InsertElement:  NumFastIselFailInsertElement++; return;
    992   case Instruction::ShuffleVector:  NumFastIselFailShuffleVector++; return;
    993   case Instruction::ExtractValue:   NumFastIselFailExtractValue++; return;
    994   case Instruction::InsertValue:    NumFastIselFailInsertValue++; return;
    995   case Instruction::LandingPad:     NumFastIselFailLandingPad++; return;
    996   }
    997 }
    998 #endif
    999 
   1000 void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
   1001   // Initialize the Fast-ISel state, if needed.
   1002   FastISel *FastIS = 0;
   1003   if (TM.Options.EnableFastISel)
   1004     FastIS = TLI.createFastISel(*FuncInfo, LibInfo);
   1005 
   1006   // Iterate over all basic blocks in the function.
   1007   ReversePostOrderTraversal<const Function*> RPOT(&Fn);
   1008   for (ReversePostOrderTraversal<const Function*>::rpo_iterator
   1009        I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
   1010     const BasicBlock *LLVMBB = *I;
   1011 
   1012     if (OptLevel != CodeGenOpt::None) {
   1013       bool AllPredsVisited = true;
   1014       for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
   1015            PI != PE; ++PI) {
   1016         if (!FuncInfo->VisitedBBs.count(*PI)) {
   1017           AllPredsVisited = false;
   1018           break;
   1019         }
   1020       }
   1021 
   1022       if (AllPredsVisited) {
   1023         for (BasicBlock::const_iterator I = LLVMBB->begin();
   1024              const PHINode *PN = dyn_cast<PHINode>(I); ++I)
   1025           FuncInfo->ComputePHILiveOutRegInfo(PN);
   1026       } else {
   1027         for (BasicBlock::const_iterator I = LLVMBB->begin();
   1028              const PHINode *PN = dyn_cast<PHINode>(I); ++I)
   1029           FuncInfo->InvalidatePHILiveOutRegInfo(PN);
   1030       }
   1031 
   1032       FuncInfo->VisitedBBs.insert(LLVMBB);
   1033     }
   1034 
   1035     BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
   1036     BasicBlock::const_iterator const End = LLVMBB->end();
   1037     BasicBlock::const_iterator BI = End;
   1038 
   1039     FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
   1040     FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
   1041 
   1042     // Setup an EH landing-pad block.
   1043     if (FuncInfo->MBB->isLandingPad())
   1044       PrepareEHLandingPad();
   1045 
   1046     // Before doing SelectionDAG ISel, see if FastISel has been requested.
   1047     if (FastIS) {
   1048       FastIS->startNewBlock();
   1049 
   1050       // Emit code for any incoming arguments. This must happen before
   1051       // beginning FastISel on the entry block.
   1052       if (LLVMBB == &Fn.getEntryBlock()) {
   1053         // Lower any arguments needed in this block if this is the entry block.
   1054         if (!FastIS->LowerArguments()) {
   1055           // Fast isel failed to lower these arguments
   1056           if (EnableFastISelAbortArgs)
   1057             llvm_unreachable("FastISel didn't lower all arguments");
   1058 
   1059           // Use SelectionDAG argument lowering
   1060           LowerArguments(Fn);
   1061           CurDAG->setRoot(SDB->getControlRoot());
   1062           SDB->clear();
   1063           CodeGenAndEmitDAG();
   1064         }
   1065 
   1066         // If we inserted any instructions at the beginning, make a note of
   1067         // where they are, so we can be sure to emit subsequent instructions
   1068         // after them.
   1069         if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
   1070           FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
   1071         else
   1072           FastIS->setLastLocalValue(0);
   1073       }
   1074 
   1075       unsigned NumFastIselRemaining = std::distance(Begin, End);
   1076       // Do FastISel on as many instructions as possible.
   1077       for (; BI != Begin; --BI) {
   1078         const Instruction *Inst = llvm::prior(BI);
   1079 
   1080         // If we no longer require this instruction, skip it.
   1081         if (isFoldedOrDeadInstruction(Inst, FuncInfo)) {
   1082           --NumFastIselRemaining;
   1083           continue;
   1084         }
   1085 
   1086         // Bottom-up: reset the insert pos at the top, after any local-value
   1087         // instructions.
   1088         FastIS->recomputeInsertPt();
   1089 
   1090         // Try to select the instruction with FastISel.
   1091         if (FastIS->SelectInstruction(Inst)) {
   1092           --NumFastIselRemaining;
   1093           ++NumFastIselSuccess;
   1094           // If fast isel succeeded, skip over all the folded instructions, and
   1095           // then see if there is a load right before the selected instructions.
   1096           // Try to fold the load if so.
   1097           const Instruction *BeforeInst = Inst;
   1098           while (BeforeInst != Begin) {
   1099             BeforeInst = llvm::prior(BasicBlock::const_iterator(BeforeInst));
   1100             if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
   1101               break;
   1102           }
   1103           if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
   1104               BeforeInst->hasOneUse() &&
   1105               TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), Inst, FastIS)) {
   1106             // If we succeeded, don't re-select the load.
   1107             BI = llvm::next(BasicBlock::const_iterator(BeforeInst));
   1108             --NumFastIselRemaining;
   1109             ++NumFastIselSuccess;
   1110           }
   1111           continue;
   1112         }
   1113 
   1114 #ifndef NDEBUG
   1115         if (EnableFastISelVerbose2)
   1116           collectFailStats(Inst);
   1117 #endif
   1118 
   1119         // Then handle certain instructions as single-LLVM-Instruction blocks.
   1120         if (isa<CallInst>(Inst)) {
   1121 
   1122           if (EnableFastISelVerbose || EnableFastISelAbort) {
   1123             dbgs() << "FastISel missed call: ";
   1124             Inst->dump();
   1125           }
   1126 
   1127           if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
   1128             unsigned &R = FuncInfo->ValueMap[Inst];
   1129             if (!R)
   1130               R = FuncInfo->CreateRegs(Inst->getType());
   1131           }
   1132 
   1133           bool HadTailCall = false;
   1134           MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
   1135           SelectBasicBlock(Inst, BI, HadTailCall);
   1136 
   1137           // If the call was emitted as a tail call, we're done with the block.
   1138           // We also need to delete any previously emitted instructions.
   1139           if (HadTailCall) {
   1140             FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
   1141             --BI;
   1142             break;
   1143           }
   1144 
   1145           // Recompute NumFastIselRemaining as Selection DAG instruction
   1146           // selection may have handled the call, input args, etc.
   1147           unsigned RemainingNow = std::distance(Begin, BI);
   1148           NumFastIselFailures += NumFastIselRemaining - RemainingNow;
   1149           NumFastIselRemaining = RemainingNow;
   1150           continue;
   1151         }
   1152 
   1153         if (isa<TerminatorInst>(Inst) && !isa<BranchInst>(Inst)) {
   1154           // Don't abort, and use a different message for terminator misses.
   1155           NumFastIselFailures += NumFastIselRemaining;
   1156           if (EnableFastISelVerbose || EnableFastISelAbort) {
   1157             dbgs() << "FastISel missed terminator: ";
   1158             Inst->dump();
   1159           }
   1160         } else {
   1161           NumFastIselFailures += NumFastIselRemaining;
   1162           if (EnableFastISelVerbose || EnableFastISelAbort) {
   1163             dbgs() << "FastISel miss: ";
   1164             Inst->dump();
   1165           }
   1166           if (EnableFastISelAbort)
   1167             // The "fast" selector couldn't handle something and bailed.
   1168             // For the purpose of debugging, just abort.
   1169             llvm_unreachable("FastISel didn't select the entire block");
   1170         }
   1171         break;
   1172       }
   1173 
   1174       FastIS->recomputeInsertPt();
   1175     } else {
   1176       // Lower any arguments needed in this block if this is the entry block.
   1177       if (LLVMBB == &Fn.getEntryBlock())
   1178         LowerArguments(Fn);
   1179     }
   1180 
   1181     if (Begin != BI)
   1182       ++NumDAGBlocks;
   1183     else
   1184       ++NumFastIselBlocks;
   1185 
   1186     if (Begin != BI) {
   1187       // Run SelectionDAG instruction selection on the remainder of the block
   1188       // not handled by FastISel. If FastISel is not run, this is the entire
   1189       // block.
   1190       bool HadTailCall;
   1191       SelectBasicBlock(Begin, BI, HadTailCall);
   1192     }
   1193 
   1194     FinishBasicBlock();
   1195     FuncInfo->PHINodesToUpdate.clear();
   1196   }
   1197 
   1198   delete FastIS;
   1199   SDB->clearDanglingDebugInfo();
   1200 }
   1201 
   1202 void
   1203 SelectionDAGISel::FinishBasicBlock() {
   1204 
   1205   DEBUG(dbgs() << "Total amount of phi nodes to update: "
   1206                << FuncInfo->PHINodesToUpdate.size() << "\n";
   1207         for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
   1208           dbgs() << "Node " << i << " : ("
   1209                  << FuncInfo->PHINodesToUpdate[i].first
   1210                  << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
   1211 
   1212   // Next, now that we know what the last MBB the LLVM BB expanded is, update
   1213   // PHI nodes in successors.
   1214   if (SDB->SwitchCases.empty() &&
   1215       SDB->JTCases.empty() &&
   1216       SDB->BitTestCases.empty()) {
   1217     for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
   1218       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
   1219       assert(PHI->isPHI() &&
   1220              "This is not a machine PHI node that we are updating!");
   1221       if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
   1222         continue;
   1223       PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
   1224     }
   1225     return;
   1226   }
   1227 
   1228   for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
   1229     // Lower header first, if it wasn't already lowered
   1230     if (!SDB->BitTestCases[i].Emitted) {
   1231       // Set the current basic block to the mbb we wish to insert the code into
   1232       FuncInfo->MBB = SDB->BitTestCases[i].Parent;
   1233       FuncInfo->InsertPt = FuncInfo->MBB->end();
   1234       // Emit the code
   1235       SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
   1236       CurDAG->setRoot(SDB->getRoot());
   1237       SDB->clear();
   1238       CodeGenAndEmitDAG();
   1239     }
   1240 
   1241     uint32_t UnhandledWeight = 0;
   1242     for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j)
   1243       UnhandledWeight += SDB->BitTestCases[i].Cases[j].ExtraWeight;
   1244 
   1245     for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
   1246       UnhandledWeight -= SDB->BitTestCases[i].Cases[j].ExtraWeight;
   1247       // Set the current basic block to the mbb we wish to insert the code into
   1248       FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
   1249       FuncInfo->InsertPt = FuncInfo->MBB->end();
   1250       // Emit the code
   1251       if (j+1 != ej)
   1252         SDB->visitBitTestCase(SDB->BitTestCases[i],
   1253                               SDB->BitTestCases[i].Cases[j+1].ThisBB,
   1254                               UnhandledWeight,
   1255                               SDB->BitTestCases[i].Reg,
   1256                               SDB->BitTestCases[i].Cases[j],
   1257                               FuncInfo->MBB);
   1258       else
   1259         SDB->visitBitTestCase(SDB->BitTestCases[i],
   1260                               SDB->BitTestCases[i].Default,
   1261                               UnhandledWeight,
   1262                               SDB->BitTestCases[i].Reg,
   1263                               SDB->BitTestCases[i].Cases[j],
   1264                               FuncInfo->MBB);
   1265 
   1266 
   1267       CurDAG->setRoot(SDB->getRoot());
   1268       SDB->clear();
   1269       CodeGenAndEmitDAG();
   1270     }
   1271 
   1272     // Update PHI Nodes
   1273     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
   1274          pi != pe; ++pi) {
   1275       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
   1276       MachineBasicBlock *PHIBB = PHI->getParent();
   1277       assert(PHI->isPHI() &&
   1278              "This is not a machine PHI node that we are updating!");
   1279       // This is "default" BB. We have two jumps to it. From "header" BB and
   1280       // from last "case" BB.
   1281       if (PHIBB == SDB->BitTestCases[i].Default)
   1282         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
   1283            .addMBB(SDB->BitTestCases[i].Parent)
   1284            .addReg(FuncInfo->PHINodesToUpdate[pi].second)
   1285            .addMBB(SDB->BitTestCases[i].Cases.back().ThisBB);
   1286       // One of "cases" BB.
   1287       for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
   1288            j != ej; ++j) {
   1289         MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
   1290         if (cBB->isSuccessor(PHIBB))
   1291           PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
   1292       }
   1293     }
   1294   }
   1295   SDB->BitTestCases.clear();
   1296 
   1297   // If the JumpTable record is filled in, then we need to emit a jump table.
   1298   // Updating the PHI nodes is tricky in this case, since we need to determine
   1299   // whether the PHI is a successor of the range check MBB or the jump table MBB
   1300   for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
   1301     // Lower header first, if it wasn't already lowered
   1302     if (!SDB->JTCases[i].first.Emitted) {
   1303       // Set the current basic block to the mbb we wish to insert the code into
   1304       FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
   1305       FuncInfo->InsertPt = FuncInfo->MBB->end();
   1306       // Emit the code
   1307       SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
   1308                                 FuncInfo->MBB);
   1309       CurDAG->setRoot(SDB->getRoot());
   1310       SDB->clear();
   1311       CodeGenAndEmitDAG();
   1312     }
   1313 
   1314     // Set the current basic block to the mbb we wish to insert the code into
   1315     FuncInfo->MBB = SDB->JTCases[i].second.MBB;
   1316     FuncInfo->InsertPt = FuncInfo->MBB->end();
   1317     // Emit the code
   1318     SDB->visitJumpTable(SDB->JTCases[i].second);
   1319     CurDAG->setRoot(SDB->getRoot());
   1320     SDB->clear();
   1321     CodeGenAndEmitDAG();
   1322 
   1323     // Update PHI Nodes
   1324     for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
   1325          pi != pe; ++pi) {
   1326       MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
   1327       MachineBasicBlock *PHIBB = PHI->getParent();
   1328       assert(PHI->isPHI() &&
   1329              "This is not a machine PHI node that we are updating!");
   1330       // "default" BB. We can go there only from header BB.
   1331       if (PHIBB == SDB->JTCases[i].second.Default)
   1332         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
   1333            .addMBB(SDB->JTCases[i].first.HeaderBB);
   1334       // JT BB. Just iterate over successors here
   1335       if (FuncInfo->MBB->isSuccessor(PHIBB))
   1336         PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
   1337     }
   1338   }
   1339   SDB->JTCases.clear();
   1340 
   1341   // If the switch block involved a branch to one of the actual successors, we
   1342   // need to update PHI nodes in that block.
   1343   for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
   1344     MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
   1345     assert(PHI->isPHI() &&
   1346            "This is not a machine PHI node that we are updating!");
   1347     if (FuncInfo->MBB->isSuccessor(PHI->getParent()))
   1348       PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
   1349   }
   1350 
   1351   // If we generated any switch lowering information, build and codegen any
   1352   // additional DAGs necessary.
   1353   for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
   1354     // Set the current basic block to the mbb we wish to insert the code into
   1355     FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
   1356     FuncInfo->InsertPt = FuncInfo->MBB->end();
   1357 
   1358     // Determine the unique successors.
   1359     SmallVector<MachineBasicBlock *, 2> Succs;
   1360     Succs.push_back(SDB->SwitchCases[i].TrueBB);
   1361     if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
   1362       Succs.push_back(SDB->SwitchCases[i].FalseBB);
   1363 
   1364     // Emit the code. Note that this could result in FuncInfo->MBB being split.
   1365     SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
   1366     CurDAG->setRoot(SDB->getRoot());
   1367     SDB->clear();
   1368     CodeGenAndEmitDAG();
   1369 
   1370     // Remember the last block, now that any splitting is done, for use in
   1371     // populating PHI nodes in successors.
   1372     MachineBasicBlock *ThisBB = FuncInfo->MBB;
   1373 
   1374     // Handle any PHI nodes in successors of this chunk, as if we were coming
   1375     // from the original BB before switch expansion.  Note that PHI nodes can
   1376     // occur multiple times in PHINodesToUpdate.  We have to be very careful to
   1377     // handle them the right number of times.
   1378     for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
   1379       FuncInfo->MBB = Succs[i];
   1380       FuncInfo->InsertPt = FuncInfo->MBB->end();
   1381       // FuncInfo->MBB may have been removed from the CFG if a branch was
   1382       // constant folded.
   1383       if (ThisBB->isSuccessor(FuncInfo->MBB)) {
   1384         for (MachineBasicBlock::iterator
   1385              MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
   1386              MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
   1387           MachineInstrBuilder PHI(*MF, MBBI);
   1388           // This value for this PHI node is recorded in PHINodesToUpdate.
   1389           for (unsigned pn = 0; ; ++pn) {
   1390             assert(pn != FuncInfo->PHINodesToUpdate.size() &&
   1391                    "Didn't find PHI entry!");
   1392             if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
   1393               PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
   1394               break;
   1395             }
   1396           }
   1397         }
   1398       }
   1399     }
   1400   }
   1401   SDB->SwitchCases.clear();
   1402 }
   1403 
   1404 
   1405 /// Create the scheduler. If a specific scheduler was specified
   1406 /// via the SchedulerRegistry, use it, otherwise select the
   1407 /// one preferred by the target.
   1408 ///
   1409 ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
   1410   RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
   1411 
   1412   if (!Ctor) {
   1413     Ctor = ISHeuristic;
   1414     RegisterScheduler::setDefault(Ctor);
   1415   }
   1416 
   1417   return Ctor(this, OptLevel);
   1418 }
   1419 
   1420 //===----------------------------------------------------------------------===//
   1421 // Helper functions used by the generated instruction selector.
   1422 //===----------------------------------------------------------------------===//
   1423 // Calls to these methods are generated by tblgen.
   1424 
   1425 /// CheckAndMask - The isel is trying to match something like (and X, 255).  If
   1426 /// the dag combiner simplified the 255, we still want to match.  RHS is the
   1427 /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
   1428 /// specified in the .td file (e.g. 255).
   1429 bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
   1430                                     int64_t DesiredMaskS) const {
   1431   const APInt &ActualMask = RHS->getAPIntValue();
   1432   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
   1433 
   1434   // If the actual mask exactly matches, success!
   1435   if (ActualMask == DesiredMask)
   1436     return true;
   1437 
   1438   // If the actual AND mask is allowing unallowed bits, this doesn't match.
   1439   if (ActualMask.intersects(~DesiredMask))
   1440     return false;
   1441 
   1442   // Otherwise, the DAG Combiner may have proven that the value coming in is
   1443   // either already zero or is not demanded.  Check for known zero input bits.
   1444   APInt NeededMask = DesiredMask & ~ActualMask;
   1445   if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
   1446     return true;
   1447 
   1448   // TODO: check to see if missing bits are just not demanded.
   1449 
   1450   // Otherwise, this pattern doesn't match.
   1451   return false;
   1452 }
   1453 
   1454 /// CheckOrMask - The isel is trying to match something like (or X, 255).  If
   1455 /// the dag combiner simplified the 255, we still want to match.  RHS is the
   1456 /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
   1457 /// specified in the .td file (e.g. 255).
   1458 bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
   1459                                    int64_t DesiredMaskS) const {
   1460   const APInt &ActualMask = RHS->getAPIntValue();
   1461   const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
   1462 
   1463   // If the actual mask exactly matches, success!
   1464   if (ActualMask == DesiredMask)
   1465     return true;
   1466 
   1467   // If the actual AND mask is allowing unallowed bits, this doesn't match.
   1468   if (ActualMask.intersects(~DesiredMask))
   1469     return false;
   1470 
   1471   // Otherwise, the DAG Combiner may have proven that the value coming in is
   1472   // either already zero or is not demanded.  Check for known zero input bits.
   1473   APInt NeededMask = DesiredMask & ~ActualMask;
   1474 
   1475   APInt KnownZero, KnownOne;
   1476   CurDAG->ComputeMaskedBits(LHS, KnownZero, KnownOne);
   1477 
   1478   // If all the missing bits in the or are already known to be set, match!
   1479   if ((NeededMask & KnownOne) == NeededMask)
   1480     return true;
   1481 
   1482   // TODO: check to see if missing bits are just not demanded.
   1483 
   1484   // Otherwise, this pattern doesn't match.
   1485   return false;
   1486 }
   1487 
   1488 
   1489 /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
   1490 /// by tblgen.  Others should not call it.
   1491 void SelectionDAGISel::
   1492 SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
   1493   std::vector<SDValue> InOps;
   1494   std::swap(InOps, Ops);
   1495 
   1496   Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
   1497   Ops.push_back(InOps[InlineAsm::Op_AsmString]);  // 1
   1498   Ops.push_back(InOps[InlineAsm::Op_MDNode]);     // 2, !srcloc
   1499   Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]);  // 3 (SideEffect, AlignStack)
   1500 
   1501   unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
   1502   if (InOps[e-1].getValueType() == MVT::Glue)
   1503     --e;  // Don't process a glue operand if it is here.
   1504 
   1505   while (i != e) {
   1506     unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
   1507     if (!InlineAsm::isMemKind(Flags)) {
   1508       // Just skip over this operand, copying the operands verbatim.
   1509       Ops.insert(Ops.end(), InOps.begin()+i,
   1510                  InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
   1511       i += InlineAsm::getNumOperandRegisters(Flags) + 1;
   1512     } else {
   1513       assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
   1514              "Memory operand with multiple values?");
   1515       // Otherwise, this is a memory operand.  Ask the target to select it.
   1516       std::vector<SDValue> SelOps;
   1517       if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
   1518         report_fatal_error("Could not match memory address.  Inline asm"
   1519                            " failure!");
   1520 
   1521       // Add this to the output node.
   1522       unsigned NewFlags =
   1523         InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
   1524       Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
   1525       Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
   1526       i += 2;
   1527     }
   1528   }
   1529 
   1530   // Add the glue input back if present.
   1531   if (e != InOps.size())
   1532     Ops.push_back(InOps.back());
   1533 }
   1534 
   1535 /// findGlueUse - Return use of MVT::Glue value produced by the specified
   1536 /// SDNode.
   1537 ///
   1538 static SDNode *findGlueUse(SDNode *N) {
   1539   unsigned FlagResNo = N->getNumValues()-1;
   1540   for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
   1541     SDUse &Use = I.getUse();
   1542     if (Use.getResNo() == FlagResNo)
   1543       return Use.getUser();
   1544   }
   1545   return NULL;
   1546 }
   1547 
   1548 /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
   1549 /// This function recursively traverses up the operand chain, ignoring
   1550 /// certain nodes.
   1551 static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
   1552                           SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
   1553                           bool IgnoreChains) {
   1554   // The NodeID's are given uniques ID's where a node ID is guaranteed to be
   1555   // greater than all of its (recursive) operands.  If we scan to a point where
   1556   // 'use' is smaller than the node we're scanning for, then we know we will
   1557   // never find it.
   1558   //
   1559   // The Use may be -1 (unassigned) if it is a newly allocated node.  This can
   1560   // happen because we scan down to newly selected nodes in the case of glue
   1561   // uses.
   1562   if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
   1563     return false;
   1564 
   1565   // Don't revisit nodes if we already scanned it and didn't fail, we know we
   1566   // won't fail if we scan it again.
   1567   if (!Visited.insert(Use))
   1568     return false;
   1569 
   1570   for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
   1571     // Ignore chain uses, they are validated by HandleMergeInputChains.
   1572     if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
   1573       continue;
   1574 
   1575     SDNode *N = Use->getOperand(i).getNode();
   1576     if (N == Def) {
   1577       if (Use == ImmedUse || Use == Root)
   1578         continue;  // We are not looking for immediate use.
   1579       assert(N != Root);
   1580       return true;
   1581     }
   1582 
   1583     // Traverse up the operand chain.
   1584     if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
   1585       return true;
   1586   }
   1587   return false;
   1588 }
   1589 
   1590 /// IsProfitableToFold - Returns true if it's profitable to fold the specific
   1591 /// operand node N of U during instruction selection that starts at Root.
   1592 bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
   1593                                           SDNode *Root) const {
   1594   if (OptLevel == CodeGenOpt::None) return false;
   1595   return N.hasOneUse();
   1596 }
   1597 
   1598 /// IsLegalToFold - Returns true if the specific operand node N of
   1599 /// U can be folded during instruction selection that starts at Root.
   1600 bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
   1601                                      CodeGenOpt::Level OptLevel,
   1602                                      bool IgnoreChains) {
   1603   if (OptLevel == CodeGenOpt::None) return false;
   1604 
   1605   // If Root use can somehow reach N through a path that that doesn't contain
   1606   // U then folding N would create a cycle. e.g. In the following
   1607   // diagram, Root can reach N through X. If N is folded into into Root, then
   1608   // X is both a predecessor and a successor of U.
   1609   //
   1610   //          [N*]           //
   1611   //         ^   ^           //
   1612   //        /     \          //
   1613   //      [U*]    [X]?       //
   1614   //        ^     ^          //
   1615   //         \   /           //
   1616   //          \ /            //
   1617   //         [Root*]         //
   1618   //
   1619   // * indicates nodes to be folded together.
   1620   //
   1621   // If Root produces glue, then it gets (even more) interesting. Since it
   1622   // will be "glued" together with its glue use in the scheduler, we need to
   1623   // check if it might reach N.
   1624   //
   1625   //          [N*]           //
   1626   //         ^   ^           //
   1627   //        /     \          //
   1628   //      [U*]    [X]?       //
   1629   //        ^       ^        //
   1630   //         \       \       //
   1631   //          \      |       //
   1632   //         [Root*] |       //
   1633   //          ^      |       //
   1634   //          f      |       //
   1635   //          |      /       //
   1636   //         [Y]    /        //
   1637   //           ^   /         //
   1638   //           f  /          //
   1639   //           | /           //
   1640   //          [GU]           //
   1641   //
   1642   // If GU (glue use) indirectly reaches N (the load), and Root folds N
   1643   // (call it Fold), then X is a predecessor of GU and a successor of
   1644   // Fold. But since Fold and GU are glued together, this will create
   1645   // a cycle in the scheduling graph.
   1646 
   1647   // If the node has glue, walk down the graph to the "lowest" node in the
   1648   // glueged set.
   1649   EVT VT = Root->getValueType(Root->getNumValues()-1);
   1650   while (VT == MVT::Glue) {
   1651     SDNode *GU = findGlueUse(Root);
   1652     if (GU == NULL)
   1653       break;
   1654     Root = GU;
   1655     VT = Root->getValueType(Root->getNumValues()-1);
   1656 
   1657     // If our query node has a glue result with a use, we've walked up it.  If
   1658     // the user (which has already been selected) has a chain or indirectly uses
   1659     // the chain, our WalkChainUsers predicate will not consider it.  Because of
   1660     // this, we cannot ignore chains in this predicate.
   1661     IgnoreChains = false;
   1662   }
   1663 
   1664 
   1665   SmallPtrSet<SDNode*, 16> Visited;
   1666   return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
   1667 }
   1668 
   1669 SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
   1670   std::vector<SDValue> Ops(N->op_begin(), N->op_end());
   1671   SelectInlineAsmMemoryOperands(Ops);
   1672 
   1673   EVT VTs[] = { MVT::Other, MVT::Glue };
   1674   SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
   1675                                 VTs, &Ops[0], Ops.size());
   1676   New->setNodeId(-1);
   1677   return New.getNode();
   1678 }
   1679 
   1680 SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
   1681   return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
   1682 }
   1683 
   1684 /// GetVBR - decode a vbr encoding whose top bit is set.
   1685 LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
   1686 GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
   1687   assert(Val >= 128 && "Not a VBR");
   1688   Val &= 127;  // Remove first vbr bit.
   1689 
   1690   unsigned Shift = 7;
   1691   uint64_t NextBits;
   1692   do {
   1693     NextBits = MatcherTable[Idx++];
   1694     Val |= (NextBits&127) << Shift;
   1695     Shift += 7;
   1696   } while (NextBits & 128);
   1697 
   1698   return Val;
   1699 }
   1700 
   1701 
   1702 /// UpdateChainsAndGlue - When a match is complete, this method updates uses of
   1703 /// interior glue and chain results to use the new glue and chain results.
   1704 void SelectionDAGISel::
   1705 UpdateChainsAndGlue(SDNode *NodeToMatch, SDValue InputChain,
   1706                     const SmallVectorImpl<SDNode*> &ChainNodesMatched,
   1707                     SDValue InputGlue,
   1708                     const SmallVectorImpl<SDNode*> &GlueResultNodesMatched,
   1709                     bool isMorphNodeTo) {
   1710   SmallVector<SDNode*, 4> NowDeadNodes;
   1711 
   1712   // Now that all the normal results are replaced, we replace the chain and
   1713   // glue results if present.
   1714   if (!ChainNodesMatched.empty()) {
   1715     assert(InputChain.getNode() != 0 &&
   1716            "Matched input chains but didn't produce a chain");
   1717     // Loop over all of the nodes we matched that produced a chain result.
   1718     // Replace all the chain results with the final chain we ended up with.
   1719     for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
   1720       SDNode *ChainNode = ChainNodesMatched[i];
   1721 
   1722       // If this node was already deleted, don't look at it.
   1723       if (ChainNode->getOpcode() == ISD::DELETED_NODE)
   1724         continue;
   1725 
   1726       // Don't replace the results of the root node if we're doing a
   1727       // MorphNodeTo.
   1728       if (ChainNode == NodeToMatch && isMorphNodeTo)
   1729         continue;
   1730 
   1731       SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
   1732       if (ChainVal.getValueType() == MVT::Glue)
   1733         ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
   1734       assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
   1735       CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain);
   1736 
   1737       // If the node became dead and we haven't already seen it, delete it.
   1738       if (ChainNode->use_empty() &&
   1739           !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
   1740         NowDeadNodes.push_back(ChainNode);
   1741     }
   1742   }
   1743 
   1744   // If the result produces glue, update any glue results in the matched
   1745   // pattern with the glue result.
   1746   if (InputGlue.getNode() != 0) {
   1747     // Handle any interior nodes explicitly marked.
   1748     for (unsigned i = 0, e = GlueResultNodesMatched.size(); i != e; ++i) {
   1749       SDNode *FRN = GlueResultNodesMatched[i];
   1750 
   1751       // If this node was already deleted, don't look at it.
   1752       if (FRN->getOpcode() == ISD::DELETED_NODE)
   1753         continue;
   1754 
   1755       assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Glue &&
   1756              "Doesn't have a glue result");
   1757       CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
   1758                                         InputGlue);
   1759 
   1760       // If the node became dead and we haven't already seen it, delete it.
   1761       if (FRN->use_empty() &&
   1762           !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
   1763         NowDeadNodes.push_back(FRN);
   1764     }
   1765   }
   1766 
   1767   if (!NowDeadNodes.empty())
   1768     CurDAG->RemoveDeadNodes(NowDeadNodes);
   1769 
   1770   DEBUG(errs() << "ISEL: Match complete!\n");
   1771 }
   1772 
   1773 enum ChainResult {
   1774   CR_Simple,
   1775   CR_InducesCycle,
   1776   CR_LeadsToInteriorNode
   1777 };
   1778 
   1779 /// WalkChainUsers - Walk down the users of the specified chained node that is
   1780 /// part of the pattern we're matching, looking at all of the users we find.
   1781 /// This determines whether something is an interior node, whether we have a
   1782 /// non-pattern node in between two pattern nodes (which prevent folding because
   1783 /// it would induce a cycle) and whether we have a TokenFactor node sandwiched
   1784 /// between pattern nodes (in which case the TF becomes part of the pattern).
   1785 ///
   1786 /// The walk we do here is guaranteed to be small because we quickly get down to
   1787 /// already selected nodes "below" us.
   1788 static ChainResult
   1789 WalkChainUsers(const SDNode *ChainedNode,
   1790                SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
   1791                SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
   1792   ChainResult Result = CR_Simple;
   1793 
   1794   for (SDNode::use_iterator UI = ChainedNode->use_begin(),
   1795          E = ChainedNode->use_end(); UI != E; ++UI) {
   1796     // Make sure the use is of the chain, not some other value we produce.
   1797     if (UI.getUse().getValueType() != MVT::Other) continue;
   1798 
   1799     SDNode *User = *UI;
   1800 
   1801     // If we see an already-selected machine node, then we've gone beyond the
   1802     // pattern that we're selecting down into the already selected chunk of the
   1803     // DAG.
   1804     if (User->isMachineOpcode() ||
   1805         User->getOpcode() == ISD::HANDLENODE)  // Root of the graph.
   1806       continue;
   1807 
   1808     unsigned UserOpcode = User->getOpcode();
   1809     if (UserOpcode == ISD::CopyToReg ||
   1810         UserOpcode == ISD::CopyFromReg ||
   1811         UserOpcode == ISD::INLINEASM ||
   1812         UserOpcode == ISD::EH_LABEL ||
   1813         UserOpcode == ISD::LIFETIME_START ||
   1814         UserOpcode == ISD::LIFETIME_END) {
   1815       // If their node ID got reset to -1 then they've already been selected.
   1816       // Treat them like a MachineOpcode.
   1817       if (User->getNodeId() == -1)
   1818         continue;
   1819     }
   1820 
   1821     // If we have a TokenFactor, we handle it specially.
   1822     if (User->getOpcode() != ISD::TokenFactor) {
   1823       // If the node isn't a token factor and isn't part of our pattern, then it
   1824       // must be a random chained node in between two nodes we're selecting.
   1825       // This happens when we have something like:
   1826       //   x = load ptr
   1827       //   call
   1828       //   y = x+4
   1829       //   store y -> ptr
   1830       // Because we structurally match the load/store as a read/modify/write,
   1831       // but the call is chained between them.  We cannot fold in this case
   1832       // because it would induce a cycle in the graph.
   1833       if (!std::count(ChainedNodesInPattern.begin(),
   1834                       ChainedNodesInPattern.end(), User))
   1835         return CR_InducesCycle;
   1836 
   1837       // Otherwise we found a node that is part of our pattern.  For example in:
   1838       //   x = load ptr
   1839       //   y = x+4
   1840       //   store y -> ptr
   1841       // This would happen when we're scanning down from the load and see the
   1842       // store as a user.  Record that there is a use of ChainedNode that is
   1843       // part of the pattern and keep scanning uses.
   1844       Result = CR_LeadsToInteriorNode;
   1845       InteriorChainedNodes.push_back(User);
   1846       continue;
   1847     }
   1848 
   1849     // If we found a TokenFactor, there are two cases to consider: first if the
   1850     // TokenFactor is just hanging "below" the pattern we're matching (i.e. no
   1851     // uses of the TF are in our pattern) we just want to ignore it.  Second,
   1852     // the TokenFactor can be sandwiched in between two chained nodes, like so:
   1853     //     [Load chain]
   1854     //         ^
   1855     //         |
   1856     //       [Load]
   1857     //       ^    ^
   1858     //       |    \                    DAG's like cheese
   1859     //      /       \                       do you?
   1860     //     /         |
   1861     // [TokenFactor] [Op]
   1862     //     ^          ^
   1863     //     |          |
   1864     //      \        /
   1865     //       \      /
   1866     //       [Store]
   1867     //
   1868     // In this case, the TokenFactor becomes part of our match and we rewrite it
   1869     // as a new TokenFactor.
   1870     //
   1871     // To distinguish these two cases, do a recursive walk down the uses.
   1872     switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
   1873     case CR_Simple:
   1874       // If the uses of the TokenFactor are just already-selected nodes, ignore
   1875       // it, it is "below" our pattern.
   1876       continue;
   1877     case CR_InducesCycle:
   1878       // If the uses of the TokenFactor lead to nodes that are not part of our
   1879       // pattern that are not selected, folding would turn this into a cycle,
   1880       // bail out now.
   1881       return CR_InducesCycle;
   1882     case CR_LeadsToInteriorNode:
   1883       break;  // Otherwise, keep processing.
   1884     }
   1885 
   1886     // Okay, we know we're in the interesting interior case.  The TokenFactor
   1887     // is now going to be considered part of the pattern so that we rewrite its
   1888     // uses (it may have uses that are not part of the pattern) with the
   1889     // ultimate chain result of the generated code.  We will also add its chain
   1890     // inputs as inputs to the ultimate TokenFactor we create.
   1891     Result = CR_LeadsToInteriorNode;
   1892     ChainedNodesInPattern.push_back(User);
   1893     InteriorChainedNodes.push_back(User);
   1894     continue;
   1895   }
   1896 
   1897   return Result;
   1898 }
   1899 
   1900 /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
   1901 /// operation for when the pattern matched at least one node with a chains.  The
   1902 /// input vector contains a list of all of the chained nodes that we match.  We
   1903 /// must determine if this is a valid thing to cover (i.e. matching it won't
   1904 /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
   1905 /// be used as the input node chain for the generated nodes.
   1906 static SDValue
   1907 HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
   1908                        SelectionDAG *CurDAG) {
   1909   // Walk all of the chained nodes we've matched, recursively scanning down the
   1910   // users of the chain result. This adds any TokenFactor nodes that are caught
   1911   // in between chained nodes to the chained and interior nodes list.
   1912   SmallVector<SDNode*, 3> InteriorChainedNodes;
   1913   for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
   1914     if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
   1915                        InteriorChainedNodes) == CR_InducesCycle)
   1916       return SDValue(); // Would induce a cycle.
   1917   }
   1918 
   1919   // Okay, we have walked all the matched nodes and collected TokenFactor nodes
   1920   // that we are interested in.  Form our input TokenFactor node.
   1921   SmallVector<SDValue, 3> InputChains;
   1922   for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
   1923     // Add the input chain of this node to the InputChains list (which will be
   1924     // the operands of the generated TokenFactor) if it's not an interior node.
   1925     SDNode *N = ChainNodesMatched[i];
   1926     if (N->getOpcode() != ISD::TokenFactor) {
   1927       if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
   1928         continue;
   1929 
   1930       // Otherwise, add the input chain.
   1931       SDValue InChain = ChainNodesMatched[i]->getOperand(0);
   1932       assert(InChain.getValueType() == MVT::Other && "Not a chain");
   1933       InputChains.push_back(InChain);
   1934       continue;
   1935     }
   1936 
   1937     // If we have a token factor, we want to add all inputs of the token factor
   1938     // that are not part of the pattern we're matching.
   1939     for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
   1940       if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
   1941                       N->getOperand(op).getNode()))
   1942         InputChains.push_back(N->getOperand(op));
   1943     }
   1944   }
   1945 
   1946   SDValue Res;
   1947   if (InputChains.size() == 1)
   1948     return InputChains[0];
   1949   return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
   1950                          MVT::Other, &InputChains[0], InputChains.size());
   1951 }
   1952 
   1953 /// MorphNode - Handle morphing a node in place for the selector.
   1954 SDNode *SelectionDAGISel::
   1955 MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
   1956           const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
   1957   // It is possible we're using MorphNodeTo to replace a node with no
   1958   // normal results with one that has a normal result (or we could be
   1959   // adding a chain) and the input could have glue and chains as well.
   1960   // In this case we need to shift the operands down.
   1961   // FIXME: This is a horrible hack and broken in obscure cases, no worse
   1962   // than the old isel though.
   1963   int OldGlueResultNo = -1, OldChainResultNo = -1;
   1964 
   1965   unsigned NTMNumResults = Node->getNumValues();
   1966   if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
   1967     OldGlueResultNo = NTMNumResults-1;
   1968     if (NTMNumResults != 1 &&
   1969         Node->getValueType(NTMNumResults-2) == MVT::Other)
   1970       OldChainResultNo = NTMNumResults-2;
   1971   } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
   1972     OldChainResultNo = NTMNumResults-1;
   1973 
   1974   // Call the underlying SelectionDAG routine to do the transmogrification. Note
   1975   // that this deletes operands of the old node that become dead.
   1976   SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
   1977 
   1978   // MorphNodeTo can operate in two ways: if an existing node with the
   1979   // specified operands exists, it can just return it.  Otherwise, it
   1980   // updates the node in place to have the requested operands.
   1981   if (Res == Node) {
   1982     // If we updated the node in place, reset the node ID.  To the isel,
   1983     // this should be just like a newly allocated machine node.
   1984     Res->setNodeId(-1);
   1985   }
   1986 
   1987   unsigned ResNumResults = Res->getNumValues();
   1988   // Move the glue if needed.
   1989   if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
   1990       (unsigned)OldGlueResultNo != ResNumResults-1)
   1991     CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldGlueResultNo),
   1992                                       SDValue(Res, ResNumResults-1));
   1993 
   1994   if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
   1995     --ResNumResults;
   1996 
   1997   // Move the chain reference if needed.
   1998   if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
   1999       (unsigned)OldChainResultNo != ResNumResults-1)
   2000     CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
   2001                                       SDValue(Res, ResNumResults-1));
   2002 
   2003   // Otherwise, no replacement happened because the node already exists. Replace
   2004   // Uses of the old node with the new one.
   2005   if (Res != Node)
   2006     CurDAG->ReplaceAllUsesWith(Node, Res);
   2007 
   2008   return Res;
   2009 }
   2010 
   2011 /// CheckSame - Implements OP_CheckSame.
   2012 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   2013 CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2014           SDValue N,
   2015           const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
   2016   // Accept if it is exactly the same as a previously recorded node.
   2017   unsigned RecNo = MatcherTable[MatcherIndex++];
   2018   assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2019   return N == RecordedNodes[RecNo].first;
   2020 }
   2021 
   2022 /// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
   2023 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   2024 CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2025                       const SelectionDAGISel &SDISel) {
   2026   return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
   2027 }
   2028 
   2029 /// CheckNodePredicate - Implements OP_CheckNodePredicate.
   2030 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   2031 CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2032                    const SelectionDAGISel &SDISel, SDNode *N) {
   2033   return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
   2034 }
   2035 
   2036 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   2037 CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2038             SDNode *N) {
   2039   uint16_t Opc = MatcherTable[MatcherIndex++];
   2040   Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
   2041   return N->getOpcode() == Opc;
   2042 }
   2043 
   2044 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   2045 CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2046           SDValue N, const TargetLowering &TLI) {
   2047   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2048   if (N.getValueType() == VT) return true;
   2049 
   2050   // Handle the case when VT is iPTR.
   2051   return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
   2052 }
   2053 
   2054 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   2055 CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2056                SDValue N, const TargetLowering &TLI,
   2057                unsigned ChildNo) {
   2058   if (ChildNo >= N.getNumOperands())
   2059     return false;  // Match fails if out of range child #.
   2060   return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
   2061 }
   2062 
   2063 
   2064 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   2065 CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2066               SDValue N) {
   2067   return cast<CondCodeSDNode>(N)->get() ==
   2068       (ISD::CondCode)MatcherTable[MatcherIndex++];
   2069 }
   2070 
   2071 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   2072 CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2073                SDValue N, const TargetLowering &TLI) {
   2074   MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2075   if (cast<VTSDNode>(N)->getVT() == VT)
   2076     return true;
   2077 
   2078   // Handle the case when VT is iPTR.
   2079   return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
   2080 }
   2081 
   2082 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   2083 CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2084              SDValue N) {
   2085   int64_t Val = MatcherTable[MatcherIndex++];
   2086   if (Val & 128)
   2087     Val = GetVBR(Val, MatcherTable, MatcherIndex);
   2088 
   2089   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
   2090   return C != 0 && C->getSExtValue() == Val;
   2091 }
   2092 
   2093 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   2094 CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2095             SDValue N, const SelectionDAGISel &SDISel) {
   2096   int64_t Val = MatcherTable[MatcherIndex++];
   2097   if (Val & 128)
   2098     Val = GetVBR(Val, MatcherTable, MatcherIndex);
   2099 
   2100   if (N->getOpcode() != ISD::AND) return false;
   2101 
   2102   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   2103   return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
   2104 }
   2105 
   2106 LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
   2107 CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
   2108            SDValue N, const SelectionDAGISel &SDISel) {
   2109   int64_t Val = MatcherTable[MatcherIndex++];
   2110   if (Val & 128)
   2111     Val = GetVBR(Val, MatcherTable, MatcherIndex);
   2112 
   2113   if (N->getOpcode() != ISD::OR) return false;
   2114 
   2115   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   2116   return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
   2117 }
   2118 
   2119 /// IsPredicateKnownToFail - If we know how and can do so without pushing a
   2120 /// scope, evaluate the current node.  If the current predicate is known to
   2121 /// fail, set Result=true and return anything.  If the current predicate is
   2122 /// known to pass, set Result=false and return the MatcherIndex to continue
   2123 /// with.  If the current predicate is unknown, set Result=false and return the
   2124 /// MatcherIndex to continue with.
   2125 static unsigned IsPredicateKnownToFail(const unsigned char *Table,
   2126                                        unsigned Index, SDValue N,
   2127                                        bool &Result,
   2128                                        const SelectionDAGISel &SDISel,
   2129                  SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
   2130   switch (Table[Index++]) {
   2131   default:
   2132     Result = false;
   2133     return Index-1;  // Could not evaluate this predicate.
   2134   case SelectionDAGISel::OPC_CheckSame:
   2135     Result = !::CheckSame(Table, Index, N, RecordedNodes);
   2136     return Index;
   2137   case SelectionDAGISel::OPC_CheckPatternPredicate:
   2138     Result = !::CheckPatternPredicate(Table, Index, SDISel);
   2139     return Index;
   2140   case SelectionDAGISel::OPC_CheckPredicate:
   2141     Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
   2142     return Index;
   2143   case SelectionDAGISel::OPC_CheckOpcode:
   2144     Result = !::CheckOpcode(Table, Index, N.getNode());
   2145     return Index;
   2146   case SelectionDAGISel::OPC_CheckType:
   2147     Result = !::CheckType(Table, Index, N, SDISel.TLI);
   2148     return Index;
   2149   case SelectionDAGISel::OPC_CheckChild0Type:
   2150   case SelectionDAGISel::OPC_CheckChild1Type:
   2151   case SelectionDAGISel::OPC_CheckChild2Type:
   2152   case SelectionDAGISel::OPC_CheckChild3Type:
   2153   case SelectionDAGISel::OPC_CheckChild4Type:
   2154   case SelectionDAGISel::OPC_CheckChild5Type:
   2155   case SelectionDAGISel::OPC_CheckChild6Type:
   2156   case SelectionDAGISel::OPC_CheckChild7Type:
   2157     Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
   2158                         Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
   2159     return Index;
   2160   case SelectionDAGISel::OPC_CheckCondCode:
   2161     Result = !::CheckCondCode(Table, Index, N);
   2162     return Index;
   2163   case SelectionDAGISel::OPC_CheckValueType:
   2164     Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
   2165     return Index;
   2166   case SelectionDAGISel::OPC_CheckInteger:
   2167     Result = !::CheckInteger(Table, Index, N);
   2168     return Index;
   2169   case SelectionDAGISel::OPC_CheckAndImm:
   2170     Result = !::CheckAndImm(Table, Index, N, SDISel);
   2171     return Index;
   2172   case SelectionDAGISel::OPC_CheckOrImm:
   2173     Result = !::CheckOrImm(Table, Index, N, SDISel);
   2174     return Index;
   2175   }
   2176 }
   2177 
   2178 namespace {
   2179 
   2180 struct MatchScope {
   2181   /// FailIndex - If this match fails, this is the index to continue with.
   2182   unsigned FailIndex;
   2183 
   2184   /// NodeStack - The node stack when the scope was formed.
   2185   SmallVector<SDValue, 4> NodeStack;
   2186 
   2187   /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
   2188   unsigned NumRecordedNodes;
   2189 
   2190   /// NumMatchedMemRefs - The number of matched memref entries.
   2191   unsigned NumMatchedMemRefs;
   2192 
   2193   /// InputChain/InputGlue - The current chain/glue
   2194   SDValue InputChain, InputGlue;
   2195 
   2196   /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
   2197   bool HasChainNodesMatched, HasGlueResultNodesMatched;
   2198 };
   2199 
   2200 }
   2201 
   2202 SDNode *SelectionDAGISel::
   2203 SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
   2204                  unsigned TableSize) {
   2205   // FIXME: Should these even be selected?  Handle these cases in the caller?
   2206   switch (NodeToMatch->getOpcode()) {
   2207   default:
   2208     break;
   2209   case ISD::EntryToken:       // These nodes remain the same.
   2210   case ISD::BasicBlock:
   2211   case ISD::Register:
   2212   case ISD::RegisterMask:
   2213   //case ISD::VALUETYPE:
   2214   //case ISD::CONDCODE:
   2215   case ISD::HANDLENODE:
   2216   case ISD::MDNODE_SDNODE:
   2217   case ISD::TargetConstant:
   2218   case ISD::TargetConstantFP:
   2219   case ISD::TargetConstantPool:
   2220   case ISD::TargetFrameIndex:
   2221   case ISD::TargetExternalSymbol:
   2222   case ISD::TargetBlockAddress:
   2223   case ISD::TargetJumpTable:
   2224   case ISD::TargetGlobalTLSAddress:
   2225   case ISD::TargetGlobalAddress:
   2226   case ISD::TokenFactor:
   2227   case ISD::CopyFromReg:
   2228   case ISD::CopyToReg:
   2229   case ISD::EH_LABEL:
   2230   case ISD::LIFETIME_START:
   2231   case ISD::LIFETIME_END:
   2232     NodeToMatch->setNodeId(-1); // Mark selected.
   2233     return 0;
   2234   case ISD::AssertSext:
   2235   case ISD::AssertZext:
   2236     CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
   2237                                       NodeToMatch->getOperand(0));
   2238     return 0;
   2239   case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
   2240   case ISD::UNDEF:     return Select_UNDEF(NodeToMatch);
   2241   }
   2242 
   2243   assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
   2244 
   2245   // Set up the node stack with NodeToMatch as the only node on the stack.
   2246   SmallVector<SDValue, 8> NodeStack;
   2247   SDValue N = SDValue(NodeToMatch, 0);
   2248   NodeStack.push_back(N);
   2249 
   2250   // MatchScopes - Scopes used when matching, if a match failure happens, this
   2251   // indicates where to continue checking.
   2252   SmallVector<MatchScope, 8> MatchScopes;
   2253 
   2254   // RecordedNodes - This is the set of nodes that have been recorded by the
   2255   // state machine.  The second value is the parent of the node, or null if the
   2256   // root is recorded.
   2257   SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
   2258 
   2259   // MatchedMemRefs - This is the set of MemRef's we've seen in the input
   2260   // pattern.
   2261   SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
   2262 
   2263   // These are the current input chain and glue for use when generating nodes.
   2264   // Various Emit operations change these.  For example, emitting a copytoreg
   2265   // uses and updates these.
   2266   SDValue InputChain, InputGlue;
   2267 
   2268   // ChainNodesMatched - If a pattern matches nodes that have input/output
   2269   // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
   2270   // which ones they are.  The result is captured into this list so that we can
   2271   // update the chain results when the pattern is complete.
   2272   SmallVector<SDNode*, 3> ChainNodesMatched;
   2273   SmallVector<SDNode*, 3> GlueResultNodesMatched;
   2274 
   2275   DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
   2276         NodeToMatch->dump(CurDAG);
   2277         errs() << '\n');
   2278 
   2279   // Determine where to start the interpreter.  Normally we start at opcode #0,
   2280   // but if the state machine starts with an OPC_SwitchOpcode, then we
   2281   // accelerate the first lookup (which is guaranteed to be hot) with the
   2282   // OpcodeOffset table.
   2283   unsigned MatcherIndex = 0;
   2284 
   2285   if (!OpcodeOffset.empty()) {
   2286     // Already computed the OpcodeOffset table, just index into it.
   2287     if (N.getOpcode() < OpcodeOffset.size())
   2288       MatcherIndex = OpcodeOffset[N.getOpcode()];
   2289     DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n");
   2290 
   2291   } else if (MatcherTable[0] == OPC_SwitchOpcode) {
   2292     // Otherwise, the table isn't computed, but the state machine does start
   2293     // with an OPC_SwitchOpcode instruction.  Populate the table now, since this
   2294     // is the first time we're selecting an instruction.
   2295     unsigned Idx = 1;
   2296     while (1) {
   2297       // Get the size of this case.
   2298       unsigned CaseSize = MatcherTable[Idx++];
   2299       if (CaseSize & 128)
   2300         CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
   2301       if (CaseSize == 0) break;
   2302 
   2303       // Get the opcode, add the index to the table.
   2304       uint16_t Opc = MatcherTable[Idx++];
   2305       Opc |= (unsigned short)MatcherTable[Idx++] << 8;
   2306       if (Opc >= OpcodeOffset.size())
   2307         OpcodeOffset.resize((Opc+1)*2);
   2308       OpcodeOffset[Opc] = Idx;
   2309       Idx += CaseSize;
   2310     }
   2311 
   2312     // Okay, do the lookup for the first opcode.
   2313     if (N.getOpcode() < OpcodeOffset.size())
   2314       MatcherIndex = OpcodeOffset[N.getOpcode()];
   2315   }
   2316 
   2317   while (1) {
   2318     assert(MatcherIndex < TableSize && "Invalid index");
   2319 #ifndef NDEBUG
   2320     unsigned CurrentOpcodeIndex = MatcherIndex;
   2321 #endif
   2322     BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
   2323     switch (Opcode) {
   2324     case OPC_Scope: {
   2325       // Okay, the semantics of this operation are that we should push a scope
   2326       // then evaluate the first child.  However, pushing a scope only to have
   2327       // the first check fail (which then pops it) is inefficient.  If we can
   2328       // determine immediately that the first check (or first several) will
   2329       // immediately fail, don't even bother pushing a scope for them.
   2330       unsigned FailIndex;
   2331 
   2332       while (1) {
   2333         unsigned NumToSkip = MatcherTable[MatcherIndex++];
   2334         if (NumToSkip & 128)
   2335           NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
   2336         // Found the end of the scope with no match.
   2337         if (NumToSkip == 0) {
   2338           FailIndex = 0;
   2339           break;
   2340         }
   2341 
   2342         FailIndex = MatcherIndex+NumToSkip;
   2343 
   2344         unsigned MatcherIndexOfPredicate = MatcherIndex;
   2345         (void)MatcherIndexOfPredicate; // silence warning.
   2346 
   2347         // If we can't evaluate this predicate without pushing a scope (e.g. if
   2348         // it is a 'MoveParent') or if the predicate succeeds on this node, we
   2349         // push the scope and evaluate the full predicate chain.
   2350         bool Result;
   2351         MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
   2352                                               Result, *this, RecordedNodes);
   2353         if (!Result)
   2354           break;
   2355 
   2356         DEBUG(errs() << "  Skipped scope entry (due to false predicate) at "
   2357                      << "index " << MatcherIndexOfPredicate
   2358                      << ", continuing at " << FailIndex << "\n");
   2359         ++NumDAGIselRetries;
   2360 
   2361         // Otherwise, we know that this case of the Scope is guaranteed to fail,
   2362         // move to the next case.
   2363         MatcherIndex = FailIndex;
   2364       }
   2365 
   2366       // If the whole scope failed to match, bail.
   2367       if (FailIndex == 0) break;
   2368 
   2369       // Push a MatchScope which indicates where to go if the first child fails
   2370       // to match.
   2371       MatchScope NewEntry;
   2372       NewEntry.FailIndex = FailIndex;
   2373       NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
   2374       NewEntry.NumRecordedNodes = RecordedNodes.size();
   2375       NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
   2376       NewEntry.InputChain = InputChain;
   2377       NewEntry.InputGlue = InputGlue;
   2378       NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
   2379       NewEntry.HasGlueResultNodesMatched = !GlueResultNodesMatched.empty();
   2380       MatchScopes.push_back(NewEntry);
   2381       continue;
   2382     }
   2383     case OPC_RecordNode: {
   2384       // Remember this node, it may end up being an operand in the pattern.
   2385       SDNode *Parent = 0;
   2386       if (NodeStack.size() > 1)
   2387         Parent = NodeStack[NodeStack.size()-2].getNode();
   2388       RecordedNodes.push_back(std::make_pair(N, Parent));
   2389       continue;
   2390     }
   2391 
   2392     case OPC_RecordChild0: case OPC_RecordChild1:
   2393     case OPC_RecordChild2: case OPC_RecordChild3:
   2394     case OPC_RecordChild4: case OPC_RecordChild5:
   2395     case OPC_RecordChild6: case OPC_RecordChild7: {
   2396       unsigned ChildNo = Opcode-OPC_RecordChild0;
   2397       if (ChildNo >= N.getNumOperands())
   2398         break;  // Match fails if out of range child #.
   2399 
   2400       RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
   2401                                              N.getNode()));
   2402       continue;
   2403     }
   2404     case OPC_RecordMemRef:
   2405       MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
   2406       continue;
   2407 
   2408     case OPC_CaptureGlueInput:
   2409       // If the current node has an input glue, capture it in InputGlue.
   2410       if (N->getNumOperands() != 0 &&
   2411           N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
   2412         InputGlue = N->getOperand(N->getNumOperands()-1);
   2413       continue;
   2414 
   2415     case OPC_MoveChild: {
   2416       unsigned ChildNo = MatcherTable[MatcherIndex++];
   2417       if (ChildNo >= N.getNumOperands())
   2418         break;  // Match fails if out of range child #.
   2419       N = N.getOperand(ChildNo);
   2420       NodeStack.push_back(N);
   2421       continue;
   2422     }
   2423 
   2424     case OPC_MoveParent:
   2425       // Pop the current node off the NodeStack.
   2426       NodeStack.pop_back();
   2427       assert(!NodeStack.empty() && "Node stack imbalance!");
   2428       N = NodeStack.back();
   2429       continue;
   2430 
   2431     case OPC_CheckSame:
   2432       if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
   2433       continue;
   2434     case OPC_CheckPatternPredicate:
   2435       if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
   2436       continue;
   2437     case OPC_CheckPredicate:
   2438       if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
   2439                                 N.getNode()))
   2440         break;
   2441       continue;
   2442     case OPC_CheckComplexPat: {
   2443       unsigned CPNum = MatcherTable[MatcherIndex++];
   2444       unsigned RecNo = MatcherTable[MatcherIndex++];
   2445       assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
   2446       if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
   2447                                RecordedNodes[RecNo].first, CPNum,
   2448                                RecordedNodes))
   2449         break;
   2450       continue;
   2451     }
   2452     case OPC_CheckOpcode:
   2453       if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
   2454       continue;
   2455 
   2456     case OPC_CheckType:
   2457       if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
   2458       continue;
   2459 
   2460     case OPC_SwitchOpcode: {
   2461       unsigned CurNodeOpcode = N.getOpcode();
   2462       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
   2463       unsigned CaseSize;
   2464       while (1) {
   2465         // Get the size of this case.
   2466         CaseSize = MatcherTable[MatcherIndex++];
   2467         if (CaseSize & 128)
   2468           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
   2469         if (CaseSize == 0) break;
   2470 
   2471         uint16_t Opc = MatcherTable[MatcherIndex++];
   2472         Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
   2473 
   2474         // If the opcode matches, then we will execute this case.
   2475         if (CurNodeOpcode == Opc)
   2476           break;
   2477 
   2478         // Otherwise, skip over this case.
   2479         MatcherIndex += CaseSize;
   2480       }
   2481 
   2482       // If no cases matched, bail out.
   2483       if (CaseSize == 0) break;
   2484 
   2485       // Otherwise, execute the case we found.
   2486       DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart
   2487                    << " to " << MatcherIndex << "\n");
   2488       continue;
   2489     }
   2490 
   2491     case OPC_SwitchType: {
   2492       MVT CurNodeVT = N.getValueType().getSimpleVT();
   2493       unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
   2494       unsigned CaseSize;
   2495       while (1) {
   2496         // Get the size of this case.
   2497         CaseSize = MatcherTable[MatcherIndex++];
   2498         if (CaseSize & 128)
   2499           CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
   2500         if (CaseSize == 0) break;
   2501 
   2502         MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2503         if (CaseVT == MVT::iPTR)
   2504           CaseVT = TLI.getPointerTy();
   2505 
   2506         // If the VT matches, then we will execute this case.
   2507         if (CurNodeVT == CaseVT)
   2508           break;
   2509 
   2510         // Otherwise, skip over this case.
   2511         MatcherIndex += CaseSize;
   2512       }
   2513 
   2514       // If no cases matched, bail out.
   2515       if (CaseSize == 0) break;
   2516 
   2517       // Otherwise, execute the case we found.
   2518       DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString()
   2519                    << "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
   2520       continue;
   2521     }
   2522     case OPC_CheckChild0Type: case OPC_CheckChild1Type:
   2523     case OPC_CheckChild2Type: case OPC_CheckChild3Type:
   2524     case OPC_CheckChild4Type: case OPC_CheckChild5Type:
   2525     case OPC_CheckChild6Type: case OPC_CheckChild7Type:
   2526       if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
   2527                             Opcode-OPC_CheckChild0Type))
   2528         break;
   2529       continue;
   2530     case OPC_CheckCondCode:
   2531       if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
   2532       continue;
   2533     case OPC_CheckValueType:
   2534       if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
   2535       continue;
   2536     case OPC_CheckInteger:
   2537       if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
   2538       continue;
   2539     case OPC_CheckAndImm:
   2540       if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
   2541       continue;
   2542     case OPC_CheckOrImm:
   2543       if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
   2544       continue;
   2545 
   2546     case OPC_CheckFoldableChainNode: {
   2547       assert(NodeStack.size() != 1 && "No parent node");
   2548       // Verify that all intermediate nodes between the root and this one have
   2549       // a single use.
   2550       bool HasMultipleUses = false;
   2551       for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
   2552         if (!NodeStack[i].hasOneUse()) {
   2553           HasMultipleUses = true;
   2554           break;
   2555         }
   2556       if (HasMultipleUses) break;
   2557 
   2558       // Check to see that the target thinks this is profitable to fold and that
   2559       // we can fold it without inducing cycles in the graph.
   2560       if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
   2561                               NodeToMatch) ||
   2562           !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
   2563                          NodeToMatch, OptLevel,
   2564                          true/*We validate our own chains*/))
   2565         break;
   2566 
   2567       continue;
   2568     }
   2569     case OPC_EmitInteger: {
   2570       MVT::SimpleValueType VT =
   2571         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2572       int64_t Val = MatcherTable[MatcherIndex++];
   2573       if (Val & 128)
   2574         Val = GetVBR(Val, MatcherTable, MatcherIndex);
   2575       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
   2576                               CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
   2577       continue;
   2578     }
   2579     case OPC_EmitRegister: {
   2580       MVT::SimpleValueType VT =
   2581         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2582       unsigned RegNo = MatcherTable[MatcherIndex++];
   2583       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
   2584                               CurDAG->getRegister(RegNo, VT), (SDNode*)0));
   2585       continue;
   2586     }
   2587     case OPC_EmitRegister2: {
   2588       // For targets w/ more than 256 register names, the register enum
   2589       // values are stored in two bytes in the matcher table (just like
   2590       // opcodes).
   2591       MVT::SimpleValueType VT =
   2592         (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2593       unsigned RegNo = MatcherTable[MatcherIndex++];
   2594       RegNo |= MatcherTable[MatcherIndex++] << 8;
   2595       RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
   2596                               CurDAG->getRegister(RegNo, VT), (SDNode*)0));
   2597       continue;
   2598     }
   2599 
   2600     case OPC_EmitConvertToTarget:  {
   2601       // Convert from IMM/FPIMM to target version.
   2602       unsigned RecNo = MatcherTable[MatcherIndex++];
   2603       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2604       SDValue Imm = RecordedNodes[RecNo].first;
   2605 
   2606       if (Imm->getOpcode() == ISD::Constant) {
   2607         const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
   2608         Imm = CurDAG->getConstant(*Val, Imm.getValueType(), true);
   2609       } else if (Imm->getOpcode() == ISD::ConstantFP) {
   2610         const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
   2611         Imm = CurDAG->getConstantFP(*Val, Imm.getValueType(), true);
   2612       }
   2613 
   2614       RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
   2615       continue;
   2616     }
   2617 
   2618     case OPC_EmitMergeInputChains1_0:    // OPC_EmitMergeInputChains, 1, 0
   2619     case OPC_EmitMergeInputChains1_1: {  // OPC_EmitMergeInputChains, 1, 1
   2620       // These are space-optimized forms of OPC_EmitMergeInputChains.
   2621       assert(InputChain.getNode() == 0 &&
   2622              "EmitMergeInputChains should be the first chain producing node");
   2623       assert(ChainNodesMatched.empty() &&
   2624              "Should only have one EmitMergeInputChains per match");
   2625 
   2626       // Read all of the chained nodes.
   2627       unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
   2628       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2629       ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
   2630 
   2631       // FIXME: What if other value results of the node have uses not matched
   2632       // by this pattern?
   2633       if (ChainNodesMatched.back() != NodeToMatch &&
   2634           !RecordedNodes[RecNo].first.hasOneUse()) {
   2635         ChainNodesMatched.clear();
   2636         break;
   2637       }
   2638 
   2639       // Merge the input chains if they are not intra-pattern references.
   2640       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
   2641 
   2642       if (InputChain.getNode() == 0)
   2643         break;  // Failed to merge.
   2644       continue;
   2645     }
   2646 
   2647     case OPC_EmitMergeInputChains: {
   2648       assert(InputChain.getNode() == 0 &&
   2649              "EmitMergeInputChains should be the first chain producing node");
   2650       // This node gets a list of nodes we matched in the input that have
   2651       // chains.  We want to token factor all of the input chains to these nodes
   2652       // together.  However, if any of the input chains is actually one of the
   2653       // nodes matched in this pattern, then we have an intra-match reference.
   2654       // Ignore these because the newly token factored chain should not refer to
   2655       // the old nodes.
   2656       unsigned NumChains = MatcherTable[MatcherIndex++];
   2657       assert(NumChains != 0 && "Can't TF zero chains");
   2658 
   2659       assert(ChainNodesMatched.empty() &&
   2660              "Should only have one EmitMergeInputChains per match");
   2661 
   2662       // Read all of the chained nodes.
   2663       for (unsigned i = 0; i != NumChains; ++i) {
   2664         unsigned RecNo = MatcherTable[MatcherIndex++];
   2665         assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2666         ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
   2667 
   2668         // FIXME: What if other value results of the node have uses not matched
   2669         // by this pattern?
   2670         if (ChainNodesMatched.back() != NodeToMatch &&
   2671             !RecordedNodes[RecNo].first.hasOneUse()) {
   2672           ChainNodesMatched.clear();
   2673           break;
   2674         }
   2675       }
   2676 
   2677       // If the inner loop broke out, the match fails.
   2678       if (ChainNodesMatched.empty())
   2679         break;
   2680 
   2681       // Merge the input chains if they are not intra-pattern references.
   2682       InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
   2683 
   2684       if (InputChain.getNode() == 0)
   2685         break;  // Failed to merge.
   2686 
   2687       continue;
   2688     }
   2689 
   2690     case OPC_EmitCopyToReg: {
   2691       unsigned RecNo = MatcherTable[MatcherIndex++];
   2692       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2693       unsigned DestPhysReg = MatcherTable[MatcherIndex++];
   2694 
   2695       if (InputChain.getNode() == 0)
   2696         InputChain = CurDAG->getEntryNode();
   2697 
   2698       InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
   2699                                         DestPhysReg, RecordedNodes[RecNo].first,
   2700                                         InputGlue);
   2701 
   2702       InputGlue = InputChain.getValue(1);
   2703       continue;
   2704     }
   2705 
   2706     case OPC_EmitNodeXForm: {
   2707       unsigned XFormNo = MatcherTable[MatcherIndex++];
   2708       unsigned RecNo = MatcherTable[MatcherIndex++];
   2709       assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2710       SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
   2711       RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
   2712       continue;
   2713     }
   2714 
   2715     case OPC_EmitNode:
   2716     case OPC_MorphNodeTo: {
   2717       uint16_t TargetOpc = MatcherTable[MatcherIndex++];
   2718       TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
   2719       unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
   2720       // Get the result VT list.
   2721       unsigned NumVTs = MatcherTable[MatcherIndex++];
   2722       SmallVector<EVT, 4> VTs;
   2723       for (unsigned i = 0; i != NumVTs; ++i) {
   2724         MVT::SimpleValueType VT =
   2725           (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
   2726         if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
   2727         VTs.push_back(VT);
   2728       }
   2729 
   2730       if (EmitNodeInfo & OPFL_Chain)
   2731         VTs.push_back(MVT::Other);
   2732       if (EmitNodeInfo & OPFL_GlueOutput)
   2733         VTs.push_back(MVT::Glue);
   2734 
   2735       // This is hot code, so optimize the two most common cases of 1 and 2
   2736       // results.
   2737       SDVTList VTList;
   2738       if (VTs.size() == 1)
   2739         VTList = CurDAG->getVTList(VTs[0]);
   2740       else if (VTs.size() == 2)
   2741         VTList = CurDAG->getVTList(VTs[0], VTs[1]);
   2742       else
   2743         VTList = CurDAG->getVTList(VTs.data(), VTs.size());
   2744 
   2745       // Get the operand list.
   2746       unsigned NumOps = MatcherTable[MatcherIndex++];
   2747       SmallVector<SDValue, 8> Ops;
   2748       for (unsigned i = 0; i != NumOps; ++i) {
   2749         unsigned RecNo = MatcherTable[MatcherIndex++];
   2750         if (RecNo & 128)
   2751           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
   2752 
   2753         assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
   2754         Ops.push_back(RecordedNodes[RecNo].first);
   2755       }
   2756 
   2757       // If there are variadic operands to add, handle them now.
   2758       if (EmitNodeInfo & OPFL_VariadicInfo) {
   2759         // Determine the start index to copy from.
   2760         unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
   2761         FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
   2762         assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
   2763                "Invalid variadic node");
   2764         // Copy all of the variadic operands, not including a potential glue
   2765         // input.
   2766         for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
   2767              i != e; ++i) {
   2768           SDValue V = NodeToMatch->getOperand(i);
   2769           if (V.getValueType() == MVT::Glue) break;
   2770           Ops.push_back(V);
   2771         }
   2772       }
   2773 
   2774       // If this has chain/glue inputs, add them.
   2775       if (EmitNodeInfo & OPFL_Chain)
   2776         Ops.push_back(InputChain);
   2777       if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != 0)
   2778         Ops.push_back(InputGlue);
   2779 
   2780       // Create the node.
   2781       SDNode *Res = 0;
   2782       if (Opcode != OPC_MorphNodeTo) {
   2783         // If this is a normal EmitNode command, just create the new node and
   2784         // add the results to the RecordedNodes list.
   2785         Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
   2786                                      VTList, Ops.data(), Ops.size());
   2787 
   2788         // Add all the non-glue/non-chain results to the RecordedNodes list.
   2789         for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
   2790           if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
   2791           RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
   2792                                                              (SDNode*) 0));
   2793         }
   2794 
   2795       } else if (NodeToMatch->getOpcode() != ISD::DELETED_NODE) {
   2796         Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
   2797                         EmitNodeInfo);
   2798       } else {
   2799         // NodeToMatch was eliminated by CSE when the target changed the DAG.
   2800         // We will visit the equivalent node later.
   2801         DEBUG(dbgs() << "Node was eliminated by CSE\n");
   2802         return 0;
   2803       }
   2804 
   2805       // If the node had chain/glue results, update our notion of the current
   2806       // chain and glue.
   2807       if (EmitNodeInfo & OPFL_GlueOutput) {
   2808         InputGlue = SDValue(Res, VTs.size()-1);
   2809         if (EmitNodeInfo & OPFL_Chain)
   2810           InputChain = SDValue(Res, VTs.size()-2);
   2811       } else if (EmitNodeInfo & OPFL_Chain)
   2812         InputChain = SDValue(Res, VTs.size()-1);
   2813 
   2814       // If the OPFL_MemRefs glue is set on this node, slap all of the
   2815       // accumulated memrefs onto it.
   2816       //
   2817       // FIXME: This is vastly incorrect for patterns with multiple outputs
   2818       // instructions that access memory and for ComplexPatterns that match
   2819       // loads.
   2820       if (EmitNodeInfo & OPFL_MemRefs) {
   2821         // Only attach load or store memory operands if the generated
   2822         // instruction may load or store.
   2823         const MCInstrDesc &MCID = TM.getInstrInfo()->get(TargetOpc);
   2824         bool mayLoad = MCID.mayLoad();
   2825         bool mayStore = MCID.mayStore();
   2826 
   2827         unsigned NumMemRefs = 0;
   2828         for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
   2829              MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
   2830           if ((*I)->isLoad()) {
   2831             if (mayLoad)
   2832               ++NumMemRefs;
   2833           } else if ((*I)->isStore()) {
   2834             if (mayStore)
   2835               ++NumMemRefs;
   2836           } else {
   2837             ++NumMemRefs;
   2838           }
   2839         }
   2840 
   2841         MachineSDNode::mmo_iterator MemRefs =
   2842           MF->allocateMemRefsArray(NumMemRefs);
   2843 
   2844         MachineSDNode::mmo_iterator MemRefsPos = MemRefs;
   2845         for (SmallVector<MachineMemOperand*, 2>::const_iterator I =
   2846              MatchedMemRefs.begin(), E = MatchedMemRefs.end(); I != E; ++I) {
   2847           if ((*I)->isLoad()) {
   2848             if (mayLoad)
   2849               *MemRefsPos++ = *I;
   2850           } else if ((*I)->isStore()) {
   2851             if (mayStore)
   2852               *MemRefsPos++ = *I;
   2853           } else {
   2854             *MemRefsPos++ = *I;
   2855           }
   2856         }
   2857 
   2858         cast<MachineSDNode>(Res)
   2859           ->setMemRefs(MemRefs, MemRefs + NumMemRefs);
   2860       }
   2861 
   2862       DEBUG(errs() << "  "
   2863                    << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
   2864                    << " node: "; Res->dump(CurDAG); errs() << "\n");
   2865 
   2866       // If this was a MorphNodeTo then we're completely done!
   2867       if (Opcode == OPC_MorphNodeTo) {
   2868         // Update chain and glue uses.
   2869         UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
   2870                             InputGlue, GlueResultNodesMatched, true);
   2871         return Res;
   2872       }
   2873 
   2874       continue;
   2875     }
   2876 
   2877     case OPC_MarkGlueResults: {
   2878       unsigned NumNodes = MatcherTable[MatcherIndex++];
   2879 
   2880       // Read and remember all the glue-result nodes.
   2881       for (unsigned i = 0; i != NumNodes; ++i) {
   2882         unsigned RecNo = MatcherTable[MatcherIndex++];
   2883         if (RecNo & 128)
   2884           RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
   2885 
   2886         assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
   2887         GlueResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
   2888       }
   2889       continue;
   2890     }
   2891 
   2892     case OPC_CompleteMatch: {
   2893       // The match has been completed, and any new nodes (if any) have been
   2894       // created.  Patch up references to the matched dag to use the newly
   2895       // created nodes.
   2896       unsigned NumResults = MatcherTable[MatcherIndex++];
   2897 
   2898       for (unsigned i = 0; i != NumResults; ++i) {
   2899         unsigned ResSlot = MatcherTable[MatcherIndex++];
   2900         if (ResSlot & 128)
   2901           ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
   2902 
   2903         assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
   2904         SDValue Res = RecordedNodes[ResSlot].first;
   2905 
   2906         assert(i < NodeToMatch->getNumValues() &&
   2907                NodeToMatch->getValueType(i) != MVT::Other &&
   2908                NodeToMatch->getValueType(i) != MVT::Glue &&
   2909                "Invalid number of results to complete!");
   2910         assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
   2911                 NodeToMatch->getValueType(i) == MVT::iPTR ||
   2912                 Res.getValueType() == MVT::iPTR ||
   2913                 NodeToMatch->getValueType(i).getSizeInBits() ==
   2914                     Res.getValueType().getSizeInBits()) &&
   2915                "invalid replacement");
   2916         CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
   2917       }
   2918 
   2919       // If the root node defines glue, add it to the glue nodes to update list.
   2920       if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Glue)
   2921         GlueResultNodesMatched.push_back(NodeToMatch);
   2922 
   2923       // Update chain and glue uses.
   2924       UpdateChainsAndGlue(NodeToMatch, InputChain, ChainNodesMatched,
   2925                           InputGlue, GlueResultNodesMatched, false);
   2926 
   2927       assert(NodeToMatch->use_empty() &&
   2928              "Didn't replace all uses of the node?");
   2929 
   2930       // FIXME: We just return here, which interacts correctly with SelectRoot
   2931       // above.  We should fix this to not return an SDNode* anymore.
   2932       return 0;
   2933     }
   2934     }
   2935 
   2936     // If the code reached this point, then the match failed.  See if there is
   2937     // another child to try in the current 'Scope', otherwise pop it until we
   2938     // find a case to check.
   2939     DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n");
   2940     ++NumDAGIselRetries;
   2941     while (1) {
   2942       if (MatchScopes.empty()) {
   2943         CannotYetSelect(NodeToMatch);
   2944         return 0;
   2945       }
   2946 
   2947       // Restore the interpreter state back to the point where the scope was
   2948       // formed.
   2949       MatchScope &LastScope = MatchScopes.back();
   2950       RecordedNodes.resize(LastScope.NumRecordedNodes);
   2951       NodeStack.clear();
   2952       NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
   2953       N = NodeStack.back();
   2954 
   2955       if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
   2956         MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
   2957       MatcherIndex = LastScope.FailIndex;
   2958 
   2959       DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n");
   2960 
   2961       InputChain = LastScope.InputChain;
   2962       InputGlue = LastScope.InputGlue;
   2963       if (!LastScope.HasChainNodesMatched)
   2964         ChainNodesMatched.clear();
   2965       if (!LastScope.HasGlueResultNodesMatched)
   2966         GlueResultNodesMatched.clear();
   2967 
   2968       // Check to see what the offset is at the new MatcherIndex.  If it is zero
   2969       // we have reached the end of this scope, otherwise we have another child
   2970       // in the current scope to try.
   2971       unsigned NumToSkip = MatcherTable[MatcherIndex++];
   2972       if (NumToSkip & 128)
   2973         NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
   2974 
   2975       // If we have another child in this scope to match, update FailIndex and
   2976       // try it.
   2977       if (NumToSkip != 0) {
   2978         LastScope.FailIndex = MatcherIndex+NumToSkip;
   2979         break;
   2980       }
   2981 
   2982       // End of this scope, pop it and try the next child in the containing
   2983       // scope.
   2984       MatchScopes.pop_back();
   2985     }
   2986   }
   2987 }
   2988 
   2989 
   2990 
   2991 void SelectionDAGISel::CannotYetSelect(SDNode *N) {
   2992   std::string msg;
   2993   raw_string_ostream Msg(msg);
   2994   Msg << "Cannot select: ";
   2995 
   2996   if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
   2997       N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
   2998       N->getOpcode() != ISD::INTRINSIC_VOID) {
   2999     N->printrFull(Msg, CurDAG);
   3000     Msg << "\nIn function: " << MF->getName();
   3001   } else {
   3002     bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
   3003     unsigned iid =
   3004       cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
   3005     if (iid < Intrinsic::num_intrinsics)
   3006       Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
   3007     else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
   3008       Msg << "target intrinsic %" << TII->getName(iid);
   3009     else
   3010       Msg << "unknown intrinsic #" << iid;
   3011   }
   3012   report_fatal_error(Msg.str());
   3013 }
   3014 
   3015 char SelectionDAGISel::ID = 0;
   3016