Home | History | Annotate | Download | only in MCTargetDesc
      1 //===-- X86MCCodeEmitter.cpp - Convert X86 code to machine code -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the X86MCCodeEmitter class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #define DEBUG_TYPE "mccodeemitter"
     15 #include "MCTargetDesc/X86MCTargetDesc.h"
     16 #include "MCTargetDesc/X86BaseInfo.h"
     17 #include "MCTargetDesc/X86FixupKinds.h"
     18 #include "llvm/MC/MCCodeEmitter.h"
     19 #include "llvm/MC/MCContext.h"
     20 #include "llvm/MC/MCExpr.h"
     21 #include "llvm/MC/MCInst.h"
     22 #include "llvm/MC/MCInstrInfo.h"
     23 #include "llvm/MC/MCRegisterInfo.h"
     24 #include "llvm/MC/MCSubtargetInfo.h"
     25 #include "llvm/MC/MCSymbol.h"
     26 #include "llvm/Support/raw_ostream.h"
     27 
     28 using namespace llvm;
     29 
     30 namespace {
     31 class X86MCCodeEmitter : public MCCodeEmitter {
     32   X86MCCodeEmitter(const X86MCCodeEmitter &) LLVM_DELETED_FUNCTION;
     33   void operator=(const X86MCCodeEmitter &) LLVM_DELETED_FUNCTION;
     34   const MCInstrInfo &MCII;
     35   const MCSubtargetInfo &STI;
     36   MCContext &Ctx;
     37 public:
     38   X86MCCodeEmitter(const MCInstrInfo &mcii, const MCSubtargetInfo &sti,
     39                    MCContext &ctx)
     40     : MCII(mcii), STI(sti), Ctx(ctx) {
     41   }
     42 
     43   ~X86MCCodeEmitter() {}
     44 
     45   bool is64BitMode() const {
     46     // FIXME: Can tablegen auto-generate this?
     47     return (STI.getFeatureBits() & X86::Mode64Bit) != 0;
     48   }
     49 
     50   bool is32BitMode() const {
     51     // FIXME: Can tablegen auto-generate this?
     52     return (STI.getFeatureBits() & X86::Mode64Bit) == 0;
     53   }
     54 
     55   unsigned GetX86RegNum(const MCOperand &MO) const {
     56     return Ctx.getRegisterInfo().getEncodingValue(MO.getReg()) & 0x7;
     57   }
     58 
     59   // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range
     60   // 0-7 and the difference between the 2 groups is given by the REX prefix.
     61   // In the VEX prefix, registers are seen sequencially from 0-15 and encoded
     62   // in 1's complement form, example:
     63   //
     64   //  ModRM field => XMM9 => 1
     65   //  VEX.VVVV    => XMM9 => ~9
     66   //
     67   // See table 4-35 of Intel AVX Programming Reference for details.
     68   unsigned char getVEXRegisterEncoding(const MCInst &MI,
     69                                        unsigned OpNum) const {
     70     unsigned SrcReg = MI.getOperand(OpNum).getReg();
     71     unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum));
     72     if (X86II::isX86_64ExtendedReg(SrcReg))
     73       SrcRegNum |= 8;
     74 
     75     // The registers represented through VEX_VVVV should
     76     // be encoded in 1's complement form.
     77     return (~SrcRegNum) & 0xf;
     78   }
     79 
     80   void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const {
     81     OS << (char)C;
     82     ++CurByte;
     83   }
     84 
     85   void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte,
     86                     raw_ostream &OS) const {
     87     // Output the constant in little endian byte order.
     88     for (unsigned i = 0; i != Size; ++i) {
     89       EmitByte(Val & 255, CurByte, OS);
     90       Val >>= 8;
     91     }
     92   }
     93 
     94   void EmitImmediate(const MCOperand &Disp, SMLoc Loc,
     95                      unsigned ImmSize, MCFixupKind FixupKind,
     96                      unsigned &CurByte, raw_ostream &OS,
     97                      SmallVectorImpl<MCFixup> &Fixups,
     98                      int ImmOffset = 0) const;
     99 
    100   inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode,
    101                                         unsigned RM) {
    102     assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!");
    103     return RM | (RegOpcode << 3) | (Mod << 6);
    104   }
    105 
    106   void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld,
    107                         unsigned &CurByte, raw_ostream &OS) const {
    108     EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS);
    109   }
    110 
    111   void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base,
    112                    unsigned &CurByte, raw_ostream &OS) const {
    113     // SIB byte is in the same format as the ModRMByte.
    114     EmitByte(ModRMByte(SS, Index, Base), CurByte, OS);
    115   }
    116 
    117 
    118   void EmitMemModRMByte(const MCInst &MI, unsigned Op,
    119                         unsigned RegOpcodeField,
    120                         uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS,
    121                         SmallVectorImpl<MCFixup> &Fixups) const;
    122 
    123   void EncodeInstruction(const MCInst &MI, raw_ostream &OS,
    124                          SmallVectorImpl<MCFixup> &Fixups) const;
    125 
    126   void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
    127                            const MCInst &MI, const MCInstrDesc &Desc,
    128                            raw_ostream &OS) const;
    129 
    130   void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte,
    131                                  int MemOperand, const MCInst &MI,
    132                                  raw_ostream &OS) const;
    133 
    134   void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand,
    135                         const MCInst &MI, const MCInstrDesc &Desc,
    136                         raw_ostream &OS) const;
    137 };
    138 
    139 } // end anonymous namespace
    140 
    141 
    142 MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII,
    143                                             const MCRegisterInfo &MRI,
    144                                             const MCSubtargetInfo &STI,
    145                                             MCContext &Ctx) {
    146   return new X86MCCodeEmitter(MCII, STI, Ctx);
    147 }
    148 
    149 /// isDisp8 - Return true if this signed displacement fits in a 8-bit
    150 /// sign-extended field.
    151 static bool isDisp8(int Value) {
    152   return Value == (signed char)Value;
    153 }
    154 
    155 /// getImmFixupKind - Return the appropriate fixup kind to use for an immediate
    156 /// in an instruction with the specified TSFlags.
    157 static MCFixupKind getImmFixupKind(uint64_t TSFlags) {
    158   unsigned Size = X86II::getSizeOfImm(TSFlags);
    159   bool isPCRel = X86II::isImmPCRel(TSFlags);
    160 
    161   return MCFixup::getKindForSize(Size, isPCRel);
    162 }
    163 
    164 /// Is32BitMemOperand - Return true if the specified instruction has
    165 /// a 32-bit memory operand. Op specifies the operand # of the memoperand.
    166 static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) {
    167   const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
    168   const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
    169 
    170   if ((BaseReg.getReg() != 0 &&
    171        X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) ||
    172       (IndexReg.getReg() != 0 &&
    173        X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg())))
    174     return true;
    175   return false;
    176 }
    177 
    178 /// Is64BitMemOperand - Return true if the specified instruction has
    179 /// a 64-bit memory operand. Op specifies the operand # of the memoperand.
    180 #ifndef NDEBUG
    181 static bool Is64BitMemOperand(const MCInst &MI, unsigned Op) {
    182   const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
    183   const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
    184 
    185   if ((BaseReg.getReg() != 0 &&
    186        X86MCRegisterClasses[X86::GR64RegClassID].contains(BaseReg.getReg())) ||
    187       (IndexReg.getReg() != 0 &&
    188        X86MCRegisterClasses[X86::GR64RegClassID].contains(IndexReg.getReg())))
    189     return true;
    190   return false;
    191 }
    192 #endif
    193 
    194 /// Is16BitMemOperand - Return true if the specified instruction has
    195 /// a 16-bit memory operand. Op specifies the operand # of the memoperand.
    196 static bool Is16BitMemOperand(const MCInst &MI, unsigned Op) {
    197   const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg);
    198   const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
    199 
    200   if ((BaseReg.getReg() != 0 &&
    201        X86MCRegisterClasses[X86::GR16RegClassID].contains(BaseReg.getReg())) ||
    202       (IndexReg.getReg() != 0 &&
    203        X86MCRegisterClasses[X86::GR16RegClassID].contains(IndexReg.getReg())))
    204     return true;
    205   return false;
    206 }
    207 
    208 /// StartsWithGlobalOffsetTable - Check if this expression starts with
    209 ///  _GLOBAL_OFFSET_TABLE_ and if it is of the form
    210 ///  _GLOBAL_OFFSET_TABLE_-symbol. This is needed to support PIC on ELF
    211 /// i386 as _GLOBAL_OFFSET_TABLE_ is magical. We check only simple case that
    212 /// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start
    213 /// of a binary expression.
    214 enum GlobalOffsetTableExprKind {
    215   GOT_None,
    216   GOT_Normal,
    217   GOT_SymDiff
    218 };
    219 static GlobalOffsetTableExprKind
    220 StartsWithGlobalOffsetTable(const MCExpr *Expr) {
    221   const MCExpr *RHS = 0;
    222   if (Expr->getKind() == MCExpr::Binary) {
    223     const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr);
    224     Expr = BE->getLHS();
    225     RHS = BE->getRHS();
    226   }
    227 
    228   if (Expr->getKind() != MCExpr::SymbolRef)
    229     return GOT_None;
    230 
    231   const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
    232   const MCSymbol &S = Ref->getSymbol();
    233   if (S.getName() != "_GLOBAL_OFFSET_TABLE_")
    234     return GOT_None;
    235   if (RHS && RHS->getKind() == MCExpr::SymbolRef)
    236     return GOT_SymDiff;
    237   return GOT_Normal;
    238 }
    239 
    240 void X86MCCodeEmitter::
    241 EmitImmediate(const MCOperand &DispOp, SMLoc Loc, unsigned Size,
    242               MCFixupKind FixupKind, unsigned &CurByte, raw_ostream &OS,
    243               SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const {
    244   const MCExpr *Expr = NULL;
    245   if (DispOp.isImm()) {
    246     // If this is a simple integer displacement that doesn't require a
    247     // relocation, emit it now.
    248     if (FixupKind != FK_PCRel_1 &&
    249         FixupKind != FK_PCRel_2 &&
    250         FixupKind != FK_PCRel_4) {
    251       EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS);
    252       return;
    253     }
    254     Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx);
    255   } else {
    256     Expr = DispOp.getExpr();
    257   }
    258 
    259   // If we have an immoffset, add it to the expression.
    260   if ((FixupKind == FK_Data_4 ||
    261        FixupKind == FK_Data_8 ||
    262        FixupKind == MCFixupKind(X86::reloc_signed_4byte))) {
    263     GlobalOffsetTableExprKind Kind = StartsWithGlobalOffsetTable(Expr);
    264     if (Kind != GOT_None) {
    265       assert(ImmOffset == 0);
    266 
    267       FixupKind = MCFixupKind(X86::reloc_global_offset_table);
    268       if (Kind == GOT_Normal)
    269         ImmOffset = CurByte;
    270     } else if (Expr->getKind() == MCExpr::SymbolRef) {
    271       const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr);
    272       if (Ref->getKind() == MCSymbolRefExpr::VK_SECREL) {
    273         FixupKind = MCFixupKind(FK_SecRel_4);
    274       }
    275     }
    276   }
    277 
    278   // If the fixup is pc-relative, we need to bias the value to be relative to
    279   // the start of the field, not the end of the field.
    280   if (FixupKind == FK_PCRel_4 ||
    281       FixupKind == MCFixupKind(X86::reloc_riprel_4byte) ||
    282       FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load))
    283     ImmOffset -= 4;
    284   if (FixupKind == FK_PCRel_2)
    285     ImmOffset -= 2;
    286   if (FixupKind == FK_PCRel_1)
    287     ImmOffset -= 1;
    288 
    289   if (ImmOffset)
    290     Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx),
    291                                    Ctx);
    292 
    293   // Emit a symbolic constant as a fixup and 4 zeros.
    294   Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind, Loc));
    295   EmitConstant(0, Size, CurByte, OS);
    296 }
    297 
    298 void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op,
    299                                         unsigned RegOpcodeField,
    300                                         uint64_t TSFlags, unsigned &CurByte,
    301                                         raw_ostream &OS,
    302                                         SmallVectorImpl<MCFixup> &Fixups) const{
    303   const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp);
    304   const MCOperand &Base     = MI.getOperand(Op+X86::AddrBaseReg);
    305   const MCOperand &Scale    = MI.getOperand(Op+X86::AddrScaleAmt);
    306   const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg);
    307   unsigned BaseReg = Base.getReg();
    308 
    309   // Handle %rip relative addressing.
    310   if (BaseReg == X86::RIP) {    // [disp32+RIP] in X86-64 mode
    311     assert(is64BitMode() && "Rip-relative addressing requires 64-bit mode");
    312     assert(IndexReg.getReg() == 0 && "Invalid rip-relative address");
    313     EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
    314 
    315     unsigned FixupKind = X86::reloc_riprel_4byte;
    316 
    317     // movq loads are handled with a special relocation form which allows the
    318     // linker to eliminate some loads for GOT references which end up in the
    319     // same linkage unit.
    320     if (MI.getOpcode() == X86::MOV64rm)
    321       FixupKind = X86::reloc_riprel_4byte_movq_load;
    322 
    323     // rip-relative addressing is actually relative to the *next* instruction.
    324     // Since an immediate can follow the mod/rm byte for an instruction, this
    325     // means that we need to bias the immediate field of the instruction with
    326     // the size of the immediate field.  If we have this case, add it into the
    327     // expression to emit.
    328     int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0;
    329 
    330     EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(FixupKind),
    331                   CurByte, OS, Fixups, -ImmSize);
    332     return;
    333   }
    334 
    335   unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U;
    336 
    337   // Determine whether a SIB byte is needed.
    338   // If no BaseReg, issue a RIP relative instruction only if the MCE can
    339   // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table
    340   // 2-7) and absolute references.
    341 
    342   if (// The SIB byte must be used if there is an index register.
    343       IndexReg.getReg() == 0 &&
    344       // The SIB byte must be used if the base is ESP/RSP/R12, all of which
    345       // encode to an R/M value of 4, which indicates that a SIB byte is
    346       // present.
    347       BaseRegNo != N86::ESP &&
    348       // If there is no base register and we're in 64-bit mode, we need a SIB
    349       // byte to emit an addr that is just 'disp32' (the non-RIP relative form).
    350       (!is64BitMode() || BaseReg != 0)) {
    351 
    352     if (BaseReg == 0) {          // [disp32]     in X86-32 mode
    353       EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS);
    354       EmitImmediate(Disp, MI.getLoc(), 4, FK_Data_4, CurByte, OS, Fixups);
    355       return;
    356     }
    357 
    358     // If the base is not EBP/ESP and there is no displacement, use simple
    359     // indirect register encoding, this handles addresses like [EAX].  The
    360     // encoding for [EBP] with no displacement means [disp32] so we handle it
    361     // by emitting a displacement of 0 below.
    362     if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) {
    363       EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS);
    364       return;
    365     }
    366 
    367     // Otherwise, if the displacement fits in a byte, encode as [REG+disp8].
    368     if (Disp.isImm() && isDisp8(Disp.getImm())) {
    369       EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS);
    370       EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
    371       return;
    372     }
    373 
    374     // Otherwise, emit the most general non-SIB encoding: [REG+disp32]
    375     EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS);
    376     EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS,
    377                   Fixups);
    378     return;
    379   }
    380 
    381   // We need a SIB byte, so start by outputting the ModR/M byte first
    382   assert(IndexReg.getReg() != X86::ESP &&
    383          IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!");
    384 
    385   bool ForceDisp32 = false;
    386   bool ForceDisp8  = false;
    387   if (BaseReg == 0) {
    388     // If there is no base register, we emit the special case SIB byte with
    389     // MOD=0, BASE=5, to JUST get the index, scale, and displacement.
    390     EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
    391     ForceDisp32 = true;
    392   } else if (!Disp.isImm()) {
    393     // Emit the normal disp32 encoding.
    394     EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
    395     ForceDisp32 = true;
    396   } else if (Disp.getImm() == 0 &&
    397              // Base reg can't be anything that ends up with '5' as the base
    398              // reg, it is the magic [*] nomenclature that indicates no base.
    399              BaseRegNo != N86::EBP) {
    400     // Emit no displacement ModR/M byte
    401     EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS);
    402   } else if (isDisp8(Disp.getImm())) {
    403     // Emit the disp8 encoding.
    404     EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS);
    405     ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP
    406   } else {
    407     // Emit the normal disp32 encoding.
    408     EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS);
    409   }
    410 
    411   // Calculate what the SS field value should be...
    412   static const unsigned SSTable[] = { ~0U, 0, 1, ~0U, 2, ~0U, ~0U, ~0U, 3 };
    413   unsigned SS = SSTable[Scale.getImm()];
    414 
    415   if (BaseReg == 0) {
    416     // Handle the SIB byte for the case where there is no base, see Intel
    417     // Manual 2A, table 2-7. The displacement has already been output.
    418     unsigned IndexRegNo;
    419     if (IndexReg.getReg())
    420       IndexRegNo = GetX86RegNum(IndexReg);
    421     else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5)
    422       IndexRegNo = 4;
    423     EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS);
    424   } else {
    425     unsigned IndexRegNo;
    426     if (IndexReg.getReg())
    427       IndexRegNo = GetX86RegNum(IndexReg);
    428     else
    429       IndexRegNo = 4;   // For example [ESP+1*<noreg>+4]
    430     EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS);
    431   }
    432 
    433   // Do we need to output a displacement?
    434   if (ForceDisp8)
    435     EmitImmediate(Disp, MI.getLoc(), 1, FK_Data_1, CurByte, OS, Fixups);
    436   else if (ForceDisp32 || Disp.getImm() != 0)
    437     EmitImmediate(Disp, MI.getLoc(), 4, MCFixupKind(X86::reloc_signed_4byte),
    438                   CurByte, OS, Fixups);
    439 }
    440 
    441 /// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix
    442 /// called VEX.
    443 void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
    444                                            int MemOperand, const MCInst &MI,
    445                                            const MCInstrDesc &Desc,
    446                                            raw_ostream &OS) const {
    447   bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
    448   bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
    449   bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
    450 
    451   // VEX_R: opcode externsion equivalent to REX.R in
    452   // 1's complement (inverted) form
    453   //
    454   //  1: Same as REX_R=0 (must be 1 in 32-bit mode)
    455   //  0: Same as REX_R=1 (64 bit mode only)
    456   //
    457   unsigned char VEX_R = 0x1;
    458 
    459   // VEX_X: equivalent to REX.X, only used when a
    460   // register is used for index in SIB Byte.
    461   //
    462   //  1: Same as REX.X=0 (must be 1 in 32-bit mode)
    463   //  0: Same as REX.X=1 (64-bit mode only)
    464   unsigned char VEX_X = 0x1;
    465 
    466   // VEX_B:
    467   //
    468   //  1: Same as REX_B=0 (ignored in 32-bit mode)
    469   //  0: Same as REX_B=1 (64 bit mode only)
    470   //
    471   unsigned char VEX_B = 0x1;
    472 
    473   // VEX_W: opcode specific (use like REX.W, or used for
    474   // opcode extension, or ignored, depending on the opcode byte)
    475   unsigned char VEX_W = 0;
    476 
    477   // XOP: Use XOP prefix byte 0x8f instead of VEX.
    478   unsigned char XOP = 0;
    479 
    480   // VEX_5M (VEX m-mmmmm field):
    481   //
    482   //  0b00000: Reserved for future use
    483   //  0b00001: implied 0F leading opcode
    484   //  0b00010: implied 0F 38 leading opcode bytes
    485   //  0b00011: implied 0F 3A leading opcode bytes
    486   //  0b00100-0b11111: Reserved for future use
    487   //  0b01000: XOP map select - 08h instructions with imm byte
    488   //  0b10001: XOP map select - 09h instructions with no imm byte
    489   unsigned char VEX_5M = 0x1;
    490 
    491   // VEX_4V (VEX vvvv field): a register specifier
    492   // (in 1's complement form) or 1111 if unused.
    493   unsigned char VEX_4V = 0xf;
    494 
    495   // VEX_L (Vector Length):
    496   //
    497   //  0: scalar or 128-bit vector
    498   //  1: 256-bit vector
    499   //
    500   unsigned char VEX_L = 0;
    501 
    502   // VEX_PP: opcode extension providing equivalent
    503   // functionality of a SIMD prefix
    504   //
    505   //  0b00: None
    506   //  0b01: 66
    507   //  0b10: F3
    508   //  0b11: F2
    509   //
    510   unsigned char VEX_PP = 0;
    511 
    512   // Encode the operand size opcode prefix as needed.
    513   if (TSFlags & X86II::OpSize)
    514     VEX_PP = 0x01;
    515 
    516   if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W)
    517     VEX_W = 1;
    518 
    519   if ((TSFlags >> X86II::VEXShift) & X86II::XOP)
    520     XOP = 1;
    521 
    522   if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L)
    523     VEX_L = 1;
    524 
    525   switch (TSFlags & X86II::Op0Mask) {
    526   default: llvm_unreachable("Invalid prefix!");
    527   case X86II::T8:  // 0F 38
    528     VEX_5M = 0x2;
    529     break;
    530   case X86II::TA:  // 0F 3A
    531     VEX_5M = 0x3;
    532     break;
    533   case X86II::T8XS: // F3 0F 38
    534     VEX_PP = 0x2;
    535     VEX_5M = 0x2;
    536     break;
    537   case X86II::T8XD: // F2 0F 38
    538     VEX_PP = 0x3;
    539     VEX_5M = 0x2;
    540     break;
    541   case X86II::TAXD: // F2 0F 3A
    542     VEX_PP = 0x3;
    543     VEX_5M = 0x3;
    544     break;
    545   case X86II::XS:  // F3 0F
    546     VEX_PP = 0x2;
    547     break;
    548   case X86II::XD:  // F2 0F
    549     VEX_PP = 0x3;
    550     break;
    551   case X86II::XOP8:
    552     VEX_5M = 0x8;
    553     break;
    554   case X86II::XOP9:
    555     VEX_5M = 0x9;
    556     break;
    557   case X86II::A6:  // Bypass: Not used by VEX
    558   case X86II::A7:  // Bypass: Not used by VEX
    559   case X86II::TB:  // Bypass: Not used by VEX
    560   case 0:
    561     break;  // No prefix!
    562   }
    563 
    564 
    565   // Classify VEX_B, VEX_4V, VEX_R, VEX_X
    566   unsigned NumOps = Desc.getNumOperands();
    567   unsigned CurOp = 0;
    568   if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
    569     ++CurOp;
    570   else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0) {
    571     assert(Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1);
    572     // Special case for GATHER with 2 TIED_TO operands
    573     // Skip the first 2 operands: dst, mask_wb
    574     CurOp += 2;
    575   }
    576 
    577   switch (TSFlags & X86II::FormMask) {
    578   case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!");
    579   case X86II::MRMDestMem: {
    580     // MRMDestMem instructions forms:
    581     //  MemAddr, src1(ModR/M)
    582     //  MemAddr, src1(VEX_4V), src2(ModR/M)
    583     //  MemAddr, src1(ModR/M), imm8
    584     //
    585     if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrBaseReg).getReg()))
    586       VEX_B = 0x0;
    587     if (X86II::isX86_64ExtendedReg(MI.getOperand(X86::AddrIndexReg).getReg()))
    588       VEX_X = 0x0;
    589 
    590     CurOp = X86::AddrNumOperands;
    591     if (HasVEX_4V)
    592       VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
    593 
    594     const MCOperand &MO = MI.getOperand(CurOp);
    595     if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
    596       VEX_R = 0x0;
    597     break;
    598   }
    599   case X86II::MRMSrcMem:
    600     // MRMSrcMem instructions forms:
    601     //  src1(ModR/M), MemAddr
    602     //  src1(ModR/M), src2(VEX_4V), MemAddr
    603     //  src1(ModR/M), MemAddr, imm8
    604     //  src1(ModR/M), MemAddr, src2(VEX_I8IMM)
    605     //
    606     //  FMA4:
    607     //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
    608     //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
    609     if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp++).getReg()))
    610       VEX_R = 0x0;
    611 
    612     if (HasVEX_4V)
    613       VEX_4V = getVEXRegisterEncoding(MI, CurOp);
    614 
    615     if (X86II::isX86_64ExtendedReg(
    616                MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
    617       VEX_B = 0x0;
    618     if (X86II::isX86_64ExtendedReg(
    619                MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
    620       VEX_X = 0x0;
    621 
    622     if (HasVEX_4VOp3)
    623       // Instruction format for 4VOp3:
    624       //   src1(ModR/M), MemAddr, src3(VEX_4V)
    625       // CurOp points to start of the MemoryOperand,
    626       //   it skips TIED_TO operands if exist, then increments past src1.
    627       // CurOp + X86::AddrNumOperands will point to src3.
    628       VEX_4V = getVEXRegisterEncoding(MI, CurOp+X86::AddrNumOperands);
    629     break;
    630   case X86II::MRM0m: case X86II::MRM1m:
    631   case X86II::MRM2m: case X86II::MRM3m:
    632   case X86II::MRM4m: case X86II::MRM5m:
    633   case X86II::MRM6m: case X86II::MRM7m: {
    634     // MRM[0-9]m instructions forms:
    635     //  MemAddr
    636     //  src1(VEX_4V), MemAddr
    637     if (HasVEX_4V)
    638       VEX_4V = getVEXRegisterEncoding(MI, 0);
    639 
    640     if (X86II::isX86_64ExtendedReg(
    641                MI.getOperand(MemOperand+X86::AddrBaseReg).getReg()))
    642       VEX_B = 0x0;
    643     if (X86II::isX86_64ExtendedReg(
    644                MI.getOperand(MemOperand+X86::AddrIndexReg).getReg()))
    645       VEX_X = 0x0;
    646     break;
    647   }
    648   case X86II::MRMSrcReg:
    649     // MRMSrcReg instructions forms:
    650     //  dst(ModR/M), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
    651     //  dst(ModR/M), src1(ModR/M)
    652     //  dst(ModR/M), src1(ModR/M), imm8
    653     //
    654     //  FMA4:
    655     //  dst(ModR/M.reg), src1(VEX_4V), src2(ModR/M), src3(VEX_I8IMM)
    656     //  dst(ModR/M.reg), src1(VEX_4V), src2(VEX_I8IMM), src3(ModR/M),
    657     if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
    658       VEX_R = 0x0;
    659     CurOp++;
    660 
    661     if (HasVEX_4V)
    662       VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
    663 
    664     if (HasMemOp4) // Skip second register source (encoded in I8IMM)
    665       CurOp++;
    666 
    667     if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
    668       VEX_B = 0x0;
    669     CurOp++;
    670     if (HasVEX_4VOp3)
    671       VEX_4V = getVEXRegisterEncoding(MI, CurOp);
    672     break;
    673   case X86II::MRMDestReg:
    674     // MRMDestReg instructions forms:
    675     //  dst(ModR/M), src(ModR/M)
    676     //  dst(ModR/M), src(ModR/M), imm8
    677     //  dst(ModR/M), src1(VEX_4V), src2(ModR/M)
    678     if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
    679       VEX_B = 0x0;
    680     CurOp++;
    681 
    682     if (HasVEX_4V)
    683       VEX_4V = getVEXRegisterEncoding(MI, CurOp++);
    684 
    685     if (X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg()))
    686       VEX_R = 0x0;
    687     break;
    688   case X86II::MRM0r: case X86II::MRM1r:
    689   case X86II::MRM2r: case X86II::MRM3r:
    690   case X86II::MRM4r: case X86II::MRM5r:
    691   case X86II::MRM6r: case X86II::MRM7r:
    692     // MRM0r-MRM7r instructions forms:
    693     //  dst(VEX_4V), src(ModR/M), imm8
    694     VEX_4V = getVEXRegisterEncoding(MI, 0);
    695     if (X86II::isX86_64ExtendedReg(MI.getOperand(1).getReg()))
    696       VEX_B = 0x0;
    697     break;
    698   default: // RawFrm
    699     break;
    700   }
    701 
    702   // Emit segment override opcode prefix as needed.
    703   EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
    704 
    705   // VEX opcode prefix can have 2 or 3 bytes
    706   //
    707   //  3 bytes:
    708   //    +-----+ +--------------+ +-------------------+
    709   //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp |
    710   //    +-----+ +--------------+ +-------------------+
    711   //  2 bytes:
    712   //    +-----+ +-------------------+
    713   //    | C5h | | R | vvvv | L | pp |
    714   //    +-----+ +-------------------+
    715   //
    716   unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3);
    717 
    718   if (VEX_B && VEX_X && !VEX_W && !XOP && (VEX_5M == 1)) { // 2 byte VEX prefix
    719     EmitByte(0xC5, CurByte, OS);
    720     EmitByte(LastByte | (VEX_R << 7), CurByte, OS);
    721     return;
    722   }
    723 
    724   // 3 byte VEX prefix
    725   EmitByte(XOP ? 0x8F : 0xC4, CurByte, OS);
    726   EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS);
    727   EmitByte(LastByte | (VEX_W << 7), CurByte, OS);
    728 }
    729 
    730 /// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64
    731 /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand
    732 /// size, and 3) use of X86-64 extended registers.
    733 static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags,
    734                                    const MCInstrDesc &Desc) {
    735   unsigned REX = 0;
    736   if (TSFlags & X86II::REX_W)
    737     REX |= 1 << 3; // set REX.W
    738 
    739   if (MI.getNumOperands() == 0) return REX;
    740 
    741   unsigned NumOps = MI.getNumOperands();
    742   // FIXME: MCInst should explicitize the two-addrness.
    743   bool isTwoAddr = NumOps > 1 &&
    744                       Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1;
    745 
    746   // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
    747   unsigned i = isTwoAddr ? 1 : 0;
    748   for (; i != NumOps; ++i) {
    749     const MCOperand &MO = MI.getOperand(i);
    750     if (!MO.isReg()) continue;
    751     unsigned Reg = MO.getReg();
    752     if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue;
    753     // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything
    754     // that returns non-zero.
    755     REX |= 0x40; // REX fixed encoding prefix
    756     break;
    757   }
    758 
    759   switch (TSFlags & X86II::FormMask) {
    760   case X86II::MRMInitReg: llvm_unreachable("FIXME: Remove this!");
    761   case X86II::MRMSrcReg:
    762     if (MI.getOperand(0).isReg() &&
    763         X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
    764       REX |= 1 << 2; // set REX.R
    765     i = isTwoAddr ? 2 : 1;
    766     for (; i != NumOps; ++i) {
    767       const MCOperand &MO = MI.getOperand(i);
    768       if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
    769         REX |= 1 << 0; // set REX.B
    770     }
    771     break;
    772   case X86II::MRMSrcMem: {
    773     if (MI.getOperand(0).isReg() &&
    774         X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
    775       REX |= 1 << 2; // set REX.R
    776     unsigned Bit = 0;
    777     i = isTwoAddr ? 2 : 1;
    778     for (; i != NumOps; ++i) {
    779       const MCOperand &MO = MI.getOperand(i);
    780       if (MO.isReg()) {
    781         if (X86II::isX86_64ExtendedReg(MO.getReg()))
    782           REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1)
    783         Bit++;
    784       }
    785     }
    786     break;
    787   }
    788   case X86II::MRM0m: case X86II::MRM1m:
    789   case X86II::MRM2m: case X86II::MRM3m:
    790   case X86II::MRM4m: case X86II::MRM5m:
    791   case X86II::MRM6m: case X86II::MRM7m:
    792   case X86II::MRMDestMem: {
    793     unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands);
    794     i = isTwoAddr ? 1 : 0;
    795     if (NumOps > e && MI.getOperand(e).isReg() &&
    796         X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg()))
    797       REX |= 1 << 2; // set REX.R
    798     unsigned Bit = 0;
    799     for (; i != e; ++i) {
    800       const MCOperand &MO = MI.getOperand(i);
    801       if (MO.isReg()) {
    802         if (X86II::isX86_64ExtendedReg(MO.getReg()))
    803           REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1)
    804         Bit++;
    805       }
    806     }
    807     break;
    808   }
    809   default:
    810     if (MI.getOperand(0).isReg() &&
    811         X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg()))
    812       REX |= 1 << 0; // set REX.B
    813     i = isTwoAddr ? 2 : 1;
    814     for (unsigned e = NumOps; i != e; ++i) {
    815       const MCOperand &MO = MI.getOperand(i);
    816       if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg()))
    817         REX |= 1 << 2; // set REX.R
    818     }
    819     break;
    820   }
    821   return REX;
    822 }
    823 
    824 /// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed
    825 void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags,
    826                                         unsigned &CurByte, int MemOperand,
    827                                         const MCInst &MI,
    828                                         raw_ostream &OS) const {
    829   switch (TSFlags & X86II::SegOvrMask) {
    830   default: llvm_unreachable("Invalid segment!");
    831   case 0:
    832     // No segment override, check for explicit one on memory operand.
    833     if (MemOperand != -1) {   // If the instruction has a memory operand.
    834       switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) {
    835       default: llvm_unreachable("Unknown segment register!");
    836       case 0: break;
    837       case X86::CS: EmitByte(0x2E, CurByte, OS); break;
    838       case X86::SS: EmitByte(0x36, CurByte, OS); break;
    839       case X86::DS: EmitByte(0x3E, CurByte, OS); break;
    840       case X86::ES: EmitByte(0x26, CurByte, OS); break;
    841       case X86::FS: EmitByte(0x64, CurByte, OS); break;
    842       case X86::GS: EmitByte(0x65, CurByte, OS); break;
    843       }
    844     }
    845     break;
    846   case X86II::FS:
    847     EmitByte(0x64, CurByte, OS);
    848     break;
    849   case X86II::GS:
    850     EmitByte(0x65, CurByte, OS);
    851     break;
    852   }
    853 }
    854 
    855 /// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode.
    856 ///
    857 /// MemOperand is the operand # of the start of a memory operand if present.  If
    858 /// Not present, it is -1.
    859 void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte,
    860                                         int MemOperand, const MCInst &MI,
    861                                         const MCInstrDesc &Desc,
    862                                         raw_ostream &OS) const {
    863 
    864   // Emit the lock opcode prefix as needed.
    865   if (TSFlags & X86II::LOCK)
    866     EmitByte(0xF0, CurByte, OS);
    867 
    868   // Emit segment override opcode prefix as needed.
    869   EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS);
    870 
    871   // Emit the repeat opcode prefix as needed.
    872   if ((TSFlags & X86II::Op0Mask) == X86II::REP)
    873     EmitByte(0xF3, CurByte, OS);
    874 
    875   // Emit the address size opcode prefix as needed.
    876   bool need_address_override;
    877   if (TSFlags & X86II::AdSize) {
    878     need_address_override = true;
    879   } else if (MemOperand == -1) {
    880     need_address_override = false;
    881   } else if (is64BitMode()) {
    882     assert(!Is16BitMemOperand(MI, MemOperand));
    883     need_address_override = Is32BitMemOperand(MI, MemOperand);
    884   } else if (is32BitMode()) {
    885     assert(!Is64BitMemOperand(MI, MemOperand));
    886     need_address_override = Is16BitMemOperand(MI, MemOperand);
    887   } else {
    888     need_address_override = false;
    889   }
    890 
    891   if (need_address_override)
    892     EmitByte(0x67, CurByte, OS);
    893 
    894   // Emit the operand size opcode prefix as needed.
    895   if (TSFlags & X86II::OpSize)
    896     EmitByte(0x66, CurByte, OS);
    897 
    898   bool Need0FPrefix = false;
    899   switch (TSFlags & X86II::Op0Mask) {
    900   default: llvm_unreachable("Invalid prefix!");
    901   case 0: break;  // No prefix!
    902   case X86II::REP: break; // already handled.
    903   case X86II::TB:  // Two-byte opcode prefix
    904   case X86II::T8:  // 0F 38
    905   case X86II::TA:  // 0F 3A
    906   case X86II::A6:  // 0F A6
    907   case X86II::A7:  // 0F A7
    908     Need0FPrefix = true;
    909     break;
    910   case X86II::T8XS: // F3 0F 38
    911     EmitByte(0xF3, CurByte, OS);
    912     Need0FPrefix = true;
    913     break;
    914   case X86II::T8XD: // F2 0F 38
    915     EmitByte(0xF2, CurByte, OS);
    916     Need0FPrefix = true;
    917     break;
    918   case X86II::TAXD: // F2 0F 3A
    919     EmitByte(0xF2, CurByte, OS);
    920     Need0FPrefix = true;
    921     break;
    922   case X86II::XS:   // F3 0F
    923     EmitByte(0xF3, CurByte, OS);
    924     Need0FPrefix = true;
    925     break;
    926   case X86II::XD:   // F2 0F
    927     EmitByte(0xF2, CurByte, OS);
    928     Need0FPrefix = true;
    929     break;
    930   case X86II::D8: EmitByte(0xD8, CurByte, OS); break;
    931   case X86II::D9: EmitByte(0xD9, CurByte, OS); break;
    932   case X86II::DA: EmitByte(0xDA, CurByte, OS); break;
    933   case X86II::DB: EmitByte(0xDB, CurByte, OS); break;
    934   case X86II::DC: EmitByte(0xDC, CurByte, OS); break;
    935   case X86II::DD: EmitByte(0xDD, CurByte, OS); break;
    936   case X86II::DE: EmitByte(0xDE, CurByte, OS); break;
    937   case X86II::DF: EmitByte(0xDF, CurByte, OS); break;
    938   }
    939 
    940   // Handle REX prefix.
    941   // FIXME: Can this come before F2 etc to simplify emission?
    942   if (is64BitMode()) {
    943     if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc))
    944       EmitByte(0x40 | REX, CurByte, OS);
    945   }
    946 
    947   // 0x0F escape code must be emitted just before the opcode.
    948   if (Need0FPrefix)
    949     EmitByte(0x0F, CurByte, OS);
    950 
    951   // FIXME: Pull this up into previous switch if REX can be moved earlier.
    952   switch (TSFlags & X86II::Op0Mask) {
    953   case X86II::T8XS:  // F3 0F 38
    954   case X86II::T8XD:  // F2 0F 38
    955   case X86II::T8:    // 0F 38
    956     EmitByte(0x38, CurByte, OS);
    957     break;
    958   case X86II::TAXD:  // F2 0F 3A
    959   case X86II::TA:    // 0F 3A
    960     EmitByte(0x3A, CurByte, OS);
    961     break;
    962   case X86II::A6:    // 0F A6
    963     EmitByte(0xA6, CurByte, OS);
    964     break;
    965   case X86II::A7:    // 0F A7
    966     EmitByte(0xA7, CurByte, OS);
    967     break;
    968   }
    969 }
    970 
    971 void X86MCCodeEmitter::
    972 EncodeInstruction(const MCInst &MI, raw_ostream &OS,
    973                   SmallVectorImpl<MCFixup> &Fixups) const {
    974   unsigned Opcode = MI.getOpcode();
    975   const MCInstrDesc &Desc = MCII.get(Opcode);
    976   uint64_t TSFlags = Desc.TSFlags;
    977 
    978   // Pseudo instructions don't get encoded.
    979   if ((TSFlags & X86II::FormMask) == X86II::Pseudo)
    980     return;
    981 
    982   // If this is a two-address instruction, skip one of the register operands.
    983   // FIXME: This should be handled during MCInst lowering.
    984   unsigned NumOps = Desc.getNumOperands();
    985   unsigned CurOp = 0;
    986   if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
    987     ++CurOp;
    988   else if (NumOps > 3 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0) {
    989     assert(Desc.getOperandConstraint(NumOps - 1, MCOI::TIED_TO) == 1);
    990     // Special case for GATHER with 2 TIED_TO operands
    991     // Skip the first 2 operands: dst, mask_wb
    992     CurOp += 2;
    993   }
    994 
    995   // Keep track of the current byte being emitted.
    996   unsigned CurByte = 0;
    997 
    998   // Is this instruction encoded using the AVX VEX prefix?
    999   bool HasVEXPrefix = (TSFlags >> X86II::VEXShift) & X86II::VEX;
   1000 
   1001   // It uses the VEX.VVVV field?
   1002   bool HasVEX_4V = (TSFlags >> X86II::VEXShift) & X86II::VEX_4V;
   1003   bool HasVEX_4VOp3 = (TSFlags >> X86II::VEXShift) & X86II::VEX_4VOp3;
   1004   bool HasMemOp4 = (TSFlags >> X86II::VEXShift) & X86II::MemOp4;
   1005   const unsigned MemOp4_I8IMMOperand = 2;
   1006 
   1007   // Determine where the memory operand starts, if present.
   1008   int MemoryOperand = X86II::getMemoryOperandNo(TSFlags, Opcode);
   1009   if (MemoryOperand != -1) MemoryOperand += CurOp;
   1010 
   1011   if (!HasVEXPrefix)
   1012     EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
   1013   else
   1014     EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS);
   1015 
   1016   unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags);
   1017 
   1018   if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
   1019     BaseOpcode = 0x0F;   // Weird 3DNow! encoding.
   1020 
   1021   unsigned SrcRegNum = 0;
   1022   switch (TSFlags & X86II::FormMask) {
   1023   case X86II::MRMInitReg:
   1024     llvm_unreachable("FIXME: Remove this form when the JIT moves to MCCodeEmitter!");
   1025   default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n";
   1026     llvm_unreachable("Unknown FormMask value in X86MCCodeEmitter!");
   1027   case X86II::Pseudo:
   1028     llvm_unreachable("Pseudo instruction shouldn't be emitted");
   1029   case X86II::RawFrm:
   1030     EmitByte(BaseOpcode, CurByte, OS);
   1031     break;
   1032   case X86II::RawFrmImm8:
   1033     EmitByte(BaseOpcode, CurByte, OS);
   1034     EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
   1035                   X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
   1036                   CurByte, OS, Fixups);
   1037     EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 1, FK_Data_1, CurByte,
   1038                   OS, Fixups);
   1039     break;
   1040   case X86II::RawFrmImm16:
   1041     EmitByte(BaseOpcode, CurByte, OS);
   1042     EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
   1043                   X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags),
   1044                   CurByte, OS, Fixups);
   1045     EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(), 2, FK_Data_2, CurByte,
   1046                   OS, Fixups);
   1047     break;
   1048 
   1049   case X86II::AddRegFrm:
   1050     EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS);
   1051     break;
   1052 
   1053   case X86II::MRMDestReg:
   1054     EmitByte(BaseOpcode, CurByte, OS);
   1055     SrcRegNum = CurOp + 1;
   1056 
   1057     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
   1058       ++SrcRegNum;
   1059 
   1060     EmitRegModRMByte(MI.getOperand(CurOp),
   1061                      GetX86RegNum(MI.getOperand(SrcRegNum)), CurByte, OS);
   1062     CurOp = SrcRegNum + 1;
   1063     break;
   1064 
   1065   case X86II::MRMDestMem:
   1066     EmitByte(BaseOpcode, CurByte, OS);
   1067     SrcRegNum = CurOp + X86::AddrNumOperands;
   1068 
   1069     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
   1070       ++SrcRegNum;
   1071 
   1072     EmitMemModRMByte(MI, CurOp,
   1073                      GetX86RegNum(MI.getOperand(SrcRegNum)),
   1074                      TSFlags, CurByte, OS, Fixups);
   1075     CurOp = SrcRegNum + 1;
   1076     break;
   1077 
   1078   case X86II::MRMSrcReg:
   1079     EmitByte(BaseOpcode, CurByte, OS);
   1080     SrcRegNum = CurOp + 1;
   1081 
   1082     if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV)
   1083       ++SrcRegNum;
   1084 
   1085     if (HasMemOp4) // Skip 2nd src (which is encoded in I8IMM)
   1086       ++SrcRegNum;
   1087 
   1088     EmitRegModRMByte(MI.getOperand(SrcRegNum),
   1089                      GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS);
   1090 
   1091     // 2 operands skipped with HasMemOp4, compensate accordingly
   1092     CurOp = HasMemOp4 ? SrcRegNum : SrcRegNum + 1;
   1093     if (HasVEX_4VOp3)
   1094       ++CurOp;
   1095     break;
   1096 
   1097   case X86II::MRMSrcMem: {
   1098     int AddrOperands = X86::AddrNumOperands;
   1099     unsigned FirstMemOp = CurOp+1;
   1100     if (HasVEX_4V) {
   1101       ++AddrOperands;
   1102       ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV).
   1103     }
   1104     if (HasMemOp4) // Skip second register source (encoded in I8IMM)
   1105       ++FirstMemOp;
   1106 
   1107     EmitByte(BaseOpcode, CurByte, OS);
   1108 
   1109     EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)),
   1110                      TSFlags, CurByte, OS, Fixups);
   1111     CurOp += AddrOperands + 1;
   1112     if (HasVEX_4VOp3)
   1113       ++CurOp;
   1114     break;
   1115   }
   1116 
   1117   case X86II::MRM0r: case X86II::MRM1r:
   1118   case X86II::MRM2r: case X86II::MRM3r:
   1119   case X86II::MRM4r: case X86II::MRM5r:
   1120   case X86II::MRM6r: case X86II::MRM7r:
   1121     if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
   1122       ++CurOp;
   1123     EmitByte(BaseOpcode, CurByte, OS);
   1124     EmitRegModRMByte(MI.getOperand(CurOp++),
   1125                      (TSFlags & X86II::FormMask)-X86II::MRM0r,
   1126                      CurByte, OS);
   1127     break;
   1128   case X86II::MRM0m: case X86II::MRM1m:
   1129   case X86II::MRM2m: case X86II::MRM3m:
   1130   case X86II::MRM4m: case X86II::MRM5m:
   1131   case X86II::MRM6m: case X86II::MRM7m:
   1132     if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV).
   1133       ++CurOp;
   1134     EmitByte(BaseOpcode, CurByte, OS);
   1135     EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m,
   1136                      TSFlags, CurByte, OS, Fixups);
   1137     CurOp += X86::AddrNumOperands;
   1138     break;
   1139   case X86II::MRM_C1: case X86II::MRM_C2:
   1140   case X86II::MRM_C3: case X86II::MRM_C4:
   1141   case X86II::MRM_C8: case X86II::MRM_C9:
   1142   case X86II::MRM_D0: case X86II::MRM_D1:
   1143   case X86II::MRM_D4: case X86II::MRM_D5:
   1144   case X86II::MRM_D8: case X86II::MRM_D9:
   1145   case X86II::MRM_DA: case X86II::MRM_DB:
   1146   case X86II::MRM_DC: case X86II::MRM_DD:
   1147   case X86II::MRM_DE: case X86II::MRM_DF:
   1148   case X86II::MRM_E8: case X86II::MRM_F0:
   1149   case X86II::MRM_F8: case X86II::MRM_F9:
   1150     EmitByte(BaseOpcode, CurByte, OS);
   1151 
   1152     unsigned char MRM;
   1153     switch (TSFlags & X86II::FormMask) {
   1154     default: llvm_unreachable("Invalid Form");
   1155     case X86II::MRM_C1: MRM = 0xC1; break;
   1156     case X86II::MRM_C2: MRM = 0xC2; break;
   1157     case X86II::MRM_C3: MRM = 0xC3; break;
   1158     case X86II::MRM_C4: MRM = 0xC4; break;
   1159     case X86II::MRM_C8: MRM = 0xC8; break;
   1160     case X86II::MRM_C9: MRM = 0xC9; break;
   1161     case X86II::MRM_D0: MRM = 0xD0; break;
   1162     case X86II::MRM_D1: MRM = 0xD1; break;
   1163     case X86II::MRM_D4: MRM = 0xD4; break;
   1164     case X86II::MRM_D5: MRM = 0xD5; break;
   1165     case X86II::MRM_D8: MRM = 0xD8; break;
   1166     case X86II::MRM_D9: MRM = 0xD9; break;
   1167     case X86II::MRM_DA: MRM = 0xDA; break;
   1168     case X86II::MRM_DB: MRM = 0xDB; break;
   1169     case X86II::MRM_DC: MRM = 0xDC; break;
   1170     case X86II::MRM_DD: MRM = 0xDD; break;
   1171     case X86II::MRM_DE: MRM = 0xDE; break;
   1172     case X86II::MRM_DF: MRM = 0xDF; break;
   1173     case X86II::MRM_E8: MRM = 0xE8; break;
   1174     case X86II::MRM_F0: MRM = 0xF0; break;
   1175     case X86II::MRM_F8: MRM = 0xF8; break;
   1176     case X86II::MRM_F9: MRM = 0xF9; break;
   1177     }
   1178     EmitByte(MRM, CurByte, OS);
   1179     break;
   1180   }
   1181 
   1182   // If there is a remaining operand, it must be a trailing immediate.  Emit it
   1183   // according to the right size for the instruction. Some instructions
   1184   // (SSE4a extrq and insertq) have two trailing immediates.
   1185   while (CurOp != NumOps && NumOps - CurOp <= 2) {
   1186     // The last source register of a 4 operand instruction in AVX is encoded
   1187     // in bits[7:4] of a immediate byte.
   1188     if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) {
   1189       const MCOperand &MO = MI.getOperand(HasMemOp4 ? MemOp4_I8IMMOperand
   1190                                                     : CurOp);
   1191       ++CurOp;
   1192       unsigned RegNum = GetX86RegNum(MO) << 4;
   1193       if (X86II::isX86_64ExtendedReg(MO.getReg()))
   1194         RegNum |= 1 << 7;
   1195       // If there is an additional 5th operand it must be an immediate, which
   1196       // is encoded in bits[3:0]
   1197       if (CurOp != NumOps) {
   1198         const MCOperand &MIMM = MI.getOperand(CurOp++);
   1199         if (MIMM.isImm()) {
   1200           unsigned Val = MIMM.getImm();
   1201           assert(Val < 16 && "Immediate operand value out of range");
   1202           RegNum |= Val;
   1203         }
   1204       }
   1205       EmitImmediate(MCOperand::CreateImm(RegNum), MI.getLoc(), 1, FK_Data_1,
   1206                     CurByte, OS, Fixups);
   1207     } else {
   1208       unsigned FixupKind;
   1209       // FIXME: Is there a better way to know that we need a signed relocation?
   1210       if (MI.getOpcode() == X86::ADD64ri32 ||
   1211           MI.getOpcode() == X86::MOV64ri32 ||
   1212           MI.getOpcode() == X86::MOV64mi32 ||
   1213           MI.getOpcode() == X86::PUSH64i32)
   1214         FixupKind = X86::reloc_signed_4byte;
   1215       else
   1216         FixupKind = getImmFixupKind(TSFlags);
   1217       EmitImmediate(MI.getOperand(CurOp++), MI.getLoc(),
   1218                     X86II::getSizeOfImm(TSFlags), MCFixupKind(FixupKind),
   1219                     CurByte, OS, Fixups);
   1220     }
   1221   }
   1222 
   1223   if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode)
   1224     EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS);
   1225 
   1226 #ifndef NDEBUG
   1227   // FIXME: Verify.
   1228   if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) {
   1229     errs() << "Cannot encode all operands of: ";
   1230     MI.dump();
   1231     errs() << '\n';
   1232     abort();
   1233   }
   1234 #endif
   1235 }
   1236