Home | History | Annotate | Download | only in TableGen
      1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines structures to encapsulate information gleaned from the
     11 // target register and register class definitions.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "CodeGenRegisters.h"
     16 #include "CodeGenTarget.h"
     17 #include "llvm/ADT/IntEqClasses.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/ADT/StringExtras.h"
     21 #include "llvm/ADT/Twine.h"
     22 #include "llvm/TableGen/Error.h"
     23 
     24 using namespace llvm;
     25 
     26 //===----------------------------------------------------------------------===//
     27 //                             CodeGenSubRegIndex
     28 //===----------------------------------------------------------------------===//
     29 
     30 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum)
     31   : TheDef(R), EnumValue(Enum), LaneMask(0) {
     32   Name = R->getName();
     33   if (R->getValue("Namespace"))
     34     Namespace = R->getValueAsString("Namespace");
     35 }
     36 
     37 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace,
     38                                        unsigned Enum)
     39   : TheDef(0), Name(N), Namespace(Nspace), EnumValue(Enum), LaneMask(0) {
     40 }
     41 
     42 std::string CodeGenSubRegIndex::getQualifiedName() const {
     43   std::string N = getNamespace();
     44   if (!N.empty())
     45     N += "::";
     46   N += getName();
     47   return N;
     48 }
     49 
     50 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) {
     51   if (!TheDef)
     52     return;
     53 
     54   std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf");
     55   if (!Comps.empty()) {
     56     if (Comps.size() != 2)
     57       PrintFatalError(TheDef->getLoc(),
     58                       "ComposedOf must have exactly two entries");
     59     CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]);
     60     CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]);
     61     CodeGenSubRegIndex *X = A->addComposite(B, this);
     62     if (X)
     63       PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries");
     64   }
     65 
     66   std::vector<Record*> Parts =
     67     TheDef->getValueAsListOfDefs("CoveringSubRegIndices");
     68   if (!Parts.empty()) {
     69     if (Parts.size() < 2)
     70       PrintFatalError(TheDef->getLoc(),
     71                     "CoveredBySubRegs must have two or more entries");
     72     SmallVector<CodeGenSubRegIndex*, 8> IdxParts;
     73     for (unsigned i = 0, e = Parts.size(); i != e; ++i)
     74       IdxParts.push_back(RegBank.getSubRegIdx(Parts[i]));
     75     RegBank.addConcatSubRegIndex(IdxParts, this);
     76   }
     77 }
     78 
     79 unsigned CodeGenSubRegIndex::computeLaneMask() {
     80   // Already computed?
     81   if (LaneMask)
     82     return LaneMask;
     83 
     84   // Recursion guard, shouldn't be required.
     85   LaneMask = ~0u;
     86 
     87   // The lane mask is simply the union of all sub-indices.
     88   unsigned M = 0;
     89   for (CompMap::iterator I = Composed.begin(), E = Composed.end(); I != E; ++I)
     90     M |= I->second->computeLaneMask();
     91   assert(M && "Missing lane mask, sub-register cycle?");
     92   LaneMask = M;
     93   return LaneMask;
     94 }
     95 
     96 //===----------------------------------------------------------------------===//
     97 //                              CodeGenRegister
     98 //===----------------------------------------------------------------------===//
     99 
    100 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum)
    101   : TheDef(R),
    102     EnumValue(Enum),
    103     CostPerUse(R->getValueAsInt("CostPerUse")),
    104     CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")),
    105     NumNativeRegUnits(0),
    106     SubRegsComplete(false),
    107     SuperRegsComplete(false),
    108     TopoSig(~0u)
    109 {}
    110 
    111 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) {
    112   std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices");
    113   std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs");
    114 
    115   if (SRIs.size() != SRs.size())
    116     PrintFatalError(TheDef->getLoc(),
    117                     "SubRegs and SubRegIndices must have the same size");
    118 
    119   for (unsigned i = 0, e = SRIs.size(); i != e; ++i) {
    120     ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i]));
    121     ExplicitSubRegs.push_back(RegBank.getReg(SRs[i]));
    122   }
    123 
    124   // Also compute leading super-registers. Each register has a list of
    125   // covered-by-subregs super-registers where it appears as the first explicit
    126   // sub-register.
    127   //
    128   // This is used by computeSecondarySubRegs() to find candidates.
    129   if (CoveredBySubRegs && !ExplicitSubRegs.empty())
    130     ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this);
    131 
    132   // Add ad hoc alias links. This is a symmetric relationship between two
    133   // registers, so build a symmetric graph by adding links in both ends.
    134   std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases");
    135   for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
    136     CodeGenRegister *Reg = RegBank.getReg(Aliases[i]);
    137     ExplicitAliases.push_back(Reg);
    138     Reg->ExplicitAliases.push_back(this);
    139   }
    140 }
    141 
    142 const std::string &CodeGenRegister::getName() const {
    143   return TheDef->getName();
    144 }
    145 
    146 namespace {
    147 // Iterate over all register units in a set of registers.
    148 class RegUnitIterator {
    149   CodeGenRegister::Set::const_iterator RegI, RegE;
    150   CodeGenRegister::RegUnitList::const_iterator UnitI, UnitE;
    151 
    152 public:
    153   RegUnitIterator(const CodeGenRegister::Set &Regs):
    154     RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() {
    155 
    156     if (RegI != RegE) {
    157       UnitI = (*RegI)->getRegUnits().begin();
    158       UnitE = (*RegI)->getRegUnits().end();
    159       advance();
    160     }
    161   }
    162 
    163   bool isValid() const { return UnitI != UnitE; }
    164 
    165   unsigned operator* () const { assert(isValid()); return *UnitI; }
    166 
    167   const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; }
    168 
    169   /// Preincrement.  Move to the next unit.
    170   void operator++() {
    171     assert(isValid() && "Cannot advance beyond the last operand");
    172     ++UnitI;
    173     advance();
    174   }
    175 
    176 protected:
    177   void advance() {
    178     while (UnitI == UnitE) {
    179       if (++RegI == RegE)
    180         break;
    181       UnitI = (*RegI)->getRegUnits().begin();
    182       UnitE = (*RegI)->getRegUnits().end();
    183     }
    184   }
    185 };
    186 } // namespace
    187 
    188 // Merge two RegUnitLists maintaining the order and removing duplicates.
    189 // Overwrites MergedRU in the process.
    190 static void mergeRegUnits(CodeGenRegister::RegUnitList &MergedRU,
    191                           const CodeGenRegister::RegUnitList &RRU) {
    192   CodeGenRegister::RegUnitList LRU = MergedRU;
    193   MergedRU.clear();
    194   std::set_union(LRU.begin(), LRU.end(), RRU.begin(), RRU.end(),
    195                  std::back_inserter(MergedRU));
    196 }
    197 
    198 // Return true of this unit appears in RegUnits.
    199 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) {
    200   return std::count(RegUnits.begin(), RegUnits.end(), Unit);
    201 }
    202 
    203 // Inherit register units from subregisters.
    204 // Return true if the RegUnits changed.
    205 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) {
    206   unsigned OldNumUnits = RegUnits.size();
    207   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
    208        I != E; ++I) {
    209     CodeGenRegister *SR = I->second;
    210     // Merge the subregister's units into this register's RegUnits.
    211     mergeRegUnits(RegUnits, SR->RegUnits);
    212   }
    213   return OldNumUnits != RegUnits.size();
    214 }
    215 
    216 const CodeGenRegister::SubRegMap &
    217 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) {
    218   // Only compute this map once.
    219   if (SubRegsComplete)
    220     return SubRegs;
    221   SubRegsComplete = true;
    222 
    223   // First insert the explicit subregs and make sure they are fully indexed.
    224   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    225     CodeGenRegister *SR = ExplicitSubRegs[i];
    226     CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i];
    227     if (!SubRegs.insert(std::make_pair(Idx, SR)).second)
    228       PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() +
    229                       " appears twice in Register " + getName());
    230     // Map explicit sub-registers first, so the names take precedence.
    231     // The inherited sub-registers are mapped below.
    232     SubReg2Idx.insert(std::make_pair(SR, Idx));
    233   }
    234 
    235   // Keep track of inherited subregs and how they can be reached.
    236   SmallPtrSet<CodeGenRegister*, 8> Orphans;
    237 
    238   // Clone inherited subregs and place duplicate entries in Orphans.
    239   // Here the order is important - earlier subregs take precedence.
    240   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    241     CodeGenRegister *SR = ExplicitSubRegs[i];
    242     const SubRegMap &Map = SR->computeSubRegs(RegBank);
    243 
    244     for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
    245          ++SI) {
    246       if (!SubRegs.insert(*SI).second)
    247         Orphans.insert(SI->second);
    248     }
    249   }
    250 
    251   // Expand any composed subreg indices.
    252   // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a
    253   // qsub_1 subreg, add a dsub_2 subreg.  Keep growing Indices and process
    254   // expanded subreg indices recursively.
    255   SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices;
    256   for (unsigned i = 0; i != Indices.size(); ++i) {
    257     CodeGenSubRegIndex *Idx = Indices[i];
    258     const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites();
    259     CodeGenRegister *SR = SubRegs[Idx];
    260     const SubRegMap &Map = SR->computeSubRegs(RegBank);
    261 
    262     // Look at the possible compositions of Idx.
    263     // They may not all be supported by SR.
    264     for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(),
    265            E = Comps.end(); I != E; ++I) {
    266       SubRegMap::const_iterator SRI = Map.find(I->first);
    267       if (SRI == Map.end())
    268         continue; // Idx + I->first doesn't exist in SR.
    269       // Add I->second as a name for the subreg SRI->second, assuming it is
    270       // orphaned, and the name isn't already used for something else.
    271       if (SubRegs.count(I->second) || !Orphans.erase(SRI->second))
    272         continue;
    273       // We found a new name for the orphaned sub-register.
    274       SubRegs.insert(std::make_pair(I->second, SRI->second));
    275       Indices.push_back(I->second);
    276     }
    277   }
    278 
    279   // Now Orphans contains the inherited subregisters without a direct index.
    280   // Create inferred indexes for all missing entries.
    281   // Work backwards in the Indices vector in order to compose subregs bottom-up.
    282   // Consider this subreg sequence:
    283   //
    284   //   qsub_1 -> dsub_0 -> ssub_0
    285   //
    286   // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register
    287   // can be reached in two different ways:
    288   //
    289   //   qsub_1 -> ssub_0
    290   //   dsub_2 -> ssub_0
    291   //
    292   // We pick the latter composition because another register may have [dsub_0,
    293   // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg.  The
    294   // dsub_2 -> ssub_0 composition can be shared.
    295   while (!Indices.empty() && !Orphans.empty()) {
    296     CodeGenSubRegIndex *Idx = Indices.pop_back_val();
    297     CodeGenRegister *SR = SubRegs[Idx];
    298     const SubRegMap &Map = SR->computeSubRegs(RegBank);
    299     for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE;
    300          ++SI)
    301       if (Orphans.erase(SI->second))
    302         SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second;
    303   }
    304 
    305   // Compute the inverse SubReg -> Idx map.
    306   for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end();
    307        SI != SE; ++SI) {
    308     if (SI->second == this) {
    309       ArrayRef<SMLoc> Loc;
    310       if (TheDef)
    311         Loc = TheDef->getLoc();
    312       PrintFatalError(Loc, "Register " + getName() +
    313                       " has itself as a sub-register");
    314     }
    315     // Ensure that every sub-register has a unique name.
    316     DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins =
    317       SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first;
    318     if (Ins->second == SI->first)
    319       continue;
    320     // Trouble: Two different names for SI->second.
    321     ArrayRef<SMLoc> Loc;
    322     if (TheDef)
    323       Loc = TheDef->getLoc();
    324     PrintFatalError(Loc, "Sub-register can't have two names: " +
    325                   SI->second->getName() + " available as " +
    326                   SI->first->getName() + " and " + Ins->second->getName());
    327   }
    328 
    329   // Derive possible names for sub-register concatenations from any explicit
    330   // sub-registers. By doing this before computeSecondarySubRegs(), we ensure
    331   // that getConcatSubRegIndex() won't invent any concatenated indices that the
    332   // user already specified.
    333   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    334     CodeGenRegister *SR = ExplicitSubRegs[i];
    335     if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1)
    336       continue;
    337 
    338     // SR is composed of multiple sub-regs. Find their names in this register.
    339     SmallVector<CodeGenSubRegIndex*, 8> Parts;
    340     for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j)
    341       Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j]));
    342 
    343     // Offer this as an existing spelling for the concatenation of Parts.
    344     RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]);
    345   }
    346 
    347   // Initialize RegUnitList. Because getSubRegs is called recursively, this
    348   // processes the register hierarchy in postorder.
    349   //
    350   // Inherit all sub-register units. It is good enough to look at the explicit
    351   // sub-registers, the other registers won't contribute any more units.
    352   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    353     CodeGenRegister *SR = ExplicitSubRegs[i];
    354     // Explicit sub-registers are usually disjoint, so this is a good way of
    355     // computing the union. We may pick up a few duplicates that will be
    356     // eliminated below.
    357     unsigned N = RegUnits.size();
    358     RegUnits.append(SR->RegUnits.begin(), SR->RegUnits.end());
    359     std::inplace_merge(RegUnits.begin(), RegUnits.begin() + N, RegUnits.end());
    360   }
    361   RegUnits.erase(std::unique(RegUnits.begin(), RegUnits.end()), RegUnits.end());
    362 
    363   // Absent any ad hoc aliasing, we create one register unit per leaf register.
    364   // These units correspond to the maximal cliques in the register overlap
    365   // graph which is optimal.
    366   //
    367   // When there is ad hoc aliasing, we simply create one unit per edge in the
    368   // undirected ad hoc aliasing graph. Technically, we could do better by
    369   // identifying maximal cliques in the ad hoc graph, but cliques larger than 2
    370   // are extremely rare anyway (I've never seen one), so we don't bother with
    371   // the added complexity.
    372   for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) {
    373     CodeGenRegister *AR = ExplicitAliases[i];
    374     // Only visit each edge once.
    375     if (AR->SubRegsComplete)
    376       continue;
    377     // Create a RegUnit representing this alias edge, and add it to both
    378     // registers.
    379     unsigned Unit = RegBank.newRegUnit(this, AR);
    380     RegUnits.push_back(Unit);
    381     AR->RegUnits.push_back(Unit);
    382   }
    383 
    384   // Finally, create units for leaf registers without ad hoc aliases. Note that
    385   // a leaf register with ad hoc aliases doesn't get its own unit - it isn't
    386   // necessary. This means the aliasing leaf registers can share a single unit.
    387   if (RegUnits.empty())
    388     RegUnits.push_back(RegBank.newRegUnit(this));
    389 
    390   // We have now computed the native register units. More may be adopted later
    391   // for balancing purposes.
    392   NumNativeRegUnits = RegUnits.size();
    393 
    394   return SubRegs;
    395 }
    396 
    397 // In a register that is covered by its sub-registers, try to find redundant
    398 // sub-registers. For example:
    399 //
    400 //   QQ0 = {Q0, Q1}
    401 //   Q0 = {D0, D1}
    402 //   Q1 = {D2, D3}
    403 //
    404 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in
    405 // the register definition.
    406 //
    407 // The explicitly specified registers form a tree. This function discovers
    408 // sub-register relationships that would force a DAG.
    409 //
    410 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) {
    411   // Collect new sub-registers first, add them later.
    412   SmallVector<SubRegMap::value_type, 8> NewSubRegs;
    413 
    414   // Look at the leading super-registers of each sub-register. Those are the
    415   // candidates for new sub-registers, assuming they are fully contained in
    416   // this register.
    417   for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){
    418     const CodeGenRegister *SubReg = I->second;
    419     const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs;
    420     for (unsigned i = 0, e = Leads.size(); i != e; ++i) {
    421       CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]);
    422       // Already got this sub-register?
    423       if (Cand == this || getSubRegIndex(Cand))
    424         continue;
    425       // Check if each component of Cand is already a sub-register.
    426       // We know that the first component is I->second, and is present with the
    427       // name I->first.
    428       SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first);
    429       assert(!Cand->ExplicitSubRegs.empty() &&
    430              "Super-register has no sub-registers");
    431       for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) {
    432         if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j]))
    433           Parts.push_back(Idx);
    434         else {
    435           // Sub-register doesn't exist.
    436           Parts.clear();
    437           break;
    438         }
    439       }
    440       // If some Cand sub-register is not part of this register, or if Cand only
    441       // has one sub-register, there is nothing to do.
    442       if (Parts.size() <= 1)
    443         continue;
    444 
    445       // Each part of Cand is a sub-register of this. Make the full Cand also
    446       // a sub-register with a concatenated sub-register index.
    447       CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts);
    448       NewSubRegs.push_back(std::make_pair(Concat, Cand));
    449     }
    450   }
    451 
    452   // Now add all the new sub-registers.
    453   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
    454     // Don't add Cand if another sub-register is already using the index.
    455     if (!SubRegs.insert(NewSubRegs[i]).second)
    456       continue;
    457 
    458     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
    459     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
    460     SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx));
    461   }
    462 
    463   // Create sub-register index composition maps for the synthesized indices.
    464   for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) {
    465     CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first;
    466     CodeGenRegister *NewSubReg = NewSubRegs[i].second;
    467     for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(),
    468            SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) {
    469       CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second);
    470       if (!SubIdx)
    471         PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " +
    472                         SI->second->getName() + " in " + getName());
    473       NewIdx->addComposite(SI->first, SubIdx);
    474     }
    475   }
    476 }
    477 
    478 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) {
    479   // Only visit each register once.
    480   if (SuperRegsComplete)
    481     return;
    482   SuperRegsComplete = true;
    483 
    484   // Make sure all sub-registers have been visited first, so the super-reg
    485   // lists will be topologically ordered.
    486   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
    487        I != E; ++I)
    488     I->second->computeSuperRegs(RegBank);
    489 
    490   // Now add this as a super-register on all sub-registers.
    491   // Also compute the TopoSigId in post-order.
    492   TopoSigId Id;
    493   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
    494        I != E; ++I) {
    495     // Topological signature computed from SubIdx, TopoId(SubReg).
    496     // Loops and idempotent indices have TopoSig = ~0u.
    497     Id.push_back(I->first->EnumValue);
    498     Id.push_back(I->second->TopoSig);
    499 
    500     // Don't add duplicate entries.
    501     if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this)
    502       continue;
    503     I->second->SuperRegs.push_back(this);
    504   }
    505   TopoSig = RegBank.getTopoSig(Id);
    506 }
    507 
    508 void
    509 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet,
    510                                     CodeGenRegBank &RegBank) const {
    511   assert(SubRegsComplete && "Must precompute sub-registers");
    512   for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) {
    513     CodeGenRegister *SR = ExplicitSubRegs[i];
    514     if (OSet.insert(SR))
    515       SR->addSubRegsPreOrder(OSet, RegBank);
    516   }
    517   // Add any secondary sub-registers that weren't part of the explicit tree.
    518   for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end();
    519        I != E; ++I)
    520     OSet.insert(I->second);
    521 }
    522 
    523 // Compute overlapping registers.
    524 //
    525 // The standard set is all super-registers and all sub-registers, but the
    526 // target description can add arbitrary overlapping registers via the 'Aliases'
    527 // field. This complicates things, but we can compute overlapping sets using
    528 // the following rules:
    529 //
    530 // 1. The relation overlap(A, B) is reflexive and symmetric but not transitive.
    531 //
    532 // 2. overlap(A, B) implies overlap(A, S) for all S in supers(B).
    533 //
    534 // Alternatively:
    535 //
    536 //    overlap(A, B) iff there exists:
    537 //    A' in { A, subregs(A) } and B' in { B, subregs(B) } such that:
    538 //    A' = B' or A' in aliases(B') or B' in aliases(A').
    539 //
    540 // Here subregs(A) is the full flattened sub-register set returned by
    541 // A.getSubRegs() while aliases(A) is simply the special 'Aliases' field in the
    542 // description of register A.
    543 //
    544 // This also implies that registers with a common sub-register are considered
    545 // overlapping. This can happen when forming register pairs:
    546 //
    547 //    P0 = (R0, R1)
    548 //    P1 = (R1, R2)
    549 //    P2 = (R2, R3)
    550 //
    551 // In this case, we will infer an overlap between P0 and P1 because of the
    552 // shared sub-register R1. There is no overlap between P0 and P2.
    553 //
    554 void CodeGenRegister::computeOverlaps(CodeGenRegister::Set &Overlaps,
    555                                       const CodeGenRegBank &RegBank) const {
    556   assert(!RegUnits.empty() && "Compute register units before overlaps.");
    557 
    558   // Register units are assigned such that the overlapping registers are the
    559   // super-registers of the root registers of the register units.
    560   for (unsigned rui = 0, rue = RegUnits.size(); rui != rue; ++rui) {
    561     const RegUnit &RU = RegBank.getRegUnit(RegUnits[rui]);
    562     ArrayRef<const CodeGenRegister*> Roots = RU.getRoots();
    563     for (unsigned ri = 0, re = Roots.size(); ri != re; ++ri) {
    564       const CodeGenRegister *Root = Roots[ri];
    565       Overlaps.insert(Root);
    566       ArrayRef<const CodeGenRegister*> Supers = Root->getSuperRegs();
    567       Overlaps.insert(Supers.begin(), Supers.end());
    568     }
    569   }
    570 }
    571 
    572 // Get the sum of this register's unit weights.
    573 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const {
    574   unsigned Weight = 0;
    575   for (RegUnitList::const_iterator I = RegUnits.begin(), E = RegUnits.end();
    576        I != E; ++I) {
    577     Weight += RegBank.getRegUnit(*I).Weight;
    578   }
    579   return Weight;
    580 }
    581 
    582 //===----------------------------------------------------------------------===//
    583 //                               RegisterTuples
    584 //===----------------------------------------------------------------------===//
    585 
    586 // A RegisterTuples def is used to generate pseudo-registers from lists of
    587 // sub-registers. We provide a SetTheory expander class that returns the new
    588 // registers.
    589 namespace {
    590 struct TupleExpander : SetTheory::Expander {
    591   void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) {
    592     std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices");
    593     unsigned Dim = Indices.size();
    594     ListInit *SubRegs = Def->getValueAsListInit("SubRegs");
    595     if (Dim != SubRegs->getSize())
    596       PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch");
    597     if (Dim < 2)
    598       PrintFatalError(Def->getLoc(),
    599                       "Tuples must have at least 2 sub-registers");
    600 
    601     // Evaluate the sub-register lists to be zipped.
    602     unsigned Length = ~0u;
    603     SmallVector<SetTheory::RecSet, 4> Lists(Dim);
    604     for (unsigned i = 0; i != Dim; ++i) {
    605       ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc());
    606       Length = std::min(Length, unsigned(Lists[i].size()));
    607     }
    608 
    609     if (Length == 0)
    610       return;
    611 
    612     // Precompute some types.
    613     Record *RegisterCl = Def->getRecords().getClass("Register");
    614     RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl);
    615     StringInit *BlankName = StringInit::get("");
    616 
    617     // Zip them up.
    618     for (unsigned n = 0; n != Length; ++n) {
    619       std::string Name;
    620       Record *Proto = Lists[0][n];
    621       std::vector<Init*> Tuple;
    622       unsigned CostPerUse = 0;
    623       for (unsigned i = 0; i != Dim; ++i) {
    624         Record *Reg = Lists[i][n];
    625         if (i) Name += '_';
    626         Name += Reg->getName();
    627         Tuple.push_back(DefInit::get(Reg));
    628         CostPerUse = std::max(CostPerUse,
    629                               unsigned(Reg->getValueAsInt("CostPerUse")));
    630       }
    631 
    632       // Create a new Record representing the synthesized register. This record
    633       // is only for consumption by CodeGenRegister, it is not added to the
    634       // RecordKeeper.
    635       Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords());
    636       Elts.insert(NewReg);
    637 
    638       // Copy Proto super-classes.
    639       ArrayRef<Record *> Supers = Proto->getSuperClasses();
    640       ArrayRef<SMRange> Ranges = Proto->getSuperClassRanges();
    641       for (unsigned i = 0, e = Supers.size(); i != e; ++i)
    642         NewReg->addSuperClass(Supers[i], Ranges[i]);
    643 
    644       // Copy Proto fields.
    645       for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) {
    646         RecordVal RV = Proto->getValues()[i];
    647 
    648         // Skip existing fields, like NAME.
    649         if (NewReg->getValue(RV.getNameInit()))
    650           continue;
    651 
    652         StringRef Field = RV.getName();
    653 
    654         // Replace the sub-register list with Tuple.
    655         if (Field == "SubRegs")
    656           RV.setValue(ListInit::get(Tuple, RegisterRecTy));
    657 
    658         // Provide a blank AsmName. MC hacks are required anyway.
    659         if (Field == "AsmName")
    660           RV.setValue(BlankName);
    661 
    662         // CostPerUse is aggregated from all Tuple members.
    663         if (Field == "CostPerUse")
    664           RV.setValue(IntInit::get(CostPerUse));
    665 
    666         // Composite registers are always covered by sub-registers.
    667         if (Field == "CoveredBySubRegs")
    668           RV.setValue(BitInit::get(true));
    669 
    670         // Copy fields from the RegisterTuples def.
    671         if (Field == "SubRegIndices" ||
    672             Field == "CompositeIndices") {
    673           NewReg->addValue(*Def->getValue(Field));
    674           continue;
    675         }
    676 
    677         // Some fields get their default uninitialized value.
    678         if (Field == "DwarfNumbers" ||
    679             Field == "DwarfAlias" ||
    680             Field == "Aliases") {
    681           if (const RecordVal *DefRV = RegisterCl->getValue(Field))
    682             NewReg->addValue(*DefRV);
    683           continue;
    684         }
    685 
    686         // Everything else is copied from Proto.
    687         NewReg->addValue(RV);
    688       }
    689     }
    690   }
    691 };
    692 }
    693 
    694 //===----------------------------------------------------------------------===//
    695 //                            CodeGenRegisterClass
    696 //===----------------------------------------------------------------------===//
    697 
    698 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R)
    699   : TheDef(R),
    700     Name(R->getName()),
    701     TopoSigs(RegBank.getNumTopoSigs()),
    702     EnumValue(-1) {
    703   // Rename anonymous register classes.
    704   if (R->getName().size() > 9 && R->getName()[9] == '.') {
    705     static unsigned AnonCounter = 0;
    706     R->setName("AnonRegClass_" + utostr(AnonCounter));
    707     // MSVC2012 ICEs if AnonCounter++ is directly passed to utostr.
    708     ++AnonCounter;
    709   }
    710 
    711   std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
    712   for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
    713     Record *Type = TypeList[i];
    714     if (!Type->isSubClassOf("ValueType"))
    715       PrintFatalError("RegTypes list member '" + Type->getName() +
    716         "' does not derive from the ValueType class!");
    717     VTs.push_back(getValueType(Type));
    718   }
    719   assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
    720 
    721   // Allocation order 0 is the full set. AltOrders provides others.
    722   const SetTheory::RecVec *Elements = RegBank.getSets().expand(R);
    723   ListInit *AltOrders = R->getValueAsListInit("AltOrders");
    724   Orders.resize(1 + AltOrders->size());
    725 
    726   // Default allocation order always contains all registers.
    727   for (unsigned i = 0, e = Elements->size(); i != e; ++i) {
    728     Orders[0].push_back((*Elements)[i]);
    729     const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]);
    730     Members.insert(Reg);
    731     TopoSigs.set(Reg->getTopoSig());
    732   }
    733 
    734   // Alternative allocation orders may be subsets.
    735   SetTheory::RecSet Order;
    736   for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) {
    737     RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc());
    738     Orders[1 + i].append(Order.begin(), Order.end());
    739     // Verify that all altorder members are regclass members.
    740     while (!Order.empty()) {
    741       CodeGenRegister *Reg = RegBank.getReg(Order.back());
    742       Order.pop_back();
    743       if (!contains(Reg))
    744         PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() +
    745                       " is not a class member");
    746     }
    747   }
    748 
    749   // Allow targets to override the size in bits of the RegisterClass.
    750   unsigned Size = R->getValueAsInt("Size");
    751 
    752   Namespace = R->getValueAsString("Namespace");
    753   SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits();
    754   SpillAlignment = R->getValueAsInt("Alignment");
    755   CopyCost = R->getValueAsInt("CopyCost");
    756   Allocatable = R->getValueAsBit("isAllocatable");
    757   AltOrderSelect = R->getValueAsString("AltOrderSelect");
    758 }
    759 
    760 // Create an inferred register class that was missing from the .td files.
    761 // Most properties will be inherited from the closest super-class after the
    762 // class structure has been computed.
    763 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank,
    764                                            StringRef Name, Key Props)
    765   : Members(*Props.Members),
    766     TheDef(0),
    767     Name(Name),
    768     TopoSigs(RegBank.getNumTopoSigs()),
    769     EnumValue(-1),
    770     SpillSize(Props.SpillSize),
    771     SpillAlignment(Props.SpillAlignment),
    772     CopyCost(0),
    773     Allocatable(true) {
    774   for (CodeGenRegister::Set::iterator I = Members.begin(), E = Members.end();
    775        I != E; ++I)
    776     TopoSigs.set((*I)->getTopoSig());
    777 }
    778 
    779 // Compute inherited propertied for a synthesized register class.
    780 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) {
    781   assert(!getDef() && "Only synthesized classes can inherit properties");
    782   assert(!SuperClasses.empty() && "Synthesized class without super class");
    783 
    784   // The last super-class is the smallest one.
    785   CodeGenRegisterClass &Super = *SuperClasses.back();
    786 
    787   // Most properties are copied directly.
    788   // Exceptions are members, size, and alignment
    789   Namespace = Super.Namespace;
    790   VTs = Super.VTs;
    791   CopyCost = Super.CopyCost;
    792   Allocatable = Super.Allocatable;
    793   AltOrderSelect = Super.AltOrderSelect;
    794 
    795   // Copy all allocation orders, filter out foreign registers from the larger
    796   // super-class.
    797   Orders.resize(Super.Orders.size());
    798   for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i)
    799     for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j)
    800       if (contains(RegBank.getReg(Super.Orders[i][j])))
    801         Orders[i].push_back(Super.Orders[i][j]);
    802 }
    803 
    804 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const {
    805   return Members.count(Reg);
    806 }
    807 
    808 namespace llvm {
    809   raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) {
    810     OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment;
    811     for (CodeGenRegister::Set::const_iterator I = K.Members->begin(),
    812          E = K.Members->end(); I != E; ++I)
    813       OS << ", " << (*I)->getName();
    814     return OS << " }";
    815   }
    816 }
    817 
    818 // This is a simple lexicographical order that can be used to search for sets.
    819 // It is not the same as the topological order provided by TopoOrderRC.
    820 bool CodeGenRegisterClass::Key::
    821 operator<(const CodeGenRegisterClass::Key &B) const {
    822   assert(Members && B.Members);
    823   if (*Members != *B.Members)
    824     return *Members < *B.Members;
    825   if (SpillSize != B.SpillSize)
    826     return SpillSize < B.SpillSize;
    827   return SpillAlignment < B.SpillAlignment;
    828 }
    829 
    830 // Returns true if RC is a strict subclass.
    831 // RC is a sub-class of this class if it is a valid replacement for any
    832 // instruction operand where a register of this classis required. It must
    833 // satisfy these conditions:
    834 //
    835 // 1. All RC registers are also in this.
    836 // 2. The RC spill size must not be smaller than our spill size.
    837 // 3. RC spill alignment must be compatible with ours.
    838 //
    839 static bool testSubClass(const CodeGenRegisterClass *A,
    840                          const CodeGenRegisterClass *B) {
    841   return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 &&
    842     A->SpillSize <= B->SpillSize &&
    843     std::includes(A->getMembers().begin(), A->getMembers().end(),
    844                   B->getMembers().begin(), B->getMembers().end(),
    845                   CodeGenRegister::Less());
    846 }
    847 
    848 /// Sorting predicate for register classes.  This provides a topological
    849 /// ordering that arranges all register classes before their sub-classes.
    850 ///
    851 /// Register classes with the same registers, spill size, and alignment form a
    852 /// clique.  They will be ordered alphabetically.
    853 ///
    854 static int TopoOrderRC(const void *PA, const void *PB) {
    855   const CodeGenRegisterClass *A = *(const CodeGenRegisterClass* const*)PA;
    856   const CodeGenRegisterClass *B = *(const CodeGenRegisterClass* const*)PB;
    857   if (A == B)
    858     return 0;
    859 
    860   // Order by ascending spill size.
    861   if (A->SpillSize < B->SpillSize)
    862     return -1;
    863   if (A->SpillSize > B->SpillSize)
    864     return 1;
    865 
    866   // Order by ascending spill alignment.
    867   if (A->SpillAlignment < B->SpillAlignment)
    868     return -1;
    869   if (A->SpillAlignment > B->SpillAlignment)
    870     return 1;
    871 
    872   // Order by descending set size.  Note that the classes' allocation order may
    873   // not have been computed yet.  The Members set is always vaild.
    874   if (A->getMembers().size() > B->getMembers().size())
    875     return -1;
    876   if (A->getMembers().size() < B->getMembers().size())
    877     return 1;
    878 
    879   // Finally order by name as a tie breaker.
    880   return StringRef(A->getName()).compare(B->getName());
    881 }
    882 
    883 std::string CodeGenRegisterClass::getQualifiedName() const {
    884   if (Namespace.empty())
    885     return getName();
    886   else
    887     return Namespace + "::" + getName();
    888 }
    889 
    890 // Compute sub-classes of all register classes.
    891 // Assume the classes are ordered topologically.
    892 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) {
    893   ArrayRef<CodeGenRegisterClass*> RegClasses = RegBank.getRegClasses();
    894 
    895   // Visit backwards so sub-classes are seen first.
    896   for (unsigned rci = RegClasses.size(); rci; --rci) {
    897     CodeGenRegisterClass &RC = *RegClasses[rci - 1];
    898     RC.SubClasses.resize(RegClasses.size());
    899     RC.SubClasses.set(RC.EnumValue);
    900 
    901     // Normally, all subclasses have IDs >= rci, unless RC is part of a clique.
    902     for (unsigned s = rci; s != RegClasses.size(); ++s) {
    903       if (RC.SubClasses.test(s))
    904         continue;
    905       CodeGenRegisterClass *SubRC = RegClasses[s];
    906       if (!testSubClass(&RC, SubRC))
    907         continue;
    908       // SubRC is a sub-class. Grap all its sub-classes so we won't have to
    909       // check them again.
    910       RC.SubClasses |= SubRC->SubClasses;
    911     }
    912 
    913     // Sweep up missed clique members.  They will be immediately preceding RC.
    914     for (unsigned s = rci - 1; s && testSubClass(&RC, RegClasses[s - 1]); --s)
    915       RC.SubClasses.set(s - 1);
    916   }
    917 
    918   // Compute the SuperClasses lists from the SubClasses vectors.
    919   for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
    920     const BitVector &SC = RegClasses[rci]->getSubClasses();
    921     for (int s = SC.find_first(); s >= 0; s = SC.find_next(s)) {
    922       if (unsigned(s) == rci)
    923         continue;
    924       RegClasses[s]->SuperClasses.push_back(RegClasses[rci]);
    925     }
    926   }
    927 
    928   // With the class hierarchy in place, let synthesized register classes inherit
    929   // properties from their closest super-class. The iteration order here can
    930   // propagate properties down multiple levels.
    931   for (unsigned rci = 0; rci != RegClasses.size(); ++rci)
    932     if (!RegClasses[rci]->getDef())
    933       RegClasses[rci]->inheritProperties(RegBank);
    934 }
    935 
    936 void
    937 CodeGenRegisterClass::getSuperRegClasses(CodeGenSubRegIndex *SubIdx,
    938                                          BitVector &Out) const {
    939   DenseMap<CodeGenSubRegIndex*,
    940            SmallPtrSet<CodeGenRegisterClass*, 8> >::const_iterator
    941     FindI = SuperRegClasses.find(SubIdx);
    942   if (FindI == SuperRegClasses.end())
    943     return;
    944   for (SmallPtrSet<CodeGenRegisterClass*, 8>::const_iterator I =
    945        FindI->second.begin(), E = FindI->second.end(); I != E; ++I)
    946     Out.set((*I)->EnumValue);
    947 }
    948 
    949 // Populate a unique sorted list of units from a register set.
    950 void CodeGenRegisterClass::buildRegUnitSet(
    951   std::vector<unsigned> &RegUnits) const {
    952   std::vector<unsigned> TmpUnits;
    953   for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI)
    954     TmpUnits.push_back(*UnitI);
    955   std::sort(TmpUnits.begin(), TmpUnits.end());
    956   std::unique_copy(TmpUnits.begin(), TmpUnits.end(),
    957                    std::back_inserter(RegUnits));
    958 }
    959 
    960 //===----------------------------------------------------------------------===//
    961 //                               CodeGenRegBank
    962 //===----------------------------------------------------------------------===//
    963 
    964 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) {
    965   // Configure register Sets to understand register classes and tuples.
    966   Sets.addFieldExpander("RegisterClass", "MemberList");
    967   Sets.addFieldExpander("CalleeSavedRegs", "SaveList");
    968   Sets.addExpander("RegisterTuples", new TupleExpander());
    969 
    970   // Read in the user-defined (named) sub-register indices.
    971   // More indices will be synthesized later.
    972   std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex");
    973   std::sort(SRIs.begin(), SRIs.end(), LessRecord());
    974   for (unsigned i = 0, e = SRIs.size(); i != e; ++i)
    975     getSubRegIdx(SRIs[i]);
    976   // Build composite maps from ComposedOf fields.
    977   for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i)
    978     SubRegIndices[i]->updateComponents(*this);
    979 
    980   // Read in the register definitions.
    981   std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
    982   std::sort(Regs.begin(), Regs.end(), LessRecord());
    983   Registers.reserve(Regs.size());
    984   // Assign the enumeration values.
    985   for (unsigned i = 0, e = Regs.size(); i != e; ++i)
    986     getReg(Regs[i]);
    987 
    988   // Expand tuples and number the new registers.
    989   std::vector<Record*> Tups =
    990     Records.getAllDerivedDefinitions("RegisterTuples");
    991   for (unsigned i = 0, e = Tups.size(); i != e; ++i) {
    992     const std::vector<Record*> *TupRegs = Sets.expand(Tups[i]);
    993     for (unsigned j = 0, je = TupRegs->size(); j != je; ++j)
    994       getReg((*TupRegs)[j]);
    995   }
    996 
    997   // Now all the registers are known. Build the object graph of explicit
    998   // register-register references.
    999   for (unsigned i = 0, e = Registers.size(); i != e; ++i)
   1000     Registers[i]->buildObjectGraph(*this);
   1001 
   1002   // Compute register name map.
   1003   for (unsigned i = 0, e = Registers.size(); i != e; ++i)
   1004     RegistersByName.GetOrCreateValue(
   1005                        Registers[i]->TheDef->getValueAsString("AsmName"),
   1006                        Registers[i]);
   1007 
   1008   // Precompute all sub-register maps.
   1009   // This will create Composite entries for all inferred sub-register indices.
   1010   for (unsigned i = 0, e = Registers.size(); i != e; ++i)
   1011     Registers[i]->computeSubRegs(*this);
   1012 
   1013   // Infer even more sub-registers by combining leading super-registers.
   1014   for (unsigned i = 0, e = Registers.size(); i != e; ++i)
   1015     if (Registers[i]->CoveredBySubRegs)
   1016       Registers[i]->computeSecondarySubRegs(*this);
   1017 
   1018   // After the sub-register graph is complete, compute the topologically
   1019   // ordered SuperRegs list.
   1020   for (unsigned i = 0, e = Registers.size(); i != e; ++i)
   1021     Registers[i]->computeSuperRegs(*this);
   1022 
   1023   // Native register units are associated with a leaf register. They've all been
   1024   // discovered now.
   1025   NumNativeRegUnits = RegUnits.size();
   1026 
   1027   // Read in register class definitions.
   1028   std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass");
   1029   if (RCs.empty())
   1030     PrintFatalError(std::string("No 'RegisterClass' subclasses defined!"));
   1031 
   1032   // Allocate user-defined register classes.
   1033   RegClasses.reserve(RCs.size());
   1034   for (unsigned i = 0, e = RCs.size(); i != e; ++i)
   1035     addToMaps(new CodeGenRegisterClass(*this, RCs[i]));
   1036 
   1037   // Infer missing classes to create a full algebra.
   1038   computeInferredRegisterClasses();
   1039 
   1040   // Order register classes topologically and assign enum values.
   1041   array_pod_sort(RegClasses.begin(), RegClasses.end(), TopoOrderRC);
   1042   for (unsigned i = 0, e = RegClasses.size(); i != e; ++i)
   1043     RegClasses[i]->EnumValue = i;
   1044   CodeGenRegisterClass::computeSubClasses(*this);
   1045 }
   1046 
   1047 // Create a synthetic CodeGenSubRegIndex without a corresponding Record.
   1048 CodeGenSubRegIndex*
   1049 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) {
   1050   CodeGenSubRegIndex *Idx = new CodeGenSubRegIndex(Name, Namespace,
   1051                                                    SubRegIndices.size() + 1);
   1052   SubRegIndices.push_back(Idx);
   1053   return Idx;
   1054 }
   1055 
   1056 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) {
   1057   CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def];
   1058   if (Idx)
   1059     return Idx;
   1060   Idx = new CodeGenSubRegIndex(Def, SubRegIndices.size() + 1);
   1061   SubRegIndices.push_back(Idx);
   1062   return Idx;
   1063 }
   1064 
   1065 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) {
   1066   CodeGenRegister *&Reg = Def2Reg[Def];
   1067   if (Reg)
   1068     return Reg;
   1069   Reg = new CodeGenRegister(Def, Registers.size() + 1);
   1070   Registers.push_back(Reg);
   1071   return Reg;
   1072 }
   1073 
   1074 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) {
   1075   RegClasses.push_back(RC);
   1076 
   1077   if (Record *Def = RC->getDef())
   1078     Def2RC.insert(std::make_pair(Def, RC));
   1079 
   1080   // Duplicate classes are rejected by insert().
   1081   // That's OK, we only care about the properties handled by CGRC::Key.
   1082   CodeGenRegisterClass::Key K(*RC);
   1083   Key2RC.insert(std::make_pair(K, RC));
   1084 }
   1085 
   1086 // Create a synthetic sub-class if it is missing.
   1087 CodeGenRegisterClass*
   1088 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC,
   1089                                     const CodeGenRegister::Set *Members,
   1090                                     StringRef Name) {
   1091   // Synthetic sub-class has the same size and alignment as RC.
   1092   CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment);
   1093   RCKeyMap::const_iterator FoundI = Key2RC.find(K);
   1094   if (FoundI != Key2RC.end())
   1095     return FoundI->second;
   1096 
   1097   // Sub-class doesn't exist, create a new one.
   1098   CodeGenRegisterClass *NewRC = new CodeGenRegisterClass(*this, Name, K);
   1099   addToMaps(NewRC);
   1100   return NewRC;
   1101 }
   1102 
   1103 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) {
   1104   if (CodeGenRegisterClass *RC = Def2RC[Def])
   1105     return RC;
   1106 
   1107   PrintFatalError(Def->getLoc(), "Not a known RegisterClass!");
   1108 }
   1109 
   1110 CodeGenSubRegIndex*
   1111 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A,
   1112                                         CodeGenSubRegIndex *B) {
   1113   // Look for an existing entry.
   1114   CodeGenSubRegIndex *Comp = A->compose(B);
   1115   if (Comp)
   1116     return Comp;
   1117 
   1118   // None exists, synthesize one.
   1119   std::string Name = A->getName() + "_then_" + B->getName();
   1120   Comp = createSubRegIndex(Name, A->getNamespace());
   1121   A->addComposite(B, Comp);
   1122   return Comp;
   1123 }
   1124 
   1125 CodeGenSubRegIndex *CodeGenRegBank::
   1126 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex*, 8> &Parts) {
   1127   assert(Parts.size() > 1 && "Need two parts to concatenate");
   1128 
   1129   // Look for an existing entry.
   1130   CodeGenSubRegIndex *&Idx = ConcatIdx[Parts];
   1131   if (Idx)
   1132     return Idx;
   1133 
   1134   // None exists, synthesize one.
   1135   std::string Name = Parts.front()->getName();
   1136   for (unsigned i = 1, e = Parts.size(); i != e; ++i) {
   1137     Name += '_';
   1138     Name += Parts[i]->getName();
   1139   }
   1140   return Idx = createSubRegIndex(Name, Parts.front()->getNamespace());
   1141 }
   1142 
   1143 void CodeGenRegBank::computeComposites() {
   1144   // Keep track of TopoSigs visited. We only need to visit each TopoSig once,
   1145   // and many registers will share TopoSigs on regular architectures.
   1146   BitVector TopoSigs(getNumTopoSigs());
   1147 
   1148   for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
   1149     CodeGenRegister *Reg1 = Registers[i];
   1150 
   1151     // Skip identical subreg structures already processed.
   1152     if (TopoSigs.test(Reg1->getTopoSig()))
   1153       continue;
   1154     TopoSigs.set(Reg1->getTopoSig());
   1155 
   1156     const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs();
   1157     for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(),
   1158          e1 = SRM1.end(); i1 != e1; ++i1) {
   1159       CodeGenSubRegIndex *Idx1 = i1->first;
   1160       CodeGenRegister *Reg2 = i1->second;
   1161       // Ignore identity compositions.
   1162       if (Reg1 == Reg2)
   1163         continue;
   1164       const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs();
   1165       // Try composing Idx1 with another SubRegIndex.
   1166       for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(),
   1167            e2 = SRM2.end(); i2 != e2; ++i2) {
   1168         CodeGenSubRegIndex *Idx2 = i2->first;
   1169         CodeGenRegister *Reg3 = i2->second;
   1170         // Ignore identity compositions.
   1171         if (Reg2 == Reg3)
   1172           continue;
   1173         // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3.
   1174         CodeGenSubRegIndex *Idx3 = Reg1->getSubRegIndex(Reg3);
   1175         assert(Idx3 && "Sub-register doesn't have an index");
   1176 
   1177         // Conflicting composition? Emit a warning but allow it.
   1178         if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3))
   1179           PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() +
   1180                        " and " + Idx2->getQualifiedName() +
   1181                        " compose ambiguously as " + Prev->getQualifiedName() +
   1182                        " or " + Idx3->getQualifiedName());
   1183       }
   1184     }
   1185   }
   1186 }
   1187 
   1188 // Compute lane masks. This is similar to register units, but at the
   1189 // sub-register index level. Each bit in the lane mask is like a register unit
   1190 // class, and two lane masks will have a bit in common if two sub-register
   1191 // indices overlap in some register.
   1192 //
   1193 // Conservatively share a lane mask bit if two sub-register indices overlap in
   1194 // some registers, but not in others. That shouldn't happen a lot.
   1195 void CodeGenRegBank::computeSubRegIndexLaneMasks() {
   1196   // First assign individual bits to all the leaf indices.
   1197   unsigned Bit = 0;
   1198   for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) {
   1199     CodeGenSubRegIndex *Idx = SubRegIndices[i];
   1200     if (Idx->getComposites().empty()) {
   1201       Idx->LaneMask = 1u << Bit;
   1202       // Share bit 31 in the unlikely case there are more than 32 leafs.
   1203       //
   1204       // Sharing bits is harmless; it allows graceful degradation in targets
   1205       // with more than 32 vector lanes. They simply get a limited resolution
   1206       // view of lanes beyond the 32nd.
   1207       //
   1208       // See also the comment for getSubRegIndexLaneMask().
   1209       if (Bit < 31) ++Bit;
   1210     } else {
   1211       Idx->LaneMask = 0;
   1212     }
   1213   }
   1214 
   1215   // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented
   1216   // by the sub-register graph? This doesn't occur in any known targets.
   1217 
   1218   // Inherit lanes from composites.
   1219   for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i)
   1220     SubRegIndices[i]->computeLaneMask();
   1221 }
   1222 
   1223 namespace {
   1224 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is
   1225 // the transitive closure of the union of overlapping register
   1226 // classes. Together, the UberRegSets form a partition of the registers. If we
   1227 // consider overlapping register classes to be connected, then each UberRegSet
   1228 // is a set of connected components.
   1229 //
   1230 // An UberRegSet will likely be a horizontal slice of register names of
   1231 // the same width. Nontrivial subregisters should then be in a separate
   1232 // UberRegSet. But this property isn't required for valid computation of
   1233 // register unit weights.
   1234 //
   1235 // A Weight field caches the max per-register unit weight in each UberRegSet.
   1236 //
   1237 // A set of SingularDeterminants flags single units of some register in this set
   1238 // for which the unit weight equals the set weight. These units should not have
   1239 // their weight increased.
   1240 struct UberRegSet {
   1241   CodeGenRegister::Set Regs;
   1242   unsigned Weight;
   1243   CodeGenRegister::RegUnitList SingularDeterminants;
   1244 
   1245   UberRegSet(): Weight(0) {}
   1246 };
   1247 } // namespace
   1248 
   1249 // Partition registers into UberRegSets, where each set is the transitive
   1250 // closure of the union of overlapping register classes.
   1251 //
   1252 // UberRegSets[0] is a special non-allocatable set.
   1253 static void computeUberSets(std::vector<UberRegSet> &UberSets,
   1254                             std::vector<UberRegSet*> &RegSets,
   1255                             CodeGenRegBank &RegBank) {
   1256 
   1257   const std::vector<CodeGenRegister*> &Registers = RegBank.getRegisters();
   1258 
   1259   // The Register EnumValue is one greater than its index into Registers.
   1260   assert(Registers.size() == Registers[Registers.size()-1]->EnumValue &&
   1261          "register enum value mismatch");
   1262 
   1263   // For simplicitly make the SetID the same as EnumValue.
   1264   IntEqClasses UberSetIDs(Registers.size()+1);
   1265   std::set<unsigned> AllocatableRegs;
   1266   for (unsigned i = 0, e = RegBank.getRegClasses().size(); i != e; ++i) {
   1267 
   1268     CodeGenRegisterClass *RegClass = RegBank.getRegClasses()[i];
   1269     if (!RegClass->Allocatable)
   1270       continue;
   1271 
   1272     const CodeGenRegister::Set &Regs = RegClass->getMembers();
   1273     if (Regs.empty())
   1274       continue;
   1275 
   1276     unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue);
   1277     assert(USetID && "register number 0 is invalid");
   1278 
   1279     AllocatableRegs.insert((*Regs.begin())->EnumValue);
   1280     for (CodeGenRegister::Set::const_iterator I = llvm::next(Regs.begin()),
   1281            E = Regs.end(); I != E; ++I) {
   1282       AllocatableRegs.insert((*I)->EnumValue);
   1283       UberSetIDs.join(USetID, (*I)->EnumValue);
   1284     }
   1285   }
   1286   // Combine non-allocatable regs.
   1287   for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
   1288     unsigned RegNum = Registers[i]->EnumValue;
   1289     if (AllocatableRegs.count(RegNum))
   1290       continue;
   1291 
   1292     UberSetIDs.join(0, RegNum);
   1293   }
   1294   UberSetIDs.compress();
   1295 
   1296   // Make the first UberSet a special unallocatable set.
   1297   unsigned ZeroID = UberSetIDs[0];
   1298 
   1299   // Insert Registers into the UberSets formed by union-find.
   1300   // Do not resize after this.
   1301   UberSets.resize(UberSetIDs.getNumClasses());
   1302   for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
   1303     const CodeGenRegister *Reg = Registers[i];
   1304     unsigned USetID = UberSetIDs[Reg->EnumValue];
   1305     if (!USetID)
   1306       USetID = ZeroID;
   1307     else if (USetID == ZeroID)
   1308       USetID = 0;
   1309 
   1310     UberRegSet *USet = &UberSets[USetID];
   1311     USet->Regs.insert(Reg);
   1312     RegSets[i] = USet;
   1313   }
   1314 }
   1315 
   1316 // Recompute each UberSet weight after changing unit weights.
   1317 static void computeUberWeights(std::vector<UberRegSet> &UberSets,
   1318                                CodeGenRegBank &RegBank) {
   1319   // Skip the first unallocatable set.
   1320   for (std::vector<UberRegSet>::iterator I = llvm::next(UberSets.begin()),
   1321          E = UberSets.end(); I != E; ++I) {
   1322 
   1323     // Initialize all unit weights in this set, and remember the max units/reg.
   1324     const CodeGenRegister *Reg = 0;
   1325     unsigned MaxWeight = 0, Weight = 0;
   1326     for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) {
   1327       if (Reg != UnitI.getReg()) {
   1328         if (Weight > MaxWeight)
   1329           MaxWeight = Weight;
   1330         Reg = UnitI.getReg();
   1331         Weight = 0;
   1332       }
   1333       unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight;
   1334       if (!UWeight) {
   1335         UWeight = 1;
   1336         RegBank.increaseRegUnitWeight(*UnitI, UWeight);
   1337       }
   1338       Weight += UWeight;
   1339     }
   1340     if (Weight > MaxWeight)
   1341       MaxWeight = Weight;
   1342 
   1343     // Update the set weight.
   1344     I->Weight = MaxWeight;
   1345 
   1346     // Find singular determinants.
   1347     for (CodeGenRegister::Set::iterator RegI = I->Regs.begin(),
   1348            RegE = I->Regs.end(); RegI != RegE; ++RegI) {
   1349       if ((*RegI)->getRegUnits().size() == 1
   1350           && (*RegI)->getWeight(RegBank) == I->Weight)
   1351         mergeRegUnits(I->SingularDeterminants, (*RegI)->getRegUnits());
   1352     }
   1353   }
   1354 }
   1355 
   1356 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of
   1357 // a register and its subregisters so that they have the same weight as their
   1358 // UberSet. Self-recursion processes the subregister tree in postorder so
   1359 // subregisters are normalized first.
   1360 //
   1361 // Side effects:
   1362 // - creates new adopted register units
   1363 // - causes superregisters to inherit adopted units
   1364 // - increases the weight of "singular" units
   1365 // - induces recomputation of UberWeights.
   1366 static bool normalizeWeight(CodeGenRegister *Reg,
   1367                             std::vector<UberRegSet> &UberSets,
   1368                             std::vector<UberRegSet*> &RegSets,
   1369                             std::set<unsigned> &NormalRegs,
   1370                             CodeGenRegister::RegUnitList &NormalUnits,
   1371                             CodeGenRegBank &RegBank) {
   1372   bool Changed = false;
   1373   if (!NormalRegs.insert(Reg->EnumValue).second)
   1374     return Changed;
   1375 
   1376   const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs();
   1377   for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(),
   1378          SRE = SRM.end(); SRI != SRE; ++SRI) {
   1379     if (SRI->second == Reg)
   1380       continue; // self-cycles happen
   1381 
   1382     Changed |= normalizeWeight(SRI->second, UberSets, RegSets,
   1383                                NormalRegs, NormalUnits, RegBank);
   1384   }
   1385   // Postorder register normalization.
   1386 
   1387   // Inherit register units newly adopted by subregisters.
   1388   if (Reg->inheritRegUnits(RegBank))
   1389     computeUberWeights(UberSets, RegBank);
   1390 
   1391   // Check if this register is too skinny for its UberRegSet.
   1392   UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)];
   1393 
   1394   unsigned RegWeight = Reg->getWeight(RegBank);
   1395   if (UberSet->Weight > RegWeight) {
   1396     // A register unit's weight can be adjusted only if it is the singular unit
   1397     // for this register, has not been used to normalize a subregister's set,
   1398     // and has not already been used to singularly determine this UberRegSet.
   1399     unsigned AdjustUnit = Reg->getRegUnits().front();
   1400     if (Reg->getRegUnits().size() != 1
   1401         || hasRegUnit(NormalUnits, AdjustUnit)
   1402         || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) {
   1403       // We don't have an adjustable unit, so adopt a new one.
   1404       AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight);
   1405       Reg->adoptRegUnit(AdjustUnit);
   1406       // Adopting a unit does not immediately require recomputing set weights.
   1407     }
   1408     else {
   1409       // Adjust the existing single unit.
   1410       RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight);
   1411       // The unit may be shared among sets and registers within this set.
   1412       computeUberWeights(UberSets, RegBank);
   1413     }
   1414     Changed = true;
   1415   }
   1416 
   1417   // Mark these units normalized so superregisters can't change their weights.
   1418   mergeRegUnits(NormalUnits, Reg->getRegUnits());
   1419 
   1420   return Changed;
   1421 }
   1422 
   1423 // Compute a weight for each register unit created during getSubRegs.
   1424 //
   1425 // The goal is that two registers in the same class will have the same weight,
   1426 // where each register's weight is defined as sum of its units' weights.
   1427 void CodeGenRegBank::computeRegUnitWeights() {
   1428   std::vector<UberRegSet> UberSets;
   1429   std::vector<UberRegSet*> RegSets(Registers.size());
   1430   computeUberSets(UberSets, RegSets, *this);
   1431   // UberSets and RegSets are now immutable.
   1432 
   1433   computeUberWeights(UberSets, *this);
   1434 
   1435   // Iterate over each Register, normalizing the unit weights until reaching
   1436   // a fix point.
   1437   unsigned NumIters = 0;
   1438   for (bool Changed = true; Changed; ++NumIters) {
   1439     assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights");
   1440     Changed = false;
   1441     for (unsigned i = 0, e = Registers.size(); i != e; ++i) {
   1442       CodeGenRegister::RegUnitList NormalUnits;
   1443       std::set<unsigned> NormalRegs;
   1444       Changed |= normalizeWeight(Registers[i], UberSets, RegSets,
   1445                                  NormalRegs, NormalUnits, *this);
   1446     }
   1447   }
   1448 }
   1449 
   1450 // Find a set in UniqueSets with the same elements as Set.
   1451 // Return an iterator into UniqueSets.
   1452 static std::vector<RegUnitSet>::const_iterator
   1453 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets,
   1454                const RegUnitSet &Set) {
   1455   std::vector<RegUnitSet>::const_iterator
   1456     I = UniqueSets.begin(), E = UniqueSets.end();
   1457   for(;I != E; ++I) {
   1458     if (I->Units == Set.Units)
   1459       break;
   1460   }
   1461   return I;
   1462 }
   1463 
   1464 // Return true if the RUSubSet is a subset of RUSuperSet.
   1465 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet,
   1466                             const std::vector<unsigned> &RUSuperSet) {
   1467   return std::includes(RUSuperSet.begin(), RUSuperSet.end(),
   1468                        RUSubSet.begin(), RUSubSet.end());
   1469 }
   1470 
   1471 // Iteratively prune unit sets.
   1472 void CodeGenRegBank::pruneUnitSets() {
   1473   assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets");
   1474 
   1475   // Form an equivalence class of UnitSets with no significant difference.
   1476   std::vector<unsigned> SuperSetIDs;
   1477   for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size();
   1478        SubIdx != EndIdx; ++SubIdx) {
   1479     const RegUnitSet &SubSet = RegUnitSets[SubIdx];
   1480     unsigned SuperIdx = 0;
   1481     for (; SuperIdx != EndIdx; ++SuperIdx) {
   1482       if (SuperIdx == SubIdx)
   1483         continue;
   1484 
   1485       const RegUnitSet &SuperSet = RegUnitSets[SuperIdx];
   1486       if (isRegUnitSubSet(SubSet.Units, SuperSet.Units)
   1487           && (SubSet.Units.size() + 3 > SuperSet.Units.size())) {
   1488         break;
   1489       }
   1490     }
   1491     if (SuperIdx == EndIdx)
   1492       SuperSetIDs.push_back(SubIdx);
   1493   }
   1494   // Populate PrunedUnitSets with each equivalence class's superset.
   1495   std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size());
   1496   for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) {
   1497     unsigned SuperIdx = SuperSetIDs[i];
   1498     PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name;
   1499     PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units);
   1500   }
   1501   RegUnitSets.swap(PrunedUnitSets);
   1502 }
   1503 
   1504 // Create a RegUnitSet for each RegClass that contains all units in the class
   1505 // including adopted units that are necessary to model register pressure. Then
   1506 // iteratively compute RegUnitSets such that the union of any two overlapping
   1507 // RegUnitSets is repreresented.
   1508 //
   1509 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any
   1510 // RegUnitSet that is a superset of that RegUnitClass.
   1511 void CodeGenRegBank::computeRegUnitSets() {
   1512 
   1513   // Compute a unique RegUnitSet for each RegClass.
   1514   const ArrayRef<CodeGenRegisterClass*> &RegClasses = getRegClasses();
   1515   unsigned NumRegClasses = RegClasses.size();
   1516   for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
   1517     if (!RegClasses[RCIdx]->Allocatable)
   1518       continue;
   1519 
   1520     // Speculatively grow the RegUnitSets to hold the new set.
   1521     RegUnitSets.resize(RegUnitSets.size() + 1);
   1522     RegUnitSets.back().Name = RegClasses[RCIdx]->getName();
   1523 
   1524     // Compute a sorted list of units in this class.
   1525     RegClasses[RCIdx]->buildRegUnitSet(RegUnitSets.back().Units);
   1526 
   1527     // Find an existing RegUnitSet.
   1528     std::vector<RegUnitSet>::const_iterator SetI =
   1529       findRegUnitSet(RegUnitSets, RegUnitSets.back());
   1530     if (SetI != llvm::prior(RegUnitSets.end()))
   1531       RegUnitSets.pop_back();
   1532   }
   1533 
   1534   // Iteratively prune unit sets.
   1535   pruneUnitSets();
   1536 
   1537   // Iterate over all unit sets, including new ones added by this loop.
   1538   unsigned NumRegUnitSubSets = RegUnitSets.size();
   1539   for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) {
   1540     // In theory, this is combinatorial. In practice, it needs to be bounded
   1541     // by a small number of sets for regpressure to be efficient.
   1542     // If the assert is hit, we need to implement pruning.
   1543     assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference");
   1544 
   1545     // Compare new sets with all original classes.
   1546     for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1;
   1547          SearchIdx != EndIdx; ++SearchIdx) {
   1548       std::set<unsigned> Intersection;
   1549       std::set_intersection(RegUnitSets[Idx].Units.begin(),
   1550                             RegUnitSets[Idx].Units.end(),
   1551                             RegUnitSets[SearchIdx].Units.begin(),
   1552                             RegUnitSets[SearchIdx].Units.end(),
   1553                             std::inserter(Intersection, Intersection.begin()));
   1554       if (Intersection.empty())
   1555         continue;
   1556 
   1557       // Speculatively grow the RegUnitSets to hold the new set.
   1558       RegUnitSets.resize(RegUnitSets.size() + 1);
   1559       RegUnitSets.back().Name =
   1560         RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name;
   1561 
   1562       std::set_union(RegUnitSets[Idx].Units.begin(),
   1563                      RegUnitSets[Idx].Units.end(),
   1564                      RegUnitSets[SearchIdx].Units.begin(),
   1565                      RegUnitSets[SearchIdx].Units.end(),
   1566                      std::inserter(RegUnitSets.back().Units,
   1567                                    RegUnitSets.back().Units.begin()));
   1568 
   1569       // Find an existing RegUnitSet, or add the union to the unique sets.
   1570       std::vector<RegUnitSet>::const_iterator SetI =
   1571         findRegUnitSet(RegUnitSets, RegUnitSets.back());
   1572       if (SetI != llvm::prior(RegUnitSets.end()))
   1573         RegUnitSets.pop_back();
   1574     }
   1575   }
   1576 
   1577   // Iteratively prune unit sets after inferring supersets.
   1578   pruneUnitSets();
   1579 
   1580   // For each register class, list the UnitSets that are supersets.
   1581   RegClassUnitSets.resize(NumRegClasses);
   1582   for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) {
   1583     if (!RegClasses[RCIdx]->Allocatable)
   1584       continue;
   1585 
   1586     // Recompute the sorted list of units in this class.
   1587     std::vector<unsigned> RegUnits;
   1588     RegClasses[RCIdx]->buildRegUnitSet(RegUnits);
   1589 
   1590     // Don't increase pressure for unallocatable regclasses.
   1591     if (RegUnits.empty())
   1592       continue;
   1593 
   1594     // Find all supersets.
   1595     for (unsigned USIdx = 0, USEnd = RegUnitSets.size();
   1596          USIdx != USEnd; ++USIdx) {
   1597       if (isRegUnitSubSet(RegUnits, RegUnitSets[USIdx].Units))
   1598         RegClassUnitSets[RCIdx].push_back(USIdx);
   1599     }
   1600     assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass");
   1601   }
   1602 
   1603   // For each register unit, ensure that we have the list of UnitSets that
   1604   // contain the unit. Normally, this matches an existing list of UnitSets for a
   1605   // register class. If not, we create a new entry in RegClassUnitSets as a
   1606   // "fake" register class.
   1607   for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits;
   1608        UnitIdx < UnitEnd; ++UnitIdx) {
   1609     std::vector<unsigned> RUSets;
   1610     for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) {
   1611       RegUnitSet &RUSet = RegUnitSets[i];
   1612       if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx)
   1613           == RUSet.Units.end())
   1614         continue;
   1615       RUSets.push_back(i);
   1616     }
   1617     unsigned RCUnitSetsIdx = 0;
   1618     for (unsigned e = RegClassUnitSets.size();
   1619          RCUnitSetsIdx != e; ++RCUnitSetsIdx) {
   1620       if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) {
   1621         break;
   1622       }
   1623     }
   1624     RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx;
   1625     if (RCUnitSetsIdx == RegClassUnitSets.size()) {
   1626       // Create a new list of UnitSets as a "fake" register class.
   1627       RegClassUnitSets.resize(RCUnitSetsIdx + 1);
   1628       RegClassUnitSets[RCUnitSetsIdx].swap(RUSets);
   1629     }
   1630   }
   1631 }
   1632 
   1633 void CodeGenRegBank::computeDerivedInfo() {
   1634   computeComposites();
   1635   computeSubRegIndexLaneMasks();
   1636 
   1637   // Compute a weight for each register unit created during getSubRegs.
   1638   // This may create adopted register units (with unit # >= NumNativeRegUnits).
   1639   computeRegUnitWeights();
   1640 
   1641   // Compute a unique set of RegUnitSets. One for each RegClass and inferred
   1642   // supersets for the union of overlapping sets.
   1643   computeRegUnitSets();
   1644 }
   1645 
   1646 //
   1647 // Synthesize missing register class intersections.
   1648 //
   1649 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X)
   1650 // returns a maximal register class for all X.
   1651 //
   1652 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) {
   1653   for (unsigned rci = 0, rce = RegClasses.size(); rci != rce; ++rci) {
   1654     CodeGenRegisterClass *RC1 = RC;
   1655     CodeGenRegisterClass *RC2 = RegClasses[rci];
   1656     if (RC1 == RC2)
   1657       continue;
   1658 
   1659     // Compute the set intersection of RC1 and RC2.
   1660     const CodeGenRegister::Set &Memb1 = RC1->getMembers();
   1661     const CodeGenRegister::Set &Memb2 = RC2->getMembers();
   1662     CodeGenRegister::Set Intersection;
   1663     std::set_intersection(Memb1.begin(), Memb1.end(),
   1664                           Memb2.begin(), Memb2.end(),
   1665                           std::inserter(Intersection, Intersection.begin()),
   1666                           CodeGenRegister::Less());
   1667 
   1668     // Skip disjoint class pairs.
   1669     if (Intersection.empty())
   1670       continue;
   1671 
   1672     // If RC1 and RC2 have different spill sizes or alignments, use the
   1673     // larger size for sub-classing.  If they are equal, prefer RC1.
   1674     if (RC2->SpillSize > RC1->SpillSize ||
   1675         (RC2->SpillSize == RC1->SpillSize &&
   1676          RC2->SpillAlignment > RC1->SpillAlignment))
   1677       std::swap(RC1, RC2);
   1678 
   1679     getOrCreateSubClass(RC1, &Intersection,
   1680                         RC1->getName() + "_and_" + RC2->getName());
   1681   }
   1682 }
   1683 
   1684 //
   1685 // Synthesize missing sub-classes for getSubClassWithSubReg().
   1686 //
   1687 // Make sure that the set of registers in RC with a given SubIdx sub-register
   1688 // form a register class.  Update RC->SubClassWithSubReg.
   1689 //
   1690 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) {
   1691   // Map SubRegIndex to set of registers in RC supporting that SubRegIndex.
   1692   typedef std::map<CodeGenSubRegIndex*, CodeGenRegister::Set,
   1693                    CodeGenSubRegIndex::Less> SubReg2SetMap;
   1694 
   1695   // Compute the set of registers supporting each SubRegIndex.
   1696   SubReg2SetMap SRSets;
   1697   for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
   1698        RE = RC->getMembers().end(); RI != RE; ++RI) {
   1699     const CodeGenRegister::SubRegMap &SRM = (*RI)->getSubRegs();
   1700     for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
   1701          E = SRM.end(); I != E; ++I)
   1702       SRSets[I->first].insert(*RI);
   1703   }
   1704 
   1705   // Find matching classes for all SRSets entries.  Iterate in SubRegIndex
   1706   // numerical order to visit synthetic indices last.
   1707   for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
   1708     CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
   1709     SubReg2SetMap::const_iterator I = SRSets.find(SubIdx);
   1710     // Unsupported SubRegIndex. Skip it.
   1711     if (I == SRSets.end())
   1712       continue;
   1713     // In most cases, all RC registers support the SubRegIndex.
   1714     if (I->second.size() == RC->getMembers().size()) {
   1715       RC->setSubClassWithSubReg(SubIdx, RC);
   1716       continue;
   1717     }
   1718     // This is a real subset.  See if we have a matching class.
   1719     CodeGenRegisterClass *SubRC =
   1720       getOrCreateSubClass(RC, &I->second,
   1721                           RC->getName() + "_with_" + I->first->getName());
   1722     RC->setSubClassWithSubReg(SubIdx, SubRC);
   1723   }
   1724 }
   1725 
   1726 //
   1727 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass().
   1728 //
   1729 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X)
   1730 // has a maximal result for any SubIdx and any X >= FirstSubRegRC.
   1731 //
   1732 
   1733 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC,
   1734                                                 unsigned FirstSubRegRC) {
   1735   SmallVector<std::pair<const CodeGenRegister*,
   1736                         const CodeGenRegister*>, 16> SSPairs;
   1737   BitVector TopoSigs(getNumTopoSigs());
   1738 
   1739   // Iterate in SubRegIndex numerical order to visit synthetic indices last.
   1740   for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) {
   1741     CodeGenSubRegIndex *SubIdx = SubRegIndices[sri];
   1742     // Skip indexes that aren't fully supported by RC's registers. This was
   1743     // computed by inferSubClassWithSubReg() above which should have been
   1744     // called first.
   1745     if (RC->getSubClassWithSubReg(SubIdx) != RC)
   1746       continue;
   1747 
   1748     // Build list of (Super, Sub) pairs for this SubIdx.
   1749     SSPairs.clear();
   1750     TopoSigs.reset();
   1751     for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(),
   1752          RE = RC->getMembers().end(); RI != RE; ++RI) {
   1753       const CodeGenRegister *Super = *RI;
   1754       const CodeGenRegister *Sub = Super->getSubRegs().find(SubIdx)->second;
   1755       assert(Sub && "Missing sub-register");
   1756       SSPairs.push_back(std::make_pair(Super, Sub));
   1757       TopoSigs.set(Sub->getTopoSig());
   1758     }
   1759 
   1760     // Iterate over sub-register class candidates.  Ignore classes created by
   1761     // this loop. They will never be useful.
   1762     for (unsigned rci = FirstSubRegRC, rce = RegClasses.size(); rci != rce;
   1763          ++rci) {
   1764       CodeGenRegisterClass *SubRC = RegClasses[rci];
   1765       // Topological shortcut: SubRC members have the wrong shape.
   1766       if (!TopoSigs.anyCommon(SubRC->getTopoSigs()))
   1767         continue;
   1768       // Compute the subset of RC that maps into SubRC.
   1769       CodeGenRegister::Set SubSet;
   1770       for (unsigned i = 0, e = SSPairs.size(); i != e; ++i)
   1771         if (SubRC->contains(SSPairs[i].second))
   1772           SubSet.insert(SSPairs[i].first);
   1773       if (SubSet.empty())
   1774         continue;
   1775       // RC injects completely into SubRC.
   1776       if (SubSet.size() == SSPairs.size()) {
   1777         SubRC->addSuperRegClass(SubIdx, RC);
   1778         continue;
   1779       }
   1780       // Only a subset of RC maps into SubRC. Make sure it is represented by a
   1781       // class.
   1782       getOrCreateSubClass(RC, &SubSet, RC->getName() +
   1783                           "_with_" + SubIdx->getName() +
   1784                           "_in_" + SubRC->getName());
   1785     }
   1786   }
   1787 }
   1788 
   1789 
   1790 //
   1791 // Infer missing register classes.
   1792 //
   1793 void CodeGenRegBank::computeInferredRegisterClasses() {
   1794   // When this function is called, the register classes have not been sorted
   1795   // and assigned EnumValues yet.  That means getSubClasses(),
   1796   // getSuperClasses(), and hasSubClass() functions are defunct.
   1797   unsigned FirstNewRC = RegClasses.size();
   1798 
   1799   // Visit all register classes, including the ones being added by the loop.
   1800   for (unsigned rci = 0; rci != RegClasses.size(); ++rci) {
   1801     CodeGenRegisterClass *RC = RegClasses[rci];
   1802 
   1803     // Synthesize answers for getSubClassWithSubReg().
   1804     inferSubClassWithSubReg(RC);
   1805 
   1806     // Synthesize answers for getCommonSubClass().
   1807     inferCommonSubClass(RC);
   1808 
   1809     // Synthesize answers for getMatchingSuperRegClass().
   1810     inferMatchingSuperRegClass(RC);
   1811 
   1812     // New register classes are created while this loop is running, and we need
   1813     // to visit all of them.  I  particular, inferMatchingSuperRegClass needs
   1814     // to match old super-register classes with sub-register classes created
   1815     // after inferMatchingSuperRegClass was called.  At this point,
   1816     // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC =
   1817     // [0..FirstNewRC).  We need to cover SubRC = [FirstNewRC..rci].
   1818     if (rci + 1 == FirstNewRC) {
   1819       unsigned NextNewRC = RegClasses.size();
   1820       for (unsigned rci2 = 0; rci2 != FirstNewRC; ++rci2)
   1821         inferMatchingSuperRegClass(RegClasses[rci2], FirstNewRC);
   1822       FirstNewRC = NextNewRC;
   1823     }
   1824   }
   1825 }
   1826 
   1827 /// getRegisterClassForRegister - Find the register class that contains the
   1828 /// specified physical register.  If the register is not in a register class,
   1829 /// return null. If the register is in multiple classes, and the classes have a
   1830 /// superset-subset relationship and the same set of types, return the
   1831 /// superclass.  Otherwise return null.
   1832 const CodeGenRegisterClass*
   1833 CodeGenRegBank::getRegClassForRegister(Record *R) {
   1834   const CodeGenRegister *Reg = getReg(R);
   1835   ArrayRef<CodeGenRegisterClass*> RCs = getRegClasses();
   1836   const CodeGenRegisterClass *FoundRC = 0;
   1837   for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
   1838     const CodeGenRegisterClass &RC = *RCs[i];
   1839     if (!RC.contains(Reg))
   1840       continue;
   1841 
   1842     // If this is the first class that contains the register,
   1843     // make a note of it and go on to the next class.
   1844     if (!FoundRC) {
   1845       FoundRC = &RC;
   1846       continue;
   1847     }
   1848 
   1849     // If a register's classes have different types, return null.
   1850     if (RC.getValueTypes() != FoundRC->getValueTypes())
   1851       return 0;
   1852 
   1853     // Check to see if the previously found class that contains
   1854     // the register is a subclass of the current class. If so,
   1855     // prefer the superclass.
   1856     if (RC.hasSubClass(FoundRC)) {
   1857       FoundRC = &RC;
   1858       continue;
   1859     }
   1860 
   1861     // Check to see if the previously found class that contains
   1862     // the register is a superclass of the current class. If so,
   1863     // prefer the superclass.
   1864     if (FoundRC->hasSubClass(&RC))
   1865       continue;
   1866 
   1867     // Multiple classes, and neither is a superclass of the other.
   1868     // Return null.
   1869     return 0;
   1870   }
   1871   return FoundRC;
   1872 }
   1873 
   1874 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
   1875   SetVector<const CodeGenRegister*> Set;
   1876 
   1877   // First add Regs with all sub-registers.
   1878   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
   1879     CodeGenRegister *Reg = getReg(Regs[i]);
   1880     if (Set.insert(Reg))
   1881       // Reg is new, add all sub-registers.
   1882       // The pre-ordering is not important here.
   1883       Reg->addSubRegsPreOrder(Set, *this);
   1884   }
   1885 
   1886   // Second, find all super-registers that are completely covered by the set.
   1887   for (unsigned i = 0; i != Set.size(); ++i) {
   1888     const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
   1889     for (unsigned j = 0, e = SR.size(); j != e; ++j) {
   1890       const CodeGenRegister *Super = SR[j];
   1891       if (!Super->CoveredBySubRegs || Set.count(Super))
   1892         continue;
   1893       // This new super-register is covered by its sub-registers.
   1894       bool AllSubsInSet = true;
   1895       const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
   1896       for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
   1897              E = SRM.end(); I != E; ++I)
   1898         if (!Set.count(I->second)) {
   1899           AllSubsInSet = false;
   1900           break;
   1901         }
   1902       // All sub-registers in Set, add Super as well.
   1903       // We will visit Super later to recheck its super-registers.
   1904       if (AllSubsInSet)
   1905         Set.insert(Super);
   1906     }
   1907   }
   1908 
   1909   // Convert to BitVector.
   1910   BitVector BV(Registers.size() + 1);
   1911   for (unsigned i = 0, e = Set.size(); i != e; ++i)
   1912     BV.set(Set[i]->EnumValue);
   1913   return BV;
   1914 }
   1915