Home | History | Annotate | Download | only in PowerPC
      1 //===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that PPC uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
     16 #define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
     17 
     18 #include "PPC.h"
     19 #include "PPCInstrInfo.h"
     20 #include "PPCRegisterInfo.h"
     21 #include "PPCSubtarget.h"
     22 #include "llvm/CodeGen/SelectionDAG.h"
     23 #include "llvm/CodeGen/CallingConvLower.h"
     24 #include "llvm/Target/TargetLowering.h"
     25 
     26 namespace llvm {
     27   namespace PPCISD {
     28     enum NodeType {
     29       // Start the numbering where the builtin ops and target ops leave off.
     30       FIRST_NUMBER = ISD::BUILTIN_OP_END,
     31 
     32       /// FSEL - Traditional three-operand fsel node.
     33       ///
     34       FSEL,
     35 
     36       /// FCFID - The FCFID instruction, taking an f64 operand and producing
     37       /// and f64 value containing the FP representation of the integer that
     38       /// was temporarily in the f64 operand.
     39       FCFID,
     40 
     41       /// Newer FCFID[US] integer-to-floating-point conversion instructions for
     42       /// unsigned integers and single-precision outputs.
     43       FCFIDU, FCFIDS, FCFIDUS,
     44 
     45       /// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
     46       /// operand, producing an f64 value containing the integer representation
     47       /// of that FP value.
     48       FCTIDZ, FCTIWZ,
     49 
     50       /// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
     51       /// unsigned integers.
     52       FCTIDUZ, FCTIWUZ,
     53 
     54       /// Reciprocal estimate instructions (unary FP ops).
     55       FRE, FRSQRTE,
     56 
     57       // VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
     58       // three v4f32 operands and producing a v4f32 result.
     59       VMADDFP, VNMSUBFP,
     60 
     61       /// VPERM - The PPC VPERM Instruction.
     62       ///
     63       VPERM,
     64 
     65       /// Hi/Lo - These represent the high and low 16-bit parts of a global
     66       /// address respectively.  These nodes have two operands, the first of
     67       /// which must be a TargetGlobalAddress, and the second of which must be a
     68       /// Constant.  Selected naively, these turn into 'lis G+C' and 'li G+C',
     69       /// though these are usually folded into other nodes.
     70       Hi, Lo,
     71 
     72       TOC_ENTRY,
     73 
     74       /// The following three target-specific nodes are used for calls through
     75       /// function pointers in the 64-bit SVR4 ABI.
     76 
     77       /// Restore the TOC from the TOC save area of the current stack frame.
     78       /// This is basically a hard coded load instruction which additionally
     79       /// takes/produces a flag.
     80       TOC_RESTORE,
     81 
     82       /// Like a regular LOAD but additionally taking/producing a flag.
     83       LOAD,
     84 
     85       /// LOAD into r2 (also taking/producing a flag). Like TOC_RESTORE, this is
     86       /// a hard coded load instruction.
     87       LOAD_TOC,
     88 
     89       /// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
     90       /// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
     91       /// compute an allocation on the stack.
     92       DYNALLOC,
     93 
     94       /// GlobalBaseReg - On Darwin, this node represents the result of the mflr
     95       /// at function entry, used for PIC code.
     96       GlobalBaseReg,
     97 
     98       /// These nodes represent the 32-bit PPC shifts that operate on 6-bit
     99       /// shift amounts.  These nodes are generated by the multi-precision shift
    100       /// code.
    101       SRL, SRA, SHL,
    102 
    103       /// CALL - A direct function call.
    104       /// CALL_NOP is a call with the special NOP which follows 64-bit
    105       /// SVR4 calls.
    106       CALL, CALL_NOP,
    107 
    108       /// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
    109       /// MTCTR instruction.
    110       MTCTR,
    111 
    112       /// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
    113       /// BCTRL instruction.
    114       BCTRL,
    115 
    116       /// Return with a flag operand, matched by 'blr'
    117       RET_FLAG,
    118 
    119       /// R32 = MFOCRF(CRREG, INFLAG) - Represents the MFOCRF instruction.
    120       /// This copies the bits corresponding to the specified CRREG into the
    121       /// resultant GPR.  Bits corresponding to other CR regs are undefined.
    122       MFOCRF,
    123 
    124       // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
    125       EH_SJLJ_SETJMP,
    126 
    127       // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
    128       EH_SJLJ_LONGJMP,
    129 
    130       /// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
    131       /// instructions.  For lack of better number, we use the opcode number
    132       /// encoding for the OPC field to identify the compare.  For example, 838
    133       /// is VCMPGTSH.
    134       VCMP,
    135 
    136       /// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
    137       /// altivec VCMP*o instructions.  For lack of better number, we use the
    138       /// opcode number encoding for the OPC field to identify the compare.  For
    139       /// example, 838 is VCMPGTSH.
    140       VCMPo,
    141 
    142       /// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
    143       /// corresponds to the COND_BRANCH pseudo instruction.  CRRC is the
    144       /// condition register to branch on, OPC is the branch opcode to use (e.g.
    145       /// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
    146       /// an optional input flag argument.
    147       COND_BRANCH,
    148 
    149       /// CHAIN = BDNZ CHAIN, DESTBB - These are used to create counter-based
    150       /// loops.
    151       BDNZ, BDZ,
    152 
    153       /// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
    154       /// towards zero.  Used only as part of the long double-to-int
    155       /// conversion sequence.
    156       FADDRTZ,
    157 
    158       /// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
    159       MFFS,
    160 
    161       /// LARX = This corresponds to PPC l{w|d}arx instrcution: load and
    162       /// reserve indexed. This is used to implement atomic operations.
    163       LARX,
    164 
    165       /// STCX = This corresponds to PPC stcx. instrcution: store conditional
    166       /// indexed. This is used to implement atomic operations.
    167       STCX,
    168 
    169       /// TC_RETURN - A tail call return.
    170       ///   operand #0 chain
    171       ///   operand #1 callee (register or absolute)
    172       ///   operand #2 stack adjustment
    173       ///   operand #3 optional in flag
    174       TC_RETURN,
    175 
    176       /// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
    177       CR6SET,
    178       CR6UNSET,
    179 
    180       /// G8RC = ADDIS_GOT_TPREL_HA %X2, Symbol - Used by the initial-exec
    181       /// TLS model, produces an ADDIS8 instruction that adds the GOT
    182       /// base to sym\@got\@tprel\@ha.
    183       ADDIS_GOT_TPREL_HA,
    184 
    185       /// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
    186       /// TLS model, produces a LD instruction with base register G8RReg
    187       /// and offset sym\@got\@tprel\@l.  This completes the addition that
    188       /// finds the offset of "sym" relative to the thread pointer.
    189       LD_GOT_TPREL_L,
    190 
    191       /// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
    192       /// model, produces an ADD instruction that adds the contents of
    193       /// G8RReg to the thread pointer.  Symbol contains a relocation
    194       /// sym\@tls which is to be replaced by the thread pointer and
    195       /// identifies to the linker that the instruction is part of a
    196       /// TLS sequence.
    197       ADD_TLS,
    198 
    199       /// G8RC = ADDIS_TLSGD_HA %X2, Symbol - For the general-dynamic TLS
    200       /// model, produces an ADDIS8 instruction that adds the GOT base
    201       /// register to sym\@got\@tlsgd\@ha.
    202       ADDIS_TLSGD_HA,
    203 
    204       /// G8RC = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
    205       /// model, produces an ADDI8 instruction that adds G8RReg to
    206       /// sym\@got\@tlsgd\@l.
    207       ADDI_TLSGD_L,
    208 
    209       /// G8RC = GET_TLS_ADDR %X3, Symbol - For the general-dynamic TLS
    210       /// model, produces a call to __tls_get_addr(sym\@tlsgd).
    211       GET_TLS_ADDR,
    212 
    213       /// G8RC = ADDIS_TLSLD_HA %X2, Symbol - For the local-dynamic TLS
    214       /// model, produces an ADDIS8 instruction that adds the GOT base
    215       /// register to sym\@got\@tlsld\@ha.
    216       ADDIS_TLSLD_HA,
    217 
    218       /// G8RC = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
    219       /// model, produces an ADDI8 instruction that adds G8RReg to
    220       /// sym\@got\@tlsld\@l.
    221       ADDI_TLSLD_L,
    222 
    223       /// G8RC = GET_TLSLD_ADDR %X3, Symbol - For the local-dynamic TLS
    224       /// model, produces a call to __tls_get_addr(sym\@tlsld).
    225       GET_TLSLD_ADDR,
    226 
    227       /// G8RC = ADDIS_DTPREL_HA %X3, Symbol, Chain - For the
    228       /// local-dynamic TLS model, produces an ADDIS8 instruction
    229       /// that adds X3 to sym\@dtprel\@ha. The Chain operand is needed
    230       /// to tie this in place following a copy to %X3 from the result
    231       /// of a GET_TLSLD_ADDR.
    232       ADDIS_DTPREL_HA,
    233 
    234       /// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
    235       /// model, produces an ADDI8 instruction that adds G8RReg to
    236       /// sym\@got\@dtprel\@l.
    237       ADDI_DTPREL_L,
    238 
    239       /// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
    240       /// during instruction selection to optimize a BUILD_VECTOR into
    241       /// operations on splats.  This is necessary to avoid losing these
    242       /// optimizations due to constant folding.
    243       VADD_SPLAT,
    244 
    245       /// CHAIN = SC CHAIN, Imm128 - System call.  The 7-bit unsigned
    246       /// operand identifies the operating system entry point.
    247       SC,
    248 
    249       /// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
    250       /// byte-swapping store instruction.  It byte-swaps the low "Type" bits of
    251       /// the GPRC input, then stores it through Ptr.  Type can be either i16 or
    252       /// i32.
    253       STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
    254 
    255       /// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
    256       /// byte-swapping load instruction.  It loads "Type" bits, byte swaps it,
    257       /// then puts it in the bottom bits of the GPRC.  TYPE can be either i16
    258       /// or i32.
    259       LBRX,
    260 
    261       /// STFIWX - The STFIWX instruction.  The first operand is an input token
    262       /// chain, then an f64 value to store, then an address to store it to.
    263       STFIWX,
    264 
    265       /// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
    266       /// load which sign-extends from a 32-bit integer value into the
    267       /// destination 64-bit register.
    268       LFIWAX,
    269 
    270       /// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
    271       /// load which zero-extends from a 32-bit integer value into the
    272       /// destination 64-bit register.
    273       LFIWZX,
    274 
    275       /// G8RC = ADDIS_TOC_HA %X2, Symbol - For medium and large code model,
    276       /// produces an ADDIS8 instruction that adds the TOC base register to
    277       /// sym\@toc\@ha.
    278       ADDIS_TOC_HA,
    279 
    280       /// G8RC = LD_TOC_L Symbol, G8RReg - For medium and large code model,
    281       /// produces a LD instruction with base register G8RReg and offset
    282       /// sym\@toc\@l. Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
    283       LD_TOC_L,
    284 
    285       /// G8RC = ADDI_TOC_L G8RReg, Symbol - For medium code model, produces
    286       /// an ADDI8 instruction that adds G8RReg to sym\@toc\@l.
    287       /// Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
    288       ADDI_TOC_L
    289     };
    290   }
    291 
    292   /// Define some predicates that are used for node matching.
    293   namespace PPC {
    294     /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
    295     /// VPKUHUM instruction.
    296     bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
    297 
    298     /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
    299     /// VPKUWUM instruction.
    300     bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
    301 
    302     /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
    303     /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
    304     bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
    305                             bool isUnary);
    306 
    307     /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
    308     /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
    309     bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
    310                             bool isUnary);
    311 
    312     /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
    313     /// amount, otherwise return -1.
    314     int isVSLDOIShuffleMask(SDNode *N, bool isUnary);
    315 
    316     /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
    317     /// specifies a splat of a single element that is suitable for input to
    318     /// VSPLTB/VSPLTH/VSPLTW.
    319     bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
    320 
    321     /// isAllNegativeZeroVector - Returns true if all elements of build_vector
    322     /// are -0.0.
    323     bool isAllNegativeZeroVector(SDNode *N);
    324 
    325     /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
    326     /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
    327     unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize);
    328 
    329     /// get_VSPLTI_elt - If this is a build_vector of constants which can be
    330     /// formed by using a vspltis[bhw] instruction of the specified element
    331     /// size, return the constant being splatted.  The ByteSize field indicates
    332     /// the number of bytes of each element [124] -> [bhw].
    333     SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
    334   }
    335 
    336   class PPCTargetLowering : public TargetLowering {
    337     const PPCSubtarget &PPCSubTarget;
    338 
    339   public:
    340     explicit PPCTargetLowering(PPCTargetMachine &TM);
    341 
    342     /// getTargetNodeName() - This method returns the name of a target specific
    343     /// DAG node.
    344     virtual const char *getTargetNodeName(unsigned Opcode) const;
    345 
    346     virtual MVT getScalarShiftAmountTy(EVT LHSTy) const { return MVT::i32; }
    347 
    348     /// getSetCCResultType - Return the ISD::SETCC ValueType
    349     virtual EVT getSetCCResultType(LLVMContext &Context, EVT VT) const;
    350 
    351     /// getPreIndexedAddressParts - returns true by value, base pointer and
    352     /// offset pointer and addressing mode by reference if the node's address
    353     /// can be legally represented as pre-indexed load / store address.
    354     virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
    355                                            SDValue &Offset,
    356                                            ISD::MemIndexedMode &AM,
    357                                            SelectionDAG &DAG) const;
    358 
    359     /// SelectAddressRegReg - Given the specified addressed, check to see if it
    360     /// can be represented as an indexed [r+r] operation.  Returns false if it
    361     /// can be more efficiently represented with [r+imm].
    362     bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
    363                              SelectionDAG &DAG) const;
    364 
    365     /// SelectAddressRegImm - Returns true if the address N can be represented
    366     /// by a base register plus a signed 16-bit displacement [r+imm], and if it
    367     /// is not better represented as reg+reg.  If Aligned is true, only accept
    368     /// displacements suitable for STD and friends, i.e. multiples of 4.
    369     bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
    370                              SelectionDAG &DAG, bool Aligned) const;
    371 
    372     /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
    373     /// represented as an indexed [r+r] operation.
    374     bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
    375                                  SelectionDAG &DAG) const;
    376 
    377     Sched::Preference getSchedulingPreference(SDNode *N) const;
    378 
    379     /// LowerOperation - Provide custom lowering hooks for some operations.
    380     ///
    381     virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
    382 
    383     /// ReplaceNodeResults - Replace the results of node with an illegal result
    384     /// type with new values built out of custom code.
    385     ///
    386     virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
    387                                     SelectionDAG &DAG) const;
    388 
    389     virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
    390 
    391     virtual void computeMaskedBitsForTargetNode(const SDValue Op,
    392                                                 APInt &KnownZero,
    393                                                 APInt &KnownOne,
    394                                                 const SelectionDAG &DAG,
    395                                                 unsigned Depth = 0) const;
    396 
    397     virtual MachineBasicBlock *
    398       EmitInstrWithCustomInserter(MachineInstr *MI,
    399                                   MachineBasicBlock *MBB) const;
    400     MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
    401                                         MachineBasicBlock *MBB, bool is64Bit,
    402                                         unsigned BinOpcode) const;
    403     MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
    404                                                 MachineBasicBlock *MBB,
    405                                             bool is8bit, unsigned Opcode) const;
    406 
    407     MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
    408                                         MachineBasicBlock *MBB) const;
    409 
    410     MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
    411                                          MachineBasicBlock *MBB) const;
    412 
    413     ConstraintType getConstraintType(const std::string &Constraint) const;
    414 
    415     /// Examine constraint string and operand type and determine a weight value.
    416     /// The operand object must already have been set up with the operand type.
    417     ConstraintWeight getSingleConstraintMatchWeight(
    418       AsmOperandInfo &info, const char *constraint) const;
    419 
    420     std::pair<unsigned, const TargetRegisterClass*>
    421       getRegForInlineAsmConstraint(const std::string &Constraint,
    422                                    MVT VT) const;
    423 
    424     /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
    425     /// function arguments in the caller parameter area.  This is the actual
    426     /// alignment, not its logarithm.
    427     unsigned getByValTypeAlignment(Type *Ty) const;
    428 
    429     /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
    430     /// vector.  If it is invalid, don't add anything to Ops.
    431     virtual void LowerAsmOperandForConstraint(SDValue Op,
    432                                               std::string &Constraint,
    433                                               std::vector<SDValue> &Ops,
    434                                               SelectionDAG &DAG) const;
    435 
    436     /// isLegalAddressingMode - Return true if the addressing mode represented
    437     /// by AM is legal for this target, for a load/store of the specified type.
    438     virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;
    439 
    440     virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
    441 
    442     /// getOptimalMemOpType - Returns the target specific optimal type for load
    443     /// and store operations as a result of memset, memcpy, and memmove
    444     /// lowering. If DstAlign is zero that means it's safe to destination
    445     /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
    446     /// means there isn't a need to check it against alignment requirement,
    447     /// probably because the source does not need to be loaded. If 'IsMemset' is
    448     /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
    449     /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
    450     /// source is constant so it does not need to be loaded.
    451     /// It returns EVT::Other if the type should be determined using generic
    452     /// target-independent logic.
    453     virtual EVT
    454     getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
    455                         bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
    456                         MachineFunction &MF) const;
    457 
    458     /// Is unaligned memory access allowed for the given type, and is it fast
    459     /// relative to software emulation.
    460     virtual bool allowsUnalignedMemoryAccesses(EVT VT, bool *Fast = 0) const;
    461 
    462     /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
    463     /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
    464     /// expanded to FMAs when this method returns true, otherwise fmuladd is
    465     /// expanded to fmul + fadd.
    466     virtual bool isFMAFasterThanFMulAndFAdd(EVT VT) const;
    467 
    468     /// createFastISel - This method returns a target-specific FastISel object,
    469     /// or null if the target does not support "fast" instruction selection.
    470     virtual FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
    471                                      const TargetLibraryInfo *LibInfo) const;
    472 
    473   private:
    474     SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
    475     SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
    476 
    477     bool
    478     IsEligibleForTailCallOptimization(SDValue Callee,
    479                                       CallingConv::ID CalleeCC,
    480                                       bool isVarArg,
    481                                       const SmallVectorImpl<ISD::InputArg> &Ins,
    482                                       SelectionDAG& DAG) const;
    483 
    484     SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
    485                                          int SPDiff,
    486                                          SDValue Chain,
    487                                          SDValue &LROpOut,
    488                                          SDValue &FPOpOut,
    489                                          bool isDarwinABI,
    490                                          SDLoc dl) const;
    491 
    492     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
    493     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
    494     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
    495     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
    496     SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
    497     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
    498     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
    499     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
    500     SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    501     SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
    502     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
    503                          const PPCSubtarget &Subtarget) const;
    504     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG,
    505                        const PPCSubtarget &Subtarget) const;
    506     SDValue LowerVACOPY(SDValue Op, SelectionDAG &DAG,
    507                         const PPCSubtarget &Subtarget) const;
    508     SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
    509                                 const PPCSubtarget &Subtarget) const;
    510     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
    511                                       const PPCSubtarget &Subtarget) const;
    512     SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
    513     SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, SDLoc dl) const;
    514     SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
    515     SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
    516     SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
    517     SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
    518     SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
    519     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    520     SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
    521     SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
    522     SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
    523     SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
    524 
    525     SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
    526                             CallingConv::ID CallConv, bool isVarArg,
    527                             const SmallVectorImpl<ISD::InputArg> &Ins,
    528                             SDLoc dl, SelectionDAG &DAG,
    529                             SmallVectorImpl<SDValue> &InVals) const;
    530     SDValue FinishCall(CallingConv::ID CallConv, SDLoc dl, bool isTailCall,
    531                        bool isVarArg,
    532                        SelectionDAG &DAG,
    533                        SmallVector<std::pair<unsigned, SDValue>, 8>
    534                          &RegsToPass,
    535                        SDValue InFlag, SDValue Chain,
    536                        SDValue &Callee,
    537                        int SPDiff, unsigned NumBytes,
    538                        const SmallVectorImpl<ISD::InputArg> &Ins,
    539                        SmallVectorImpl<SDValue> &InVals) const;
    540 
    541     virtual SDValue
    542       LowerFormalArguments(SDValue Chain,
    543                            CallingConv::ID CallConv, bool isVarArg,
    544                            const SmallVectorImpl<ISD::InputArg> &Ins,
    545                            SDLoc dl, SelectionDAG &DAG,
    546                            SmallVectorImpl<SDValue> &InVals) const;
    547 
    548     virtual SDValue
    549       LowerCall(TargetLowering::CallLoweringInfo &CLI,
    550                 SmallVectorImpl<SDValue> &InVals) const;
    551 
    552     virtual bool
    553       CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
    554                    bool isVarArg,
    555                    const SmallVectorImpl<ISD::OutputArg> &Outs,
    556                    LLVMContext &Context) const;
    557 
    558     virtual SDValue
    559       LowerReturn(SDValue Chain,
    560                   CallingConv::ID CallConv, bool isVarArg,
    561                   const SmallVectorImpl<ISD::OutputArg> &Outs,
    562                   const SmallVectorImpl<SDValue> &OutVals,
    563                   SDLoc dl, SelectionDAG &DAG) const;
    564 
    565     SDValue
    566       extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, SelectionDAG &DAG,
    567                         SDValue ArgVal, SDLoc dl) const;
    568 
    569     void
    570       setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
    571                          unsigned nAltivecParamsAtEnd,
    572                          unsigned MinReservedArea, bool isPPC64) const;
    573 
    574     SDValue
    575       LowerFormalArguments_Darwin(SDValue Chain,
    576                                   CallingConv::ID CallConv, bool isVarArg,
    577                                   const SmallVectorImpl<ISD::InputArg> &Ins,
    578                                   SDLoc dl, SelectionDAG &DAG,
    579                                   SmallVectorImpl<SDValue> &InVals) const;
    580     SDValue
    581       LowerFormalArguments_64SVR4(SDValue Chain,
    582                                   CallingConv::ID CallConv, bool isVarArg,
    583                                   const SmallVectorImpl<ISD::InputArg> &Ins,
    584                                   SDLoc dl, SelectionDAG &DAG,
    585                                   SmallVectorImpl<SDValue> &InVals) const;
    586     SDValue
    587       LowerFormalArguments_32SVR4(SDValue Chain,
    588                                   CallingConv::ID CallConv, bool isVarArg,
    589                                   const SmallVectorImpl<ISD::InputArg> &Ins,
    590                                   SDLoc dl, SelectionDAG &DAG,
    591                                   SmallVectorImpl<SDValue> &InVals) const;
    592 
    593     SDValue
    594       createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
    595                                  SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
    596                                  SelectionDAG &DAG, SDLoc dl) const;
    597 
    598     SDValue
    599       LowerCall_Darwin(SDValue Chain, SDValue Callee,
    600                        CallingConv::ID CallConv,
    601                        bool isVarArg, bool isTailCall,
    602                        const SmallVectorImpl<ISD::OutputArg> &Outs,
    603                        const SmallVectorImpl<SDValue> &OutVals,
    604                        const SmallVectorImpl<ISD::InputArg> &Ins,
    605                        SDLoc dl, SelectionDAG &DAG,
    606                        SmallVectorImpl<SDValue> &InVals) const;
    607     SDValue
    608       LowerCall_64SVR4(SDValue Chain, SDValue Callee,
    609                        CallingConv::ID CallConv,
    610                        bool isVarArg, bool isTailCall,
    611                        const SmallVectorImpl<ISD::OutputArg> &Outs,
    612                        const SmallVectorImpl<SDValue> &OutVals,
    613                        const SmallVectorImpl<ISD::InputArg> &Ins,
    614                        SDLoc dl, SelectionDAG &DAG,
    615                        SmallVectorImpl<SDValue> &InVals) const;
    616     SDValue
    617     LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
    618                      bool isVarArg, bool isTailCall,
    619                      const SmallVectorImpl<ISD::OutputArg> &Outs,
    620                      const SmallVectorImpl<SDValue> &OutVals,
    621                      const SmallVectorImpl<ISD::InputArg> &Ins,
    622                      SDLoc dl, SelectionDAG &DAG,
    623                      SmallVectorImpl<SDValue> &InVals) const;
    624 
    625     SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
    626     SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
    627 
    628     SDValue DAGCombineFastRecip(SDValue Op, DAGCombinerInfo &DCI) const;
    629     SDValue DAGCombineFastRecipFSQRT(SDValue Op, DAGCombinerInfo &DCI) const;
    630   };
    631 
    632   namespace PPC {
    633     FastISel *createFastISel(FunctionLoweringInfo &FuncInfo,
    634                              const TargetLibraryInfo *LibInfo);
    635   }
    636 
    637   bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
    638                                   CCValAssign::LocInfo &LocInfo,
    639                                   ISD::ArgFlagsTy &ArgFlags,
    640                                   CCState &State);
    641 
    642   bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
    643                                          MVT &LocVT,
    644                                          CCValAssign::LocInfo &LocInfo,
    645                                          ISD::ArgFlagsTy &ArgFlags,
    646                                          CCState &State);
    647 
    648   bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
    649                                            MVT &LocVT,
    650                                            CCValAssign::LocInfo &LocInfo,
    651                                            ISD::ArgFlagsTy &ArgFlags,
    652                                            CCState &State);
    653 }
    654 
    655 #endif   // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
    656