1 //===-- llvm/Support/PatternMatch.h - Match on the LLVM IR ------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file provides a simple and efficient mechanism for performing general 11 // tree-based pattern matches on the LLVM IR. The power of these routines is 12 // that it allows you to write concise patterns that are expressive and easy to 13 // understand. The other major advantage of this is that it allows you to 14 // trivially capture/bind elements in the pattern to variables. For example, 15 // you can do something like this: 16 // 17 // Value *Exp = ... 18 // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2) 19 // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)), 20 // m_And(m_Value(Y), m_ConstantInt(C2))))) { 21 // ... Pattern is matched and variables are bound ... 22 // } 23 // 24 // This is primarily useful to things like the instruction combiner, but can 25 // also be useful for static analysis tools or code generators. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #ifndef LLVM_SUPPORT_PATTERNMATCH_H 30 #define LLVM_SUPPORT_PATTERNMATCH_H 31 32 #include "llvm/IR/Constants.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/Support/CallSite.h" 37 38 namespace llvm { 39 namespace PatternMatch { 40 41 template<typename Val, typename Pattern> 42 bool match(Val *V, const Pattern &P) { 43 return const_cast<Pattern&>(P).match(V); 44 } 45 46 47 template<typename SubPattern_t> 48 struct OneUse_match { 49 SubPattern_t SubPattern; 50 51 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {} 52 53 template<typename OpTy> 54 bool match(OpTy *V) { 55 return V->hasOneUse() && SubPattern.match(V); 56 } 57 }; 58 59 template<typename T> 60 inline OneUse_match<T> m_OneUse(const T &SubPattern) { return SubPattern; } 61 62 63 template<typename Class> 64 struct class_match { 65 template<typename ITy> 66 bool match(ITy *V) { return isa<Class>(V); } 67 }; 68 69 /// m_Value() - Match an arbitrary value and ignore it. 70 inline class_match<Value> m_Value() { return class_match<Value>(); } 71 /// m_ConstantInt() - Match an arbitrary ConstantInt and ignore it. 72 inline class_match<ConstantInt> m_ConstantInt() { 73 return class_match<ConstantInt>(); 74 } 75 /// m_Undef() - Match an arbitrary undef constant. 76 inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); } 77 78 inline class_match<Constant> m_Constant() { return class_match<Constant>(); } 79 80 /// Matching combinators 81 template<typename LTy, typename RTy> 82 struct match_combine_or { 83 LTy L; 84 RTy R; 85 86 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) { } 87 88 template<typename ITy> 89 bool match(ITy *V) { 90 if (L.match(V)) 91 return true; 92 if (R.match(V)) 93 return true; 94 return false; 95 } 96 }; 97 98 template<typename LTy, typename RTy> 99 struct match_combine_and { 100 LTy L; 101 RTy R; 102 103 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) { } 104 105 template<typename ITy> 106 bool match(ITy *V) { 107 if (L.match(V)) 108 if (R.match(V)) 109 return true; 110 return false; 111 } 112 }; 113 114 /// Combine two pattern matchers matching L || R 115 template<typename LTy, typename RTy> 116 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) { 117 return match_combine_or<LTy, RTy>(L, R); 118 } 119 120 /// Combine two pattern matchers matching L && R 121 template<typename LTy, typename RTy> 122 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) { 123 return match_combine_and<LTy, RTy>(L, R); 124 } 125 126 struct match_zero { 127 template<typename ITy> 128 bool match(ITy *V) { 129 if (const Constant *C = dyn_cast<Constant>(V)) 130 return C->isNullValue(); 131 return false; 132 } 133 }; 134 135 /// m_Zero() - Match an arbitrary zero/null constant. This includes 136 /// zero_initializer for vectors and ConstantPointerNull for pointers. 137 inline match_zero m_Zero() { return match_zero(); } 138 139 struct match_neg_zero { 140 template<typename ITy> 141 bool match(ITy *V) { 142 if (const Constant *C = dyn_cast<Constant>(V)) 143 return C->isNegativeZeroValue(); 144 return false; 145 } 146 }; 147 148 /// m_NegZero() - Match an arbitrary zero/null constant. This includes 149 /// zero_initializer for vectors and ConstantPointerNull for pointers. For 150 /// floating point constants, this will match negative zero but not positive 151 /// zero 152 inline match_neg_zero m_NegZero() { return match_neg_zero(); } 153 154 /// m_AnyZero() - Match an arbitrary zero/null constant. This includes 155 /// zero_initializer for vectors and ConstantPointerNull for pointers. For 156 /// floating point constants, this will match negative zero and positive zero 157 inline match_combine_or<match_zero, match_neg_zero> m_AnyZero() { 158 return m_CombineOr(m_Zero(), m_NegZero()); 159 } 160 161 struct apint_match { 162 const APInt *&Res; 163 apint_match(const APInt *&R) : Res(R) {} 164 template<typename ITy> 165 bool match(ITy *V) { 166 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 167 Res = &CI->getValue(); 168 return true; 169 } 170 if (V->getType()->isVectorTy()) 171 if (const Constant *C = dyn_cast<Constant>(V)) 172 if (ConstantInt *CI = 173 dyn_cast_or_null<ConstantInt>(C->getSplatValue())) { 174 Res = &CI->getValue(); 175 return true; 176 } 177 return false; 178 } 179 }; 180 181 /// m_APInt - Match a ConstantInt or splatted ConstantVector, binding the 182 /// specified pointer to the contained APInt. 183 inline apint_match m_APInt(const APInt *&Res) { return Res; } 184 185 186 template<int64_t Val> 187 struct constantint_match { 188 template<typename ITy> 189 bool match(ITy *V) { 190 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 191 const APInt &CIV = CI->getValue(); 192 if (Val >= 0) 193 return CIV == static_cast<uint64_t>(Val); 194 // If Val is negative, and CI is shorter than it, truncate to the right 195 // number of bits. If it is larger, then we have to sign extend. Just 196 // compare their negated values. 197 return -CIV == -Val; 198 } 199 return false; 200 } 201 }; 202 203 /// m_ConstantInt<int64_t> - Match a ConstantInt with a specific value. 204 template<int64_t Val> 205 inline constantint_match<Val> m_ConstantInt() { 206 return constantint_match<Val>(); 207 } 208 209 /// cst_pred_ty - This helper class is used to match scalar and vector constants 210 /// that satisfy a specified predicate. 211 template<typename Predicate> 212 struct cst_pred_ty : public Predicate { 213 template<typename ITy> 214 bool match(ITy *V) { 215 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 216 return this->isValue(CI->getValue()); 217 if (V->getType()->isVectorTy()) 218 if (const Constant *C = dyn_cast<Constant>(V)) 219 if (const ConstantInt *CI = 220 dyn_cast_or_null<ConstantInt>(C->getSplatValue())) 221 return this->isValue(CI->getValue()); 222 return false; 223 } 224 }; 225 226 /// api_pred_ty - This helper class is used to match scalar and vector constants 227 /// that satisfy a specified predicate, and bind them to an APInt. 228 template<typename Predicate> 229 struct api_pred_ty : public Predicate { 230 const APInt *&Res; 231 api_pred_ty(const APInt *&R) : Res(R) {} 232 template<typename ITy> 233 bool match(ITy *V) { 234 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 235 if (this->isValue(CI->getValue())) { 236 Res = &CI->getValue(); 237 return true; 238 } 239 if (V->getType()->isVectorTy()) 240 if (const Constant *C = dyn_cast<Constant>(V)) 241 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) 242 if (this->isValue(CI->getValue())) { 243 Res = &CI->getValue(); 244 return true; 245 } 246 247 return false; 248 } 249 }; 250 251 252 struct is_one { 253 bool isValue(const APInt &C) { return C == 1; } 254 }; 255 256 /// m_One() - Match an integer 1 or a vector with all elements equal to 1. 257 inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); } 258 inline api_pred_ty<is_one> m_One(const APInt *&V) { return V; } 259 260 struct is_all_ones { 261 bool isValue(const APInt &C) { return C.isAllOnesValue(); } 262 }; 263 264 /// m_AllOnes() - Match an integer or vector with all bits set to true. 265 inline cst_pred_ty<is_all_ones> m_AllOnes() {return cst_pred_ty<is_all_ones>();} 266 inline api_pred_ty<is_all_ones> m_AllOnes(const APInt *&V) { return V; } 267 268 struct is_sign_bit { 269 bool isValue(const APInt &C) { return C.isSignBit(); } 270 }; 271 272 /// m_SignBit() - Match an integer or vector with only the sign bit(s) set. 273 inline cst_pred_ty<is_sign_bit> m_SignBit() {return cst_pred_ty<is_sign_bit>();} 274 inline api_pred_ty<is_sign_bit> m_SignBit(const APInt *&V) { return V; } 275 276 struct is_power2 { 277 bool isValue(const APInt &C) { return C.isPowerOf2(); } 278 }; 279 280 /// m_Power2() - Match an integer or vector power of 2. 281 inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); } 282 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; } 283 284 template<typename Class> 285 struct bind_ty { 286 Class *&VR; 287 bind_ty(Class *&V) : VR(V) {} 288 289 template<typename ITy> 290 bool match(ITy *V) { 291 if (Class *CV = dyn_cast<Class>(V)) { 292 VR = CV; 293 return true; 294 } 295 return false; 296 } 297 }; 298 299 /// m_Value - Match a value, capturing it if we match. 300 inline bind_ty<Value> m_Value(Value *&V) { return V; } 301 302 /// m_ConstantInt - Match a ConstantInt, capturing the value if we match. 303 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; } 304 305 /// m_Constant - Match a Constant, capturing the value if we match. 306 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; } 307 308 /// m_ConstantFP - Match a ConstantFP, capturing the value if we match. 309 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; } 310 311 /// specificval_ty - Match a specified Value*. 312 struct specificval_ty { 313 const Value *Val; 314 specificval_ty(const Value *V) : Val(V) {} 315 316 template<typename ITy> 317 bool match(ITy *V) { 318 return V == Val; 319 } 320 }; 321 322 /// m_Specific - Match if we have a specific specified value. 323 inline specificval_ty m_Specific(const Value *V) { return V; } 324 325 /// Match a specified floating point value or vector of all elements of that 326 /// value. 327 struct specific_fpval { 328 double Val; 329 specific_fpval(double V) : Val(V) {} 330 331 template<typename ITy> 332 bool match(ITy *V) { 333 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 334 return CFP->isExactlyValue(Val); 335 if (V->getType()->isVectorTy()) 336 if (const Constant *C = dyn_cast<Constant>(V)) 337 if (ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) 338 return CFP->isExactlyValue(Val); 339 return false; 340 } 341 }; 342 343 /// Match a specific floating point value or vector with all elements equal to 344 /// the value. 345 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); } 346 347 /// Match a float 1.0 or vector with all elements equal to 1.0. 348 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); } 349 350 struct bind_const_intval_ty { 351 uint64_t &VR; 352 bind_const_intval_ty(uint64_t &V) : VR(V) {} 353 354 template<typename ITy> 355 bool match(ITy *V) { 356 if (ConstantInt *CV = dyn_cast<ConstantInt>(V)) 357 if (CV->getBitWidth() <= 64) { 358 VR = CV->getZExtValue(); 359 return true; 360 } 361 return false; 362 } 363 }; 364 365 /// m_ConstantInt - Match a ConstantInt and bind to its value. This does not 366 /// match ConstantInts wider than 64-bits. 367 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; } 368 369 //===----------------------------------------------------------------------===// 370 // Matchers for specific binary operators. 371 // 372 373 template<typename LHS_t, typename RHS_t, unsigned Opcode> 374 struct BinaryOp_match { 375 LHS_t L; 376 RHS_t R; 377 378 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} 379 380 template<typename OpTy> 381 bool match(OpTy *V) { 382 if (V->getValueID() == Value::InstructionVal + Opcode) { 383 BinaryOperator *I = cast<BinaryOperator>(V); 384 return L.match(I->getOperand(0)) && R.match(I->getOperand(1)); 385 } 386 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 387 return CE->getOpcode() == Opcode && L.match(CE->getOperand(0)) && 388 R.match(CE->getOperand(1)); 389 return false; 390 } 391 }; 392 393 template<typename LHS, typename RHS> 394 inline BinaryOp_match<LHS, RHS, Instruction::Add> 395 m_Add(const LHS &L, const RHS &R) { 396 return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R); 397 } 398 399 template<typename LHS, typename RHS> 400 inline BinaryOp_match<LHS, RHS, Instruction::FAdd> 401 m_FAdd(const LHS &L, const RHS &R) { 402 return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R); 403 } 404 405 template<typename LHS, typename RHS> 406 inline BinaryOp_match<LHS, RHS, Instruction::Sub> 407 m_Sub(const LHS &L, const RHS &R) { 408 return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R); 409 } 410 411 template<typename LHS, typename RHS> 412 inline BinaryOp_match<LHS, RHS, Instruction::FSub> 413 m_FSub(const LHS &L, const RHS &R) { 414 return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R); 415 } 416 417 template<typename LHS, typename RHS> 418 inline BinaryOp_match<LHS, RHS, Instruction::Mul> 419 m_Mul(const LHS &L, const RHS &R) { 420 return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R); 421 } 422 423 template<typename LHS, typename RHS> 424 inline BinaryOp_match<LHS, RHS, Instruction::FMul> 425 m_FMul(const LHS &L, const RHS &R) { 426 return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R); 427 } 428 429 template<typename LHS, typename RHS> 430 inline BinaryOp_match<LHS, RHS, Instruction::UDiv> 431 m_UDiv(const LHS &L, const RHS &R) { 432 return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R); 433 } 434 435 template<typename LHS, typename RHS> 436 inline BinaryOp_match<LHS, RHS, Instruction::SDiv> 437 m_SDiv(const LHS &L, const RHS &R) { 438 return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R); 439 } 440 441 template<typename LHS, typename RHS> 442 inline BinaryOp_match<LHS, RHS, Instruction::FDiv> 443 m_FDiv(const LHS &L, const RHS &R) { 444 return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R); 445 } 446 447 template<typename LHS, typename RHS> 448 inline BinaryOp_match<LHS, RHS, Instruction::URem> 449 m_URem(const LHS &L, const RHS &R) { 450 return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R); 451 } 452 453 template<typename LHS, typename RHS> 454 inline BinaryOp_match<LHS, RHS, Instruction::SRem> 455 m_SRem(const LHS &L, const RHS &R) { 456 return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R); 457 } 458 459 template<typename LHS, typename RHS> 460 inline BinaryOp_match<LHS, RHS, Instruction::FRem> 461 m_FRem(const LHS &L, const RHS &R) { 462 return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R); 463 } 464 465 template<typename LHS, typename RHS> 466 inline BinaryOp_match<LHS, RHS, Instruction::And> 467 m_And(const LHS &L, const RHS &R) { 468 return BinaryOp_match<LHS, RHS, Instruction::And>(L, R); 469 } 470 471 template<typename LHS, typename RHS> 472 inline BinaryOp_match<LHS, RHS, Instruction::Or> 473 m_Or(const LHS &L, const RHS &R) { 474 return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R); 475 } 476 477 template<typename LHS, typename RHS> 478 inline BinaryOp_match<LHS, RHS, Instruction::Xor> 479 m_Xor(const LHS &L, const RHS &R) { 480 return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R); 481 } 482 483 template<typename LHS, typename RHS> 484 inline BinaryOp_match<LHS, RHS, Instruction::Shl> 485 m_Shl(const LHS &L, const RHS &R) { 486 return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R); 487 } 488 489 template<typename LHS, typename RHS> 490 inline BinaryOp_match<LHS, RHS, Instruction::LShr> 491 m_LShr(const LHS &L, const RHS &R) { 492 return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R); 493 } 494 495 template<typename LHS, typename RHS> 496 inline BinaryOp_match<LHS, RHS, Instruction::AShr> 497 m_AShr(const LHS &L, const RHS &R) { 498 return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R); 499 } 500 501 //===----------------------------------------------------------------------===// 502 // Class that matches two different binary ops. 503 // 504 template<typename LHS_t, typename RHS_t, unsigned Opc1, unsigned Opc2> 505 struct BinOp2_match { 506 LHS_t L; 507 RHS_t R; 508 509 BinOp2_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {} 510 511 template<typename OpTy> 512 bool match(OpTy *V) { 513 if (V->getValueID() == Value::InstructionVal + Opc1 || 514 V->getValueID() == Value::InstructionVal + Opc2) { 515 BinaryOperator *I = cast<BinaryOperator>(V); 516 return L.match(I->getOperand(0)) && R.match(I->getOperand(1)); 517 } 518 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 519 return (CE->getOpcode() == Opc1 || CE->getOpcode() == Opc2) && 520 L.match(CE->getOperand(0)) && R.match(CE->getOperand(1)); 521 return false; 522 } 523 }; 524 525 /// m_Shr - Matches LShr or AShr. 526 template<typename LHS, typename RHS> 527 inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr> 528 m_Shr(const LHS &L, const RHS &R) { 529 return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>(L, R); 530 } 531 532 /// m_LogicalShift - Matches LShr or Shl. 533 template<typename LHS, typename RHS> 534 inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl> 535 m_LogicalShift(const LHS &L, const RHS &R) { 536 return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>(L, R); 537 } 538 539 /// m_IDiv - Matches UDiv and SDiv. 540 template<typename LHS, typename RHS> 541 inline BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv> 542 m_IDiv(const LHS &L, const RHS &R) { 543 return BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>(L, R); 544 } 545 546 //===----------------------------------------------------------------------===// 547 // Class that matches exact binary ops. 548 // 549 template<typename SubPattern_t> 550 struct Exact_match { 551 SubPattern_t SubPattern; 552 553 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {} 554 555 template<typename OpTy> 556 bool match(OpTy *V) { 557 if (PossiblyExactOperator *PEO = dyn_cast<PossiblyExactOperator>(V)) 558 return PEO->isExact() && SubPattern.match(V); 559 return false; 560 } 561 }; 562 563 template<typename T> 564 inline Exact_match<T> m_Exact(const T &SubPattern) { return SubPattern; } 565 566 //===----------------------------------------------------------------------===// 567 // Matchers for CmpInst classes 568 // 569 570 template<typename LHS_t, typename RHS_t, typename Class, typename PredicateTy> 571 struct CmpClass_match { 572 PredicateTy &Predicate; 573 LHS_t L; 574 RHS_t R; 575 576 CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS) 577 : Predicate(Pred), L(LHS), R(RHS) {} 578 579 template<typename OpTy> 580 bool match(OpTy *V) { 581 if (Class *I = dyn_cast<Class>(V)) 582 if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) { 583 Predicate = I->getPredicate(); 584 return true; 585 } 586 return false; 587 } 588 }; 589 590 template<typename LHS, typename RHS> 591 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate> 592 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 593 return CmpClass_match<LHS, RHS, 594 ICmpInst, ICmpInst::Predicate>(Pred, L, R); 595 } 596 597 template<typename LHS, typename RHS> 598 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate> 599 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 600 return CmpClass_match<LHS, RHS, 601 FCmpInst, FCmpInst::Predicate>(Pred, L, R); 602 } 603 604 //===----------------------------------------------------------------------===// 605 // Matchers for SelectInst classes 606 // 607 608 template<typename Cond_t, typename LHS_t, typename RHS_t> 609 struct SelectClass_match { 610 Cond_t C; 611 LHS_t L; 612 RHS_t R; 613 614 SelectClass_match(const Cond_t &Cond, const LHS_t &LHS, 615 const RHS_t &RHS) 616 : C(Cond), L(LHS), R(RHS) {} 617 618 template<typename OpTy> 619 bool match(OpTy *V) { 620 if (SelectInst *I = dyn_cast<SelectInst>(V)) 621 return C.match(I->getOperand(0)) && 622 L.match(I->getOperand(1)) && 623 R.match(I->getOperand(2)); 624 return false; 625 } 626 }; 627 628 template<typename Cond, typename LHS, typename RHS> 629 inline SelectClass_match<Cond, LHS, RHS> 630 m_Select(const Cond &C, const LHS &L, const RHS &R) { 631 return SelectClass_match<Cond, LHS, RHS>(C, L, R); 632 } 633 634 /// m_SelectCst - This matches a select of two constants, e.g.: 635 /// m_SelectCst<-1, 0>(m_Value(V)) 636 template<int64_t L, int64_t R, typename Cond> 637 inline SelectClass_match<Cond, constantint_match<L>, constantint_match<R> > 638 m_SelectCst(const Cond &C) { 639 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>()); 640 } 641 642 643 //===----------------------------------------------------------------------===// 644 // Matchers for CastInst classes 645 // 646 647 template<typename Op_t, unsigned Opcode> 648 struct CastClass_match { 649 Op_t Op; 650 651 CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {} 652 653 template<typename OpTy> 654 bool match(OpTy *V) { 655 if (Operator *O = dyn_cast<Operator>(V)) 656 return O->getOpcode() == Opcode && Op.match(O->getOperand(0)); 657 return false; 658 } 659 }; 660 661 /// m_BitCast 662 template<typename OpTy> 663 inline CastClass_match<OpTy, Instruction::BitCast> 664 m_BitCast(const OpTy &Op) { 665 return CastClass_match<OpTy, Instruction::BitCast>(Op); 666 } 667 668 /// m_PtrToInt 669 template<typename OpTy> 670 inline CastClass_match<OpTy, Instruction::PtrToInt> 671 m_PtrToInt(const OpTy &Op) { 672 return CastClass_match<OpTy, Instruction::PtrToInt>(Op); 673 } 674 675 /// m_Trunc 676 template<typename OpTy> 677 inline CastClass_match<OpTy, Instruction::Trunc> 678 m_Trunc(const OpTy &Op) { 679 return CastClass_match<OpTy, Instruction::Trunc>(Op); 680 } 681 682 /// m_SExt 683 template<typename OpTy> 684 inline CastClass_match<OpTy, Instruction::SExt> 685 m_SExt(const OpTy &Op) { 686 return CastClass_match<OpTy, Instruction::SExt>(Op); 687 } 688 689 /// m_ZExt 690 template<typename OpTy> 691 inline CastClass_match<OpTy, Instruction::ZExt> 692 m_ZExt(const OpTy &Op) { 693 return CastClass_match<OpTy, Instruction::ZExt>(Op); 694 } 695 696 /// m_UIToFP 697 template<typename OpTy> 698 inline CastClass_match<OpTy, Instruction::UIToFP> 699 m_UIToFP(const OpTy &Op) { 700 return CastClass_match<OpTy, Instruction::UIToFP>(Op); 701 } 702 703 /// m_SIToFP 704 template<typename OpTy> 705 inline CastClass_match<OpTy, Instruction::SIToFP> 706 m_SIToFP(const OpTy &Op) { 707 return CastClass_match<OpTy, Instruction::SIToFP>(Op); 708 } 709 710 //===----------------------------------------------------------------------===// 711 // Matchers for unary operators 712 // 713 714 template<typename LHS_t> 715 struct not_match { 716 LHS_t L; 717 718 not_match(const LHS_t &LHS) : L(LHS) {} 719 720 template<typename OpTy> 721 bool match(OpTy *V) { 722 if (Operator *O = dyn_cast<Operator>(V)) 723 if (O->getOpcode() == Instruction::Xor) 724 return matchIfNot(O->getOperand(0), O->getOperand(1)); 725 return false; 726 } 727 private: 728 bool matchIfNot(Value *LHS, Value *RHS) { 729 return (isa<ConstantInt>(RHS) || isa<ConstantDataVector>(RHS) || 730 // FIXME: Remove CV. 731 isa<ConstantVector>(RHS)) && 732 cast<Constant>(RHS)->isAllOnesValue() && 733 L.match(LHS); 734 } 735 }; 736 737 template<typename LHS> 738 inline not_match<LHS> m_Not(const LHS &L) { return L; } 739 740 741 template<typename LHS_t> 742 struct neg_match { 743 LHS_t L; 744 745 neg_match(const LHS_t &LHS) : L(LHS) {} 746 747 template<typename OpTy> 748 bool match(OpTy *V) { 749 if (Operator *O = dyn_cast<Operator>(V)) 750 if (O->getOpcode() == Instruction::Sub) 751 return matchIfNeg(O->getOperand(0), O->getOperand(1)); 752 return false; 753 } 754 private: 755 bool matchIfNeg(Value *LHS, Value *RHS) { 756 return ((isa<ConstantInt>(LHS) && cast<ConstantInt>(LHS)->isZero()) || 757 isa<ConstantAggregateZero>(LHS)) && 758 L.match(RHS); 759 } 760 }; 761 762 /// m_Neg - Match an integer negate. 763 template<typename LHS> 764 inline neg_match<LHS> m_Neg(const LHS &L) { return L; } 765 766 767 template<typename LHS_t> 768 struct fneg_match { 769 LHS_t L; 770 771 fneg_match(const LHS_t &LHS) : L(LHS) {} 772 773 template<typename OpTy> 774 bool match(OpTy *V) { 775 if (Operator *O = dyn_cast<Operator>(V)) 776 if (O->getOpcode() == Instruction::FSub) 777 return matchIfFNeg(O->getOperand(0), O->getOperand(1)); 778 return false; 779 } 780 private: 781 bool matchIfFNeg(Value *LHS, Value *RHS) { 782 if (ConstantFP *C = dyn_cast<ConstantFP>(LHS)) 783 return C->isNegativeZeroValue() && L.match(RHS); 784 return false; 785 } 786 }; 787 788 /// m_FNeg - Match a floating point negate. 789 template<typename LHS> 790 inline fneg_match<LHS> m_FNeg(const LHS &L) { return L; } 791 792 793 //===----------------------------------------------------------------------===// 794 // Matchers for control flow. 795 // 796 797 struct br_match { 798 BasicBlock *&Succ; 799 br_match(BasicBlock *&Succ) 800 : Succ(Succ) { 801 } 802 803 template<typename OpTy> 804 bool match(OpTy *V) { 805 if (BranchInst *BI = dyn_cast<BranchInst>(V)) 806 if (BI->isUnconditional()) { 807 Succ = BI->getSuccessor(0); 808 return true; 809 } 810 return false; 811 } 812 }; 813 814 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); } 815 816 template<typename Cond_t> 817 struct brc_match { 818 Cond_t Cond; 819 BasicBlock *&T, *&F; 820 brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f) 821 : Cond(C), T(t), F(f) { 822 } 823 824 template<typename OpTy> 825 bool match(OpTy *V) { 826 if (BranchInst *BI = dyn_cast<BranchInst>(V)) 827 if (BI->isConditional() && Cond.match(BI->getCondition())) { 828 T = BI->getSuccessor(0); 829 F = BI->getSuccessor(1); 830 return true; 831 } 832 return false; 833 } 834 }; 835 836 template<typename Cond_t> 837 inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) { 838 return brc_match<Cond_t>(C, T, F); 839 } 840 841 842 //===----------------------------------------------------------------------===// 843 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y). 844 // 845 846 template<typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t> 847 struct MaxMin_match { 848 LHS_t L; 849 RHS_t R; 850 851 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) 852 : L(LHS), R(RHS) {} 853 854 template<typename OpTy> 855 bool match(OpTy *V) { 856 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x". 857 SelectInst *SI = dyn_cast<SelectInst>(V); 858 if (!SI) 859 return false; 860 CmpInst_t *Cmp = dyn_cast<CmpInst_t>(SI->getCondition()); 861 if (!Cmp) 862 return false; 863 // At this point we have a select conditioned on a comparison. Check that 864 // it is the values returned by the select that are being compared. 865 Value *TrueVal = SI->getTrueValue(); 866 Value *FalseVal = SI->getFalseValue(); 867 Value *LHS = Cmp->getOperand(0); 868 Value *RHS = Cmp->getOperand(1); 869 if ((TrueVal != LHS || FalseVal != RHS) && 870 (TrueVal != RHS || FalseVal != LHS)) 871 return false; 872 typename CmpInst_t::Predicate Pred = LHS == TrueVal ? 873 Cmp->getPredicate() : Cmp->getSwappedPredicate(); 874 // Does "(x pred y) ? x : y" represent the desired max/min operation? 875 if (!Pred_t::match(Pred)) 876 return false; 877 // It does! Bind the operands. 878 return L.match(LHS) && R.match(RHS); 879 } 880 }; 881 882 /// smax_pred_ty - Helper class for identifying signed max predicates. 883 struct smax_pred_ty { 884 static bool match(ICmpInst::Predicate Pred) { 885 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE; 886 } 887 }; 888 889 /// smin_pred_ty - Helper class for identifying signed min predicates. 890 struct smin_pred_ty { 891 static bool match(ICmpInst::Predicate Pred) { 892 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE; 893 } 894 }; 895 896 /// umax_pred_ty - Helper class for identifying unsigned max predicates. 897 struct umax_pred_ty { 898 static bool match(ICmpInst::Predicate Pred) { 899 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE; 900 } 901 }; 902 903 /// umin_pred_ty - Helper class for identifying unsigned min predicates. 904 struct umin_pred_ty { 905 static bool match(ICmpInst::Predicate Pred) { 906 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE; 907 } 908 }; 909 910 /// ofmax_pred_ty - Helper class for identifying ordered max predicates. 911 struct ofmax_pred_ty { 912 static bool match(FCmpInst::Predicate Pred) { 913 return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE; 914 } 915 }; 916 917 /// ofmin_pred_ty - Helper class for identifying ordered min predicates. 918 struct ofmin_pred_ty { 919 static bool match(FCmpInst::Predicate Pred) { 920 return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE; 921 } 922 }; 923 924 /// ufmax_pred_ty - Helper class for identifying unordered max predicates. 925 struct ufmax_pred_ty { 926 static bool match(FCmpInst::Predicate Pred) { 927 return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE; 928 } 929 }; 930 931 /// ufmin_pred_ty - Helper class for identifying unordered min predicates. 932 struct ufmin_pred_ty { 933 static bool match(FCmpInst::Predicate Pred) { 934 return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE; 935 } 936 }; 937 938 template<typename LHS, typename RHS> 939 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> 940 m_SMax(const LHS &L, const RHS &R) { 941 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R); 942 } 943 944 template<typename LHS, typename RHS> 945 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> 946 m_SMin(const LHS &L, const RHS &R) { 947 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R); 948 } 949 950 template<typename LHS, typename RHS> 951 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> 952 m_UMax(const LHS &L, const RHS &R) { 953 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R); 954 } 955 956 template<typename LHS, typename RHS> 957 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> 958 m_UMin(const LHS &L, const RHS &R) { 959 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R); 960 } 961 962 /// \brief Match an 'ordered' floating point maximum function. 963 /// Floating point has one special value 'NaN'. Therefore, there is no total 964 /// order. However, if we can ignore the 'NaN' value (for example, because of a 965 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' 966 /// semantics. In the presence of 'NaN' we have to preserve the original 967 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate. 968 /// 969 /// max(L, R) iff L and R are not NaN 970 /// m_OrdFMax(L, R) = R iff L or R are NaN 971 template<typename LHS, typename RHS> 972 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> 973 m_OrdFMax(const LHS &L, const RHS &R) { 974 return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R); 975 } 976 977 /// \brief Match an 'ordered' floating point minimum function. 978 /// Floating point has one special value 'NaN'. Therefore, there is no total 979 /// order. However, if we can ignore the 'NaN' value (for example, because of a 980 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' 981 /// semantics. In the presence of 'NaN' we have to preserve the original 982 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate. 983 /// 984 /// max(L, R) iff L and R are not NaN 985 /// m_OrdFMin(L, R) = R iff L or R are NaN 986 template<typename LHS, typename RHS> 987 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> 988 m_OrdFMin(const LHS &L, const RHS &R) { 989 return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R); 990 } 991 992 /// \brief Match an 'unordered' floating point maximum function. 993 /// Floating point has one special value 'NaN'. Therefore, there is no total 994 /// order. However, if we can ignore the 'NaN' value (for example, because of a 995 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum' 996 /// semantics. In the presence of 'NaN' we have to preserve the original 997 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate. 998 /// 999 /// max(L, R) iff L and R are not NaN 1000 /// m_UnordFMin(L, R) = L iff L or R are NaN 1001 template<typename LHS, typename RHS> 1002 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty> 1003 m_UnordFMax(const LHS &L, const RHS &R) { 1004 return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R); 1005 } 1006 1007 /// \brief Match an 'unordered' floating point minimum function. 1008 /// Floating point has one special value 'NaN'. Therefore, there is no total 1009 /// order. However, if we can ignore the 'NaN' value (for example, because of a 1010 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum' 1011 /// semantics. In the presence of 'NaN' we have to preserve the original 1012 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate. 1013 /// 1014 /// max(L, R) iff L and R are not NaN 1015 /// m_UnordFMin(L, R) = L iff L or R are NaN 1016 template<typename LHS, typename RHS> 1017 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty> 1018 m_UnordFMin(const LHS &L, const RHS &R) { 1019 return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R); 1020 } 1021 1022 template<typename Opnd_t> 1023 struct Argument_match { 1024 unsigned OpI; 1025 Opnd_t Val; 1026 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) { } 1027 1028 template<typename OpTy> 1029 bool match(OpTy *V) { 1030 CallSite CS(V); 1031 return CS.isCall() && Val.match(CS.getArgument(OpI)); 1032 } 1033 }; 1034 1035 /// Match an argument 1036 template<unsigned OpI, typename Opnd_t> 1037 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) { 1038 return Argument_match<Opnd_t>(OpI, Op); 1039 } 1040 1041 /// Intrinsic matchers. 1042 struct IntrinsicID_match { 1043 unsigned ID; 1044 IntrinsicID_match(unsigned IntrID) : ID(IntrID) { } 1045 1046 template<typename OpTy> 1047 bool match(OpTy *V) { 1048 IntrinsicInst *II = dyn_cast<IntrinsicInst>(V); 1049 return II && II->getIntrinsicID() == ID; 1050 } 1051 }; 1052 1053 /// Intrinsic matches are combinations of ID matchers, and argument 1054 /// matchers. Higher arity matcher are defined recursively in terms of and-ing 1055 /// them with lower arity matchers. Here's some convenient typedefs for up to 1056 /// several arguments, and more can be added as needed 1057 template <typename T0 = void, typename T1 = void, typename T2 = void, 1058 typename T3 = void, typename T4 = void, typename T5 = void, 1059 typename T6 = void, typename T7 = void, typename T8 = void, 1060 typename T9 = void, typename T10 = void> struct m_Intrinsic_Ty; 1061 template <typename T0> 1062 struct m_Intrinsic_Ty<T0> { 1063 typedef match_combine_and<IntrinsicID_match, Argument_match<T0> > Ty; 1064 }; 1065 template <typename T0, typename T1> 1066 struct m_Intrinsic_Ty<T0, T1> { 1067 typedef match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, 1068 Argument_match<T1> > Ty; 1069 }; 1070 template <typename T0, typename T1, typename T2> 1071 struct m_Intrinsic_Ty<T0, T1, T2> { 1072 typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty, 1073 Argument_match<T2> > Ty; 1074 }; 1075 template <typename T0, typename T1, typename T2, typename T3> 1076 struct m_Intrinsic_Ty<T0, T1, T2, T3> { 1077 typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty, 1078 Argument_match<T3> > Ty; 1079 }; 1080 1081 /// Match intrinsic calls like this: 1082 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X)) 1083 template <unsigned IntrID> 1084 inline IntrinsicID_match 1085 m_Intrinsic() { return IntrinsicID_match(IntrID); } 1086 1087 template<unsigned IntrID, typename T0> 1088 inline typename m_Intrinsic_Ty<T0>::Ty 1089 m_Intrinsic(const T0 &Op0) { 1090 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0)); 1091 } 1092 1093 template<unsigned IntrID, typename T0, typename T1> 1094 inline typename m_Intrinsic_Ty<T0, T1>::Ty 1095 m_Intrinsic(const T0 &Op0, const T1 &Op1) { 1096 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1)); 1097 } 1098 1099 template<unsigned IntrID, typename T0, typename T1, typename T2> 1100 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty 1101 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) { 1102 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2)); 1103 } 1104 1105 template<unsigned IntrID, typename T0, typename T1, typename T2, typename T3> 1106 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty 1107 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) { 1108 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3)); 1109 } 1110 1111 // Helper intrinsic matching specializations 1112 template<typename Opnd0> 1113 inline typename m_Intrinsic_Ty<Opnd0>::Ty 1114 m_BSwap(const Opnd0 &Op0) { 1115 return m_Intrinsic<Intrinsic::bswap>(Op0); 1116 } 1117 1118 } // end namespace PatternMatch 1119 } // end namespace llvm 1120 1121 #endif 1122