Home | History | Annotate | Download | only in Core
      1 //=-- ExprEngineC.cpp - ExprEngine support for C expressions ----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file defines ExprEngine's support for C expressions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/AST/ExprCXX.h"
     15 #include "clang/StaticAnalyzer/Core/CheckerManager.h"
     16 #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h"
     17 
     18 using namespace clang;
     19 using namespace ento;
     20 using llvm::APSInt;
     21 
     22 void ExprEngine::VisitBinaryOperator(const BinaryOperator* B,
     23                                      ExplodedNode *Pred,
     24                                      ExplodedNodeSet &Dst) {
     25 
     26   Expr *LHS = B->getLHS()->IgnoreParens();
     27   Expr *RHS = B->getRHS()->IgnoreParens();
     28 
     29   // FIXME: Prechecks eventually go in ::Visit().
     30   ExplodedNodeSet CheckedSet;
     31   ExplodedNodeSet Tmp2;
     32   getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, B, *this);
     33 
     34   // With both the LHS and RHS evaluated, process the operation itself.
     35   for (ExplodedNodeSet::iterator it=CheckedSet.begin(), ei=CheckedSet.end();
     36          it != ei; ++it) {
     37 
     38     ProgramStateRef state = (*it)->getState();
     39     const LocationContext *LCtx = (*it)->getLocationContext();
     40     SVal LeftV = state->getSVal(LHS, LCtx);
     41     SVal RightV = state->getSVal(RHS, LCtx);
     42 
     43     BinaryOperator::Opcode Op = B->getOpcode();
     44 
     45     if (Op == BO_Assign) {
     46       // EXPERIMENTAL: "Conjured" symbols.
     47       // FIXME: Handle structs.
     48       if (RightV.isUnknown()) {
     49         unsigned Count = currBldrCtx->blockCount();
     50         RightV = svalBuilder.conjureSymbolVal(0, B->getRHS(), LCtx, Count);
     51       }
     52       // Simulate the effects of a "store":  bind the value of the RHS
     53       // to the L-Value represented by the LHS.
     54       SVal ExprVal = B->isGLValue() ? LeftV : RightV;
     55       evalStore(Tmp2, B, LHS, *it, state->BindExpr(B, LCtx, ExprVal),
     56                 LeftV, RightV);
     57       continue;
     58     }
     59 
     60     if (!B->isAssignmentOp()) {
     61       StmtNodeBuilder Bldr(*it, Tmp2, *currBldrCtx);
     62 
     63       if (B->isAdditiveOp()) {
     64         // If one of the operands is a location, conjure a symbol for the other
     65         // one (offset) if it's unknown so that memory arithmetic always
     66         // results in an ElementRegion.
     67         // TODO: This can be removed after we enable history tracking with
     68         // SymSymExpr.
     69         unsigned Count = currBldrCtx->blockCount();
     70         if (LeftV.getAs<Loc>() &&
     71             RHS->getType()->isIntegralOrEnumerationType() &&
     72             RightV.isUnknown()) {
     73           RightV = svalBuilder.conjureSymbolVal(RHS, LCtx, RHS->getType(),
     74                                                 Count);
     75         }
     76         if (RightV.getAs<Loc>() &&
     77             LHS->getType()->isIntegralOrEnumerationType() &&
     78             LeftV.isUnknown()) {
     79           LeftV = svalBuilder.conjureSymbolVal(LHS, LCtx, LHS->getType(),
     80                                                Count);
     81         }
     82       }
     83 
     84       // Process non-assignments except commas or short-circuited
     85       // logical expressions (LAnd and LOr).
     86       SVal Result = evalBinOp(state, Op, LeftV, RightV, B->getType());
     87       if (Result.isUnknown()) {
     88         Bldr.generateNode(B, *it, state);
     89         continue;
     90       }
     91 
     92       state = state->BindExpr(B, LCtx, Result);
     93       Bldr.generateNode(B, *it, state);
     94       continue;
     95     }
     96 
     97     assert (B->isCompoundAssignmentOp());
     98 
     99     switch (Op) {
    100       default:
    101         llvm_unreachable("Invalid opcode for compound assignment.");
    102       case BO_MulAssign: Op = BO_Mul; break;
    103       case BO_DivAssign: Op = BO_Div; break;
    104       case BO_RemAssign: Op = BO_Rem; break;
    105       case BO_AddAssign: Op = BO_Add; break;
    106       case BO_SubAssign: Op = BO_Sub; break;
    107       case BO_ShlAssign: Op = BO_Shl; break;
    108       case BO_ShrAssign: Op = BO_Shr; break;
    109       case BO_AndAssign: Op = BO_And; break;
    110       case BO_XorAssign: Op = BO_Xor; break;
    111       case BO_OrAssign:  Op = BO_Or;  break;
    112     }
    113 
    114     // Perform a load (the LHS).  This performs the checks for
    115     // null dereferences, and so on.
    116     ExplodedNodeSet Tmp;
    117     SVal location = LeftV;
    118     evalLoad(Tmp, B, LHS, *it, state, location);
    119 
    120     for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E;
    121          ++I) {
    122 
    123       state = (*I)->getState();
    124       const LocationContext *LCtx = (*I)->getLocationContext();
    125       SVal V = state->getSVal(LHS, LCtx);
    126 
    127       // Get the computation type.
    128       QualType CTy =
    129         cast<CompoundAssignOperator>(B)->getComputationResultType();
    130       CTy = getContext().getCanonicalType(CTy);
    131 
    132       QualType CLHSTy =
    133         cast<CompoundAssignOperator>(B)->getComputationLHSType();
    134       CLHSTy = getContext().getCanonicalType(CLHSTy);
    135 
    136       QualType LTy = getContext().getCanonicalType(LHS->getType());
    137 
    138       // Promote LHS.
    139       V = svalBuilder.evalCast(V, CLHSTy, LTy);
    140 
    141       // Compute the result of the operation.
    142       SVal Result = svalBuilder.evalCast(evalBinOp(state, Op, V, RightV, CTy),
    143                                          B->getType(), CTy);
    144 
    145       // EXPERIMENTAL: "Conjured" symbols.
    146       // FIXME: Handle structs.
    147 
    148       SVal LHSVal;
    149 
    150       if (Result.isUnknown()) {
    151         // The symbolic value is actually for the type of the left-hand side
    152         // expression, not the computation type, as this is the value the
    153         // LValue on the LHS will bind to.
    154         LHSVal = svalBuilder.conjureSymbolVal(0, B->getRHS(), LCtx, LTy,
    155                                               currBldrCtx->blockCount());
    156         // However, we need to convert the symbol to the computation type.
    157         Result = svalBuilder.evalCast(LHSVal, CTy, LTy);
    158       }
    159       else {
    160         // The left-hand side may bind to a different value then the
    161         // computation type.
    162         LHSVal = svalBuilder.evalCast(Result, LTy, CTy);
    163       }
    164 
    165       // In C++, assignment and compound assignment operators return an
    166       // lvalue.
    167       if (B->isGLValue())
    168         state = state->BindExpr(B, LCtx, location);
    169       else
    170         state = state->BindExpr(B, LCtx, Result);
    171 
    172       evalStore(Tmp2, B, LHS, *I, state, location, LHSVal);
    173     }
    174   }
    175 
    176   // FIXME: postvisits eventually go in ::Visit()
    177   getCheckerManager().runCheckersForPostStmt(Dst, Tmp2, B, *this);
    178 }
    179 
    180 void ExprEngine::VisitBlockExpr(const BlockExpr *BE, ExplodedNode *Pred,
    181                                 ExplodedNodeSet &Dst) {
    182 
    183   CanQualType T = getContext().getCanonicalType(BE->getType());
    184 
    185   // Get the value of the block itself.
    186   SVal V = svalBuilder.getBlockPointer(BE->getBlockDecl(), T,
    187                                        Pred->getLocationContext());
    188 
    189   ProgramStateRef State = Pred->getState();
    190 
    191   // If we created a new MemRegion for the block, we should explicitly bind
    192   // the captured variables.
    193   if (const BlockDataRegion *BDR =
    194       dyn_cast_or_null<BlockDataRegion>(V.getAsRegion())) {
    195 
    196     BlockDataRegion::referenced_vars_iterator I = BDR->referenced_vars_begin(),
    197                                               E = BDR->referenced_vars_end();
    198 
    199     for (; I != E; ++I) {
    200       const MemRegion *capturedR = I.getCapturedRegion();
    201       const MemRegion *originalR = I.getOriginalRegion();
    202       if (capturedR != originalR) {
    203         SVal originalV = State->getSVal(loc::MemRegionVal(originalR));
    204         State = State->bindLoc(loc::MemRegionVal(capturedR), originalV);
    205       }
    206     }
    207   }
    208 
    209   ExplodedNodeSet Tmp;
    210   StmtNodeBuilder Bldr(Pred, Tmp, *currBldrCtx);
    211   Bldr.generateNode(BE, Pred,
    212                     State->BindExpr(BE, Pred->getLocationContext(), V),
    213                     0, ProgramPoint::PostLValueKind);
    214 
    215   // FIXME: Move all post/pre visits to ::Visit().
    216   getCheckerManager().runCheckersForPostStmt(Dst, Tmp, BE, *this);
    217 }
    218 
    219 void ExprEngine::VisitCast(const CastExpr *CastE, const Expr *Ex,
    220                            ExplodedNode *Pred, ExplodedNodeSet &Dst) {
    221 
    222   ExplodedNodeSet dstPreStmt;
    223   getCheckerManager().runCheckersForPreStmt(dstPreStmt, Pred, CastE, *this);
    224 
    225   if (CastE->getCastKind() == CK_LValueToRValue) {
    226     for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
    227          I!=E; ++I) {
    228       ExplodedNode *subExprNode = *I;
    229       ProgramStateRef state = subExprNode->getState();
    230       const LocationContext *LCtx = subExprNode->getLocationContext();
    231       evalLoad(Dst, CastE, CastE, subExprNode, state, state->getSVal(Ex, LCtx));
    232     }
    233     return;
    234   }
    235 
    236   // All other casts.
    237   QualType T = CastE->getType();
    238   QualType ExTy = Ex->getType();
    239 
    240   if (const ExplicitCastExpr *ExCast=dyn_cast_or_null<ExplicitCastExpr>(CastE))
    241     T = ExCast->getTypeAsWritten();
    242 
    243   StmtNodeBuilder Bldr(dstPreStmt, Dst, *currBldrCtx);
    244   for (ExplodedNodeSet::iterator I = dstPreStmt.begin(), E = dstPreStmt.end();
    245        I != E; ++I) {
    246 
    247     Pred = *I;
    248     ProgramStateRef state = Pred->getState();
    249     const LocationContext *LCtx = Pred->getLocationContext();
    250 
    251     switch (CastE->getCastKind()) {
    252       case CK_LValueToRValue:
    253         llvm_unreachable("LValueToRValue casts handled earlier.");
    254       case CK_ToVoid:
    255         continue;
    256         // The analyzer doesn't do anything special with these casts,
    257         // since it understands retain/release semantics already.
    258       case CK_ARCProduceObject:
    259       case CK_ARCConsumeObject:
    260       case CK_ARCReclaimReturnedObject:
    261       case CK_ARCExtendBlockObject: // Fall-through.
    262       case CK_CopyAndAutoreleaseBlockObject:
    263         // The analyser can ignore atomic casts for now, although some future
    264         // checkers may want to make certain that you're not modifying the same
    265         // value through atomic and nonatomic pointers.
    266       case CK_AtomicToNonAtomic:
    267       case CK_NonAtomicToAtomic:
    268         // True no-ops.
    269       case CK_NoOp:
    270       case CK_ConstructorConversion:
    271       case CK_UserDefinedConversion:
    272       case CK_FunctionToPointerDecay:
    273       case CK_BuiltinFnToFnPtr: {
    274         // Copy the SVal of Ex to CastE.
    275         ProgramStateRef state = Pred->getState();
    276         const LocationContext *LCtx = Pred->getLocationContext();
    277         SVal V = state->getSVal(Ex, LCtx);
    278         state = state->BindExpr(CastE, LCtx, V);
    279         Bldr.generateNode(CastE, Pred, state);
    280         continue;
    281       }
    282       case CK_MemberPointerToBoolean:
    283         // FIXME: For now, member pointers are represented by void *.
    284         // FALLTHROUGH
    285       case CK_Dependent:
    286       case CK_ArrayToPointerDecay:
    287       case CK_BitCast:
    288       case CK_IntegralCast:
    289       case CK_NullToPointer:
    290       case CK_IntegralToPointer:
    291       case CK_PointerToIntegral:
    292       case CK_PointerToBoolean:
    293       case CK_IntegralToBoolean:
    294       case CK_IntegralToFloating:
    295       case CK_FloatingToIntegral:
    296       case CK_FloatingToBoolean:
    297       case CK_FloatingCast:
    298       case CK_FloatingRealToComplex:
    299       case CK_FloatingComplexToReal:
    300       case CK_FloatingComplexToBoolean:
    301       case CK_FloatingComplexCast:
    302       case CK_FloatingComplexToIntegralComplex:
    303       case CK_IntegralRealToComplex:
    304       case CK_IntegralComplexToReal:
    305       case CK_IntegralComplexToBoolean:
    306       case CK_IntegralComplexCast:
    307       case CK_IntegralComplexToFloatingComplex:
    308       case CK_CPointerToObjCPointerCast:
    309       case CK_BlockPointerToObjCPointerCast:
    310       case CK_AnyPointerToBlockPointerCast:
    311       case CK_ObjCObjectLValueCast:
    312       case CK_ZeroToOCLEvent:
    313       case CK_LValueBitCast: {
    314         // Delegate to SValBuilder to process.
    315         SVal V = state->getSVal(Ex, LCtx);
    316         V = svalBuilder.evalCast(V, T, ExTy);
    317         state = state->BindExpr(CastE, LCtx, V);
    318         Bldr.generateNode(CastE, Pred, state);
    319         continue;
    320       }
    321       case CK_DerivedToBase:
    322       case CK_UncheckedDerivedToBase: {
    323         // For DerivedToBase cast, delegate to the store manager.
    324         SVal val = state->getSVal(Ex, LCtx);
    325         val = getStoreManager().evalDerivedToBase(val, CastE);
    326         state = state->BindExpr(CastE, LCtx, val);
    327         Bldr.generateNode(CastE, Pred, state);
    328         continue;
    329       }
    330       // Handle C++ dyn_cast.
    331       case CK_Dynamic: {
    332         SVal val = state->getSVal(Ex, LCtx);
    333 
    334         // Compute the type of the result.
    335         QualType resultType = CastE->getType();
    336         if (CastE->isGLValue())
    337           resultType = getContext().getPointerType(resultType);
    338 
    339         bool Failed = false;
    340 
    341         // Check if the value being cast evaluates to 0.
    342         if (val.isZeroConstant())
    343           Failed = true;
    344         // Else, evaluate the cast.
    345         else
    346           val = getStoreManager().evalDynamicCast(val, T, Failed);
    347 
    348         if (Failed) {
    349           if (T->isReferenceType()) {
    350             // A bad_cast exception is thrown if input value is a reference.
    351             // Currently, we model this, by generating a sink.
    352             Bldr.generateSink(CastE, Pred, state);
    353             continue;
    354           } else {
    355             // If the cast fails on a pointer, bind to 0.
    356             state = state->BindExpr(CastE, LCtx, svalBuilder.makeNull());
    357           }
    358         } else {
    359           // If we don't know if the cast succeeded, conjure a new symbol.
    360           if (val.isUnknown()) {
    361             DefinedOrUnknownSVal NewSym =
    362               svalBuilder.conjureSymbolVal(0, CastE, LCtx, resultType,
    363                                            currBldrCtx->blockCount());
    364             state = state->BindExpr(CastE, LCtx, NewSym);
    365           } else
    366             // Else, bind to the derived region value.
    367             state = state->BindExpr(CastE, LCtx, val);
    368         }
    369         Bldr.generateNode(CastE, Pred, state);
    370         continue;
    371       }
    372       case CK_NullToMemberPointer: {
    373         // FIXME: For now, member pointers are represented by void *.
    374         SVal V = svalBuilder.makeNull();
    375         state = state->BindExpr(CastE, LCtx, V);
    376         Bldr.generateNode(CastE, Pred, state);
    377         continue;
    378       }
    379       // Various C++ casts that are not handled yet.
    380       case CK_ToUnion:
    381       case CK_BaseToDerived:
    382       case CK_BaseToDerivedMemberPointer:
    383       case CK_DerivedToBaseMemberPointer:
    384       case CK_ReinterpretMemberPointer:
    385       case CK_VectorSplat: {
    386         // Recover some path-sensitivty by conjuring a new value.
    387         QualType resultType = CastE->getType();
    388         if (CastE->isGLValue())
    389           resultType = getContext().getPointerType(resultType);
    390         SVal result = svalBuilder.conjureSymbolVal(0, CastE, LCtx,
    391                                                    resultType,
    392                                                    currBldrCtx->blockCount());
    393         state = state->BindExpr(CastE, LCtx, result);
    394         Bldr.generateNode(CastE, Pred, state);
    395         continue;
    396       }
    397     }
    398   }
    399 }
    400 
    401 void ExprEngine::VisitCompoundLiteralExpr(const CompoundLiteralExpr *CL,
    402                                           ExplodedNode *Pred,
    403                                           ExplodedNodeSet &Dst) {
    404   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
    405 
    406   ProgramStateRef State = Pred->getState();
    407   const LocationContext *LCtx = Pred->getLocationContext();
    408 
    409   const Expr *Init = CL->getInitializer();
    410   SVal V = State->getSVal(CL->getInitializer(), LCtx);
    411 
    412   if (isa<CXXConstructExpr>(Init)) {
    413     // No work needed. Just pass the value up to this expression.
    414   } else {
    415     assert(isa<InitListExpr>(Init));
    416     Loc CLLoc = State->getLValue(CL, LCtx);
    417     State = State->bindLoc(CLLoc, V);
    418 
    419     // Compound literal expressions are a GNU extension in C++.
    420     // Unlike in C, where CLs are lvalues, in C++ CLs are prvalues,
    421     // and like temporary objects created by the functional notation T()
    422     // CLs are destroyed at the end of the containing full-expression.
    423     // HOWEVER, an rvalue of array type is not something the analyzer can
    424     // reason about, since we expect all regions to be wrapped in Locs.
    425     // So we treat array CLs as lvalues as well, knowing that they will decay
    426     // to pointers as soon as they are used.
    427     if (CL->isGLValue() || CL->getType()->isArrayType())
    428       V = CLLoc;
    429   }
    430 
    431   B.generateNode(CL, Pred, State->BindExpr(CL, LCtx, V));
    432 }
    433 
    434 void ExprEngine::VisitDeclStmt(const DeclStmt *DS, ExplodedNode *Pred,
    435                                ExplodedNodeSet &Dst) {
    436   // Assumption: The CFG has one DeclStmt per Decl.
    437   const VarDecl *VD = dyn_cast_or_null<VarDecl>(*DS->decl_begin());
    438 
    439   if (!VD) {
    440     //TODO:AZ: remove explicit insertion after refactoring is done.
    441     Dst.insert(Pred);
    442     return;
    443   }
    444 
    445   // FIXME: all pre/post visits should eventually be handled by ::Visit().
    446   ExplodedNodeSet dstPreVisit;
    447   getCheckerManager().runCheckersForPreStmt(dstPreVisit, Pred, DS, *this);
    448 
    449   StmtNodeBuilder B(dstPreVisit, Dst, *currBldrCtx);
    450   for (ExplodedNodeSet::iterator I = dstPreVisit.begin(), E = dstPreVisit.end();
    451        I!=E; ++I) {
    452     ExplodedNode *N = *I;
    453     ProgramStateRef state = N->getState();
    454     const LocationContext *LC = N->getLocationContext();
    455 
    456     // Decls without InitExpr are not initialized explicitly.
    457     if (const Expr *InitEx = VD->getInit()) {
    458 
    459       // Note in the state that the initialization has occurred.
    460       ExplodedNode *UpdatedN = N;
    461       SVal InitVal = state->getSVal(InitEx, LC);
    462 
    463       if (isa<CXXConstructExpr>(InitEx->IgnoreImplicit())) {
    464         // We constructed the object directly in the variable.
    465         // No need to bind anything.
    466         B.generateNode(DS, UpdatedN, state);
    467       } else {
    468         // We bound the temp obj region to the CXXConstructExpr. Now recover
    469         // the lazy compound value when the variable is not a reference.
    470         if (AMgr.getLangOpts().CPlusPlus && VD->getType()->isRecordType() &&
    471             !VD->getType()->isReferenceType()) {
    472           if (Optional<loc::MemRegionVal> M =
    473                   InitVal.getAs<loc::MemRegionVal>()) {
    474             InitVal = state->getSVal(M->getRegion());
    475             assert(InitVal.getAs<nonloc::LazyCompoundVal>());
    476           }
    477         }
    478 
    479         // Recover some path-sensitivity if a scalar value evaluated to
    480         // UnknownVal.
    481         if (InitVal.isUnknown()) {
    482           QualType Ty = InitEx->getType();
    483           if (InitEx->isGLValue()) {
    484             Ty = getContext().getPointerType(Ty);
    485           }
    486 
    487           InitVal = svalBuilder.conjureSymbolVal(0, InitEx, LC, Ty,
    488                                                  currBldrCtx->blockCount());
    489         }
    490 
    491 
    492         B.takeNodes(UpdatedN);
    493         ExplodedNodeSet Dst2;
    494         evalBind(Dst2, DS, UpdatedN, state->getLValue(VD, LC), InitVal, true);
    495         B.addNodes(Dst2);
    496       }
    497     }
    498     else {
    499       B.generateNode(DS, N, state);
    500     }
    501   }
    502 }
    503 
    504 void ExprEngine::VisitLogicalExpr(const BinaryOperator* B, ExplodedNode *Pred,
    505                                   ExplodedNodeSet &Dst) {
    506   assert(B->getOpcode() == BO_LAnd ||
    507          B->getOpcode() == BO_LOr);
    508 
    509   StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
    510   ProgramStateRef state = Pred->getState();
    511 
    512   ExplodedNode *N = Pred;
    513   while (!N->getLocation().getAs<BlockEntrance>()) {
    514     ProgramPoint P = N->getLocation();
    515     assert(P.getAs<PreStmt>()|| P.getAs<PreStmtPurgeDeadSymbols>());
    516     (void) P;
    517     assert(N->pred_size() == 1);
    518     N = *N->pred_begin();
    519   }
    520   assert(N->pred_size() == 1);
    521   N = *N->pred_begin();
    522   BlockEdge BE = N->getLocation().castAs<BlockEdge>();
    523   SVal X;
    524 
    525   // Determine the value of the expression by introspecting how we
    526   // got this location in the CFG.  This requires looking at the previous
    527   // block we were in and what kind of control-flow transfer was involved.
    528   const CFGBlock *SrcBlock = BE.getSrc();
    529   // The only terminator (if there is one) that makes sense is a logical op.
    530   CFGTerminator T = SrcBlock->getTerminator();
    531   if (const BinaryOperator *Term = cast_or_null<BinaryOperator>(T.getStmt())) {
    532     (void) Term;
    533     assert(Term->isLogicalOp());
    534     assert(SrcBlock->succ_size() == 2);
    535     // Did we take the true or false branch?
    536     unsigned constant = (*SrcBlock->succ_begin() == BE.getDst()) ? 1 : 0;
    537     X = svalBuilder.makeIntVal(constant, B->getType());
    538   }
    539   else {
    540     // If there is no terminator, by construction the last statement
    541     // in SrcBlock is the value of the enclosing expression.
    542     // However, we still need to constrain that value to be 0 or 1.
    543     assert(!SrcBlock->empty());
    544     CFGStmt Elem = SrcBlock->rbegin()->castAs<CFGStmt>();
    545     const Expr *RHS = cast<Expr>(Elem.getStmt());
    546     SVal RHSVal = N->getState()->getSVal(RHS, Pred->getLocationContext());
    547 
    548     if (RHSVal.isUndef()) {
    549       X = RHSVal;
    550     } else {
    551       DefinedOrUnknownSVal DefinedRHS = RHSVal.castAs<DefinedOrUnknownSVal>();
    552       ProgramStateRef StTrue, StFalse;
    553       llvm::tie(StTrue, StFalse) = N->getState()->assume(DefinedRHS);
    554       if (StTrue) {
    555         if (StFalse) {
    556           // We can't constrain the value to 0 or 1.
    557           // The best we can do is a cast.
    558           X = getSValBuilder().evalCast(RHSVal, B->getType(), RHS->getType());
    559         } else {
    560           // The value is known to be true.
    561           X = getSValBuilder().makeIntVal(1, B->getType());
    562         }
    563       } else {
    564         // The value is known to be false.
    565         assert(StFalse && "Infeasible path!");
    566         X = getSValBuilder().makeIntVal(0, B->getType());
    567       }
    568     }
    569   }
    570   Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), X));
    571 }
    572 
    573 void ExprEngine::VisitInitListExpr(const InitListExpr *IE,
    574                                    ExplodedNode *Pred,
    575                                    ExplodedNodeSet &Dst) {
    576   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
    577 
    578   ProgramStateRef state = Pred->getState();
    579   const LocationContext *LCtx = Pred->getLocationContext();
    580   QualType T = getContext().getCanonicalType(IE->getType());
    581   unsigned NumInitElements = IE->getNumInits();
    582 
    583   if (!IE->isGLValue() &&
    584       (T->isArrayType() || T->isRecordType() || T->isVectorType() ||
    585        T->isAnyComplexType())) {
    586     llvm::ImmutableList<SVal> vals = getBasicVals().getEmptySValList();
    587 
    588     // Handle base case where the initializer has no elements.
    589     // e.g: static int* myArray[] = {};
    590     if (NumInitElements == 0) {
    591       SVal V = svalBuilder.makeCompoundVal(T, vals);
    592       B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
    593       return;
    594     }
    595 
    596     for (InitListExpr::const_reverse_iterator it = IE->rbegin(),
    597          ei = IE->rend(); it != ei; ++it) {
    598       SVal V = state->getSVal(cast<Expr>(*it), LCtx);
    599       if (dyn_cast_or_null<CXXTempObjectRegion>(V.getAsRegion()))
    600         V = UnknownVal();
    601       vals = getBasicVals().consVals(V, vals);
    602     }
    603 
    604     B.generateNode(IE, Pred,
    605                    state->BindExpr(IE, LCtx,
    606                                    svalBuilder.makeCompoundVal(T, vals)));
    607     return;
    608   }
    609 
    610   // Handle scalars: int{5} and int{} and GLvalues.
    611   // Note, if the InitListExpr is a GLvalue, it means that there is an address
    612   // representing it, so it must have a single init element.
    613   assert(NumInitElements <= 1);
    614 
    615   SVal V;
    616   if (NumInitElements == 0)
    617     V = getSValBuilder().makeZeroVal(T);
    618   else
    619     V = state->getSVal(IE->getInit(0), LCtx);
    620 
    621   B.generateNode(IE, Pred, state->BindExpr(IE, LCtx, V));
    622 }
    623 
    624 void ExprEngine::VisitGuardedExpr(const Expr *Ex,
    625                                   const Expr *L,
    626                                   const Expr *R,
    627                                   ExplodedNode *Pred,
    628                                   ExplodedNodeSet &Dst) {
    629   assert(L && R);
    630 
    631   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
    632   ProgramStateRef state = Pred->getState();
    633   const LocationContext *LCtx = Pred->getLocationContext();
    634   const CFGBlock *SrcBlock = 0;
    635 
    636   // Find the predecessor block.
    637   ProgramStateRef SrcState = state;
    638   for (const ExplodedNode *N = Pred ; N ; N = *N->pred_begin()) {
    639     ProgramPoint PP = N->getLocation();
    640     if (PP.getAs<PreStmtPurgeDeadSymbols>() || PP.getAs<BlockEntrance>()) {
    641       assert(N->pred_size() == 1);
    642       continue;
    643     }
    644     SrcBlock = PP.castAs<BlockEdge>().getSrc();
    645     SrcState = N->getState();
    646     break;
    647   }
    648 
    649   assert(SrcBlock && "missing function entry");
    650 
    651   // Find the last expression in the predecessor block.  That is the
    652   // expression that is used for the value of the ternary expression.
    653   bool hasValue = false;
    654   SVal V;
    655 
    656   for (CFGBlock::const_reverse_iterator I = SrcBlock->rbegin(),
    657                                         E = SrcBlock->rend(); I != E; ++I) {
    658     CFGElement CE = *I;
    659     if (Optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
    660       const Expr *ValEx = cast<Expr>(CS->getStmt());
    661       ValEx = ValEx->IgnoreParens();
    662 
    663       // For GNU extension '?:' operator, the left hand side will be an
    664       // OpaqueValueExpr, so get the underlying expression.
    665       if (const OpaqueValueExpr *OpaqueEx = dyn_cast<OpaqueValueExpr>(L))
    666         L = OpaqueEx->getSourceExpr();
    667 
    668       // If the last expression in the predecessor block matches true or false
    669       // subexpression, get its the value.
    670       if (ValEx == L->IgnoreParens() || ValEx == R->IgnoreParens()) {
    671         hasValue = true;
    672         V = SrcState->getSVal(ValEx, LCtx);
    673       }
    674       break;
    675     }
    676   }
    677 
    678   if (!hasValue)
    679     V = svalBuilder.conjureSymbolVal(0, Ex, LCtx, currBldrCtx->blockCount());
    680 
    681   // Generate a new node with the binding from the appropriate path.
    682   B.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V, true));
    683 }
    684 
    685 void ExprEngine::
    686 VisitOffsetOfExpr(const OffsetOfExpr *OOE,
    687                   ExplodedNode *Pred, ExplodedNodeSet &Dst) {
    688   StmtNodeBuilder B(Pred, Dst, *currBldrCtx);
    689   APSInt IV;
    690   if (OOE->EvaluateAsInt(IV, getContext())) {
    691     assert(IV.getBitWidth() == getContext().getTypeSize(OOE->getType()));
    692     assert(OOE->getType()->isBuiltinType());
    693     assert(OOE->getType()->getAs<BuiltinType>()->isInteger());
    694     assert(IV.isSigned() == OOE->getType()->isSignedIntegerType());
    695     SVal X = svalBuilder.makeIntVal(IV);
    696     B.generateNode(OOE, Pred,
    697                    Pred->getState()->BindExpr(OOE, Pred->getLocationContext(),
    698                                               X));
    699   }
    700   // FIXME: Handle the case where __builtin_offsetof is not a constant.
    701 }
    702 
    703 
    704 void ExprEngine::
    705 VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *Ex,
    706                               ExplodedNode *Pred,
    707                               ExplodedNodeSet &Dst) {
    708   StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
    709 
    710   QualType T = Ex->getTypeOfArgument();
    711 
    712   if (Ex->getKind() == UETT_SizeOf) {
    713     if (!T->isIncompleteType() && !T->isConstantSizeType()) {
    714       assert(T->isVariableArrayType() && "Unknown non-constant-sized type.");
    715 
    716       // FIXME: Add support for VLA type arguments and VLA expressions.
    717       // When that happens, we should probably refactor VLASizeChecker's code.
    718       return;
    719     }
    720     else if (T->getAs<ObjCObjectType>()) {
    721       // Some code tries to take the sizeof an ObjCObjectType, relying that
    722       // the compiler has laid out its representation.  Just report Unknown
    723       // for these.
    724       return;
    725     }
    726   }
    727 
    728   APSInt Value = Ex->EvaluateKnownConstInt(getContext());
    729   CharUnits amt = CharUnits::fromQuantity(Value.getZExtValue());
    730 
    731   ProgramStateRef state = Pred->getState();
    732   state = state->BindExpr(Ex, Pred->getLocationContext(),
    733                           svalBuilder.makeIntVal(amt.getQuantity(),
    734                                                      Ex->getType()));
    735   Bldr.generateNode(Ex, Pred, state);
    736 }
    737 
    738 void ExprEngine::VisitUnaryOperator(const UnaryOperator* U,
    739                                     ExplodedNode *Pred,
    740                                     ExplodedNodeSet &Dst) {
    741   StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx);
    742   switch (U->getOpcode()) {
    743     default: {
    744       Bldr.takeNodes(Pred);
    745       ExplodedNodeSet Tmp;
    746       VisitIncrementDecrementOperator(U, Pred, Tmp);
    747       Bldr.addNodes(Tmp);
    748     }
    749       break;
    750     case UO_Real: {
    751       const Expr *Ex = U->getSubExpr()->IgnoreParens();
    752 
    753       // FIXME: We don't have complex SValues yet.
    754       if (Ex->getType()->isAnyComplexType()) {
    755         // Just report "Unknown."
    756         break;
    757       }
    758 
    759       // For all other types, UO_Real is an identity operation.
    760       assert (U->getType() == Ex->getType());
    761       ProgramStateRef state = Pred->getState();
    762       const LocationContext *LCtx = Pred->getLocationContext();
    763       Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
    764                                                  state->getSVal(Ex, LCtx)));
    765       break;
    766     }
    767 
    768     case UO_Imag: {
    769       const Expr *Ex = U->getSubExpr()->IgnoreParens();
    770       // FIXME: We don't have complex SValues yet.
    771       if (Ex->getType()->isAnyComplexType()) {
    772         // Just report "Unknown."
    773         break;
    774       }
    775       // For all other types, UO_Imag returns 0.
    776       ProgramStateRef state = Pred->getState();
    777       const LocationContext *LCtx = Pred->getLocationContext();
    778       SVal X = svalBuilder.makeZeroVal(Ex->getType());
    779       Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, X));
    780       break;
    781     }
    782 
    783     case UO_Plus:
    784       assert(!U->isGLValue());
    785       // FALL-THROUGH.
    786     case UO_Deref:
    787     case UO_AddrOf:
    788     case UO_Extension: {
    789       // FIXME: We can probably just have some magic in Environment::getSVal()
    790       // that propagates values, instead of creating a new node here.
    791       //
    792       // Unary "+" is a no-op, similar to a parentheses.  We still have places
    793       // where it may be a block-level expression, so we need to
    794       // generate an extra node that just propagates the value of the
    795       // subexpression.
    796       const Expr *Ex = U->getSubExpr()->IgnoreParens();
    797       ProgramStateRef state = Pred->getState();
    798       const LocationContext *LCtx = Pred->getLocationContext();
    799       Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx,
    800                                                  state->getSVal(Ex, LCtx)));
    801       break;
    802     }
    803 
    804     case UO_LNot:
    805     case UO_Minus:
    806     case UO_Not: {
    807       assert (!U->isGLValue());
    808       const Expr *Ex = U->getSubExpr()->IgnoreParens();
    809       ProgramStateRef state = Pred->getState();
    810       const LocationContext *LCtx = Pred->getLocationContext();
    811 
    812       // Get the value of the subexpression.
    813       SVal V = state->getSVal(Ex, LCtx);
    814 
    815       if (V.isUnknownOrUndef()) {
    816         Bldr.generateNode(U, Pred, state->BindExpr(U, LCtx, V));
    817         break;
    818       }
    819 
    820       switch (U->getOpcode()) {
    821         default:
    822           llvm_unreachable("Invalid Opcode.");
    823         case UO_Not:
    824           // FIXME: Do we need to handle promotions?
    825           state = state->BindExpr(U, LCtx, evalComplement(V.castAs<NonLoc>()));
    826           break;
    827         case UO_Minus:
    828           // FIXME: Do we need to handle promotions?
    829           state = state->BindExpr(U, LCtx, evalMinus(V.castAs<NonLoc>()));
    830           break;
    831         case UO_LNot:
    832           // C99 6.5.3.3: "The expression !E is equivalent to (0==E)."
    833           //
    834           //  Note: technically we do "E == 0", but this is the same in the
    835           //    transfer functions as "0 == E".
    836           SVal Result;
    837           if (Optional<Loc> LV = V.getAs<Loc>()) {
    838             Loc X = svalBuilder.makeNull();
    839             Result = evalBinOp(state, BO_EQ, *LV, X, U->getType());
    840           }
    841           else if (Ex->getType()->isFloatingType()) {
    842             // FIXME: handle floating point types.
    843             Result = UnknownVal();
    844           } else {
    845             nonloc::ConcreteInt X(getBasicVals().getValue(0, Ex->getType()));
    846             Result = evalBinOp(state, BO_EQ, V.castAs<NonLoc>(), X,
    847                                U->getType());
    848           }
    849 
    850           state = state->BindExpr(U, LCtx, Result);
    851           break;
    852       }
    853       Bldr.generateNode(U, Pred, state);
    854       break;
    855     }
    856   }
    857 
    858 }
    859 
    860 void ExprEngine::VisitIncrementDecrementOperator(const UnaryOperator* U,
    861                                                  ExplodedNode *Pred,
    862                                                  ExplodedNodeSet &Dst) {
    863   // Handle ++ and -- (both pre- and post-increment).
    864   assert (U->isIncrementDecrementOp());
    865   const Expr *Ex = U->getSubExpr()->IgnoreParens();
    866 
    867   const LocationContext *LCtx = Pred->getLocationContext();
    868   ProgramStateRef state = Pred->getState();
    869   SVal loc = state->getSVal(Ex, LCtx);
    870 
    871   // Perform a load.
    872   ExplodedNodeSet Tmp;
    873   evalLoad(Tmp, U, Ex, Pred, state, loc);
    874 
    875   ExplodedNodeSet Dst2;
    876   StmtNodeBuilder Bldr(Tmp, Dst2, *currBldrCtx);
    877   for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end();I!=E;++I) {
    878 
    879     state = (*I)->getState();
    880     assert(LCtx == (*I)->getLocationContext());
    881     SVal V2_untested = state->getSVal(Ex, LCtx);
    882 
    883     // Propagate unknown and undefined values.
    884     if (V2_untested.isUnknownOrUndef()) {
    885       Bldr.generateNode(U, *I, state->BindExpr(U, LCtx, V2_untested));
    886       continue;
    887     }
    888     DefinedSVal V2 = V2_untested.castAs<DefinedSVal>();
    889 
    890     // Handle all other values.
    891     BinaryOperator::Opcode Op = U->isIncrementOp() ? BO_Add : BO_Sub;
    892 
    893     // If the UnaryOperator has non-location type, use its type to create the
    894     // constant value. If the UnaryOperator has location type, create the
    895     // constant with int type and pointer width.
    896     SVal RHS;
    897 
    898     if (U->getType()->isAnyPointerType())
    899       RHS = svalBuilder.makeArrayIndex(1);
    900     else if (U->getType()->isIntegralOrEnumerationType())
    901       RHS = svalBuilder.makeIntVal(1, U->getType());
    902     else
    903       RHS = UnknownVal();
    904 
    905     SVal Result = evalBinOp(state, Op, V2, RHS, U->getType());
    906 
    907     // Conjure a new symbol if necessary to recover precision.
    908     if (Result.isUnknown()){
    909       DefinedOrUnknownSVal SymVal =
    910         svalBuilder.conjureSymbolVal(0, Ex, LCtx, currBldrCtx->blockCount());
    911       Result = SymVal;
    912 
    913       // If the value is a location, ++/-- should always preserve
    914       // non-nullness.  Check if the original value was non-null, and if so
    915       // propagate that constraint.
    916       if (Loc::isLocType(U->getType())) {
    917         DefinedOrUnknownSVal Constraint =
    918         svalBuilder.evalEQ(state, V2,svalBuilder.makeZeroVal(U->getType()));
    919 
    920         if (!state->assume(Constraint, true)) {
    921           // It isn't feasible for the original value to be null.
    922           // Propagate this constraint.
    923           Constraint = svalBuilder.evalEQ(state, SymVal,
    924                                        svalBuilder.makeZeroVal(U->getType()));
    925 
    926 
    927           state = state->assume(Constraint, false);
    928           assert(state);
    929         }
    930       }
    931     }
    932 
    933     // Since the lvalue-to-rvalue conversion is explicit in the AST,
    934     // we bind an l-value if the operator is prefix and an lvalue (in C++).
    935     if (U->isGLValue())
    936       state = state->BindExpr(U, LCtx, loc);
    937     else
    938       state = state->BindExpr(U, LCtx, U->isPostfix() ? V2 : Result);
    939 
    940     // Perform the store.
    941     Bldr.takeNodes(*I);
    942     ExplodedNodeSet Dst3;
    943     evalStore(Dst3, U, U, *I, state, loc, Result);
    944     Bldr.addNodes(Dst3);
    945   }
    946   Dst.insert(Dst2);
    947 }
    948