Home | History | Annotate | Download | only in CodeGen
      1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the generic RegisterCoalescer interface which
     11 // is used as the common interface used by all clients and
     12 // implementations of register coalescing.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "regalloc"
     17 #include "RegisterCoalescer.h"
     18 #include "llvm/ADT/OwningPtr.h"
     19 #include "llvm/ADT/STLExtras.h"
     20 #include "llvm/ADT/SmallSet.h"
     21 #include "llvm/ADT/Statistic.h"
     22 #include "llvm/Analysis/AliasAnalysis.h"
     23 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
     24 #include "llvm/CodeGen/LiveRangeEdit.h"
     25 #include "llvm/CodeGen/MachineFrameInfo.h"
     26 #include "llvm/CodeGen/MachineInstr.h"
     27 #include "llvm/CodeGen/MachineLoopInfo.h"
     28 #include "llvm/CodeGen/MachineRegisterInfo.h"
     29 #include "llvm/CodeGen/Passes.h"
     30 #include "llvm/CodeGen/RegisterClassInfo.h"
     31 #include "llvm/CodeGen/VirtRegMap.h"
     32 #include "llvm/IR/Value.h"
     33 #include "llvm/Pass.h"
     34 #include "llvm/Support/CommandLine.h"
     35 #include "llvm/Support/Debug.h"
     36 #include "llvm/Support/ErrorHandling.h"
     37 #include "llvm/Support/raw_ostream.h"
     38 #include "llvm/Target/TargetInstrInfo.h"
     39 #include "llvm/Target/TargetMachine.h"
     40 #include "llvm/Target/TargetRegisterInfo.h"
     41 #include "llvm/Target/TargetSubtargetInfo.h"
     42 #include <algorithm>
     43 #include <cmath>
     44 using namespace llvm;
     45 
     46 STATISTIC(numJoins    , "Number of interval joins performed");
     47 STATISTIC(numCrossRCs , "Number of cross class joins performed");
     48 STATISTIC(numCommutes , "Number of instruction commuting performed");
     49 STATISTIC(numExtends  , "Number of copies extended");
     50 STATISTIC(NumReMats   , "Number of instructions re-materialized");
     51 STATISTIC(NumInflated , "Number of register classes inflated");
     52 STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
     53 STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
     54 
     55 static cl::opt<bool>
     56 EnableJoining("join-liveintervals",
     57               cl::desc("Coalesce copies (default=true)"),
     58               cl::init(true));
     59 
     60 // Temporary flag to test critical edge unsplitting.
     61 static cl::opt<bool>
     62 EnableJoinSplits("join-splitedges",
     63   cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
     64 
     65 // Temporary flag to test global copy optimization.
     66 static cl::opt<cl::boolOrDefault>
     67 EnableGlobalCopies("join-globalcopies",
     68   cl::desc("Coalesce copies that span blocks (default=subtarget)"),
     69   cl::init(cl::BOU_UNSET), cl::Hidden);
     70 
     71 static cl::opt<bool>
     72 VerifyCoalescing("verify-coalescing",
     73          cl::desc("Verify machine instrs before and after register coalescing"),
     74          cl::Hidden);
     75 
     76 namespace {
     77   class RegisterCoalescer : public MachineFunctionPass,
     78                             private LiveRangeEdit::Delegate {
     79     MachineFunction* MF;
     80     MachineRegisterInfo* MRI;
     81     const TargetMachine* TM;
     82     const TargetRegisterInfo* TRI;
     83     const TargetInstrInfo* TII;
     84     LiveIntervals *LIS;
     85     const MachineLoopInfo* Loops;
     86     AliasAnalysis *AA;
     87     RegisterClassInfo RegClassInfo;
     88 
     89     /// \brief True if the coalescer should aggressively coalesce global copies
     90     /// in favor of keeping local copies.
     91     bool JoinGlobalCopies;
     92 
     93     /// \brief True if the coalescer should aggressively coalesce fall-thru
     94     /// blocks exclusively containing copies.
     95     bool JoinSplitEdges;
     96 
     97     /// WorkList - Copy instructions yet to be coalesced.
     98     SmallVector<MachineInstr*, 8> WorkList;
     99     SmallVector<MachineInstr*, 8> LocalWorkList;
    100 
    101     /// ErasedInstrs - Set of instruction pointers that have been erased, and
    102     /// that may be present in WorkList.
    103     SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
    104 
    105     /// Dead instructions that are about to be deleted.
    106     SmallVector<MachineInstr*, 8> DeadDefs;
    107 
    108     /// Virtual registers to be considered for register class inflation.
    109     SmallVector<unsigned, 8> InflateRegs;
    110 
    111     /// Recursively eliminate dead defs in DeadDefs.
    112     void eliminateDeadDefs();
    113 
    114     /// LiveRangeEdit callback.
    115     void LRE_WillEraseInstruction(MachineInstr *MI);
    116 
    117     /// coalesceLocals - coalesce the LocalWorkList.
    118     void coalesceLocals();
    119 
    120     /// joinAllIntervals - join compatible live intervals
    121     void joinAllIntervals();
    122 
    123     /// copyCoalesceInMBB - Coalesce copies in the specified MBB, putting
    124     /// copies that cannot yet be coalesced into WorkList.
    125     void copyCoalesceInMBB(MachineBasicBlock *MBB);
    126 
    127     /// copyCoalesceWorkList - Try to coalesce all copies in CurrList. Return
    128     /// true if any progress was made.
    129     bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
    130 
    131     /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
    132     /// which are the src/dst of the copy instruction CopyMI.  This returns
    133     /// true if the copy was successfully coalesced away. If it is not
    134     /// currently possible to coalesce this interval, but it may be possible if
    135     /// other things get coalesced, then it returns true by reference in
    136     /// 'Again'.
    137     bool joinCopy(MachineInstr *TheCopy, bool &Again);
    138 
    139     /// joinIntervals - Attempt to join these two intervals.  On failure, this
    140     /// returns false.  The output "SrcInt" will not have been modified, so we
    141     /// can use this information below to update aliases.
    142     bool joinIntervals(CoalescerPair &CP);
    143 
    144     /// Attempt joining two virtual registers. Return true on success.
    145     bool joinVirtRegs(CoalescerPair &CP);
    146 
    147     /// Attempt joining with a reserved physreg.
    148     bool joinReservedPhysReg(CoalescerPair &CP);
    149 
    150     /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
    151     /// the source value number is defined by a copy from the destination reg
    152     /// see if we can merge these two destination reg valno# into a single
    153     /// value number, eliminating a copy.
    154     bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
    155 
    156     /// hasOtherReachingDefs - Return true if there are definitions of IntB
    157     /// other than BValNo val# that can reach uses of AValno val# of IntA.
    158     bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
    159                               VNInfo *AValNo, VNInfo *BValNo);
    160 
    161     /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy.
    162     /// If the source value number is defined by a commutable instruction and
    163     /// its other operand is coalesced to the copy dest register, see if we
    164     /// can transform the copy into a noop by commuting the definition.
    165     bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
    166 
    167     /// reMaterializeTrivialDef - If the source of a copy is defined by a
    168     /// trivial computation, replace the copy by rematerialize the definition.
    169     bool reMaterializeTrivialDef(CoalescerPair &CP, MachineInstr *CopyMI,
    170                                  bool &IsDefCopy);
    171 
    172     /// canJoinPhys - Return true if a physreg copy should be joined.
    173     bool canJoinPhys(const CoalescerPair &CP);
    174 
    175     /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
    176     /// update the subregister number if it is not zero. If DstReg is a
    177     /// physical register and the existing subregister number of the def / use
    178     /// being updated is not zero, make sure to set it to the correct physical
    179     /// subregister.
    180     void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
    181 
    182     /// eliminateUndefCopy - Handle copies of undef values.
    183     bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP);
    184 
    185   public:
    186     static char ID; // Class identification, replacement for typeinfo
    187     RegisterCoalescer() : MachineFunctionPass(ID) {
    188       initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
    189     }
    190 
    191     virtual void getAnalysisUsage(AnalysisUsage &AU) const;
    192 
    193     virtual void releaseMemory();
    194 
    195     /// runOnMachineFunction - pass entry point
    196     virtual bool runOnMachineFunction(MachineFunction&);
    197 
    198     /// print - Implement the dump method.
    199     virtual void print(raw_ostream &O, const Module* = 0) const;
    200   };
    201 } /// end anonymous namespace
    202 
    203 char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
    204 
    205 INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
    206                       "Simple Register Coalescing", false, false)
    207 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
    208 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
    209 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
    210 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    211 INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
    212                     "Simple Register Coalescing", false, false)
    213 
    214 char RegisterCoalescer::ID = 0;
    215 
    216 static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
    217                         unsigned &Src, unsigned &Dst,
    218                         unsigned &SrcSub, unsigned &DstSub) {
    219   if (MI->isCopy()) {
    220     Dst = MI->getOperand(0).getReg();
    221     DstSub = MI->getOperand(0).getSubReg();
    222     Src = MI->getOperand(1).getReg();
    223     SrcSub = MI->getOperand(1).getSubReg();
    224   } else if (MI->isSubregToReg()) {
    225     Dst = MI->getOperand(0).getReg();
    226     DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
    227                                       MI->getOperand(3).getImm());
    228     Src = MI->getOperand(2).getReg();
    229     SrcSub = MI->getOperand(2).getSubReg();
    230   } else
    231     return false;
    232   return true;
    233 }
    234 
    235 // Return true if this block should be vacated by the coalescer to eliminate
    236 // branches. The important cases to handle in the coalescer are critical edges
    237 // split during phi elimination which contain only copies. Simple blocks that
    238 // contain non-branches should also be vacated, but this can be handled by an
    239 // earlier pass similar to early if-conversion.
    240 static bool isSplitEdge(const MachineBasicBlock *MBB) {
    241   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
    242     return false;
    243 
    244   for (MachineBasicBlock::const_iterator MII = MBB->begin(), E = MBB->end();
    245        MII != E; ++MII) {
    246     if (!MII->isCopyLike() && !MII->isUnconditionalBranch())
    247       return false;
    248   }
    249   return true;
    250 }
    251 
    252 bool CoalescerPair::setRegisters(const MachineInstr *MI) {
    253   SrcReg = DstReg = 0;
    254   SrcIdx = DstIdx = 0;
    255   NewRC = 0;
    256   Flipped = CrossClass = false;
    257 
    258   unsigned Src, Dst, SrcSub, DstSub;
    259   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
    260     return false;
    261   Partial = SrcSub || DstSub;
    262 
    263   // If one register is a physreg, it must be Dst.
    264   if (TargetRegisterInfo::isPhysicalRegister(Src)) {
    265     if (TargetRegisterInfo::isPhysicalRegister(Dst))
    266       return false;
    267     std::swap(Src, Dst);
    268     std::swap(SrcSub, DstSub);
    269     Flipped = true;
    270   }
    271 
    272   const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
    273 
    274   if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
    275     // Eliminate DstSub on a physreg.
    276     if (DstSub) {
    277       Dst = TRI.getSubReg(Dst, DstSub);
    278       if (!Dst) return false;
    279       DstSub = 0;
    280     }
    281 
    282     // Eliminate SrcSub by picking a corresponding Dst superregister.
    283     if (SrcSub) {
    284       Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
    285       if (!Dst) return false;
    286       SrcSub = 0;
    287     } else if (!MRI.getRegClass(Src)->contains(Dst)) {
    288       return false;
    289     }
    290   } else {
    291     // Both registers are virtual.
    292     const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
    293     const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
    294 
    295     // Both registers have subreg indices.
    296     if (SrcSub && DstSub) {
    297       // Copies between different sub-registers are never coalescable.
    298       if (Src == Dst && SrcSub != DstSub)
    299         return false;
    300 
    301       NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
    302                                          SrcIdx, DstIdx);
    303       if (!NewRC)
    304         return false;
    305     } else if (DstSub) {
    306       // SrcReg will be merged with a sub-register of DstReg.
    307       SrcIdx = DstSub;
    308       NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
    309     } else if (SrcSub) {
    310       // DstReg will be merged with a sub-register of SrcReg.
    311       DstIdx = SrcSub;
    312       NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
    313     } else {
    314       // This is a straight copy without sub-registers.
    315       NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
    316     }
    317 
    318     // The combined constraint may be impossible to satisfy.
    319     if (!NewRC)
    320       return false;
    321 
    322     // Prefer SrcReg to be a sub-register of DstReg.
    323     // FIXME: Coalescer should support subregs symmetrically.
    324     if (DstIdx && !SrcIdx) {
    325       std::swap(Src, Dst);
    326       std::swap(SrcIdx, DstIdx);
    327       Flipped = !Flipped;
    328     }
    329 
    330     CrossClass = NewRC != DstRC || NewRC != SrcRC;
    331   }
    332   // Check our invariants
    333   assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
    334   assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
    335          "Cannot have a physical SubIdx");
    336   SrcReg = Src;
    337   DstReg = Dst;
    338   return true;
    339 }
    340 
    341 bool CoalescerPair::flip() {
    342   if (TargetRegisterInfo::isPhysicalRegister(DstReg))
    343     return false;
    344   std::swap(SrcReg, DstReg);
    345   std::swap(SrcIdx, DstIdx);
    346   Flipped = !Flipped;
    347   return true;
    348 }
    349 
    350 bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
    351   if (!MI)
    352     return false;
    353   unsigned Src, Dst, SrcSub, DstSub;
    354   if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
    355     return false;
    356 
    357   // Find the virtual register that is SrcReg.
    358   if (Dst == SrcReg) {
    359     std::swap(Src, Dst);
    360     std::swap(SrcSub, DstSub);
    361   } else if (Src != SrcReg) {
    362     return false;
    363   }
    364 
    365   // Now check that Dst matches DstReg.
    366   if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
    367     if (!TargetRegisterInfo::isPhysicalRegister(Dst))
    368       return false;
    369     assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
    370     // DstSub could be set for a physreg from INSERT_SUBREG.
    371     if (DstSub)
    372       Dst = TRI.getSubReg(Dst, DstSub);
    373     // Full copy of Src.
    374     if (!SrcSub)
    375       return DstReg == Dst;
    376     // This is a partial register copy. Check that the parts match.
    377     return TRI.getSubReg(DstReg, SrcSub) == Dst;
    378   } else {
    379     // DstReg is virtual.
    380     if (DstReg != Dst)
    381       return false;
    382     // Registers match, do the subregisters line up?
    383     return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
    384            TRI.composeSubRegIndices(DstIdx, DstSub);
    385   }
    386 }
    387 
    388 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
    389   AU.setPreservesCFG();
    390   AU.addRequired<AliasAnalysis>();
    391   AU.addRequired<LiveIntervals>();
    392   AU.addPreserved<LiveIntervals>();
    393   AU.addPreserved<SlotIndexes>();
    394   AU.addRequired<MachineLoopInfo>();
    395   AU.addPreserved<MachineLoopInfo>();
    396   AU.addPreservedID(MachineDominatorsID);
    397   MachineFunctionPass::getAnalysisUsage(AU);
    398 }
    399 
    400 void RegisterCoalescer::eliminateDeadDefs() {
    401   SmallVector<LiveInterval*, 8> NewRegs;
    402   LiveRangeEdit(0, NewRegs, *MF, *LIS, 0, this).eliminateDeadDefs(DeadDefs);
    403 }
    404 
    405 // Callback from eliminateDeadDefs().
    406 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
    407   // MI may be in WorkList. Make sure we don't visit it.
    408   ErasedInstrs.insert(MI);
    409 }
    410 
    411 /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
    412 /// being the source and IntB being the dest, thus this defines a value number
    413 /// in IntB.  If the source value number (in IntA) is defined by a copy from B,
    414 /// see if we can merge these two pieces of B into a single value number,
    415 /// eliminating a copy.  For example:
    416 ///
    417 ///  A3 = B0
    418 ///    ...
    419 ///  B1 = A3      <- this copy
    420 ///
    421 /// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
    422 /// value number to be replaced with B0 (which simplifies the B liveinterval).
    423 ///
    424 /// This returns true if an interval was modified.
    425 ///
    426 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
    427                                              MachineInstr *CopyMI) {
    428   assert(!CP.isPartial() && "This doesn't work for partial copies.");
    429   assert(!CP.isPhys() && "This doesn't work for physreg copies.");
    430 
    431   LiveInterval &IntA =
    432     LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
    433   LiveInterval &IntB =
    434     LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
    435   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
    436 
    437   // BValNo is a value number in B that is defined by a copy from A.  'B3' in
    438   // the example above.
    439   LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
    440   if (BLR == IntB.end()) return false;
    441   VNInfo *BValNo = BLR->valno;
    442 
    443   // Get the location that B is defined at.  Two options: either this value has
    444   // an unknown definition point or it is defined at CopyIdx.  If unknown, we
    445   // can't process it.
    446   if (BValNo->def != CopyIdx) return false;
    447 
    448   // AValNo is the value number in A that defines the copy, A3 in the example.
    449   SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
    450   LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
    451   // The live range might not exist after fun with physreg coalescing.
    452   if (ALR == IntA.end()) return false;
    453   VNInfo *AValNo = ALR->valno;
    454 
    455   // If AValNo is defined as a copy from IntB, we can potentially process this.
    456   // Get the instruction that defines this value number.
    457   MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
    458   // Don't allow any partial copies, even if isCoalescable() allows them.
    459   if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
    460     return false;
    461 
    462   // Get the LiveRange in IntB that this value number starts with.
    463   LiveInterval::iterator ValLR =
    464     IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
    465   if (ValLR == IntB.end())
    466     return false;
    467 
    468   // Make sure that the end of the live range is inside the same block as
    469   // CopyMI.
    470   MachineInstr *ValLREndInst =
    471     LIS->getInstructionFromIndex(ValLR->end.getPrevSlot());
    472   if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
    473     return false;
    474 
    475   // Okay, we now know that ValLR ends in the same block that the CopyMI
    476   // live-range starts.  If there are no intervening live ranges between them in
    477   // IntB, we can merge them.
    478   if (ValLR+1 != BLR) return false;
    479 
    480   DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI));
    481 
    482   SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
    483   // We are about to delete CopyMI, so need to remove it as the 'instruction
    484   // that defines this value #'. Update the valnum with the new defining
    485   // instruction #.
    486   BValNo->def = FillerStart;
    487 
    488   // Okay, we can merge them.  We need to insert a new liverange:
    489   // [ValLR.end, BLR.begin) of either value number, then we merge the
    490   // two value numbers.
    491   IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
    492 
    493   // Okay, merge "B1" into the same value number as "B0".
    494   if (BValNo != ValLR->valno)
    495     IntB.MergeValueNumberInto(BValNo, ValLR->valno);
    496   DEBUG(dbgs() << "   result = " << IntB << '\n');
    497 
    498   // If the source instruction was killing the source register before the
    499   // merge, unset the isKill marker given the live range has been extended.
    500   int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
    501   if (UIdx != -1) {
    502     ValLREndInst->getOperand(UIdx).setIsKill(false);
    503   }
    504 
    505   // Rewrite the copy. If the copy instruction was killing the destination
    506   // register before the merge, find the last use and trim the live range. That
    507   // will also add the isKill marker.
    508   CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
    509   if (ALR->end == CopyIdx)
    510     LIS->shrinkToUses(&IntA);
    511 
    512   ++numExtends;
    513   return true;
    514 }
    515 
    516 /// hasOtherReachingDefs - Return true if there are definitions of IntB
    517 /// other than BValNo val# that can reach uses of AValno val# of IntA.
    518 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
    519                                              LiveInterval &IntB,
    520                                              VNInfo *AValNo,
    521                                              VNInfo *BValNo) {
    522   // If AValNo has PHI kills, conservatively assume that IntB defs can reach
    523   // the PHI values.
    524   if (LIS->hasPHIKill(IntA, AValNo))
    525     return true;
    526 
    527   for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
    528        AI != AE; ++AI) {
    529     if (AI->valno != AValNo) continue;
    530     LiveInterval::Ranges::iterator BI =
    531       std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
    532     if (BI != IntB.ranges.begin())
    533       --BI;
    534     for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
    535       if (BI->valno == BValNo)
    536         continue;
    537       if (BI->start <= AI->start && BI->end > AI->start)
    538         return true;
    539       if (BI->start > AI->start && BI->start < AI->end)
    540         return true;
    541     }
    542   }
    543   return false;
    544 }
    545 
    546 /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy with
    547 /// IntA being the source and IntB being the dest, thus this defines a value
    548 /// number in IntB.  If the source value number (in IntA) is defined by a
    549 /// commutable instruction and its other operand is coalesced to the copy dest
    550 /// register, see if we can transform the copy into a noop by commuting the
    551 /// definition. For example,
    552 ///
    553 ///  A3 = op A2 B0<kill>
    554 ///    ...
    555 ///  B1 = A3      <- this copy
    556 ///    ...
    557 ///     = op A3   <- more uses
    558 ///
    559 /// ==>
    560 ///
    561 ///  B2 = op B0 A2<kill>
    562 ///    ...
    563 ///  B1 = B2      <- now an identify copy
    564 ///    ...
    565 ///     = op B2   <- more uses
    566 ///
    567 /// This returns true if an interval was modified.
    568 ///
    569 bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
    570                                                  MachineInstr *CopyMI) {
    571   assert (!CP.isPhys());
    572 
    573   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
    574 
    575   LiveInterval &IntA =
    576     LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
    577   LiveInterval &IntB =
    578     LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
    579 
    580   // BValNo is a value number in B that is defined by a copy from A. 'B3' in
    581   // the example above.
    582   VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
    583   if (!BValNo || BValNo->def != CopyIdx)
    584     return false;
    585 
    586   assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
    587 
    588   // AValNo is the value number in A that defines the copy, A3 in the example.
    589   VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
    590   assert(AValNo && "COPY source not live");
    591   if (AValNo->isPHIDef() || AValNo->isUnused())
    592     return false;
    593   MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
    594   if (!DefMI)
    595     return false;
    596   if (!DefMI->isCommutable())
    597     return false;
    598   // If DefMI is a two-address instruction then commuting it will change the
    599   // destination register.
    600   int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
    601   assert(DefIdx != -1);
    602   unsigned UseOpIdx;
    603   if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
    604     return false;
    605   unsigned Op1, Op2, NewDstIdx;
    606   if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
    607     return false;
    608   if (Op1 == UseOpIdx)
    609     NewDstIdx = Op2;
    610   else if (Op2 == UseOpIdx)
    611     NewDstIdx = Op1;
    612   else
    613     return false;
    614 
    615   MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
    616   unsigned NewReg = NewDstMO.getReg();
    617   if (NewReg != IntB.reg || !LiveRangeQuery(IntB, AValNo->def).isKill())
    618     return false;
    619 
    620   // Make sure there are no other definitions of IntB that would reach the
    621   // uses which the new definition can reach.
    622   if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
    623     return false;
    624 
    625   // If some of the uses of IntA.reg is already coalesced away, return false.
    626   // It's not possible to determine whether it's safe to perform the coalescing.
    627   for (MachineRegisterInfo::use_nodbg_iterator UI =
    628          MRI->use_nodbg_begin(IntA.reg),
    629        UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
    630     MachineInstr *UseMI = &*UI;
    631     SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
    632     LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
    633     if (ULR == IntA.end() || ULR->valno != AValNo)
    634       continue;
    635     // If this use is tied to a def, we can't rewrite the register.
    636     if (UseMI->isRegTiedToDefOperand(UI.getOperandNo()))
    637       return false;
    638   }
    639 
    640   DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
    641                << *DefMI);
    642 
    643   // At this point we have decided that it is legal to do this
    644   // transformation.  Start by commuting the instruction.
    645   MachineBasicBlock *MBB = DefMI->getParent();
    646   MachineInstr *NewMI = TII->commuteInstruction(DefMI);
    647   if (!NewMI)
    648     return false;
    649   if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
    650       TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
    651       !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
    652     return false;
    653   if (NewMI != DefMI) {
    654     LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
    655     MachineBasicBlock::iterator Pos = DefMI;
    656     MBB->insert(Pos, NewMI);
    657     MBB->erase(DefMI);
    658   }
    659   unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
    660   NewMI->getOperand(OpIdx).setIsKill();
    661 
    662   // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
    663   // A = or A, B
    664   // ...
    665   // B = A
    666   // ...
    667   // C = A<kill>
    668   // ...
    669   //   = B
    670 
    671   // Update uses of IntA of the specific Val# with IntB.
    672   for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
    673          UE = MRI->use_end(); UI != UE;) {
    674     MachineOperand &UseMO = UI.getOperand();
    675     MachineInstr *UseMI = &*UI;
    676     ++UI;
    677     if (UseMI->isDebugValue()) {
    678       // FIXME These don't have an instruction index.  Not clear we have enough
    679       // info to decide whether to do this replacement or not.  For now do it.
    680       UseMO.setReg(NewReg);
    681       continue;
    682     }
    683     SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
    684     LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
    685     if (ULR == IntA.end() || ULR->valno != AValNo)
    686       continue;
    687     // Kill flags are no longer accurate. They are recomputed after RA.
    688     UseMO.setIsKill(false);
    689     if (TargetRegisterInfo::isPhysicalRegister(NewReg))
    690       UseMO.substPhysReg(NewReg, *TRI);
    691     else
    692       UseMO.setReg(NewReg);
    693     if (UseMI == CopyMI)
    694       continue;
    695     if (!UseMI->isCopy())
    696       continue;
    697     if (UseMI->getOperand(0).getReg() != IntB.reg ||
    698         UseMI->getOperand(0).getSubReg())
    699       continue;
    700 
    701     // This copy will become a noop. If it's defining a new val#, merge it into
    702     // BValNo.
    703     SlotIndex DefIdx = UseIdx.getRegSlot();
    704     VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
    705     if (!DVNI)
    706       continue;
    707     DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
    708     assert(DVNI->def == DefIdx);
    709     BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
    710     ErasedInstrs.insert(UseMI);
    711     LIS->RemoveMachineInstrFromMaps(UseMI);
    712     UseMI->eraseFromParent();
    713   }
    714 
    715   // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
    716   // is updated.
    717   VNInfo *ValNo = BValNo;
    718   ValNo->def = AValNo->def;
    719   for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
    720        AI != AE; ++AI) {
    721     if (AI->valno != AValNo) continue;
    722     IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
    723   }
    724   DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
    725 
    726   IntA.removeValNo(AValNo);
    727   DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
    728   ++numCommutes;
    729   return true;
    730 }
    731 
    732 /// reMaterializeTrivialDef - If the source of a copy is defined by a trivial
    733 /// computation, replace the copy by rematerialize the definition.
    734 bool RegisterCoalescer::reMaterializeTrivialDef(CoalescerPair &CP,
    735                                                 MachineInstr *CopyMI,
    736                                                 bool &IsDefCopy) {
    737   IsDefCopy = false;
    738   unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
    739   unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
    740   unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
    741   unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
    742   if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
    743     return false;
    744 
    745   LiveInterval &SrcInt = LIS->getInterval(SrcReg);
    746   SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI);
    747   VNInfo *ValNo = LiveRangeQuery(SrcInt, CopyIdx).valueIn();
    748   assert(ValNo && "CopyMI input register not live");
    749   if (ValNo->isPHIDef() || ValNo->isUnused())
    750     return false;
    751   MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
    752   if (!DefMI)
    753     return false;
    754   if (DefMI->isCopyLike()) {
    755     IsDefCopy = true;
    756     return false;
    757   }
    758   if (!DefMI->isAsCheapAsAMove())
    759     return false;
    760   if (!TII->isTriviallyReMaterializable(DefMI, AA))
    761     return false;
    762   bool SawStore = false;
    763   if (!DefMI->isSafeToMove(TII, AA, SawStore))
    764     return false;
    765   const MCInstrDesc &MCID = DefMI->getDesc();
    766   if (MCID.getNumDefs() != 1)
    767     return false;
    768   // Only support subregister destinations when the def is read-undef.
    769   MachineOperand &DstOperand = CopyMI->getOperand(0);
    770   unsigned CopyDstReg = DstOperand.getReg();
    771   if (DstOperand.getSubReg() && !DstOperand.isUndef())
    772     return false;
    773 
    774   const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
    775   if (!DefMI->isImplicitDef()) {
    776     if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
    777       unsigned NewDstReg = DstReg;
    778 
    779       unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
    780                                               DefMI->getOperand(0).getSubReg());
    781       if (NewDstIdx)
    782         NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
    783 
    784       // Finally, make sure that the physical subregister that will be
    785       // constructed later is permitted for the instruction.
    786       if (!DefRC->contains(NewDstReg))
    787         return false;
    788     } else {
    789       // Theoretically, some stack frame reference could exist. Just make sure
    790       // it hasn't actually happened.
    791       assert(TargetRegisterInfo::isVirtualRegister(DstReg) &&
    792              "Only expect to deal with virtual or physical registers");
    793     }
    794   }
    795 
    796   MachineBasicBlock *MBB = CopyMI->getParent();
    797   MachineBasicBlock::iterator MII =
    798     llvm::next(MachineBasicBlock::iterator(CopyMI));
    799   TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, DefMI, *TRI);
    800   MachineInstr *NewMI = prior(MII);
    801 
    802   LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
    803   CopyMI->eraseFromParent();
    804   ErasedInstrs.insert(CopyMI);
    805 
    806   // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
    807   // We need to remember these so we can add intervals once we insert
    808   // NewMI into SlotIndexes.
    809   SmallVector<unsigned, 4> NewMIImplDefs;
    810   for (unsigned i = NewMI->getDesc().getNumOperands(),
    811          e = NewMI->getNumOperands(); i != e; ++i) {
    812     MachineOperand &MO = NewMI->getOperand(i);
    813     if (MO.isReg()) {
    814       assert(MO.isDef() && MO.isImplicit() && MO.isDead() &&
    815              TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
    816       NewMIImplDefs.push_back(MO.getReg());
    817     }
    818   }
    819 
    820   if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
    821     unsigned NewIdx = NewMI->getOperand(0).getSubReg();
    822     const TargetRegisterClass *RCForInst;
    823     if (NewIdx)
    824       RCForInst = TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg), DefRC,
    825                                                 NewIdx);
    826 
    827     if (MRI->constrainRegClass(DstReg, DefRC)) {
    828       // The materialized instruction is quite capable of setting DstReg
    829       // directly, but it may still have a now-trivial subregister index which
    830       // we should clear.
    831       NewMI->getOperand(0).setSubReg(0);
    832     } else if (NewIdx && RCForInst) {
    833       // The subreg index on NewMI is essential; we still have to make sure
    834       // DstReg:idx is in a class that NewMI can use.
    835       MRI->constrainRegClass(DstReg, RCForInst);
    836     } else {
    837       // DstReg is actually incompatible with NewMI, we have to move to a
    838       // super-reg's class. This could come from a sequence like:
    839       //     GR32 = MOV32r0
    840       //     GR8 = COPY GR32:sub_8
    841       MRI->setRegClass(DstReg, CP.getNewRC());
    842       updateRegDefsUses(DstReg, DstReg, DstIdx);
    843       NewMI->getOperand(0).setSubReg(
    844           TRI->composeSubRegIndices(SrcIdx, DefMI->getOperand(0).getSubReg()));
    845     }
    846   } else if (NewMI->getOperand(0).getReg() != CopyDstReg) {
    847     // The New instruction may be defining a sub-register of what's actually
    848     // been asked for. If so it must implicitly define the whole thing.
    849     assert(TargetRegisterInfo::isPhysicalRegister(DstReg) &&
    850            "Only expect virtual or physical registers in remat");
    851     NewMI->getOperand(0).setIsDead(true);
    852     NewMI->addOperand(MachineOperand::CreateReg(CopyDstReg,
    853                                                 true  /*IsDef*/,
    854                                                 true  /*IsImp*/,
    855                                                 false /*IsKill*/));
    856   }
    857 
    858   if (NewMI->getOperand(0).getSubReg())
    859     NewMI->getOperand(0).setIsUndef();
    860 
    861   // CopyMI may have implicit operands, transfer them over to the newly
    862   // rematerialized instruction. And update implicit def interval valnos.
    863   for (unsigned i = CopyMI->getDesc().getNumOperands(),
    864          e = CopyMI->getNumOperands(); i != e; ++i) {
    865     MachineOperand &MO = CopyMI->getOperand(i);
    866     if (MO.isReg()) {
    867       assert(MO.isImplicit() && "No explicit operands after implict operands.");
    868       // Discard VReg implicit defs.
    869       if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
    870         NewMI->addOperand(MO);
    871       }
    872     }
    873   }
    874 
    875   SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
    876   for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
    877     unsigned Reg = NewMIImplDefs[i];
    878     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
    879       if (LiveInterval *LI = LIS->getCachedRegUnit(*Units))
    880         LI->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
    881   }
    882 
    883   DEBUG(dbgs() << "Remat: " << *NewMI);
    884   ++NumReMats;
    885 
    886   // The source interval can become smaller because we removed a use.
    887   LIS->shrinkToUses(&SrcInt, &DeadDefs);
    888   if (!DeadDefs.empty())
    889     eliminateDeadDefs();
    890 
    891   return true;
    892 }
    893 
    894 /// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef>
    895 /// values, it only removes local variables. When we have a copy like:
    896 ///
    897 ///   %vreg1 = COPY %vreg2<undef>
    898 ///
    899 /// We delete the copy and remove the corresponding value number from %vreg1.
    900 /// Any uses of that value number are marked as <undef>.
    901 bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
    902                                            const CoalescerPair &CP) {
    903   SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
    904   LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg());
    905   if (SrcInt->liveAt(Idx))
    906     return false;
    907   LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg());
    908   if (DstInt->liveAt(Idx))
    909     return false;
    910 
    911   // No intervals are live-in to CopyMI - it is undef.
    912   if (CP.isFlipped())
    913     DstInt = SrcInt;
    914   SrcInt = 0;
    915 
    916   VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot());
    917   assert(DeadVNI && "No value defined in DstInt");
    918   DstInt->removeValNo(DeadVNI);
    919 
    920   // Find new undef uses.
    921   for (MachineRegisterInfo::reg_nodbg_iterator
    922          I = MRI->reg_nodbg_begin(DstInt->reg), E = MRI->reg_nodbg_end();
    923        I != E; ++I) {
    924     MachineOperand &MO = I.getOperand();
    925     if (MO.isDef() || MO.isUndef())
    926       continue;
    927     MachineInstr *MI = MO.getParent();
    928     SlotIndex Idx = LIS->getInstructionIndex(MI);
    929     if (DstInt->liveAt(Idx))
    930       continue;
    931     MO.setIsUndef(true);
    932     DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI);
    933   }
    934   return true;
    935 }
    936 
    937 /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
    938 /// update the subregister number if it is not zero. If DstReg is a
    939 /// physical register and the existing subregister number of the def / use
    940 /// being updated is not zero, make sure to set it to the correct physical
    941 /// subregister.
    942 void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
    943                                           unsigned DstReg,
    944                                           unsigned SubIdx) {
    945   bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
    946   LiveInterval *DstInt = DstIsPhys ? 0 : &LIS->getInterval(DstReg);
    947 
    948   SmallPtrSet<MachineInstr*, 8> Visited;
    949   for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(SrcReg);
    950        MachineInstr *UseMI = I.skipInstruction();) {
    951     // Each instruction can only be rewritten once because sub-register
    952     // composition is not always idempotent. When SrcReg != DstReg, rewriting
    953     // the UseMI operands removes them from the SrcReg use-def chain, but when
    954     // SrcReg is DstReg we could encounter UseMI twice if it has multiple
    955     // operands mentioning the virtual register.
    956     if (SrcReg == DstReg && !Visited.insert(UseMI))
    957       continue;
    958 
    959     SmallVector<unsigned,8> Ops;
    960     bool Reads, Writes;
    961     tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
    962 
    963     // If SrcReg wasn't read, it may still be the case that DstReg is live-in
    964     // because SrcReg is a sub-register.
    965     if (DstInt && !Reads && SubIdx)
    966       Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI));
    967 
    968     // Replace SrcReg with DstReg in all UseMI operands.
    969     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    970       MachineOperand &MO = UseMI->getOperand(Ops[i]);
    971 
    972       // Adjust <undef> flags in case of sub-register joins. We don't want to
    973       // turn a full def into a read-modify-write sub-register def and vice
    974       // versa.
    975       if (SubIdx && MO.isDef())
    976         MO.setIsUndef(!Reads);
    977 
    978       if (DstIsPhys)
    979         MO.substPhysReg(DstReg, *TRI);
    980       else
    981         MO.substVirtReg(DstReg, SubIdx, *TRI);
    982     }
    983 
    984     DEBUG({
    985         dbgs() << "\t\tupdated: ";
    986         if (!UseMI->isDebugValue())
    987           dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
    988         dbgs() << *UseMI;
    989       });
    990   }
    991 }
    992 
    993 /// canJoinPhys - Return true if a copy involving a physreg should be joined.
    994 bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
    995   /// Always join simple intervals that are defined by a single copy from a
    996   /// reserved register. This doesn't increase register pressure, so it is
    997   /// always beneficial.
    998   if (!MRI->isReserved(CP.getDstReg())) {
    999     DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
   1000     return false;
   1001   }
   1002 
   1003   LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
   1004   if (CP.isFlipped() && JoinVInt.containsOneValue())
   1005     return true;
   1006 
   1007   DEBUG(dbgs() << "\tCannot join defs into reserved register.\n");
   1008   return false;
   1009 }
   1010 
   1011 /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
   1012 /// which are the src/dst of the copy instruction CopyMI.  This returns true
   1013 /// if the copy was successfully coalesced away. If it is not currently
   1014 /// possible to coalesce this interval, but it may be possible if other
   1015 /// things get coalesced, then it returns true by reference in 'Again'.
   1016 bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
   1017 
   1018   Again = false;
   1019   DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
   1020 
   1021   CoalescerPair CP(*TRI);
   1022   if (!CP.setRegisters(CopyMI)) {
   1023     DEBUG(dbgs() << "\tNot coalescable.\n");
   1024     return false;
   1025   }
   1026 
   1027   // Dead code elimination. This really should be handled by MachineDCE, but
   1028   // sometimes dead copies slip through, and we can't generate invalid live
   1029   // ranges.
   1030   if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
   1031     DEBUG(dbgs() << "\tCopy is dead.\n");
   1032     DeadDefs.push_back(CopyMI);
   1033     eliminateDeadDefs();
   1034     return true;
   1035   }
   1036 
   1037   // Eliminate undefs.
   1038   if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) {
   1039     DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n");
   1040     LIS->RemoveMachineInstrFromMaps(CopyMI);
   1041     CopyMI->eraseFromParent();
   1042     return false;  // Not coalescable.
   1043   }
   1044 
   1045   // Coalesced copies are normally removed immediately, but transformations
   1046   // like removeCopyByCommutingDef() can inadvertently create identity copies.
   1047   // When that happens, just join the values and remove the copy.
   1048   if (CP.getSrcReg() == CP.getDstReg()) {
   1049     LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
   1050     DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
   1051     LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(CopyMI));
   1052     if (VNInfo *DefVNI = LRQ.valueDefined()) {
   1053       VNInfo *ReadVNI = LRQ.valueIn();
   1054       assert(ReadVNI && "No value before copy and no <undef> flag.");
   1055       assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
   1056       LI.MergeValueNumberInto(DefVNI, ReadVNI);
   1057       DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
   1058     }
   1059     LIS->RemoveMachineInstrFromMaps(CopyMI);
   1060     CopyMI->eraseFromParent();
   1061     return true;
   1062   }
   1063 
   1064   // Enforce policies.
   1065   if (CP.isPhys()) {
   1066     DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
   1067                  << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
   1068                  << '\n');
   1069     if (!canJoinPhys(CP)) {
   1070       // Before giving up coalescing, if definition of source is defined by
   1071       // trivial computation, try rematerializing it.
   1072       bool IsDefCopy;
   1073       if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
   1074         return true;
   1075       if (IsDefCopy)
   1076         Again = true;  // May be possible to coalesce later.
   1077       return false;
   1078     }
   1079   } else {
   1080     DEBUG({
   1081       dbgs() << "\tConsidering merging to " << CP.getNewRC()->getName()
   1082              << " with ";
   1083       if (CP.getDstIdx() && CP.getSrcIdx())
   1084         dbgs() << PrintReg(CP.getDstReg()) << " in "
   1085                << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
   1086                << PrintReg(CP.getSrcReg()) << " in "
   1087                << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
   1088       else
   1089         dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
   1090                << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
   1091     });
   1092 
   1093     // When possible, let DstReg be the larger interval.
   1094     if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).ranges.size() >
   1095                            LIS->getInterval(CP.getDstReg()).ranges.size())
   1096       CP.flip();
   1097   }
   1098 
   1099   // Okay, attempt to join these two intervals.  On failure, this returns false.
   1100   // Otherwise, if one of the intervals being joined is a physreg, this method
   1101   // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
   1102   // been modified, so we can use this information below to update aliases.
   1103   if (!joinIntervals(CP)) {
   1104     // Coalescing failed.
   1105 
   1106     // If definition of source is defined by trivial computation, try
   1107     // rematerializing it.
   1108     bool IsDefCopy;
   1109     if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
   1110       return true;
   1111 
   1112     // If we can eliminate the copy without merging the live ranges, do so now.
   1113     if (!CP.isPartial() && !CP.isPhys()) {
   1114       if (adjustCopiesBackFrom(CP, CopyMI) ||
   1115           removeCopyByCommutingDef(CP, CopyMI)) {
   1116         LIS->RemoveMachineInstrFromMaps(CopyMI);
   1117         CopyMI->eraseFromParent();
   1118         DEBUG(dbgs() << "\tTrivial!\n");
   1119         return true;
   1120       }
   1121     }
   1122 
   1123     // Otherwise, we are unable to join the intervals.
   1124     DEBUG(dbgs() << "\tInterference!\n");
   1125     Again = true;  // May be possible to coalesce later.
   1126     return false;
   1127   }
   1128 
   1129   // Coalescing to a virtual register that is of a sub-register class of the
   1130   // other. Make sure the resulting register is set to the right register class.
   1131   if (CP.isCrossClass()) {
   1132     ++numCrossRCs;
   1133     MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
   1134   }
   1135 
   1136   // Removing sub-register copies can ease the register class constraints.
   1137   // Make sure we attempt to inflate the register class of DstReg.
   1138   if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
   1139     InflateRegs.push_back(CP.getDstReg());
   1140 
   1141   // CopyMI has been erased by joinIntervals at this point. Remove it from
   1142   // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
   1143   // to the work list. This keeps ErasedInstrs from growing needlessly.
   1144   ErasedInstrs.erase(CopyMI);
   1145 
   1146   // Rewrite all SrcReg operands to DstReg.
   1147   // Also update DstReg operands to include DstIdx if it is set.
   1148   if (CP.getDstIdx())
   1149     updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
   1150   updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
   1151 
   1152   // SrcReg is guaranteed to be the register whose live interval that is
   1153   // being merged.
   1154   LIS->removeInterval(CP.getSrcReg());
   1155 
   1156   // Update regalloc hint.
   1157   TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
   1158 
   1159   DEBUG({
   1160     dbgs() << "\tJoined. Result = " << PrintReg(CP.getDstReg(), TRI);
   1161     if (!CP.isPhys())
   1162       dbgs() << LIS->getInterval(CP.getDstReg());
   1163      dbgs() << '\n';
   1164   });
   1165 
   1166   ++numJoins;
   1167   return true;
   1168 }
   1169 
   1170 /// Attempt joining with a reserved physreg.
   1171 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
   1172   assert(CP.isPhys() && "Must be a physreg copy");
   1173   assert(MRI->isReserved(CP.getDstReg()) && "Not a reserved register");
   1174   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
   1175   DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
   1176                << '\n');
   1177 
   1178   assert(CP.isFlipped() && RHS.containsOneValue() &&
   1179          "Invalid join with reserved register");
   1180 
   1181   // Optimization for reserved registers like ESP. We can only merge with a
   1182   // reserved physreg if RHS has a single value that is a copy of CP.DstReg().
   1183   // The live range of the reserved register will look like a set of dead defs
   1184   // - we don't properly track the live range of reserved registers.
   1185 
   1186   // Deny any overlapping intervals.  This depends on all the reserved
   1187   // register live ranges to look like dead defs.
   1188   for (MCRegUnitIterator UI(CP.getDstReg(), TRI); UI.isValid(); ++UI)
   1189     if (RHS.overlaps(LIS->getRegUnit(*UI))) {
   1190       DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n');
   1191       return false;
   1192     }
   1193 
   1194   // Skip any value computations, we are not adding new values to the
   1195   // reserved register.  Also skip merging the live ranges, the reserved
   1196   // register live range doesn't need to be accurate as long as all the
   1197   // defs are there.
   1198 
   1199   // Delete the identity copy.
   1200   MachineInstr *CopyMI = MRI->getVRegDef(RHS.reg);
   1201   LIS->RemoveMachineInstrFromMaps(CopyMI);
   1202   CopyMI->eraseFromParent();
   1203 
   1204   // We don't track kills for reserved registers.
   1205   MRI->clearKillFlags(CP.getSrcReg());
   1206 
   1207   return true;
   1208 }
   1209 
   1210 //===----------------------------------------------------------------------===//
   1211 //                 Interference checking and interval joining
   1212 //===----------------------------------------------------------------------===//
   1213 //
   1214 // In the easiest case, the two live ranges being joined are disjoint, and
   1215 // there is no interference to consider. It is quite common, though, to have
   1216 // overlapping live ranges, and we need to check if the interference can be
   1217 // resolved.
   1218 //
   1219 // The live range of a single SSA value forms a sub-tree of the dominator tree.
   1220 // This means that two SSA values overlap if and only if the def of one value
   1221 // is contained in the live range of the other value. As a special case, the
   1222 // overlapping values can be defined at the same index.
   1223 //
   1224 // The interference from an overlapping def can be resolved in these cases:
   1225 //
   1226 // 1. Coalescable copies. The value is defined by a copy that would become an
   1227 //    identity copy after joining SrcReg and DstReg. The copy instruction will
   1228 //    be removed, and the value will be merged with the source value.
   1229 //
   1230 //    There can be several copies back and forth, causing many values to be
   1231 //    merged into one. We compute a list of ultimate values in the joined live
   1232 //    range as well as a mappings from the old value numbers.
   1233 //
   1234 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
   1235 //    predecessors have a live out value. It doesn't cause real interference,
   1236 //    and can be merged into the value it overlaps. Like a coalescable copy, it
   1237 //    can be erased after joining.
   1238 //
   1239 // 3. Copy of external value. The overlapping def may be a copy of a value that
   1240 //    is already in the other register. This is like a coalescable copy, but
   1241 //    the live range of the source register must be trimmed after erasing the
   1242 //    copy instruction:
   1243 //
   1244 //      %src = COPY %ext
   1245 //      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
   1246 //
   1247 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
   1248 //    defining one lane at a time:
   1249 //
   1250 //      %dst:ssub0<def,read-undef> = FOO
   1251 //      %src = BAR
   1252 //      %dst:ssub1<def> = COPY %src
   1253 //
   1254 //    The live range of %src overlaps the %dst value defined by FOO, but
   1255 //    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
   1256 //    which was undef anyway.
   1257 //
   1258 //    The value mapping is more complicated in this case. The final live range
   1259 //    will have different value numbers for both FOO and BAR, but there is no
   1260 //    simple mapping from old to new values. It may even be necessary to add
   1261 //    new PHI values.
   1262 //
   1263 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
   1264 //    is live, but never read. This can happen because we don't compute
   1265 //    individual live ranges per lane.
   1266 //
   1267 //      %dst<def> = FOO
   1268 //      %src = BAR
   1269 //      %dst:ssub1<def> = COPY %src
   1270 //
   1271 //    This kind of interference is only resolved locally. If the clobbered
   1272 //    lane value escapes the block, the join is aborted.
   1273 
   1274 namespace {
   1275 /// Track information about values in a single virtual register about to be
   1276 /// joined. Objects of this class are always created in pairs - one for each
   1277 /// side of the CoalescerPair.
   1278 class JoinVals {
   1279   LiveInterval &LI;
   1280 
   1281   // Location of this register in the final joined register.
   1282   // Either CP.DstIdx or CP.SrcIdx.
   1283   unsigned SubIdx;
   1284 
   1285   // Values that will be present in the final live range.
   1286   SmallVectorImpl<VNInfo*> &NewVNInfo;
   1287 
   1288   const CoalescerPair &CP;
   1289   LiveIntervals *LIS;
   1290   SlotIndexes *Indexes;
   1291   const TargetRegisterInfo *TRI;
   1292 
   1293   // Value number assignments. Maps value numbers in LI to entries in NewVNInfo.
   1294   // This is suitable for passing to LiveInterval::join().
   1295   SmallVector<int, 8> Assignments;
   1296 
   1297   // Conflict resolution for overlapping values.
   1298   enum ConflictResolution {
   1299     // No overlap, simply keep this value.
   1300     CR_Keep,
   1301 
   1302     // Merge this value into OtherVNI and erase the defining instruction.
   1303     // Used for IMPLICIT_DEF, coalescable copies, and copies from external
   1304     // values.
   1305     CR_Erase,
   1306 
   1307     // Merge this value into OtherVNI but keep the defining instruction.
   1308     // This is for the special case where OtherVNI is defined by the same
   1309     // instruction.
   1310     CR_Merge,
   1311 
   1312     // Keep this value, and have it replace OtherVNI where possible. This
   1313     // complicates value mapping since OtherVNI maps to two different values
   1314     // before and after this def.
   1315     // Used when clobbering undefined or dead lanes.
   1316     CR_Replace,
   1317 
   1318     // Unresolved conflict. Visit later when all values have been mapped.
   1319     CR_Unresolved,
   1320 
   1321     // Unresolvable conflict. Abort the join.
   1322     CR_Impossible
   1323   };
   1324 
   1325   // Per-value info for LI. The lane bit masks are all relative to the final
   1326   // joined register, so they can be compared directly between SrcReg and
   1327   // DstReg.
   1328   struct Val {
   1329     ConflictResolution Resolution;
   1330 
   1331     // Lanes written by this def, 0 for unanalyzed values.
   1332     unsigned WriteLanes;
   1333 
   1334     // Lanes with defined values in this register. Other lanes are undef and
   1335     // safe to clobber.
   1336     unsigned ValidLanes;
   1337 
   1338     // Value in LI being redefined by this def.
   1339     VNInfo *RedefVNI;
   1340 
   1341     // Value in the other live range that overlaps this def, if any.
   1342     VNInfo *OtherVNI;
   1343 
   1344     // Is this value an IMPLICIT_DEF that can be erased?
   1345     //
   1346     // IMPLICIT_DEF values should only exist at the end of a basic block that
   1347     // is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
   1348     // safely erased if they are overlapping a live value in the other live
   1349     // interval.
   1350     //
   1351     // Weird control flow graphs and incomplete PHI handling in
   1352     // ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
   1353     // longer live ranges. Such IMPLICIT_DEF values should be treated like
   1354     // normal values.
   1355     bool ErasableImplicitDef;
   1356 
   1357     // True when the live range of this value will be pruned because of an
   1358     // overlapping CR_Replace value in the other live range.
   1359     bool Pruned;
   1360 
   1361     // True once Pruned above has been computed.
   1362     bool PrunedComputed;
   1363 
   1364     Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0),
   1365             RedefVNI(0), OtherVNI(0), ErasableImplicitDef(false),
   1366             Pruned(false), PrunedComputed(false) {}
   1367 
   1368     bool isAnalyzed() const { return WriteLanes != 0; }
   1369   };
   1370 
   1371   // One entry per value number in LI.
   1372   SmallVector<Val, 8> Vals;
   1373 
   1374   unsigned computeWriteLanes(const MachineInstr *DefMI, bool &Redef);
   1375   VNInfo *stripCopies(VNInfo *VNI);
   1376   ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
   1377   void computeAssignment(unsigned ValNo, JoinVals &Other);
   1378   bool taintExtent(unsigned, unsigned, JoinVals&,
   1379                    SmallVectorImpl<std::pair<SlotIndex, unsigned> >&);
   1380   bool usesLanes(MachineInstr *MI, unsigned, unsigned, unsigned);
   1381   bool isPrunedValue(unsigned ValNo, JoinVals &Other);
   1382 
   1383 public:
   1384   JoinVals(LiveInterval &li, unsigned subIdx,
   1385            SmallVectorImpl<VNInfo*> &newVNInfo,
   1386            const CoalescerPair &cp,
   1387            LiveIntervals *lis,
   1388            const TargetRegisterInfo *tri)
   1389     : LI(li), SubIdx(subIdx), NewVNInfo(newVNInfo), CP(cp), LIS(lis),
   1390       Indexes(LIS->getSlotIndexes()), TRI(tri),
   1391       Assignments(LI.getNumValNums(), -1), Vals(LI.getNumValNums())
   1392   {}
   1393 
   1394   /// Analyze defs in LI and compute a value mapping in NewVNInfo.
   1395   /// Returns false if any conflicts were impossible to resolve.
   1396   bool mapValues(JoinVals &Other);
   1397 
   1398   /// Try to resolve conflicts that require all values to be mapped.
   1399   /// Returns false if any conflicts were impossible to resolve.
   1400   bool resolveConflicts(JoinVals &Other);
   1401 
   1402   /// Prune the live range of values in Other.LI where they would conflict with
   1403   /// CR_Replace values in LI. Collect end points for restoring the live range
   1404   /// after joining.
   1405   void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints);
   1406 
   1407   /// Erase any machine instructions that have been coalesced away.
   1408   /// Add erased instructions to ErasedInstrs.
   1409   /// Add foreign virtual registers to ShrinkRegs if their live range ended at
   1410   /// the erased instrs.
   1411   void eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
   1412                    SmallVectorImpl<unsigned> &ShrinkRegs);
   1413 
   1414   /// Get the value assignments suitable for passing to LiveInterval::join.
   1415   const int *getAssignments() const { return Assignments.data(); }
   1416 };
   1417 } // end anonymous namespace
   1418 
   1419 /// Compute the bitmask of lanes actually written by DefMI.
   1420 /// Set Redef if there are any partial register definitions that depend on the
   1421 /// previous value of the register.
   1422 unsigned JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) {
   1423   unsigned L = 0;
   1424   for (ConstMIOperands MO(DefMI); MO.isValid(); ++MO) {
   1425     if (!MO->isReg() || MO->getReg() != LI.reg || !MO->isDef())
   1426       continue;
   1427     L |= TRI->getSubRegIndexLaneMask(
   1428            TRI->composeSubRegIndices(SubIdx, MO->getSubReg()));
   1429     if (MO->readsReg())
   1430       Redef = true;
   1431   }
   1432   return L;
   1433 }
   1434 
   1435 /// Find the ultimate value that VNI was copied from.
   1436 VNInfo *JoinVals::stripCopies(VNInfo *VNI) {
   1437   while (!VNI->isPHIDef()) {
   1438     MachineInstr *MI = Indexes->getInstructionFromIndex(VNI->def);
   1439     assert(MI && "No defining instruction");
   1440     if (!MI->isFullCopy())
   1441       break;
   1442     unsigned Reg = MI->getOperand(1).getReg();
   1443     if (!TargetRegisterInfo::isVirtualRegister(Reg))
   1444       break;
   1445     LiveRangeQuery LRQ(LIS->getInterval(Reg), VNI->def);
   1446     if (!LRQ.valueIn())
   1447       break;
   1448     VNI = LRQ.valueIn();
   1449   }
   1450   return VNI;
   1451 }
   1452 
   1453 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
   1454 /// Return a conflict resolution when possible, but leave the hard cases as
   1455 /// CR_Unresolved.
   1456 /// Recursively calls computeAssignment() on this and Other, guaranteeing that
   1457 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
   1458 /// The recursion always goes upwards in the dominator tree, making loops
   1459 /// impossible.
   1460 JoinVals::ConflictResolution
   1461 JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
   1462   Val &V = Vals[ValNo];
   1463   assert(!V.isAnalyzed() && "Value has already been analyzed!");
   1464   VNInfo *VNI = LI.getValNumInfo(ValNo);
   1465   if (VNI->isUnused()) {
   1466     V.WriteLanes = ~0u;
   1467     return CR_Keep;
   1468   }
   1469 
   1470   // Get the instruction defining this value, compute the lanes written.
   1471   const MachineInstr *DefMI = 0;
   1472   if (VNI->isPHIDef()) {
   1473     // Conservatively assume that all lanes in a PHI are valid.
   1474     V.ValidLanes = V.WriteLanes = TRI->getSubRegIndexLaneMask(SubIdx);
   1475   } else {
   1476     DefMI = Indexes->getInstructionFromIndex(VNI->def);
   1477     bool Redef = false;
   1478     V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
   1479 
   1480     // If this is a read-modify-write instruction, there may be more valid
   1481     // lanes than the ones written by this instruction.
   1482     // This only covers partial redef operands. DefMI may have normal use
   1483     // operands reading the register. They don't contribute valid lanes.
   1484     //
   1485     // This adds ssub1 to the set of valid lanes in %src:
   1486     //
   1487     //   %src:ssub1<def> = FOO
   1488     //
   1489     // This leaves only ssub1 valid, making any other lanes undef:
   1490     //
   1491     //   %src:ssub1<def,read-undef> = FOO %src:ssub2
   1492     //
   1493     // The <read-undef> flag on the def operand means that old lane values are
   1494     // not important.
   1495     if (Redef) {
   1496       V.RedefVNI = LiveRangeQuery(LI, VNI->def).valueIn();
   1497       assert(V.RedefVNI && "Instruction is reading nonexistent value");
   1498       computeAssignment(V.RedefVNI->id, Other);
   1499       V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
   1500     }
   1501 
   1502     // An IMPLICIT_DEF writes undef values.
   1503     if (DefMI->isImplicitDef()) {
   1504       // We normally expect IMPLICIT_DEF values to be live only until the end
   1505       // of their block. If the value is really live longer and gets pruned in
   1506       // another block, this flag is cleared again.
   1507       V.ErasableImplicitDef = true;
   1508       V.ValidLanes &= ~V.WriteLanes;
   1509     }
   1510   }
   1511 
   1512   // Find the value in Other that overlaps VNI->def, if any.
   1513   LiveRangeQuery OtherLRQ(Other.LI, VNI->def);
   1514 
   1515   // It is possible that both values are defined by the same instruction, or
   1516   // the values are PHIs defined in the same block. When that happens, the two
   1517   // values should be merged into one, but not into any preceding value.
   1518   // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
   1519   if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
   1520     assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
   1521 
   1522     // One value stays, the other is merged. Keep the earlier one, or the first
   1523     // one we see.
   1524     if (OtherVNI->def < VNI->def)
   1525       Other.computeAssignment(OtherVNI->id, *this);
   1526     else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
   1527       // This is an early-clobber def overlapping a live-in value in the other
   1528       // register. Not mergeable.
   1529       V.OtherVNI = OtherLRQ.valueIn();
   1530       return CR_Impossible;
   1531     }
   1532     V.OtherVNI = OtherVNI;
   1533     Val &OtherV = Other.Vals[OtherVNI->id];
   1534     // Keep this value, check for conflicts when analyzing OtherVNI.
   1535     if (!OtherV.isAnalyzed())
   1536       return CR_Keep;
   1537     // Both sides have been analyzed now.
   1538     // Allow overlapping PHI values. Any real interference would show up in a
   1539     // predecessor, the PHI itself can't introduce any conflicts.
   1540     if (VNI->isPHIDef())
   1541       return CR_Merge;
   1542     if (V.ValidLanes & OtherV.ValidLanes)
   1543       // Overlapping lanes can't be resolved.
   1544       return CR_Impossible;
   1545     else
   1546       return CR_Merge;
   1547   }
   1548 
   1549   // No simultaneous def. Is Other live at the def?
   1550   V.OtherVNI = OtherLRQ.valueIn();
   1551   if (!V.OtherVNI)
   1552     // No overlap, no conflict.
   1553     return CR_Keep;
   1554 
   1555   assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
   1556 
   1557   // We have overlapping values, or possibly a kill of Other.
   1558   // Recursively compute assignments up the dominator tree.
   1559   Other.computeAssignment(V.OtherVNI->id, *this);
   1560   Val &OtherV = Other.Vals[V.OtherVNI->id];
   1561 
   1562   // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
   1563   // This shouldn't normally happen, but ProcessImplicitDefs can leave such
   1564   // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
   1565   // technically.
   1566   //
   1567   // WHen it happens, treat that IMPLICIT_DEF as a normal value, and don't try
   1568   // to erase the IMPLICIT_DEF instruction.
   1569   if (OtherV.ErasableImplicitDef && DefMI &&
   1570       DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
   1571     DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
   1572                  << " extends into BB#" << DefMI->getParent()->getNumber()
   1573                  << ", keeping it.\n");
   1574     OtherV.ErasableImplicitDef = false;
   1575   }
   1576 
   1577   // Allow overlapping PHI values. Any real interference would show up in a
   1578   // predecessor, the PHI itself can't introduce any conflicts.
   1579   if (VNI->isPHIDef())
   1580     return CR_Replace;
   1581 
   1582   // Check for simple erasable conflicts.
   1583   if (DefMI->isImplicitDef())
   1584     return CR_Erase;
   1585 
   1586   // Include the non-conflict where DefMI is a coalescable copy that kills
   1587   // OtherVNI. We still want the copy erased and value numbers merged.
   1588   if (CP.isCoalescable(DefMI)) {
   1589     // Some of the lanes copied from OtherVNI may be undef, making them undef
   1590     // here too.
   1591     V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
   1592     return CR_Erase;
   1593   }
   1594 
   1595   // This may not be a real conflict if DefMI simply kills Other and defines
   1596   // VNI.
   1597   if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
   1598     return CR_Keep;
   1599 
   1600   // Handle the case where VNI and OtherVNI can be proven to be identical:
   1601   //
   1602   //   %other = COPY %ext
   1603   //   %this  = COPY %ext <-- Erase this copy
   1604   //
   1605   if (DefMI->isFullCopy() && !CP.isPartial() &&
   1606       stripCopies(VNI) == stripCopies(V.OtherVNI))
   1607     return CR_Erase;
   1608 
   1609   // If the lanes written by this instruction were all undef in OtherVNI, it is
   1610   // still safe to join the live ranges. This can't be done with a simple value
   1611   // mapping, though - OtherVNI will map to multiple values:
   1612   //
   1613   //   1 %dst:ssub0 = FOO                <-- OtherVNI
   1614   //   2 %src = BAR                      <-- VNI
   1615   //   3 %dst:ssub1 = COPY %src<kill>    <-- Eliminate this copy.
   1616   //   4 BAZ %dst<kill>
   1617   //   5 QUUX %src<kill>
   1618   //
   1619   // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
   1620   // handles this complex value mapping.
   1621   if ((V.WriteLanes & OtherV.ValidLanes) == 0)
   1622     return CR_Replace;
   1623 
   1624   // If the other live range is killed by DefMI and the live ranges are still
   1625   // overlapping, it must be because we're looking at an early clobber def:
   1626   //
   1627   //   %dst<def,early-clobber> = ASM %src<kill>
   1628   //
   1629   // In this case, it is illegal to merge the two live ranges since the early
   1630   // clobber def would clobber %src before it was read.
   1631   if (OtherLRQ.isKill()) {
   1632     // This case where the def doesn't overlap the kill is handled above.
   1633     assert(VNI->def.isEarlyClobber() &&
   1634            "Only early clobber defs can overlap a kill");
   1635     return CR_Impossible;
   1636   }
   1637 
   1638   // VNI is clobbering live lanes in OtherVNI, but there is still the
   1639   // possibility that no instructions actually read the clobbered lanes.
   1640   // If we're clobbering all the lanes in OtherVNI, at least one must be read.
   1641   // Otherwise Other.LI wouldn't be live here.
   1642   if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0)
   1643     return CR_Impossible;
   1644 
   1645   // We need to verify that no instructions are reading the clobbered lanes. To
   1646   // save compile time, we'll only check that locally. Don't allow the tainted
   1647   // value to escape the basic block.
   1648   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
   1649   if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
   1650     return CR_Impossible;
   1651 
   1652   // There are still some things that could go wrong besides clobbered lanes
   1653   // being read, for example OtherVNI may be only partially redefined in MBB,
   1654   // and some clobbered lanes could escape the block. Save this analysis for
   1655   // resolveConflicts() when all values have been mapped. We need to know
   1656   // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
   1657   // that now - the recursive analyzeValue() calls must go upwards in the
   1658   // dominator tree.
   1659   return CR_Unresolved;
   1660 }
   1661 
   1662 /// Compute the value assignment for ValNo in LI.
   1663 /// This may be called recursively by analyzeValue(), but never for a ValNo on
   1664 /// the stack.
   1665 void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
   1666   Val &V = Vals[ValNo];
   1667   if (V.isAnalyzed()) {
   1668     // Recursion should always move up the dominator tree, so ValNo is not
   1669     // supposed to reappear before it has been assigned.
   1670     assert(Assignments[ValNo] != -1 && "Bad recursion?");
   1671     return;
   1672   }
   1673   switch ((V.Resolution = analyzeValue(ValNo, Other))) {
   1674   case CR_Erase:
   1675   case CR_Merge:
   1676     // Merge this ValNo into OtherVNI.
   1677     assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
   1678     assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
   1679     Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
   1680     DEBUG(dbgs() << "\t\tmerge " << PrintReg(LI.reg) << ':' << ValNo << '@'
   1681                  << LI.getValNumInfo(ValNo)->def << " into "
   1682                  << PrintReg(Other.LI.reg) << ':' << V.OtherVNI->id << '@'
   1683                  << V.OtherVNI->def << " --> @"
   1684                  << NewVNInfo[Assignments[ValNo]]->def << '\n');
   1685     break;
   1686   case CR_Replace:
   1687   case CR_Unresolved:
   1688     // The other value is going to be pruned if this join is successful.
   1689     assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
   1690     Other.Vals[V.OtherVNI->id].Pruned = true;
   1691     // Fall through.
   1692   default:
   1693     // This value number needs to go in the final joined live range.
   1694     Assignments[ValNo] = NewVNInfo.size();
   1695     NewVNInfo.push_back(LI.getValNumInfo(ValNo));
   1696     break;
   1697   }
   1698 }
   1699 
   1700 bool JoinVals::mapValues(JoinVals &Other) {
   1701   for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
   1702     computeAssignment(i, Other);
   1703     if (Vals[i].Resolution == CR_Impossible) {
   1704       DEBUG(dbgs() << "\t\tinterference at " << PrintReg(LI.reg) << ':' << i
   1705                    << '@' << LI.getValNumInfo(i)->def << '\n');
   1706       return false;
   1707     }
   1708   }
   1709   return true;
   1710 }
   1711 
   1712 /// Assuming ValNo is going to clobber some valid lanes in Other.LI, compute
   1713 /// the extent of the tainted lanes in the block.
   1714 ///
   1715 /// Multiple values in Other.LI can be affected since partial redefinitions can
   1716 /// preserve previously tainted lanes.
   1717 ///
   1718 ///   1 %dst = VLOAD           <-- Define all lanes in %dst
   1719 ///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
   1720 ///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
   1721 ///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
   1722 ///
   1723 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
   1724 /// entry to TaintedVals.
   1725 ///
   1726 /// Returns false if the tainted lanes extend beyond the basic block.
   1727 bool JoinVals::
   1728 taintExtent(unsigned ValNo, unsigned TaintedLanes, JoinVals &Other,
   1729             SmallVectorImpl<std::pair<SlotIndex, unsigned> > &TaintExtent) {
   1730   VNInfo *VNI = LI.getValNumInfo(ValNo);
   1731   MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
   1732   SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
   1733 
   1734   // Scan Other.LI from VNI.def to MBBEnd.
   1735   LiveInterval::iterator OtherI = Other.LI.find(VNI->def);
   1736   assert(OtherI != Other.LI.end() && "No conflict?");
   1737   do {
   1738     // OtherI is pointing to a tainted value. Abort the join if the tainted
   1739     // lanes escape the block.
   1740     SlotIndex End = OtherI->end;
   1741     if (End >= MBBEnd) {
   1742       DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.LI.reg) << ':'
   1743                    << OtherI->valno->id << '@' << OtherI->start << '\n');
   1744       return false;
   1745     }
   1746     DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.LI.reg) << ':'
   1747                  << OtherI->valno->id << '@' << OtherI->start
   1748                  << " to " << End << '\n');
   1749     // A dead def is not a problem.
   1750     if (End.isDead())
   1751       break;
   1752     TaintExtent.push_back(std::make_pair(End, TaintedLanes));
   1753 
   1754     // Check for another def in the MBB.
   1755     if (++OtherI == Other.LI.end() || OtherI->start >= MBBEnd)
   1756       break;
   1757 
   1758     // Lanes written by the new def are no longer tainted.
   1759     const Val &OV = Other.Vals[OtherI->valno->id];
   1760     TaintedLanes &= ~OV.WriteLanes;
   1761     if (!OV.RedefVNI)
   1762       break;
   1763   } while (TaintedLanes);
   1764   return true;
   1765 }
   1766 
   1767 /// Return true if MI uses any of the given Lanes from Reg.
   1768 /// This does not include partial redefinitions of Reg.
   1769 bool JoinVals::usesLanes(MachineInstr *MI, unsigned Reg, unsigned SubIdx,
   1770                          unsigned Lanes) {
   1771   if (MI->isDebugValue())
   1772     return false;
   1773   for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
   1774     if (!MO->isReg() || MO->isDef() || MO->getReg() != Reg)
   1775       continue;
   1776     if (!MO->readsReg())
   1777       continue;
   1778     if (Lanes & TRI->getSubRegIndexLaneMask(
   1779                   TRI->composeSubRegIndices(SubIdx, MO->getSubReg())))
   1780       return true;
   1781   }
   1782   return false;
   1783 }
   1784 
   1785 bool JoinVals::resolveConflicts(JoinVals &Other) {
   1786   for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
   1787     Val &V = Vals[i];
   1788     assert (V.Resolution != CR_Impossible && "Unresolvable conflict");
   1789     if (V.Resolution != CR_Unresolved)
   1790       continue;
   1791     DEBUG(dbgs() << "\t\tconflict at " << PrintReg(LI.reg) << ':' << i
   1792                  << '@' << LI.getValNumInfo(i)->def << '\n');
   1793     ++NumLaneConflicts;
   1794     assert(V.OtherVNI && "Inconsistent conflict resolution.");
   1795     VNInfo *VNI = LI.getValNumInfo(i);
   1796     const Val &OtherV = Other.Vals[V.OtherVNI->id];
   1797 
   1798     // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
   1799     // join, those lanes will be tainted with a wrong value. Get the extent of
   1800     // the tainted lanes.
   1801     unsigned TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
   1802     SmallVector<std::pair<SlotIndex, unsigned>, 8> TaintExtent;
   1803     if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
   1804       // Tainted lanes would extend beyond the basic block.
   1805       return false;
   1806 
   1807     assert(!TaintExtent.empty() && "There should be at least one conflict.");
   1808 
   1809     // Now look at the instructions from VNI->def to TaintExtent (inclusive).
   1810     MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
   1811     MachineBasicBlock::iterator MI = MBB->begin();
   1812     if (!VNI->isPHIDef()) {
   1813       MI = Indexes->getInstructionFromIndex(VNI->def);
   1814       // No need to check the instruction defining VNI for reads.
   1815       ++MI;
   1816     }
   1817     assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
   1818            "Interference ends on VNI->def. Should have been handled earlier");
   1819     MachineInstr *LastMI =
   1820       Indexes->getInstructionFromIndex(TaintExtent.front().first);
   1821     assert(LastMI && "Range must end at a proper instruction");
   1822     unsigned TaintNum = 0;
   1823     for(;;) {
   1824       assert(MI != MBB->end() && "Bad LastMI");
   1825       if (usesLanes(MI, Other.LI.reg, Other.SubIdx, TaintedLanes)) {
   1826         DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
   1827         return false;
   1828       }
   1829       // LastMI is the last instruction to use the current value.
   1830       if (&*MI == LastMI) {
   1831         if (++TaintNum == TaintExtent.size())
   1832           break;
   1833         LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
   1834         assert(LastMI && "Range must end at a proper instruction");
   1835         TaintedLanes = TaintExtent[TaintNum].second;
   1836       }
   1837       ++MI;
   1838     }
   1839 
   1840     // The tainted lanes are unused.
   1841     V.Resolution = CR_Replace;
   1842     ++NumLaneResolves;
   1843   }
   1844   return true;
   1845 }
   1846 
   1847 // Determine if ValNo is a copy of a value number in LI or Other.LI that will
   1848 // be pruned:
   1849 //
   1850 //   %dst = COPY %src
   1851 //   %src = COPY %dst  <-- This value to be pruned.
   1852 //   %dst = COPY %src  <-- This value is a copy of a pruned value.
   1853 //
   1854 bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
   1855   Val &V = Vals[ValNo];
   1856   if (V.Pruned || V.PrunedComputed)
   1857     return V.Pruned;
   1858 
   1859   if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
   1860     return V.Pruned;
   1861 
   1862   // Follow copies up the dominator tree and check if any intermediate value
   1863   // has been pruned.
   1864   V.PrunedComputed = true;
   1865   V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
   1866   return V.Pruned;
   1867 }
   1868 
   1869 void JoinVals::pruneValues(JoinVals &Other,
   1870                            SmallVectorImpl<SlotIndex> &EndPoints) {
   1871   for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
   1872     SlotIndex Def = LI.getValNumInfo(i)->def;
   1873     switch (Vals[i].Resolution) {
   1874     case CR_Keep:
   1875       break;
   1876     case CR_Replace: {
   1877       // This value takes precedence over the value in Other.LI.
   1878       LIS->pruneValue(&Other.LI, Def, &EndPoints);
   1879       // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
   1880       // instructions are only inserted to provide a live-out value for PHI
   1881       // predecessors, so the instruction should simply go away once its value
   1882       // has been replaced.
   1883       Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
   1884       bool EraseImpDef = OtherV.ErasableImplicitDef &&
   1885                          OtherV.Resolution == CR_Keep;
   1886       if (!Def.isBlock()) {
   1887         // Remove <def,read-undef> flags. This def is now a partial redef.
   1888         // Also remove <def,dead> flags since the joined live range will
   1889         // continue past this instruction.
   1890         for (MIOperands MO(Indexes->getInstructionFromIndex(Def));
   1891              MO.isValid(); ++MO)
   1892           if (MO->isReg() && MO->isDef() && MO->getReg() == LI.reg) {
   1893             MO->setIsUndef(EraseImpDef);
   1894             MO->setIsDead(false);
   1895           }
   1896         // This value will reach instructions below, but we need to make sure
   1897         // the live range also reaches the instruction at Def.
   1898         if (!EraseImpDef)
   1899           EndPoints.push_back(Def);
   1900       }
   1901       DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.LI.reg) << " at " << Def
   1902                    << ": " << Other.LI << '\n');
   1903       break;
   1904     }
   1905     case CR_Erase:
   1906     case CR_Merge:
   1907       if (isPrunedValue(i, Other)) {
   1908         // This value is ultimately a copy of a pruned value in LI or Other.LI.
   1909         // We can no longer trust the value mapping computed by
   1910         // computeAssignment(), the value that was originally copied could have
   1911         // been replaced.
   1912         LIS->pruneValue(&LI, Def, &EndPoints);
   1913         DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(LI.reg) << " at "
   1914                      << Def << ": " << LI << '\n');
   1915       }
   1916       break;
   1917     case CR_Unresolved:
   1918     case CR_Impossible:
   1919       llvm_unreachable("Unresolved conflicts");
   1920     }
   1921   }
   1922 }
   1923 
   1924 void JoinVals::eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
   1925                            SmallVectorImpl<unsigned> &ShrinkRegs) {
   1926   for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
   1927     // Get the def location before markUnused() below invalidates it.
   1928     SlotIndex Def = LI.getValNumInfo(i)->def;
   1929     switch (Vals[i].Resolution) {
   1930     case CR_Keep:
   1931       // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
   1932       // longer. The IMPLICIT_DEF instructions are only inserted by
   1933       // PHIElimination to guarantee that all PHI predecessors have a value.
   1934       if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
   1935         break;
   1936       // Remove value number i from LI. Note that this VNInfo is still present
   1937       // in NewVNInfo, so it will appear as an unused value number in the final
   1938       // joined interval.
   1939       LI.getValNumInfo(i)->markUnused();
   1940       LI.removeValNo(LI.getValNumInfo(i));
   1941       DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LI << '\n');
   1942       // FALL THROUGH.
   1943 
   1944     case CR_Erase: {
   1945       MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
   1946       assert(MI && "No instruction to erase");
   1947       if (MI->isCopy()) {
   1948         unsigned Reg = MI->getOperand(1).getReg();
   1949         if (TargetRegisterInfo::isVirtualRegister(Reg) &&
   1950             Reg != CP.getSrcReg() && Reg != CP.getDstReg())
   1951           ShrinkRegs.push_back(Reg);
   1952       }
   1953       ErasedInstrs.insert(MI);
   1954       DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
   1955       LIS->RemoveMachineInstrFromMaps(MI);
   1956       MI->eraseFromParent();
   1957       break;
   1958     }
   1959     default:
   1960       break;
   1961     }
   1962   }
   1963 }
   1964 
   1965 bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
   1966   SmallVector<VNInfo*, 16> NewVNInfo;
   1967   LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
   1968   LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
   1969   JoinVals RHSVals(RHS, CP.getSrcIdx(), NewVNInfo, CP, LIS, TRI);
   1970   JoinVals LHSVals(LHS, CP.getDstIdx(), NewVNInfo, CP, LIS, TRI);
   1971 
   1972   DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
   1973                << "\n\t\tLHS = " << PrintReg(CP.getDstReg()) << ' ' << LHS
   1974                << '\n');
   1975 
   1976   // First compute NewVNInfo and the simple value mappings.
   1977   // Detect impossible conflicts early.
   1978   if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
   1979     return false;
   1980 
   1981   // Some conflicts can only be resolved after all values have been mapped.
   1982   if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
   1983     return false;
   1984 
   1985   // All clear, the live ranges can be merged.
   1986 
   1987   // The merging algorithm in LiveInterval::join() can't handle conflicting
   1988   // value mappings, so we need to remove any live ranges that overlap a
   1989   // CR_Replace resolution. Collect a set of end points that can be used to
   1990   // restore the live range after joining.
   1991   SmallVector<SlotIndex, 8> EndPoints;
   1992   LHSVals.pruneValues(RHSVals, EndPoints);
   1993   RHSVals.pruneValues(LHSVals, EndPoints);
   1994 
   1995   // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
   1996   // registers to require trimming.
   1997   SmallVector<unsigned, 8> ShrinkRegs;
   1998   LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
   1999   RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
   2000   while (!ShrinkRegs.empty())
   2001     LIS->shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
   2002 
   2003   // Join RHS into LHS.
   2004   LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo,
   2005            MRI);
   2006 
   2007   // Kill flags are going to be wrong if the live ranges were overlapping.
   2008   // Eventually, we should simply clear all kill flags when computing live
   2009   // ranges. They are reinserted after register allocation.
   2010   MRI->clearKillFlags(LHS.reg);
   2011   MRI->clearKillFlags(RHS.reg);
   2012 
   2013   if (EndPoints.empty())
   2014     return true;
   2015 
   2016   // Recompute the parts of the live range we had to remove because of
   2017   // CR_Replace conflicts.
   2018   DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
   2019                << " points: " << LHS << '\n');
   2020   LIS->extendToIndices(&LHS, EndPoints);
   2021   return true;
   2022 }
   2023 
   2024 /// joinIntervals - Attempt to join these two intervals.  On failure, this
   2025 /// returns false.
   2026 bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
   2027   return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
   2028 }
   2029 
   2030 namespace {
   2031 // Information concerning MBB coalescing priority.
   2032 struct MBBPriorityInfo {
   2033   MachineBasicBlock *MBB;
   2034   unsigned Depth;
   2035   bool IsSplit;
   2036 
   2037   MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
   2038     : MBB(mbb), Depth(depth), IsSplit(issplit) {}
   2039 };
   2040 }
   2041 
   2042 // C-style comparator that sorts first based on the loop depth of the basic
   2043 // block (the unsigned), and then on the MBB number.
   2044 //
   2045 // EnableGlobalCopies assumes that the primary sort key is loop depth.
   2046 static int compareMBBPriority(const void *L, const void *R) {
   2047   const MBBPriorityInfo *LHS = static_cast<const MBBPriorityInfo*>(L);
   2048   const MBBPriorityInfo *RHS = static_cast<const MBBPriorityInfo*>(R);
   2049   // Deeper loops first
   2050   if (LHS->Depth != RHS->Depth)
   2051     return LHS->Depth > RHS->Depth ? -1 : 1;
   2052 
   2053   // Try to unsplit critical edges next.
   2054   if (LHS->IsSplit != RHS->IsSplit)
   2055     return LHS->IsSplit ? -1 : 1;
   2056 
   2057   // Prefer blocks that are more connected in the CFG. This takes care of
   2058   // the most difficult copies first while intervals are short.
   2059   unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
   2060   unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
   2061   if (cl != cr)
   2062     return cl > cr ? -1 : 1;
   2063 
   2064   // As a last resort, sort by block number.
   2065   return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
   2066 }
   2067 
   2068 /// \returns true if the given copy uses or defines a local live range.
   2069 static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
   2070   if (!Copy->isCopy())
   2071     return false;
   2072 
   2073   if (Copy->getOperand(1).isUndef())
   2074     return false;
   2075 
   2076   unsigned SrcReg = Copy->getOperand(1).getReg();
   2077   unsigned DstReg = Copy->getOperand(0).getReg();
   2078   if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
   2079       || TargetRegisterInfo::isPhysicalRegister(DstReg))
   2080     return false;
   2081 
   2082   return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
   2083     || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
   2084 }
   2085 
   2086 // Try joining WorkList copies starting from index From.
   2087 // Null out any successful joins.
   2088 bool RegisterCoalescer::
   2089 copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
   2090   bool Progress = false;
   2091   for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
   2092     if (!CurrList[i])
   2093       continue;
   2094     // Skip instruction pointers that have already been erased, for example by
   2095     // dead code elimination.
   2096     if (ErasedInstrs.erase(CurrList[i])) {
   2097       CurrList[i] = 0;
   2098       continue;
   2099     }
   2100     bool Again = false;
   2101     bool Success = joinCopy(CurrList[i], Again);
   2102     Progress |= Success;
   2103     if (Success || !Again)
   2104       CurrList[i] = 0;
   2105   }
   2106   return Progress;
   2107 }
   2108 
   2109 void
   2110 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
   2111   DEBUG(dbgs() << MBB->getName() << ":\n");
   2112 
   2113   // Collect all copy-like instructions in MBB. Don't start coalescing anything
   2114   // yet, it might invalidate the iterator.
   2115   const unsigned PrevSize = WorkList.size();
   2116   if (JoinGlobalCopies) {
   2117     // Coalesce copies bottom-up to coalesce local defs before local uses. They
   2118     // are not inherently easier to resolve, but slightly preferable until we
   2119     // have local live range splitting. In particular this is required by
   2120     // cmp+jmp macro fusion.
   2121     for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
   2122          MII != E; ++MII) {
   2123       if (!MII->isCopyLike())
   2124         continue;
   2125       if (isLocalCopy(&(*MII), LIS))
   2126         LocalWorkList.push_back(&(*MII));
   2127       else
   2128         WorkList.push_back(&(*MII));
   2129     }
   2130   }
   2131   else {
   2132      for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
   2133           MII != E; ++MII)
   2134        if (MII->isCopyLike())
   2135          WorkList.push_back(MII);
   2136   }
   2137   // Try coalescing the collected copies immediately, and remove the nulls.
   2138   // This prevents the WorkList from getting too large since most copies are
   2139   // joinable on the first attempt.
   2140   MutableArrayRef<MachineInstr*>
   2141     CurrList(WorkList.begin() + PrevSize, WorkList.end());
   2142   if (copyCoalesceWorkList(CurrList))
   2143     WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
   2144                                (MachineInstr*)0), WorkList.end());
   2145 }
   2146 
   2147 void RegisterCoalescer::coalesceLocals() {
   2148   copyCoalesceWorkList(LocalWorkList);
   2149   for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
   2150     if (LocalWorkList[j])
   2151       WorkList.push_back(LocalWorkList[j]);
   2152   }
   2153   LocalWorkList.clear();
   2154 }
   2155 
   2156 void RegisterCoalescer::joinAllIntervals() {
   2157   DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
   2158   assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
   2159 
   2160   std::vector<MBBPriorityInfo> MBBs;
   2161   MBBs.reserve(MF->size());
   2162   for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
   2163     MachineBasicBlock *MBB = I;
   2164     MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
   2165                                    JoinSplitEdges && isSplitEdge(MBB)));
   2166   }
   2167   array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
   2168 
   2169   // Coalesce intervals in MBB priority order.
   2170   unsigned CurrDepth = UINT_MAX;
   2171   for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
   2172     // Try coalescing the collected local copies for deeper loops.
   2173     if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
   2174       coalesceLocals();
   2175       CurrDepth = MBBs[i].Depth;
   2176     }
   2177     copyCoalesceInMBB(MBBs[i].MBB);
   2178   }
   2179   coalesceLocals();
   2180 
   2181   // Joining intervals can allow other intervals to be joined.  Iteratively join
   2182   // until we make no progress.
   2183   while (copyCoalesceWorkList(WorkList))
   2184     /* empty */ ;
   2185 }
   2186 
   2187 void RegisterCoalescer::releaseMemory() {
   2188   ErasedInstrs.clear();
   2189   WorkList.clear();
   2190   DeadDefs.clear();
   2191   InflateRegs.clear();
   2192 }
   2193 
   2194 bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
   2195   MF = &fn;
   2196   MRI = &fn.getRegInfo();
   2197   TM = &fn.getTarget();
   2198   TRI = TM->getRegisterInfo();
   2199   TII = TM->getInstrInfo();
   2200   LIS = &getAnalysis<LiveIntervals>();
   2201   AA = &getAnalysis<AliasAnalysis>();
   2202   Loops = &getAnalysis<MachineLoopInfo>();
   2203 
   2204   const TargetSubtargetInfo &ST = TM->getSubtarget<TargetSubtargetInfo>();
   2205   if (EnableGlobalCopies == cl::BOU_UNSET)
   2206     JoinGlobalCopies = ST.enableMachineScheduler();
   2207   else
   2208     JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
   2209 
   2210   // The MachineScheduler does not currently require JoinSplitEdges. This will
   2211   // either be enabled unconditionally or replaced by a more general live range
   2212   // splitting optimization.
   2213   JoinSplitEdges = EnableJoinSplits;
   2214 
   2215   DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
   2216                << "********** Function: " << MF->getName() << '\n');
   2217 
   2218   if (VerifyCoalescing)
   2219     MF->verify(this, "Before register coalescing");
   2220 
   2221   RegClassInfo.runOnMachineFunction(fn);
   2222 
   2223   // Join (coalesce) intervals if requested.
   2224   if (EnableJoining)
   2225     joinAllIntervals();
   2226 
   2227   // After deleting a lot of copies, register classes may be less constrained.
   2228   // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
   2229   // DPR inflation.
   2230   array_pod_sort(InflateRegs.begin(), InflateRegs.end());
   2231   InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
   2232                     InflateRegs.end());
   2233   DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
   2234   for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
   2235     unsigned Reg = InflateRegs[i];
   2236     if (MRI->reg_nodbg_empty(Reg))
   2237       continue;
   2238     if (MRI->recomputeRegClass(Reg, *TM)) {
   2239       DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
   2240                    << MRI->getRegClass(Reg)->getName() << '\n');
   2241       ++NumInflated;
   2242     }
   2243   }
   2244 
   2245   DEBUG(dump());
   2246   if (VerifyCoalescing)
   2247     MF->verify(this, "After register coalescing");
   2248   return true;
   2249 }
   2250 
   2251 /// print - Implement the dump method.
   2252 void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
   2253    LIS->print(O, m);
   2254 }
   2255