1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements routines for folding instructions into simpler forms 11 // that do not require creating new instructions. This does constant folding 12 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 13 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 14 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 15 // simplified: This is usually true and assuming it simplifies the logic (if 16 // they have not been simplified then results are correct but maybe suboptimal). 17 // 18 //===----------------------------------------------------------------------===// 19 20 #define DEBUG_TYPE "instsimplify" 21 #include "llvm/Analysis/InstructionSimplify.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/ConstantFolding.h" 25 #include "llvm/Analysis/Dominators.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/Analysis/MemoryBuiltins.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/GlobalAlias.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/Support/ConstantRange.h" 32 #include "llvm/Support/GetElementPtrTypeIterator.h" 33 #include "llvm/Support/PatternMatch.h" 34 #include "llvm/Support/ValueHandle.h" 35 using namespace llvm; 36 using namespace llvm::PatternMatch; 37 38 enum { RecursionLimit = 3 }; 39 40 STATISTIC(NumExpand, "Number of expansions"); 41 STATISTIC(NumFactor , "Number of factorizations"); 42 STATISTIC(NumReassoc, "Number of reassociations"); 43 44 struct Query { 45 const DataLayout *TD; 46 const TargetLibraryInfo *TLI; 47 const DominatorTree *DT; 48 49 Query(const DataLayout *td, const TargetLibraryInfo *tli, 50 const DominatorTree *dt) : TD(td), TLI(tli), DT(dt) {} 51 }; 52 53 static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned); 54 static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &, 55 unsigned); 56 static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &, 57 unsigned); 58 static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned); 59 static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned); 60 static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned); 61 62 /// getFalse - For a boolean type, or a vector of boolean type, return false, or 63 /// a vector with every element false, as appropriate for the type. 64 static Constant *getFalse(Type *Ty) { 65 assert(Ty->getScalarType()->isIntegerTy(1) && 66 "Expected i1 type or a vector of i1!"); 67 return Constant::getNullValue(Ty); 68 } 69 70 /// getTrue - For a boolean type, or a vector of boolean type, return true, or 71 /// a vector with every element true, as appropriate for the type. 72 static Constant *getTrue(Type *Ty) { 73 assert(Ty->getScalarType()->isIntegerTy(1) && 74 "Expected i1 type or a vector of i1!"); 75 return Constant::getAllOnesValue(Ty); 76 } 77 78 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 79 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 80 Value *RHS) { 81 CmpInst *Cmp = dyn_cast<CmpInst>(V); 82 if (!Cmp) 83 return false; 84 CmpInst::Predicate CPred = Cmp->getPredicate(); 85 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 86 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 87 return true; 88 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 89 CRHS == LHS; 90 } 91 92 /// ValueDominatesPHI - Does the given value dominate the specified phi node? 93 static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 94 Instruction *I = dyn_cast<Instruction>(V); 95 if (!I) 96 // Arguments and constants dominate all instructions. 97 return true; 98 99 // If we are processing instructions (and/or basic blocks) that have not been 100 // fully added to a function, the parent nodes may still be null. Simply 101 // return the conservative answer in these cases. 102 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent()) 103 return false; 104 105 // If we have a DominatorTree then do a precise test. 106 if (DT) { 107 if (!DT->isReachableFromEntry(P->getParent())) 108 return true; 109 if (!DT->isReachableFromEntry(I->getParent())) 110 return false; 111 return DT->dominates(I, P); 112 } 113 114 // Otherwise, if the instruction is in the entry block, and is not an invoke, 115 // then it obviously dominates all phi nodes. 116 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() && 117 !isa<InvokeInst>(I)) 118 return true; 119 120 return false; 121 } 122 123 /// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning 124 /// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is 125 /// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS. 126 /// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)". 127 /// Returns the simplified value, or null if no simplification was performed. 128 static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS, 129 unsigned OpcToExpand, const Query &Q, 130 unsigned MaxRecurse) { 131 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand; 132 // Recursion is always used, so bail out at once if we already hit the limit. 133 if (!MaxRecurse--) 134 return 0; 135 136 // Check whether the expression has the form "(A op' B) op C". 137 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) 138 if (Op0->getOpcode() == OpcodeToExpand) { 139 // It does! Try turning it into "(A op C) op' (B op C)". 140 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; 141 // Do "A op C" and "B op C" both simplify? 142 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) 143 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 144 // They do! Return "L op' R" if it simplifies or is already available. 145 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. 146 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand) 147 && L == B && R == A)) { 148 ++NumExpand; 149 return LHS; 150 } 151 // Otherwise return "L op' R" if it simplifies. 152 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 153 ++NumExpand; 154 return V; 155 } 156 } 157 } 158 159 // Check whether the expression has the form "A op (B op' C)". 160 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) 161 if (Op1->getOpcode() == OpcodeToExpand) { 162 // It does! Try turning it into "(A op B) op' (A op C)". 163 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); 164 // Do "A op B" and "A op C" both simplify? 165 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) 166 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) { 167 // They do! Return "L op' R" if it simplifies or is already available. 168 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. 169 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand) 170 && L == C && R == B)) { 171 ++NumExpand; 172 return RHS; 173 } 174 // Otherwise return "L op' R" if it simplifies. 175 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) { 176 ++NumExpand; 177 return V; 178 } 179 } 180 } 181 182 return 0; 183 } 184 185 /// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term 186 /// using the operation OpCodeToExtract. For example, when Opcode is Add and 187 /// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)". 188 /// Returns the simplified value, or null if no simplification was performed. 189 static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS, 190 unsigned OpcToExtract, const Query &Q, 191 unsigned MaxRecurse) { 192 Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract; 193 // Recursion is always used, so bail out at once if we already hit the limit. 194 if (!MaxRecurse--) 195 return 0; 196 197 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 198 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 199 200 if (!Op0 || Op0->getOpcode() != OpcodeToExtract || 201 !Op1 || Op1->getOpcode() != OpcodeToExtract) 202 return 0; 203 204 // The expression has the form "(A op' B) op (C op' D)". 205 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1); 206 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1); 207 208 // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)". 209 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the 210 // commutative case, "(A op' B) op (C op' A)"? 211 if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) { 212 Value *DD = A == C ? D : C; 213 // Form "A op' (B op DD)" if it simplifies completely. 214 // Does "B op DD" simplify? 215 if (Value *V = SimplifyBinOp(Opcode, B, DD, Q, MaxRecurse)) { 216 // It does! Return "A op' V" if it simplifies or is already available. 217 // If V equals B then "A op' V" is just the LHS. If V equals DD then 218 // "A op' V" is just the RHS. 219 if (V == B || V == DD) { 220 ++NumFactor; 221 return V == B ? LHS : RHS; 222 } 223 // Otherwise return "A op' V" if it simplifies. 224 if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, Q, MaxRecurse)) { 225 ++NumFactor; 226 return W; 227 } 228 } 229 } 230 231 // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)". 232 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the 233 // commutative case, "(A op' B) op (B op' D)"? 234 if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) { 235 Value *CC = B == D ? C : D; 236 // Form "(A op CC) op' B" if it simplifies completely.. 237 // Does "A op CC" simplify? 238 if (Value *V = SimplifyBinOp(Opcode, A, CC, Q, MaxRecurse)) { 239 // It does! Return "V op' B" if it simplifies or is already available. 240 // If V equals A then "V op' B" is just the LHS. If V equals CC then 241 // "V op' B" is just the RHS. 242 if (V == A || V == CC) { 243 ++NumFactor; 244 return V == A ? LHS : RHS; 245 } 246 // Otherwise return "V op' B" if it simplifies. 247 if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, Q, MaxRecurse)) { 248 ++NumFactor; 249 return W; 250 } 251 } 252 } 253 254 return 0; 255 } 256 257 /// SimplifyAssociativeBinOp - Generic simplifications for associative binary 258 /// operations. Returns the simpler value, or null if none was found. 259 static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS, 260 const Query &Q, unsigned MaxRecurse) { 261 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc; 262 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 263 264 // Recursion is always used, so bail out at once if we already hit the limit. 265 if (!MaxRecurse--) 266 return 0; 267 268 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 269 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 270 271 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 272 if (Op0 && Op0->getOpcode() == Opcode) { 273 Value *A = Op0->getOperand(0); 274 Value *B = Op0->getOperand(1); 275 Value *C = RHS; 276 277 // Does "B op C" simplify? 278 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 279 // It does! Return "A op V" if it simplifies or is already available. 280 // If V equals B then "A op V" is just the LHS. 281 if (V == B) return LHS; 282 // Otherwise return "A op V" if it simplifies. 283 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 284 ++NumReassoc; 285 return W; 286 } 287 } 288 } 289 290 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 291 if (Op1 && Op1->getOpcode() == Opcode) { 292 Value *A = LHS; 293 Value *B = Op1->getOperand(0); 294 Value *C = Op1->getOperand(1); 295 296 // Does "A op B" simplify? 297 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 298 // It does! Return "V op C" if it simplifies or is already available. 299 // If V equals B then "V op C" is just the RHS. 300 if (V == B) return RHS; 301 // Otherwise return "V op C" if it simplifies. 302 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 303 ++NumReassoc; 304 return W; 305 } 306 } 307 } 308 309 // The remaining transforms require commutativity as well as associativity. 310 if (!Instruction::isCommutative(Opcode)) 311 return 0; 312 313 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 314 if (Op0 && Op0->getOpcode() == Opcode) { 315 Value *A = Op0->getOperand(0); 316 Value *B = Op0->getOperand(1); 317 Value *C = RHS; 318 319 // Does "C op A" simplify? 320 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 321 // It does! Return "V op B" if it simplifies or is already available. 322 // If V equals A then "V op B" is just the LHS. 323 if (V == A) return LHS; 324 // Otherwise return "V op B" if it simplifies. 325 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 326 ++NumReassoc; 327 return W; 328 } 329 } 330 } 331 332 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 333 if (Op1 && Op1->getOpcode() == Opcode) { 334 Value *A = LHS; 335 Value *B = Op1->getOperand(0); 336 Value *C = Op1->getOperand(1); 337 338 // Does "C op A" simplify? 339 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 340 // It does! Return "B op V" if it simplifies or is already available. 341 // If V equals C then "B op V" is just the RHS. 342 if (V == C) return RHS; 343 // Otherwise return "B op V" if it simplifies. 344 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 345 ++NumReassoc; 346 return W; 347 } 348 } 349 } 350 351 return 0; 352 } 353 354 /// ThreadBinOpOverSelect - In the case of a binary operation with a select 355 /// instruction as an operand, try to simplify the binop by seeing whether 356 /// evaluating it on both branches of the select results in the same value. 357 /// Returns the common value if so, otherwise returns null. 358 static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS, 359 const Query &Q, unsigned MaxRecurse) { 360 // Recursion is always used, so bail out at once if we already hit the limit. 361 if (!MaxRecurse--) 362 return 0; 363 364 SelectInst *SI; 365 if (isa<SelectInst>(LHS)) { 366 SI = cast<SelectInst>(LHS); 367 } else { 368 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 369 SI = cast<SelectInst>(RHS); 370 } 371 372 // Evaluate the BinOp on the true and false branches of the select. 373 Value *TV; 374 Value *FV; 375 if (SI == LHS) { 376 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 377 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 378 } else { 379 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 380 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 381 } 382 383 // If they simplified to the same value, then return the common value. 384 // If they both failed to simplify then return null. 385 if (TV == FV) 386 return TV; 387 388 // If one branch simplified to undef, return the other one. 389 if (TV && isa<UndefValue>(TV)) 390 return FV; 391 if (FV && isa<UndefValue>(FV)) 392 return TV; 393 394 // If applying the operation did not change the true and false select values, 395 // then the result of the binop is the select itself. 396 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 397 return SI; 398 399 // If one branch simplified and the other did not, and the simplified 400 // value is equal to the unsimplified one, return the simplified value. 401 // For example, select (cond, X, X & Z) & Z -> X & Z. 402 if ((FV && !TV) || (TV && !FV)) { 403 // Check that the simplified value has the form "X op Y" where "op" is the 404 // same as the original operation. 405 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 406 if (Simplified && Simplified->getOpcode() == Opcode) { 407 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 408 // We already know that "op" is the same as for the simplified value. See 409 // if the operands match too. If so, return the simplified value. 410 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 411 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 412 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 413 if (Simplified->getOperand(0) == UnsimplifiedLHS && 414 Simplified->getOperand(1) == UnsimplifiedRHS) 415 return Simplified; 416 if (Simplified->isCommutative() && 417 Simplified->getOperand(1) == UnsimplifiedLHS && 418 Simplified->getOperand(0) == UnsimplifiedRHS) 419 return Simplified; 420 } 421 } 422 423 return 0; 424 } 425 426 /// ThreadCmpOverSelect - In the case of a comparison with a select instruction, 427 /// try to simplify the comparison by seeing whether both branches of the select 428 /// result in the same value. Returns the common value if so, otherwise returns 429 /// null. 430 static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 431 Value *RHS, const Query &Q, 432 unsigned MaxRecurse) { 433 // Recursion is always used, so bail out at once if we already hit the limit. 434 if (!MaxRecurse--) 435 return 0; 436 437 // Make sure the select is on the LHS. 438 if (!isa<SelectInst>(LHS)) { 439 std::swap(LHS, RHS); 440 Pred = CmpInst::getSwappedPredicate(Pred); 441 } 442 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 443 SelectInst *SI = cast<SelectInst>(LHS); 444 Value *Cond = SI->getCondition(); 445 Value *TV = SI->getTrueValue(); 446 Value *FV = SI->getFalseValue(); 447 448 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 449 // Does "cmp TV, RHS" simplify? 450 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse); 451 if (TCmp == Cond) { 452 // It not only simplified, it simplified to the select condition. Replace 453 // it with 'true'. 454 TCmp = getTrue(Cond->getType()); 455 } else if (!TCmp) { 456 // It didn't simplify. However if "cmp TV, RHS" is equal to the select 457 // condition then we can replace it with 'true'. Otherwise give up. 458 if (!isSameCompare(Cond, Pred, TV, RHS)) 459 return 0; 460 TCmp = getTrue(Cond->getType()); 461 } 462 463 // Does "cmp FV, RHS" simplify? 464 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse); 465 if (FCmp == Cond) { 466 // It not only simplified, it simplified to the select condition. Replace 467 // it with 'false'. 468 FCmp = getFalse(Cond->getType()); 469 } else if (!FCmp) { 470 // It didn't simplify. However if "cmp FV, RHS" is equal to the select 471 // condition then we can replace it with 'false'. Otherwise give up. 472 if (!isSameCompare(Cond, Pred, FV, RHS)) 473 return 0; 474 FCmp = getFalse(Cond->getType()); 475 } 476 477 // If both sides simplified to the same value, then use it as the result of 478 // the original comparison. 479 if (TCmp == FCmp) 480 return TCmp; 481 482 // The remaining cases only make sense if the select condition has the same 483 // type as the result of the comparison, so bail out if this is not so. 484 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy()) 485 return 0; 486 // If the false value simplified to false, then the result of the compare 487 // is equal to "Cond && TCmp". This also catches the case when the false 488 // value simplified to false and the true value to true, returning "Cond". 489 if (match(FCmp, m_Zero())) 490 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 491 return V; 492 // If the true value simplified to true, then the result of the compare 493 // is equal to "Cond || FCmp". 494 if (match(TCmp, m_One())) 495 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 496 return V; 497 // Finally, if the false value simplified to true and the true value to 498 // false, then the result of the compare is equal to "!Cond". 499 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 500 if (Value *V = 501 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()), 502 Q, MaxRecurse)) 503 return V; 504 505 return 0; 506 } 507 508 /// ThreadBinOpOverPHI - In the case of a binary operation with an operand that 509 /// is a PHI instruction, try to simplify the binop by seeing whether evaluating 510 /// it on the incoming phi values yields the same result for every value. If so 511 /// returns the common value, otherwise returns null. 512 static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS, 513 const Query &Q, unsigned MaxRecurse) { 514 // Recursion is always used, so bail out at once if we already hit the limit. 515 if (!MaxRecurse--) 516 return 0; 517 518 PHINode *PI; 519 if (isa<PHINode>(LHS)) { 520 PI = cast<PHINode>(LHS); 521 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 522 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 523 return 0; 524 } else { 525 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 526 PI = cast<PHINode>(RHS); 527 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 528 if (!ValueDominatesPHI(LHS, PI, Q.DT)) 529 return 0; 530 } 531 532 // Evaluate the BinOp on the incoming phi values. 533 Value *CommonValue = 0; 534 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) { 535 Value *Incoming = PI->getIncomingValue(i); 536 // If the incoming value is the phi node itself, it can safely be skipped. 537 if (Incoming == PI) continue; 538 Value *V = PI == LHS ? 539 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) : 540 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse); 541 // If the operation failed to simplify, or simplified to a different value 542 // to previously, then give up. 543 if (!V || (CommonValue && V != CommonValue)) 544 return 0; 545 CommonValue = V; 546 } 547 548 return CommonValue; 549 } 550 551 /// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try 552 /// try to simplify the comparison by seeing whether comparing with all of the 553 /// incoming phi values yields the same result every time. If so returns the 554 /// common result, otherwise returns null. 555 static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 556 const Query &Q, unsigned MaxRecurse) { 557 // Recursion is always used, so bail out at once if we already hit the limit. 558 if (!MaxRecurse--) 559 return 0; 560 561 // Make sure the phi is on the LHS. 562 if (!isa<PHINode>(LHS)) { 563 std::swap(LHS, RHS); 564 Pred = CmpInst::getSwappedPredicate(Pred); 565 } 566 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 567 PHINode *PI = cast<PHINode>(LHS); 568 569 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 570 if (!ValueDominatesPHI(RHS, PI, Q.DT)) 571 return 0; 572 573 // Evaluate the BinOp on the incoming phi values. 574 Value *CommonValue = 0; 575 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) { 576 Value *Incoming = PI->getIncomingValue(i); 577 // If the incoming value is the phi node itself, it can safely be skipped. 578 if (Incoming == PI) continue; 579 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse); 580 // If the operation failed to simplify, or simplified to a different value 581 // to previously, then give up. 582 if (!V || (CommonValue && V != CommonValue)) 583 return 0; 584 CommonValue = V; 585 } 586 587 return CommonValue; 588 } 589 590 /// SimplifyAddInst - Given operands for an Add, see if we can 591 /// fold the result. If not, this returns null. 592 static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 593 const Query &Q, unsigned MaxRecurse) { 594 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 595 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 596 Constant *Ops[] = { CLHS, CRHS }; 597 return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops, 598 Q.TD, Q.TLI); 599 } 600 601 // Canonicalize the constant to the RHS. 602 std::swap(Op0, Op1); 603 } 604 605 // X + undef -> undef 606 if (match(Op1, m_Undef())) 607 return Op1; 608 609 // X + 0 -> X 610 if (match(Op1, m_Zero())) 611 return Op0; 612 613 // X + (Y - X) -> Y 614 // (Y - X) + X -> Y 615 // Eg: X + -X -> 0 616 Value *Y = 0; 617 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 618 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 619 return Y; 620 621 // X + ~X -> -1 since ~X = -X-1 622 if (match(Op0, m_Not(m_Specific(Op1))) || 623 match(Op1, m_Not(m_Specific(Op0)))) 624 return Constant::getAllOnesValue(Op0->getType()); 625 626 /// i1 add -> xor. 627 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 628 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 629 return V; 630 631 // Try some generic simplifications for associative operations. 632 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, 633 MaxRecurse)) 634 return V; 635 636 // Mul distributes over Add. Try some generic simplifications based on this. 637 if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul, 638 Q, MaxRecurse)) 639 return V; 640 641 // Threading Add over selects and phi nodes is pointless, so don't bother. 642 // Threading over the select in "A + select(cond, B, C)" means evaluating 643 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 644 // only if B and C are equal. If B and C are equal then (since we assume 645 // that operands have already been simplified) "select(cond, B, C)" should 646 // have been simplified to the common value of B and C already. Analysing 647 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 648 // for threading over phi nodes. 649 650 return 0; 651 } 652 653 Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 654 const DataLayout *TD, const TargetLibraryInfo *TLI, 655 const DominatorTree *DT) { 656 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT), 657 RecursionLimit); 658 } 659 660 /// \brief Compute the base pointer and cumulative constant offsets for V. 661 /// 662 /// This strips all constant offsets off of V, leaving it the base pointer, and 663 /// accumulates the total constant offset applied in the returned constant. It 664 /// returns 0 if V is not a pointer, and returns the constant '0' if there are 665 /// no constant offsets applied. 666 /// 667 /// This is very similar to GetPointerBaseWithConstantOffset except it doesn't 668 /// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc. 669 /// folding. 670 static Constant *stripAndComputeConstantOffsets(const DataLayout *TD, 671 Value *&V) { 672 assert(V->getType()->getScalarType()->isPointerTy()); 673 674 // Without DataLayout, just be conservative for now. Theoretically, more could 675 // be done in this case. 676 if (!TD) 677 return ConstantInt::get(IntegerType::get(V->getContext(), 64), 0); 678 679 Type *IntPtrTy = TD->getIntPtrType(V->getType())->getScalarType(); 680 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth()); 681 682 // Even though we don't look through PHI nodes, we could be called on an 683 // instruction in an unreachable block, which may be on a cycle. 684 SmallPtrSet<Value *, 4> Visited; 685 Visited.insert(V); 686 do { 687 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 688 if (!GEP->isInBounds() || !GEP->accumulateConstantOffset(*TD, Offset)) 689 break; 690 V = GEP->getPointerOperand(); 691 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 692 V = cast<Operator>(V)->getOperand(0); 693 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 694 if (GA->mayBeOverridden()) 695 break; 696 V = GA->getAliasee(); 697 } else { 698 break; 699 } 700 assert(V->getType()->getScalarType()->isPointerTy() && 701 "Unexpected operand type!"); 702 } while (Visited.insert(V)); 703 704 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset); 705 if (V->getType()->isVectorTy()) 706 return ConstantVector::getSplat(V->getType()->getVectorNumElements(), 707 OffsetIntPtr); 708 return OffsetIntPtr; 709 } 710 711 /// \brief Compute the constant difference between two pointer values. 712 /// If the difference is not a constant, returns zero. 713 static Constant *computePointerDifference(const DataLayout *TD, 714 Value *LHS, Value *RHS) { 715 Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS); 716 Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS); 717 718 // If LHS and RHS are not related via constant offsets to the same base 719 // value, there is nothing we can do here. 720 if (LHS != RHS) 721 return 0; 722 723 // Otherwise, the difference of LHS - RHS can be computed as: 724 // LHS - RHS 725 // = (LHSOffset + Base) - (RHSOffset + Base) 726 // = LHSOffset - RHSOffset 727 return ConstantExpr::getSub(LHSOffset, RHSOffset); 728 } 729 730 /// SimplifySubInst - Given operands for a Sub, see if we can 731 /// fold the result. If not, this returns null. 732 static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 733 const Query &Q, unsigned MaxRecurse) { 734 if (Constant *CLHS = dyn_cast<Constant>(Op0)) 735 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 736 Constant *Ops[] = { CLHS, CRHS }; 737 return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(), 738 Ops, Q.TD, Q.TLI); 739 } 740 741 // X - undef -> undef 742 // undef - X -> undef 743 if (match(Op0, m_Undef()) || match(Op1, m_Undef())) 744 return UndefValue::get(Op0->getType()); 745 746 // X - 0 -> X 747 if (match(Op1, m_Zero())) 748 return Op0; 749 750 // X - X -> 0 751 if (Op0 == Op1) 752 return Constant::getNullValue(Op0->getType()); 753 754 // (X*2) - X -> X 755 // (X<<1) - X -> X 756 Value *X = 0; 757 if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) || 758 match(Op0, m_Shl(m_Specific(Op1), m_One()))) 759 return Op1; 760 761 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 762 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 763 Value *Y = 0, *Z = Op1; 764 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 765 // See if "V === Y - Z" simplifies. 766 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1)) 767 // It does! Now see if "X + V" simplifies. 768 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) { 769 // It does, we successfully reassociated! 770 ++NumReassoc; 771 return W; 772 } 773 // See if "V === X - Z" simplifies. 774 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 775 // It does! Now see if "Y + V" simplifies. 776 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) { 777 // It does, we successfully reassociated! 778 ++NumReassoc; 779 return W; 780 } 781 } 782 783 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 784 // For example, X - (X + 1) -> -1 785 X = Op0; 786 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 787 // See if "V === X - Y" simplifies. 788 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 789 // It does! Now see if "V - Z" simplifies. 790 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) { 791 // It does, we successfully reassociated! 792 ++NumReassoc; 793 return W; 794 } 795 // See if "V === X - Z" simplifies. 796 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1)) 797 // It does! Now see if "V - Y" simplifies. 798 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) { 799 // It does, we successfully reassociated! 800 ++NumReassoc; 801 return W; 802 } 803 } 804 805 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 806 // For example, X - (X - Y) -> Y. 807 Z = Op0; 808 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 809 // See if "V === Z - X" simplifies. 810 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1)) 811 // It does! Now see if "V + Y" simplifies. 812 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) { 813 // It does, we successfully reassociated! 814 ++NumReassoc; 815 return W; 816 } 817 818 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 819 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 820 match(Op1, m_Trunc(m_Value(Y)))) 821 if (X->getType() == Y->getType()) 822 // See if "V === X - Y" simplifies. 823 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1)) 824 // It does! Now see if "trunc V" simplifies. 825 if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1)) 826 // It does, return the simplified "trunc V". 827 return W; 828 829 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 830 if (match(Op0, m_PtrToInt(m_Value(X))) && 831 match(Op1, m_PtrToInt(m_Value(Y)))) 832 if (Constant *Result = computePointerDifference(Q.TD, X, Y)) 833 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true); 834 835 // Mul distributes over Sub. Try some generic simplifications based on this. 836 if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul, 837 Q, MaxRecurse)) 838 return V; 839 840 // i1 sub -> xor. 841 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 842 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1)) 843 return V; 844 845 // Threading Sub over selects and phi nodes is pointless, so don't bother. 846 // Threading over the select in "A - select(cond, B, C)" means evaluating 847 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 848 // only if B and C are equal. If B and C are equal then (since we assume 849 // that operands have already been simplified) "select(cond, B, C)" should 850 // have been simplified to the common value of B and C already. Analysing 851 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 852 // for threading over phi nodes. 853 854 return 0; 855 } 856 857 Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 858 const DataLayout *TD, const TargetLibraryInfo *TLI, 859 const DominatorTree *DT) { 860 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT), 861 RecursionLimit); 862 } 863 864 /// Given operands for an FAdd, see if we can fold the result. If not, this 865 /// returns null. 866 static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 867 const Query &Q, unsigned MaxRecurse) { 868 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 869 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 870 Constant *Ops[] = { CLHS, CRHS }; 871 return ConstantFoldInstOperands(Instruction::FAdd, CLHS->getType(), 872 Ops, Q.TD, Q.TLI); 873 } 874 875 // Canonicalize the constant to the RHS. 876 std::swap(Op0, Op1); 877 } 878 879 // fadd X, -0 ==> X 880 if (match(Op1, m_NegZero())) 881 return Op0; 882 883 // fadd X, 0 ==> X, when we know X is not -0 884 if (match(Op1, m_Zero()) && 885 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0))) 886 return Op0; 887 888 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0 889 // where nnan and ninf have to occur at least once somewhere in this 890 // expression 891 Value *SubOp = 0; 892 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0)))) 893 SubOp = Op1; 894 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1)))) 895 SubOp = Op0; 896 if (SubOp) { 897 Instruction *FSub = cast<Instruction>(SubOp); 898 if ((FMF.noNaNs() || FSub->hasNoNaNs()) && 899 (FMF.noInfs() || FSub->hasNoInfs())) 900 return Constant::getNullValue(Op0->getType()); 901 } 902 903 return 0; 904 } 905 906 /// Given operands for an FSub, see if we can fold the result. If not, this 907 /// returns null. 908 static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 909 const Query &Q, unsigned MaxRecurse) { 910 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 911 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 912 Constant *Ops[] = { CLHS, CRHS }; 913 return ConstantFoldInstOperands(Instruction::FSub, CLHS->getType(), 914 Ops, Q.TD, Q.TLI); 915 } 916 } 917 918 // fsub X, 0 ==> X 919 if (match(Op1, m_Zero())) 920 return Op0; 921 922 // fsub X, -0 ==> X, when we know X is not -0 923 if (match(Op1, m_NegZero()) && 924 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0))) 925 return Op0; 926 927 // fsub 0, (fsub -0.0, X) ==> X 928 Value *X; 929 if (match(Op0, m_AnyZero())) { 930 if (match(Op1, m_FSub(m_NegZero(), m_Value(X)))) 931 return X; 932 if (FMF.noSignedZeros() && match(Op1, m_FSub(m_AnyZero(), m_Value(X)))) 933 return X; 934 } 935 936 // fsub nnan ninf x, x ==> 0.0 937 if (FMF.noNaNs() && FMF.noInfs() && Op0 == Op1) 938 return Constant::getNullValue(Op0->getType()); 939 940 return 0; 941 } 942 943 /// Given the operands for an FMul, see if we can fold the result 944 static Value *SimplifyFMulInst(Value *Op0, Value *Op1, 945 FastMathFlags FMF, 946 const Query &Q, 947 unsigned MaxRecurse) { 948 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 949 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 950 Constant *Ops[] = { CLHS, CRHS }; 951 return ConstantFoldInstOperands(Instruction::FMul, CLHS->getType(), 952 Ops, Q.TD, Q.TLI); 953 } 954 955 // Canonicalize the constant to the RHS. 956 std::swap(Op0, Op1); 957 } 958 959 // fmul X, 1.0 ==> X 960 if (match(Op1, m_FPOne())) 961 return Op0; 962 963 // fmul nnan nsz X, 0 ==> 0 964 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero())) 965 return Op1; 966 967 return 0; 968 } 969 970 /// SimplifyMulInst - Given operands for a Mul, see if we can 971 /// fold the result. If not, this returns null. 972 static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q, 973 unsigned MaxRecurse) { 974 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 975 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 976 Constant *Ops[] = { CLHS, CRHS }; 977 return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(), 978 Ops, Q.TD, Q.TLI); 979 } 980 981 // Canonicalize the constant to the RHS. 982 std::swap(Op0, Op1); 983 } 984 985 // X * undef -> 0 986 if (match(Op1, m_Undef())) 987 return Constant::getNullValue(Op0->getType()); 988 989 // X * 0 -> 0 990 if (match(Op1, m_Zero())) 991 return Op1; 992 993 // X * 1 -> X 994 if (match(Op1, m_One())) 995 return Op0; 996 997 // (X / Y) * Y -> X if the division is exact. 998 Value *X = 0; 999 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 1000 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y) 1001 return X; 1002 1003 // i1 mul -> and. 1004 if (MaxRecurse && Op0->getType()->isIntegerTy(1)) 1005 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1)) 1006 return V; 1007 1008 // Try some generic simplifications for associative operations. 1009 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, 1010 MaxRecurse)) 1011 return V; 1012 1013 // Mul distributes over Add. Try some generic simplifications based on this. 1014 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add, 1015 Q, MaxRecurse)) 1016 return V; 1017 1018 // If the operation is with the result of a select instruction, check whether 1019 // operating on either branch of the select always yields the same value. 1020 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1021 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, 1022 MaxRecurse)) 1023 return V; 1024 1025 // If the operation is with the result of a phi instruction, check whether 1026 // operating on all incoming values of the phi always yields the same value. 1027 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1028 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, 1029 MaxRecurse)) 1030 return V; 1031 1032 return 0; 1033 } 1034 1035 Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1036 const DataLayout *TD, const TargetLibraryInfo *TLI, 1037 const DominatorTree *DT) { 1038 return ::SimplifyFAddInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit); 1039 } 1040 1041 Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 1042 const DataLayout *TD, const TargetLibraryInfo *TLI, 1043 const DominatorTree *DT) { 1044 return ::SimplifyFSubInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit); 1045 } 1046 1047 Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1, 1048 FastMathFlags FMF, 1049 const DataLayout *TD, 1050 const TargetLibraryInfo *TLI, 1051 const DominatorTree *DT) { 1052 return ::SimplifyFMulInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit); 1053 } 1054 1055 Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout *TD, 1056 const TargetLibraryInfo *TLI, 1057 const DominatorTree *DT) { 1058 return ::SimplifyMulInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit); 1059 } 1060 1061 /// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can 1062 /// fold the result. If not, this returns null. 1063 static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1064 const Query &Q, unsigned MaxRecurse) { 1065 if (Constant *C0 = dyn_cast<Constant>(Op0)) { 1066 if (Constant *C1 = dyn_cast<Constant>(Op1)) { 1067 Constant *Ops[] = { C0, C1 }; 1068 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI); 1069 } 1070 } 1071 1072 bool isSigned = Opcode == Instruction::SDiv; 1073 1074 // X / undef -> undef 1075 if (match(Op1, m_Undef())) 1076 return Op1; 1077 1078 // undef / X -> 0 1079 if (match(Op0, m_Undef())) 1080 return Constant::getNullValue(Op0->getType()); 1081 1082 // 0 / X -> 0, we don't need to preserve faults! 1083 if (match(Op0, m_Zero())) 1084 return Op0; 1085 1086 // X / 1 -> X 1087 if (match(Op1, m_One())) 1088 return Op0; 1089 1090 if (Op0->getType()->isIntegerTy(1)) 1091 // It can't be division by zero, hence it must be division by one. 1092 return Op0; 1093 1094 // X / X -> 1 1095 if (Op0 == Op1) 1096 return ConstantInt::get(Op0->getType(), 1); 1097 1098 // (X * Y) / Y -> X if the multiplication does not overflow. 1099 Value *X = 0, *Y = 0; 1100 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) { 1101 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1 1102 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0); 1103 // If the Mul knows it does not overflow, then we are good to go. 1104 if ((isSigned && Mul->hasNoSignedWrap()) || 1105 (!isSigned && Mul->hasNoUnsignedWrap())) 1106 return X; 1107 // If X has the form X = A / Y then X * Y cannot overflow. 1108 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X)) 1109 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y) 1110 return X; 1111 } 1112 1113 // (X rem Y) / Y -> 0 1114 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) || 1115 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1))))) 1116 return Constant::getNullValue(Op0->getType()); 1117 1118 // If the operation is with the result of a select instruction, check whether 1119 // operating on either branch of the select always yields the same value. 1120 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1121 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1122 return V; 1123 1124 // If the operation is with the result of a phi instruction, check whether 1125 // operating on all incoming values of the phi always yields the same value. 1126 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1127 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1128 return V; 1129 1130 return 0; 1131 } 1132 1133 /// SimplifySDivInst - Given operands for an SDiv, see if we can 1134 /// fold the result. If not, this returns null. 1135 static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q, 1136 unsigned MaxRecurse) { 1137 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse)) 1138 return V; 1139 1140 return 0; 1141 } 1142 1143 Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout *TD, 1144 const TargetLibraryInfo *TLI, 1145 const DominatorTree *DT) { 1146 return ::SimplifySDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit); 1147 } 1148 1149 /// SimplifyUDivInst - Given operands for a UDiv, see if we can 1150 /// fold the result. If not, this returns null. 1151 static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q, 1152 unsigned MaxRecurse) { 1153 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse)) 1154 return V; 1155 1156 return 0; 1157 } 1158 1159 Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout *TD, 1160 const TargetLibraryInfo *TLI, 1161 const DominatorTree *DT) { 1162 return ::SimplifyUDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit); 1163 } 1164 1165 static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q, 1166 unsigned) { 1167 // undef / X -> undef (the undef could be a snan). 1168 if (match(Op0, m_Undef())) 1169 return Op0; 1170 1171 // X / undef -> undef 1172 if (match(Op1, m_Undef())) 1173 return Op1; 1174 1175 return 0; 1176 } 1177 1178 Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *TD, 1179 const TargetLibraryInfo *TLI, 1180 const DominatorTree *DT) { 1181 return ::SimplifyFDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit); 1182 } 1183 1184 /// SimplifyRem - Given operands for an SRem or URem, see if we can 1185 /// fold the result. If not, this returns null. 1186 static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1187 const Query &Q, unsigned MaxRecurse) { 1188 if (Constant *C0 = dyn_cast<Constant>(Op0)) { 1189 if (Constant *C1 = dyn_cast<Constant>(Op1)) { 1190 Constant *Ops[] = { C0, C1 }; 1191 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI); 1192 } 1193 } 1194 1195 // X % undef -> undef 1196 if (match(Op1, m_Undef())) 1197 return Op1; 1198 1199 // undef % X -> 0 1200 if (match(Op0, m_Undef())) 1201 return Constant::getNullValue(Op0->getType()); 1202 1203 // 0 % X -> 0, we don't need to preserve faults! 1204 if (match(Op0, m_Zero())) 1205 return Op0; 1206 1207 // X % 0 -> undef, we don't need to preserve faults! 1208 if (match(Op1, m_Zero())) 1209 return UndefValue::get(Op0->getType()); 1210 1211 // X % 1 -> 0 1212 if (match(Op1, m_One())) 1213 return Constant::getNullValue(Op0->getType()); 1214 1215 if (Op0->getType()->isIntegerTy(1)) 1216 // It can't be remainder by zero, hence it must be remainder by one. 1217 return Constant::getNullValue(Op0->getType()); 1218 1219 // X % X -> 0 1220 if (Op0 == Op1) 1221 return Constant::getNullValue(Op0->getType()); 1222 1223 // If the operation is with the result of a select instruction, check whether 1224 // operating on either branch of the select always yields the same value. 1225 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1226 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1227 return V; 1228 1229 // If the operation is with the result of a phi instruction, check whether 1230 // operating on all incoming values of the phi always yields the same value. 1231 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1232 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1233 return V; 1234 1235 return 0; 1236 } 1237 1238 /// SimplifySRemInst - Given operands for an SRem, see if we can 1239 /// fold the result. If not, this returns null. 1240 static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q, 1241 unsigned MaxRecurse) { 1242 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse)) 1243 return V; 1244 1245 return 0; 1246 } 1247 1248 Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout *TD, 1249 const TargetLibraryInfo *TLI, 1250 const DominatorTree *DT) { 1251 return ::SimplifySRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit); 1252 } 1253 1254 /// SimplifyURemInst - Given operands for a URem, see if we can 1255 /// fold the result. If not, this returns null. 1256 static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q, 1257 unsigned MaxRecurse) { 1258 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse)) 1259 return V; 1260 1261 return 0; 1262 } 1263 1264 Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout *TD, 1265 const TargetLibraryInfo *TLI, 1266 const DominatorTree *DT) { 1267 return ::SimplifyURemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit); 1268 } 1269 1270 static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &, 1271 unsigned) { 1272 // undef % X -> undef (the undef could be a snan). 1273 if (match(Op0, m_Undef())) 1274 return Op0; 1275 1276 // X % undef -> undef 1277 if (match(Op1, m_Undef())) 1278 return Op1; 1279 1280 return 0; 1281 } 1282 1283 Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *TD, 1284 const TargetLibraryInfo *TLI, 1285 const DominatorTree *DT) { 1286 return ::SimplifyFRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit); 1287 } 1288 1289 /// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can 1290 /// fold the result. If not, this returns null. 1291 static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1, 1292 const Query &Q, unsigned MaxRecurse) { 1293 if (Constant *C0 = dyn_cast<Constant>(Op0)) { 1294 if (Constant *C1 = dyn_cast<Constant>(Op1)) { 1295 Constant *Ops[] = { C0, C1 }; 1296 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI); 1297 } 1298 } 1299 1300 // 0 shift by X -> 0 1301 if (match(Op0, m_Zero())) 1302 return Op0; 1303 1304 // X shift by 0 -> X 1305 if (match(Op1, m_Zero())) 1306 return Op0; 1307 1308 // X shift by undef -> undef because it may shift by the bitwidth. 1309 if (match(Op1, m_Undef())) 1310 return Op1; 1311 1312 // Shifting by the bitwidth or more is undefined. 1313 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) 1314 if (CI->getValue().getLimitedValue() >= 1315 Op0->getType()->getScalarSizeInBits()) 1316 return UndefValue::get(Op0->getType()); 1317 1318 // If the operation is with the result of a select instruction, check whether 1319 // operating on either branch of the select always yields the same value. 1320 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1321 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1322 return V; 1323 1324 // If the operation is with the result of a phi instruction, check whether 1325 // operating on all incoming values of the phi always yields the same value. 1326 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1327 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1328 return V; 1329 1330 return 0; 1331 } 1332 1333 /// SimplifyShlInst - Given operands for an Shl, see if we can 1334 /// fold the result. If not, this returns null. 1335 static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1336 const Query &Q, unsigned MaxRecurse) { 1337 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse)) 1338 return V; 1339 1340 // undef << X -> 0 1341 if (match(Op0, m_Undef())) 1342 return Constant::getNullValue(Op0->getType()); 1343 1344 // (X >> A) << A -> X 1345 Value *X; 1346 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1347 return X; 1348 return 0; 1349 } 1350 1351 Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW, 1352 const DataLayout *TD, const TargetLibraryInfo *TLI, 1353 const DominatorTree *DT) { 1354 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT), 1355 RecursionLimit); 1356 } 1357 1358 /// SimplifyLShrInst - Given operands for an LShr, see if we can 1359 /// fold the result. If not, this returns null. 1360 static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1361 const Query &Q, unsigned MaxRecurse) { 1362 if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, Q, MaxRecurse)) 1363 return V; 1364 1365 // X >> X -> 0 1366 if (Op0 == Op1) 1367 return Constant::getNullValue(Op0->getType()); 1368 1369 // undef >>l X -> 0 1370 if (match(Op0, m_Undef())) 1371 return Constant::getNullValue(Op0->getType()); 1372 1373 // (X << A) >> A -> X 1374 Value *X; 1375 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) && 1376 cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap()) 1377 return X; 1378 1379 return 0; 1380 } 1381 1382 Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact, 1383 const DataLayout *TD, 1384 const TargetLibraryInfo *TLI, 1385 const DominatorTree *DT) { 1386 return ::SimplifyLShrInst(Op0, Op1, isExact, Query (TD, TLI, DT), 1387 RecursionLimit); 1388 } 1389 1390 /// SimplifyAShrInst - Given operands for an AShr, see if we can 1391 /// fold the result. If not, this returns null. 1392 static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1393 const Query &Q, unsigned MaxRecurse) { 1394 if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, Q, MaxRecurse)) 1395 return V; 1396 1397 // X >> X -> 0 1398 if (Op0 == Op1) 1399 return Constant::getNullValue(Op0->getType()); 1400 1401 // all ones >>a X -> all ones 1402 if (match(Op0, m_AllOnes())) 1403 return Op0; 1404 1405 // undef >>a X -> all ones 1406 if (match(Op0, m_Undef())) 1407 return Constant::getAllOnesValue(Op0->getType()); 1408 1409 // (X << A) >> A -> X 1410 Value *X; 1411 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) && 1412 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap()) 1413 return X; 1414 1415 return 0; 1416 } 1417 1418 Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact, 1419 const DataLayout *TD, 1420 const TargetLibraryInfo *TLI, 1421 const DominatorTree *DT) { 1422 return ::SimplifyAShrInst(Op0, Op1, isExact, Query (TD, TLI, DT), 1423 RecursionLimit); 1424 } 1425 1426 /// SimplifyAndInst - Given operands for an And, see if we can 1427 /// fold the result. If not, this returns null. 1428 static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q, 1429 unsigned MaxRecurse) { 1430 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1431 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 1432 Constant *Ops[] = { CLHS, CRHS }; 1433 return ConstantFoldInstOperands(Instruction::And, CLHS->getType(), 1434 Ops, Q.TD, Q.TLI); 1435 } 1436 1437 // Canonicalize the constant to the RHS. 1438 std::swap(Op0, Op1); 1439 } 1440 1441 // X & undef -> 0 1442 if (match(Op1, m_Undef())) 1443 return Constant::getNullValue(Op0->getType()); 1444 1445 // X & X = X 1446 if (Op0 == Op1) 1447 return Op0; 1448 1449 // X & 0 = 0 1450 if (match(Op1, m_Zero())) 1451 return Op1; 1452 1453 // X & -1 = X 1454 if (match(Op1, m_AllOnes())) 1455 return Op0; 1456 1457 // A & ~A = ~A & A = 0 1458 if (match(Op0, m_Not(m_Specific(Op1))) || 1459 match(Op1, m_Not(m_Specific(Op0)))) 1460 return Constant::getNullValue(Op0->getType()); 1461 1462 // (A | ?) & A = A 1463 Value *A = 0, *B = 0; 1464 if (match(Op0, m_Or(m_Value(A), m_Value(B))) && 1465 (A == Op1 || B == Op1)) 1466 return Op1; 1467 1468 // A & (A | ?) = A 1469 if (match(Op1, m_Or(m_Value(A), m_Value(B))) && 1470 (A == Op0 || B == Op0)) 1471 return Op0; 1472 1473 // A & (-A) = A if A is a power of two or zero. 1474 if (match(Op0, m_Neg(m_Specific(Op1))) || 1475 match(Op1, m_Neg(m_Specific(Op0)))) { 1476 if (isKnownToBeAPowerOfTwo(Op0, /*OrZero*/true)) 1477 return Op0; 1478 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true)) 1479 return Op1; 1480 } 1481 1482 // Try some generic simplifications for associative operations. 1483 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, 1484 MaxRecurse)) 1485 return V; 1486 1487 // And distributes over Or. Try some generic simplifications based on this. 1488 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1489 Q, MaxRecurse)) 1490 return V; 1491 1492 // And distributes over Xor. Try some generic simplifications based on this. 1493 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor, 1494 Q, MaxRecurse)) 1495 return V; 1496 1497 // Or distributes over And. Try some generic simplifications based on this. 1498 if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or, 1499 Q, MaxRecurse)) 1500 return V; 1501 1502 // If the operation is with the result of a select instruction, check whether 1503 // operating on either branch of the select always yields the same value. 1504 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1505 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q, 1506 MaxRecurse)) 1507 return V; 1508 1509 // If the operation is with the result of a phi instruction, check whether 1510 // operating on all incoming values of the phi always yields the same value. 1511 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1512 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q, 1513 MaxRecurse)) 1514 return V; 1515 1516 return 0; 1517 } 1518 1519 Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout *TD, 1520 const TargetLibraryInfo *TLI, 1521 const DominatorTree *DT) { 1522 return ::SimplifyAndInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit); 1523 } 1524 1525 /// SimplifyOrInst - Given operands for an Or, see if we can 1526 /// fold the result. If not, this returns null. 1527 static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q, 1528 unsigned MaxRecurse) { 1529 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1530 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 1531 Constant *Ops[] = { CLHS, CRHS }; 1532 return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(), 1533 Ops, Q.TD, Q.TLI); 1534 } 1535 1536 // Canonicalize the constant to the RHS. 1537 std::swap(Op0, Op1); 1538 } 1539 1540 // X | undef -> -1 1541 if (match(Op1, m_Undef())) 1542 return Constant::getAllOnesValue(Op0->getType()); 1543 1544 // X | X = X 1545 if (Op0 == Op1) 1546 return Op0; 1547 1548 // X | 0 = X 1549 if (match(Op1, m_Zero())) 1550 return Op0; 1551 1552 // X | -1 = -1 1553 if (match(Op1, m_AllOnes())) 1554 return Op1; 1555 1556 // A | ~A = ~A | A = -1 1557 if (match(Op0, m_Not(m_Specific(Op1))) || 1558 match(Op1, m_Not(m_Specific(Op0)))) 1559 return Constant::getAllOnesValue(Op0->getType()); 1560 1561 // (A & ?) | A = A 1562 Value *A = 0, *B = 0; 1563 if (match(Op0, m_And(m_Value(A), m_Value(B))) && 1564 (A == Op1 || B == Op1)) 1565 return Op1; 1566 1567 // A | (A & ?) = A 1568 if (match(Op1, m_And(m_Value(A), m_Value(B))) && 1569 (A == Op0 || B == Op0)) 1570 return Op0; 1571 1572 // ~(A & ?) | A = -1 1573 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) && 1574 (A == Op1 || B == Op1)) 1575 return Constant::getAllOnesValue(Op1->getType()); 1576 1577 // A | ~(A & ?) = -1 1578 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) && 1579 (A == Op0 || B == Op0)) 1580 return Constant::getAllOnesValue(Op0->getType()); 1581 1582 // Try some generic simplifications for associative operations. 1583 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, 1584 MaxRecurse)) 1585 return V; 1586 1587 // Or distributes over And. Try some generic simplifications based on this. 1588 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q, 1589 MaxRecurse)) 1590 return V; 1591 1592 // And distributes over Or. Try some generic simplifications based on this. 1593 if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And, 1594 Q, MaxRecurse)) 1595 return V; 1596 1597 // If the operation is with the result of a select instruction, check whether 1598 // operating on either branch of the select always yields the same value. 1599 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1600 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, 1601 MaxRecurse)) 1602 return V; 1603 1604 // If the operation is with the result of a phi instruction, check whether 1605 // operating on all incoming values of the phi always yields the same value. 1606 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1607 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 1608 return V; 1609 1610 return 0; 1611 } 1612 1613 Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout *TD, 1614 const TargetLibraryInfo *TLI, 1615 const DominatorTree *DT) { 1616 return ::SimplifyOrInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit); 1617 } 1618 1619 /// SimplifyXorInst - Given operands for a Xor, see if we can 1620 /// fold the result. If not, this returns null. 1621 static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q, 1622 unsigned MaxRecurse) { 1623 if (Constant *CLHS = dyn_cast<Constant>(Op0)) { 1624 if (Constant *CRHS = dyn_cast<Constant>(Op1)) { 1625 Constant *Ops[] = { CLHS, CRHS }; 1626 return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(), 1627 Ops, Q.TD, Q.TLI); 1628 } 1629 1630 // Canonicalize the constant to the RHS. 1631 std::swap(Op0, Op1); 1632 } 1633 1634 // A ^ undef -> undef 1635 if (match(Op1, m_Undef())) 1636 return Op1; 1637 1638 // A ^ 0 = A 1639 if (match(Op1, m_Zero())) 1640 return Op0; 1641 1642 // A ^ A = 0 1643 if (Op0 == Op1) 1644 return Constant::getNullValue(Op0->getType()); 1645 1646 // A ^ ~A = ~A ^ A = -1 1647 if (match(Op0, m_Not(m_Specific(Op1))) || 1648 match(Op1, m_Not(m_Specific(Op0)))) 1649 return Constant::getAllOnesValue(Op0->getType()); 1650 1651 // Try some generic simplifications for associative operations. 1652 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, 1653 MaxRecurse)) 1654 return V; 1655 1656 // And distributes over Xor. Try some generic simplifications based on this. 1657 if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And, 1658 Q, MaxRecurse)) 1659 return V; 1660 1661 // Threading Xor over selects and phi nodes is pointless, so don't bother. 1662 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 1663 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 1664 // only if B and C are equal. If B and C are equal then (since we assume 1665 // that operands have already been simplified) "select(cond, B, C)" should 1666 // have been simplified to the common value of B and C already. Analysing 1667 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 1668 // for threading over phi nodes. 1669 1670 return 0; 1671 } 1672 1673 Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout *TD, 1674 const TargetLibraryInfo *TLI, 1675 const DominatorTree *DT) { 1676 return ::SimplifyXorInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit); 1677 } 1678 1679 static Type *GetCompareTy(Value *Op) { 1680 return CmpInst::makeCmpResultType(Op->getType()); 1681 } 1682 1683 /// ExtractEquivalentCondition - Rummage around inside V looking for something 1684 /// equivalent to the comparison "LHS Pred RHS". Return such a value if found, 1685 /// otherwise return null. Helper function for analyzing max/min idioms. 1686 static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 1687 Value *LHS, Value *RHS) { 1688 SelectInst *SI = dyn_cast<SelectInst>(V); 1689 if (!SI) 1690 return 0; 1691 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 1692 if (!Cmp) 1693 return 0; 1694 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 1695 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 1696 return Cmp; 1697 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 1698 LHS == CmpRHS && RHS == CmpLHS) 1699 return Cmp; 1700 return 0; 1701 } 1702 1703 // A significant optimization not implemented here is assuming that alloca 1704 // addresses are not equal to incoming argument values. They don't *alias*, 1705 // as we say, but that doesn't mean they aren't equal, so we take a 1706 // conservative approach. 1707 // 1708 // This is inspired in part by C++11 5.10p1: 1709 // "Two pointers of the same type compare equal if and only if they are both 1710 // null, both point to the same function, or both represent the same 1711 // address." 1712 // 1713 // This is pretty permissive. 1714 // 1715 // It's also partly due to C11 6.5.9p6: 1716 // "Two pointers compare equal if and only if both are null pointers, both are 1717 // pointers to the same object (including a pointer to an object and a 1718 // subobject at its beginning) or function, both are pointers to one past the 1719 // last element of the same array object, or one is a pointer to one past the 1720 // end of one array object and the other is a pointer to the start of a 1721 // different array object that happens to immediately follow the first array 1722 // object in the address space.) 1723 // 1724 // C11's version is more restrictive, however there's no reason why an argument 1725 // couldn't be a one-past-the-end value for a stack object in the caller and be 1726 // equal to the beginning of a stack object in the callee. 1727 // 1728 // If the C and C++ standards are ever made sufficiently restrictive in this 1729 // area, it may be possible to update LLVM's semantics accordingly and reinstate 1730 // this optimization. 1731 static Constant *computePointerICmp(const DataLayout *TD, 1732 const TargetLibraryInfo *TLI, 1733 CmpInst::Predicate Pred, 1734 Value *LHS, Value *RHS) { 1735 // First, skip past any trivial no-ops. 1736 LHS = LHS->stripPointerCasts(); 1737 RHS = RHS->stripPointerCasts(); 1738 1739 // A non-null pointer is not equal to a null pointer. 1740 if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) && 1741 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE)) 1742 return ConstantInt::get(GetCompareTy(LHS), 1743 !CmpInst::isTrueWhenEqual(Pred)); 1744 1745 // We can only fold certain predicates on pointer comparisons. 1746 switch (Pred) { 1747 default: 1748 return 0; 1749 1750 // Equality comaprisons are easy to fold. 1751 case CmpInst::ICMP_EQ: 1752 case CmpInst::ICMP_NE: 1753 break; 1754 1755 // We can only handle unsigned relational comparisons because 'inbounds' on 1756 // a GEP only protects against unsigned wrapping. 1757 case CmpInst::ICMP_UGT: 1758 case CmpInst::ICMP_UGE: 1759 case CmpInst::ICMP_ULT: 1760 case CmpInst::ICMP_ULE: 1761 // However, we have to switch them to their signed variants to handle 1762 // negative indices from the base pointer. 1763 Pred = ICmpInst::getSignedPredicate(Pred); 1764 break; 1765 } 1766 1767 // Strip off any constant offsets so that we can reason about them. 1768 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 1769 // here and compare base addresses like AliasAnalysis does, however there are 1770 // numerous hazards. AliasAnalysis and its utilities rely on special rules 1771 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 1772 // doesn't need to guarantee pointer inequality when it says NoAlias. 1773 Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS); 1774 Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS); 1775 1776 // If LHS and RHS are related via constant offsets to the same base 1777 // value, we can replace it with an icmp which just compares the offsets. 1778 if (LHS == RHS) 1779 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset); 1780 1781 // Various optimizations for (in)equality comparisons. 1782 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 1783 // Different non-empty allocations that exist at the same time have 1784 // different addresses (if the program can tell). Global variables always 1785 // exist, so they always exist during the lifetime of each other and all 1786 // allocas. Two different allocas usually have different addresses... 1787 // 1788 // However, if there's an @llvm.stackrestore dynamically in between two 1789 // allocas, they may have the same address. It's tempting to reduce the 1790 // scope of the problem by only looking at *static* allocas here. That would 1791 // cover the majority of allocas while significantly reducing the likelihood 1792 // of having an @llvm.stackrestore pop up in the middle. However, it's not 1793 // actually impossible for an @llvm.stackrestore to pop up in the middle of 1794 // an entry block. Also, if we have a block that's not attached to a 1795 // function, we can't tell if it's "static" under the current definition. 1796 // Theoretically, this problem could be fixed by creating a new kind of 1797 // instruction kind specifically for static allocas. Such a new instruction 1798 // could be required to be at the top of the entry block, thus preventing it 1799 // from being subject to a @llvm.stackrestore. Instcombine could even 1800 // convert regular allocas into these special allocas. It'd be nifty. 1801 // However, until then, this problem remains open. 1802 // 1803 // So, we'll assume that two non-empty allocas have different addresses 1804 // for now. 1805 // 1806 // With all that, if the offsets are within the bounds of their allocations 1807 // (and not one-past-the-end! so we can't use inbounds!), and their 1808 // allocations aren't the same, the pointers are not equal. 1809 // 1810 // Note that it's not necessary to check for LHS being a global variable 1811 // address, due to canonicalization and constant folding. 1812 if (isa<AllocaInst>(LHS) && 1813 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) { 1814 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset); 1815 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset); 1816 uint64_t LHSSize, RHSSize; 1817 if (LHSOffsetCI && RHSOffsetCI && 1818 getObjectSize(LHS, LHSSize, TD, TLI) && 1819 getObjectSize(RHS, RHSSize, TD, TLI)) { 1820 const APInt &LHSOffsetValue = LHSOffsetCI->getValue(); 1821 const APInt &RHSOffsetValue = RHSOffsetCI->getValue(); 1822 if (!LHSOffsetValue.isNegative() && 1823 !RHSOffsetValue.isNegative() && 1824 LHSOffsetValue.ult(LHSSize) && 1825 RHSOffsetValue.ult(RHSSize)) { 1826 return ConstantInt::get(GetCompareTy(LHS), 1827 !CmpInst::isTrueWhenEqual(Pred)); 1828 } 1829 } 1830 1831 // Repeat the above check but this time without depending on DataLayout 1832 // or being able to compute a precise size. 1833 if (!cast<PointerType>(LHS->getType())->isEmptyTy() && 1834 !cast<PointerType>(RHS->getType())->isEmptyTy() && 1835 LHSOffset->isNullValue() && 1836 RHSOffset->isNullValue()) 1837 return ConstantInt::get(GetCompareTy(LHS), 1838 !CmpInst::isTrueWhenEqual(Pred)); 1839 } 1840 } 1841 1842 // Otherwise, fail. 1843 return 0; 1844 } 1845 1846 /// SimplifyICmpInst - Given operands for an ICmpInst, see if we can 1847 /// fold the result. If not, this returns null. 1848 static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 1849 const Query &Q, unsigned MaxRecurse) { 1850 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 1851 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 1852 1853 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 1854 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 1855 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI); 1856 1857 // If we have a constant, make sure it is on the RHS. 1858 std::swap(LHS, RHS); 1859 Pred = CmpInst::getSwappedPredicate(Pred); 1860 } 1861 1862 Type *ITy = GetCompareTy(LHS); // The return type. 1863 Type *OpTy = LHS->getType(); // The operand type. 1864 1865 // icmp X, X -> true/false 1866 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false 1867 // because X could be 0. 1868 if (LHS == RHS || isa<UndefValue>(RHS)) 1869 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 1870 1871 // Special case logic when the operands have i1 type. 1872 if (OpTy->getScalarType()->isIntegerTy(1)) { 1873 switch (Pred) { 1874 default: break; 1875 case ICmpInst::ICMP_EQ: 1876 // X == 1 -> X 1877 if (match(RHS, m_One())) 1878 return LHS; 1879 break; 1880 case ICmpInst::ICMP_NE: 1881 // X != 0 -> X 1882 if (match(RHS, m_Zero())) 1883 return LHS; 1884 break; 1885 case ICmpInst::ICMP_UGT: 1886 // X >u 0 -> X 1887 if (match(RHS, m_Zero())) 1888 return LHS; 1889 break; 1890 case ICmpInst::ICMP_UGE: 1891 // X >=u 1 -> X 1892 if (match(RHS, m_One())) 1893 return LHS; 1894 break; 1895 case ICmpInst::ICMP_SLT: 1896 // X <s 0 -> X 1897 if (match(RHS, m_Zero())) 1898 return LHS; 1899 break; 1900 case ICmpInst::ICMP_SLE: 1901 // X <=s -1 -> X 1902 if (match(RHS, m_One())) 1903 return LHS; 1904 break; 1905 } 1906 } 1907 1908 // If we are comparing with zero then try hard since this is a common case. 1909 if (match(RHS, m_Zero())) { 1910 bool LHSKnownNonNegative, LHSKnownNegative; 1911 switch (Pred) { 1912 default: llvm_unreachable("Unknown ICmp predicate!"); 1913 case ICmpInst::ICMP_ULT: 1914 return getFalse(ITy); 1915 case ICmpInst::ICMP_UGE: 1916 return getTrue(ITy); 1917 case ICmpInst::ICMP_EQ: 1918 case ICmpInst::ICMP_ULE: 1919 if (isKnownNonZero(LHS, Q.TD)) 1920 return getFalse(ITy); 1921 break; 1922 case ICmpInst::ICMP_NE: 1923 case ICmpInst::ICMP_UGT: 1924 if (isKnownNonZero(LHS, Q.TD)) 1925 return getTrue(ITy); 1926 break; 1927 case ICmpInst::ICMP_SLT: 1928 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD); 1929 if (LHSKnownNegative) 1930 return getTrue(ITy); 1931 if (LHSKnownNonNegative) 1932 return getFalse(ITy); 1933 break; 1934 case ICmpInst::ICMP_SLE: 1935 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD); 1936 if (LHSKnownNegative) 1937 return getTrue(ITy); 1938 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD)) 1939 return getFalse(ITy); 1940 break; 1941 case ICmpInst::ICMP_SGE: 1942 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD); 1943 if (LHSKnownNegative) 1944 return getFalse(ITy); 1945 if (LHSKnownNonNegative) 1946 return getTrue(ITy); 1947 break; 1948 case ICmpInst::ICMP_SGT: 1949 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD); 1950 if (LHSKnownNegative) 1951 return getFalse(ITy); 1952 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD)) 1953 return getTrue(ITy); 1954 break; 1955 } 1956 } 1957 1958 // See if we are doing a comparison with a constant integer. 1959 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 1960 // Rule out tautological comparisons (eg., ult 0 or uge 0). 1961 ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue()); 1962 if (RHS_CR.isEmptySet()) 1963 return ConstantInt::getFalse(CI->getContext()); 1964 if (RHS_CR.isFullSet()) 1965 return ConstantInt::getTrue(CI->getContext()); 1966 1967 // Many binary operators with constant RHS have easy to compute constant 1968 // range. Use them to check whether the comparison is a tautology. 1969 uint32_t Width = CI->getBitWidth(); 1970 APInt Lower = APInt(Width, 0); 1971 APInt Upper = APInt(Width, 0); 1972 ConstantInt *CI2; 1973 if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) { 1974 // 'urem x, CI2' produces [0, CI2). 1975 Upper = CI2->getValue(); 1976 } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) { 1977 // 'srem x, CI2' produces (-|CI2|, |CI2|). 1978 Upper = CI2->getValue().abs(); 1979 Lower = (-Upper) + 1; 1980 } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) { 1981 // 'udiv CI2, x' produces [0, CI2]. 1982 Upper = CI2->getValue() + 1; 1983 } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) { 1984 // 'udiv x, CI2' produces [0, UINT_MAX / CI2]. 1985 APInt NegOne = APInt::getAllOnesValue(Width); 1986 if (!CI2->isZero()) 1987 Upper = NegOne.udiv(CI2->getValue()) + 1; 1988 } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) { 1989 // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2]. 1990 APInt IntMin = APInt::getSignedMinValue(Width); 1991 APInt IntMax = APInt::getSignedMaxValue(Width); 1992 APInt Val = CI2->getValue().abs(); 1993 if (!Val.isMinValue()) { 1994 Lower = IntMin.sdiv(Val); 1995 Upper = IntMax.sdiv(Val) + 1; 1996 } 1997 } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) { 1998 // 'lshr x, CI2' produces [0, UINT_MAX >> CI2]. 1999 APInt NegOne = APInt::getAllOnesValue(Width); 2000 if (CI2->getValue().ult(Width)) 2001 Upper = NegOne.lshr(CI2->getValue()) + 1; 2002 } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) { 2003 // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2]. 2004 APInt IntMin = APInt::getSignedMinValue(Width); 2005 APInt IntMax = APInt::getSignedMaxValue(Width); 2006 if (CI2->getValue().ult(Width)) { 2007 Lower = IntMin.ashr(CI2->getValue()); 2008 Upper = IntMax.ashr(CI2->getValue()) + 1; 2009 } 2010 } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) { 2011 // 'or x, CI2' produces [CI2, UINT_MAX]. 2012 Lower = CI2->getValue(); 2013 } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) { 2014 // 'and x, CI2' produces [0, CI2]. 2015 Upper = CI2->getValue() + 1; 2016 } 2017 if (Lower != Upper) { 2018 ConstantRange LHS_CR = ConstantRange(Lower, Upper); 2019 if (RHS_CR.contains(LHS_CR)) 2020 return ConstantInt::getTrue(RHS->getContext()); 2021 if (RHS_CR.inverse().contains(LHS_CR)) 2022 return ConstantInt::getFalse(RHS->getContext()); 2023 } 2024 } 2025 2026 // Compare of cast, for example (zext X) != 0 -> X != 0 2027 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 2028 Instruction *LI = cast<CastInst>(LHS); 2029 Value *SrcOp = LI->getOperand(0); 2030 Type *SrcTy = SrcOp->getType(); 2031 Type *DstTy = LI->getType(); 2032 2033 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 2034 // if the integer type is the same size as the pointer type. 2035 if (MaxRecurse && Q.TD && isa<PtrToIntInst>(LI) && 2036 Q.TD->getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 2037 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 2038 // Transfer the cast to the constant. 2039 if (Value *V = SimplifyICmpInst(Pred, SrcOp, 2040 ConstantExpr::getIntToPtr(RHSC, SrcTy), 2041 Q, MaxRecurse-1)) 2042 return V; 2043 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 2044 if (RI->getOperand(0)->getType() == SrcTy) 2045 // Compare without the cast. 2046 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 2047 Q, MaxRecurse-1)) 2048 return V; 2049 } 2050 } 2051 2052 if (isa<ZExtInst>(LHS)) { 2053 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 2054 // same type. 2055 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 2056 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 2057 // Compare X and Y. Note that signed predicates become unsigned. 2058 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 2059 SrcOp, RI->getOperand(0), Q, 2060 MaxRecurse-1)) 2061 return V; 2062 } 2063 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 2064 // too. If not, then try to deduce the result of the comparison. 2065 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2066 // Compute the constant that would happen if we truncated to SrcTy then 2067 // reextended to DstTy. 2068 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 2069 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy); 2070 2071 // If the re-extended constant didn't change then this is effectively 2072 // also a case of comparing two zero-extended values. 2073 if (RExt == CI && MaxRecurse) 2074 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 2075 SrcOp, Trunc, Q, MaxRecurse-1)) 2076 return V; 2077 2078 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 2079 // there. Use this to work out the result of the comparison. 2080 if (RExt != CI) { 2081 switch (Pred) { 2082 default: llvm_unreachable("Unknown ICmp predicate!"); 2083 // LHS <u RHS. 2084 case ICmpInst::ICMP_EQ: 2085 case ICmpInst::ICMP_UGT: 2086 case ICmpInst::ICMP_UGE: 2087 return ConstantInt::getFalse(CI->getContext()); 2088 2089 case ICmpInst::ICMP_NE: 2090 case ICmpInst::ICMP_ULT: 2091 case ICmpInst::ICMP_ULE: 2092 return ConstantInt::getTrue(CI->getContext()); 2093 2094 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 2095 // is non-negative then LHS <s RHS. 2096 case ICmpInst::ICMP_SGT: 2097 case ICmpInst::ICMP_SGE: 2098 return CI->getValue().isNegative() ? 2099 ConstantInt::getTrue(CI->getContext()) : 2100 ConstantInt::getFalse(CI->getContext()); 2101 2102 case ICmpInst::ICMP_SLT: 2103 case ICmpInst::ICMP_SLE: 2104 return CI->getValue().isNegative() ? 2105 ConstantInt::getFalse(CI->getContext()) : 2106 ConstantInt::getTrue(CI->getContext()); 2107 } 2108 } 2109 } 2110 } 2111 2112 if (isa<SExtInst>(LHS)) { 2113 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 2114 // same type. 2115 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 2116 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 2117 // Compare X and Y. Note that the predicate does not change. 2118 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0), 2119 Q, MaxRecurse-1)) 2120 return V; 2121 } 2122 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 2123 // too. If not, then try to deduce the result of the comparison. 2124 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { 2125 // Compute the constant that would happen if we truncated to SrcTy then 2126 // reextended to DstTy. 2127 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy); 2128 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy); 2129 2130 // If the re-extended constant didn't change then this is effectively 2131 // also a case of comparing two sign-extended values. 2132 if (RExt == CI && MaxRecurse) 2133 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1)) 2134 return V; 2135 2136 // Otherwise the upper bits of LHS are all equal, while RHS has varying 2137 // bits there. Use this to work out the result of the comparison. 2138 if (RExt != CI) { 2139 switch (Pred) { 2140 default: llvm_unreachable("Unknown ICmp predicate!"); 2141 case ICmpInst::ICMP_EQ: 2142 return ConstantInt::getFalse(CI->getContext()); 2143 case ICmpInst::ICMP_NE: 2144 return ConstantInt::getTrue(CI->getContext()); 2145 2146 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 2147 // LHS >s RHS. 2148 case ICmpInst::ICMP_SGT: 2149 case ICmpInst::ICMP_SGE: 2150 return CI->getValue().isNegative() ? 2151 ConstantInt::getTrue(CI->getContext()) : 2152 ConstantInt::getFalse(CI->getContext()); 2153 case ICmpInst::ICMP_SLT: 2154 case ICmpInst::ICMP_SLE: 2155 return CI->getValue().isNegative() ? 2156 ConstantInt::getFalse(CI->getContext()) : 2157 ConstantInt::getTrue(CI->getContext()); 2158 2159 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 2160 // LHS >u RHS. 2161 case ICmpInst::ICMP_UGT: 2162 case ICmpInst::ICMP_UGE: 2163 // Comparison is true iff the LHS <s 0. 2164 if (MaxRecurse) 2165 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 2166 Constant::getNullValue(SrcTy), 2167 Q, MaxRecurse-1)) 2168 return V; 2169 break; 2170 case ICmpInst::ICMP_ULT: 2171 case ICmpInst::ICMP_ULE: 2172 // Comparison is true iff the LHS >=s 0. 2173 if (MaxRecurse) 2174 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 2175 Constant::getNullValue(SrcTy), 2176 Q, MaxRecurse-1)) 2177 return V; 2178 break; 2179 } 2180 } 2181 } 2182 } 2183 } 2184 2185 // Special logic for binary operators. 2186 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 2187 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 2188 if (MaxRecurse && (LBO || RBO)) { 2189 // Analyze the case when either LHS or RHS is an add instruction. 2190 Value *A = 0, *B = 0, *C = 0, *D = 0; 2191 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 2192 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 2193 if (LBO && LBO->getOpcode() == Instruction::Add) { 2194 A = LBO->getOperand(0); B = LBO->getOperand(1); 2195 NoLHSWrapProblem = ICmpInst::isEquality(Pred) || 2196 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) || 2197 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap()); 2198 } 2199 if (RBO && RBO->getOpcode() == Instruction::Add) { 2200 C = RBO->getOperand(0); D = RBO->getOperand(1); 2201 NoRHSWrapProblem = ICmpInst::isEquality(Pred) || 2202 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) || 2203 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap()); 2204 } 2205 2206 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 2207 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 2208 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A, 2209 Constant::getNullValue(RHS->getType()), 2210 Q, MaxRecurse-1)) 2211 return V; 2212 2213 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 2214 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 2215 if (Value *V = SimplifyICmpInst(Pred, 2216 Constant::getNullValue(LHS->getType()), 2217 C == LHS ? D : C, Q, MaxRecurse-1)) 2218 return V; 2219 2220 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 2221 if (A && C && (A == C || A == D || B == C || B == D) && 2222 NoLHSWrapProblem && NoRHSWrapProblem) { 2223 // Determine Y and Z in the form icmp (X+Y), (X+Z). 2224 Value *Y, *Z; 2225 if (A == C) { 2226 // C + B == C + D -> B == D 2227 Y = B; 2228 Z = D; 2229 } else if (A == D) { 2230 // D + B == C + D -> B == C 2231 Y = B; 2232 Z = C; 2233 } else if (B == C) { 2234 // A + C == C + D -> A == D 2235 Y = A; 2236 Z = D; 2237 } else { 2238 assert(B == D); 2239 // A + D == C + D -> A == C 2240 Y = A; 2241 Z = C; 2242 } 2243 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1)) 2244 return V; 2245 } 2246 } 2247 2248 // icmp pred (urem X, Y), Y 2249 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 2250 bool KnownNonNegative, KnownNegative; 2251 switch (Pred) { 2252 default: 2253 break; 2254 case ICmpInst::ICMP_SGT: 2255 case ICmpInst::ICMP_SGE: 2256 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD); 2257 if (!KnownNonNegative) 2258 break; 2259 // fall-through 2260 case ICmpInst::ICMP_EQ: 2261 case ICmpInst::ICMP_UGT: 2262 case ICmpInst::ICMP_UGE: 2263 return getFalse(ITy); 2264 case ICmpInst::ICMP_SLT: 2265 case ICmpInst::ICMP_SLE: 2266 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD); 2267 if (!KnownNonNegative) 2268 break; 2269 // fall-through 2270 case ICmpInst::ICMP_NE: 2271 case ICmpInst::ICMP_ULT: 2272 case ICmpInst::ICMP_ULE: 2273 return getTrue(ITy); 2274 } 2275 } 2276 2277 // icmp pred X, (urem Y, X) 2278 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) { 2279 bool KnownNonNegative, KnownNegative; 2280 switch (Pred) { 2281 default: 2282 break; 2283 case ICmpInst::ICMP_SGT: 2284 case ICmpInst::ICMP_SGE: 2285 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD); 2286 if (!KnownNonNegative) 2287 break; 2288 // fall-through 2289 case ICmpInst::ICMP_NE: 2290 case ICmpInst::ICMP_UGT: 2291 case ICmpInst::ICMP_UGE: 2292 return getTrue(ITy); 2293 case ICmpInst::ICMP_SLT: 2294 case ICmpInst::ICMP_SLE: 2295 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD); 2296 if (!KnownNonNegative) 2297 break; 2298 // fall-through 2299 case ICmpInst::ICMP_EQ: 2300 case ICmpInst::ICMP_ULT: 2301 case ICmpInst::ICMP_ULE: 2302 return getFalse(ITy); 2303 } 2304 } 2305 2306 // x udiv y <=u x. 2307 if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 2308 // icmp pred (X /u Y), X 2309 if (Pred == ICmpInst::ICMP_UGT) 2310 return getFalse(ITy); 2311 if (Pred == ICmpInst::ICMP_ULE) 2312 return getTrue(ITy); 2313 } 2314 2315 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() && 2316 LBO->getOperand(1) == RBO->getOperand(1)) { 2317 switch (LBO->getOpcode()) { 2318 default: break; 2319 case Instruction::UDiv: 2320 case Instruction::LShr: 2321 if (ICmpInst::isSigned(Pred)) 2322 break; 2323 // fall-through 2324 case Instruction::SDiv: 2325 case Instruction::AShr: 2326 if (!LBO->isExact() || !RBO->isExact()) 2327 break; 2328 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2329 RBO->getOperand(0), Q, MaxRecurse-1)) 2330 return V; 2331 break; 2332 case Instruction::Shl: { 2333 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap(); 2334 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap(); 2335 if (!NUW && !NSW) 2336 break; 2337 if (!NSW && ICmpInst::isSigned(Pred)) 2338 break; 2339 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0), 2340 RBO->getOperand(0), Q, MaxRecurse-1)) 2341 return V; 2342 break; 2343 } 2344 } 2345 } 2346 2347 // Simplify comparisons involving max/min. 2348 Value *A, *B; 2349 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 2350 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 2351 2352 // Signed variants on "max(a,b)>=a -> true". 2353 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2354 if (A != RHS) std::swap(A, B); // smax(A, B) pred A. 2355 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2356 // We analyze this as smax(A, B) pred A. 2357 P = Pred; 2358 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 2359 (A == LHS || B == LHS)) { 2360 if (A != LHS) std::swap(A, B); // A pred smax(A, B). 2361 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 2362 // We analyze this as smax(A, B) swapped-pred A. 2363 P = CmpInst::getSwappedPredicate(Pred); 2364 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2365 (A == RHS || B == RHS)) { 2366 if (A != RHS) std::swap(A, B); // smin(A, B) pred A. 2367 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2368 // We analyze this as smax(-A, -B) swapped-pred -A. 2369 // Note that we do not need to actually form -A or -B thanks to EqP. 2370 P = CmpInst::getSwappedPredicate(Pred); 2371 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 2372 (A == LHS || B == LHS)) { 2373 if (A != LHS) std::swap(A, B); // A pred smin(A, B). 2374 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 2375 // We analyze this as smax(-A, -B) pred -A. 2376 // Note that we do not need to actually form -A or -B thanks to EqP. 2377 P = Pred; 2378 } 2379 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2380 // Cases correspond to "max(A, B) p A". 2381 switch (P) { 2382 default: 2383 break; 2384 case CmpInst::ICMP_EQ: 2385 case CmpInst::ICMP_SLE: 2386 // Equivalent to "A EqP B". This may be the same as the condition tested 2387 // in the max/min; if so, we can just return that. 2388 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2389 return V; 2390 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2391 return V; 2392 // Otherwise, see if "A EqP B" simplifies. 2393 if (MaxRecurse) 2394 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1)) 2395 return V; 2396 break; 2397 case CmpInst::ICMP_NE: 2398 case CmpInst::ICMP_SGT: { 2399 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2400 // Equivalent to "A InvEqP B". This may be the same as the condition 2401 // tested in the max/min; if so, we can just return that. 2402 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2403 return V; 2404 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2405 return V; 2406 // Otherwise, see if "A InvEqP B" simplifies. 2407 if (MaxRecurse) 2408 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1)) 2409 return V; 2410 break; 2411 } 2412 case CmpInst::ICMP_SGE: 2413 // Always true. 2414 return getTrue(ITy); 2415 case CmpInst::ICMP_SLT: 2416 // Always false. 2417 return getFalse(ITy); 2418 } 2419 } 2420 2421 // Unsigned variants on "max(a,b)>=a -> true". 2422 P = CmpInst::BAD_ICMP_PREDICATE; 2423 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 2424 if (A != RHS) std::swap(A, B); // umax(A, B) pred A. 2425 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2426 // We analyze this as umax(A, B) pred A. 2427 P = Pred; 2428 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 2429 (A == LHS || B == LHS)) { 2430 if (A != LHS) std::swap(A, B); // A pred umax(A, B). 2431 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 2432 // We analyze this as umax(A, B) swapped-pred A. 2433 P = CmpInst::getSwappedPredicate(Pred); 2434 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2435 (A == RHS || B == RHS)) { 2436 if (A != RHS) std::swap(A, B); // umin(A, B) pred A. 2437 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2438 // We analyze this as umax(-A, -B) swapped-pred -A. 2439 // Note that we do not need to actually form -A or -B thanks to EqP. 2440 P = CmpInst::getSwappedPredicate(Pred); 2441 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 2442 (A == LHS || B == LHS)) { 2443 if (A != LHS) std::swap(A, B); // A pred umin(A, B). 2444 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 2445 // We analyze this as umax(-A, -B) pred -A. 2446 // Note that we do not need to actually form -A or -B thanks to EqP. 2447 P = Pred; 2448 } 2449 if (P != CmpInst::BAD_ICMP_PREDICATE) { 2450 // Cases correspond to "max(A, B) p A". 2451 switch (P) { 2452 default: 2453 break; 2454 case CmpInst::ICMP_EQ: 2455 case CmpInst::ICMP_ULE: 2456 // Equivalent to "A EqP B". This may be the same as the condition tested 2457 // in the max/min; if so, we can just return that. 2458 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B)) 2459 return V; 2460 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B)) 2461 return V; 2462 // Otherwise, see if "A EqP B" simplifies. 2463 if (MaxRecurse) 2464 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1)) 2465 return V; 2466 break; 2467 case CmpInst::ICMP_NE: 2468 case CmpInst::ICMP_UGT: { 2469 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 2470 // Equivalent to "A InvEqP B". This may be the same as the condition 2471 // tested in the max/min; if so, we can just return that. 2472 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B)) 2473 return V; 2474 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B)) 2475 return V; 2476 // Otherwise, see if "A InvEqP B" simplifies. 2477 if (MaxRecurse) 2478 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1)) 2479 return V; 2480 break; 2481 } 2482 case CmpInst::ICMP_UGE: 2483 // Always true. 2484 return getTrue(ITy); 2485 case CmpInst::ICMP_ULT: 2486 // Always false. 2487 return getFalse(ITy); 2488 } 2489 } 2490 2491 // Variants on "max(x,y) >= min(x,z)". 2492 Value *C, *D; 2493 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 2494 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 2495 (A == C || A == D || B == C || B == D)) { 2496 // max(x, ?) pred min(x, ?). 2497 if (Pred == CmpInst::ICMP_SGE) 2498 // Always true. 2499 return getTrue(ITy); 2500 if (Pred == CmpInst::ICMP_SLT) 2501 // Always false. 2502 return getFalse(ITy); 2503 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 2504 match(RHS, m_SMax(m_Value(C), m_Value(D))) && 2505 (A == C || A == D || B == C || B == D)) { 2506 // min(x, ?) pred max(x, ?). 2507 if (Pred == CmpInst::ICMP_SLE) 2508 // Always true. 2509 return getTrue(ITy); 2510 if (Pred == CmpInst::ICMP_SGT) 2511 // Always false. 2512 return getFalse(ITy); 2513 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 2514 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 2515 (A == C || A == D || B == C || B == D)) { 2516 // max(x, ?) pred min(x, ?). 2517 if (Pred == CmpInst::ICMP_UGE) 2518 // Always true. 2519 return getTrue(ITy); 2520 if (Pred == CmpInst::ICMP_ULT) 2521 // Always false. 2522 return getFalse(ITy); 2523 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 2524 match(RHS, m_UMax(m_Value(C), m_Value(D))) && 2525 (A == C || A == D || B == C || B == D)) { 2526 // min(x, ?) pred max(x, ?). 2527 if (Pred == CmpInst::ICMP_ULE) 2528 // Always true. 2529 return getTrue(ITy); 2530 if (Pred == CmpInst::ICMP_UGT) 2531 // Always false. 2532 return getFalse(ITy); 2533 } 2534 2535 // Simplify comparisons of related pointers using a powerful, recursive 2536 // GEP-walk when we have target data available.. 2537 if (LHS->getType()->isPointerTy()) 2538 if (Constant *C = computePointerICmp(Q.TD, Q.TLI, Pred, LHS, RHS)) 2539 return C; 2540 2541 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) { 2542 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) { 2543 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() && 2544 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() && 2545 (ICmpInst::isEquality(Pred) || 2546 (GLHS->isInBounds() && GRHS->isInBounds() && 2547 Pred == ICmpInst::getSignedPredicate(Pred)))) { 2548 // The bases are equal and the indices are constant. Build a constant 2549 // expression GEP with the same indices and a null base pointer to see 2550 // what constant folding can make out of it. 2551 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType()); 2552 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end()); 2553 Constant *NewLHS = ConstantExpr::getGetElementPtr(Null, IndicesLHS); 2554 2555 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end()); 2556 Constant *NewRHS = ConstantExpr::getGetElementPtr(Null, IndicesRHS); 2557 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS); 2558 } 2559 } 2560 } 2561 2562 // If the comparison is with the result of a select instruction, check whether 2563 // comparing with either branch of the select always yields the same value. 2564 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 2565 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 2566 return V; 2567 2568 // If the comparison is with the result of a phi instruction, check whether 2569 // doing the compare with each incoming phi value yields a common result. 2570 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 2571 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 2572 return V; 2573 2574 return 0; 2575 } 2576 2577 Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2578 const DataLayout *TD, 2579 const TargetLibraryInfo *TLI, 2580 const DominatorTree *DT) { 2581 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT), 2582 RecursionLimit); 2583 } 2584 2585 /// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can 2586 /// fold the result. If not, this returns null. 2587 static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2588 const Query &Q, unsigned MaxRecurse) { 2589 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 2590 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 2591 2592 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 2593 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 2594 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI); 2595 2596 // If we have a constant, make sure it is on the RHS. 2597 std::swap(LHS, RHS); 2598 Pred = CmpInst::getSwappedPredicate(Pred); 2599 } 2600 2601 // Fold trivial predicates. 2602 if (Pred == FCmpInst::FCMP_FALSE) 2603 return ConstantInt::get(GetCompareTy(LHS), 0); 2604 if (Pred == FCmpInst::FCMP_TRUE) 2605 return ConstantInt::get(GetCompareTy(LHS), 1); 2606 2607 if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef 2608 return UndefValue::get(GetCompareTy(LHS)); 2609 2610 // fcmp x,x -> true/false. Not all compares are foldable. 2611 if (LHS == RHS) { 2612 if (CmpInst::isTrueWhenEqual(Pred)) 2613 return ConstantInt::get(GetCompareTy(LHS), 1); 2614 if (CmpInst::isFalseWhenEqual(Pred)) 2615 return ConstantInt::get(GetCompareTy(LHS), 0); 2616 } 2617 2618 // Handle fcmp with constant RHS 2619 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 2620 // If the constant is a nan, see if we can fold the comparison based on it. 2621 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) { 2622 if (CFP->getValueAPF().isNaN()) { 2623 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo" 2624 return ConstantInt::getFalse(CFP->getContext()); 2625 assert(FCmpInst::isUnordered(Pred) && 2626 "Comparison must be either ordered or unordered!"); 2627 // True if unordered. 2628 return ConstantInt::getTrue(CFP->getContext()); 2629 } 2630 // Check whether the constant is an infinity. 2631 if (CFP->getValueAPF().isInfinity()) { 2632 if (CFP->getValueAPF().isNegative()) { 2633 switch (Pred) { 2634 case FCmpInst::FCMP_OLT: 2635 // No value is ordered and less than negative infinity. 2636 return ConstantInt::getFalse(CFP->getContext()); 2637 case FCmpInst::FCMP_UGE: 2638 // All values are unordered with or at least negative infinity. 2639 return ConstantInt::getTrue(CFP->getContext()); 2640 default: 2641 break; 2642 } 2643 } else { 2644 switch (Pred) { 2645 case FCmpInst::FCMP_OGT: 2646 // No value is ordered and greater than infinity. 2647 return ConstantInt::getFalse(CFP->getContext()); 2648 case FCmpInst::FCMP_ULE: 2649 // All values are unordered with and at most infinity. 2650 return ConstantInt::getTrue(CFP->getContext()); 2651 default: 2652 break; 2653 } 2654 } 2655 } 2656 } 2657 } 2658 2659 // If the comparison is with the result of a select instruction, check whether 2660 // comparing with either branch of the select always yields the same value. 2661 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 2662 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 2663 return V; 2664 2665 // If the comparison is with the result of a phi instruction, check whether 2666 // doing the compare with each incoming phi value yields a common result. 2667 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 2668 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 2669 return V; 2670 2671 return 0; 2672 } 2673 2674 Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2675 const DataLayout *TD, 2676 const TargetLibraryInfo *TLI, 2677 const DominatorTree *DT) { 2678 return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT), 2679 RecursionLimit); 2680 } 2681 2682 /// SimplifySelectInst - Given operands for a SelectInst, see if we can fold 2683 /// the result. If not, this returns null. 2684 static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal, 2685 Value *FalseVal, const Query &Q, 2686 unsigned MaxRecurse) { 2687 // select true, X, Y -> X 2688 // select false, X, Y -> Y 2689 if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal)) 2690 return CB->getZExtValue() ? TrueVal : FalseVal; 2691 2692 // select C, X, X -> X 2693 if (TrueVal == FalseVal) 2694 return TrueVal; 2695 2696 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y 2697 if (isa<Constant>(TrueVal)) 2698 return TrueVal; 2699 return FalseVal; 2700 } 2701 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X 2702 return FalseVal; 2703 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X 2704 return TrueVal; 2705 2706 return 0; 2707 } 2708 2709 Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 2710 const DataLayout *TD, 2711 const TargetLibraryInfo *TLI, 2712 const DominatorTree *DT) { 2713 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (TD, TLI, DT), 2714 RecursionLimit); 2715 } 2716 2717 /// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can 2718 /// fold the result. If not, this returns null. 2719 static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) { 2720 // The type of the GEP pointer operand. 2721 PointerType *PtrTy = dyn_cast<PointerType>(Ops[0]->getType()); 2722 // The GEP pointer operand is not a pointer, it's a vector of pointers. 2723 if (!PtrTy) 2724 return 0; 2725 2726 // getelementptr P -> P. 2727 if (Ops.size() == 1) 2728 return Ops[0]; 2729 2730 if (isa<UndefValue>(Ops[0])) { 2731 // Compute the (pointer) type returned by the GEP instruction. 2732 Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1)); 2733 Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace()); 2734 return UndefValue::get(GEPTy); 2735 } 2736 2737 if (Ops.size() == 2) { 2738 // getelementptr P, 0 -> P. 2739 if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1])) 2740 if (C->isZero()) 2741 return Ops[0]; 2742 // getelementptr P, N -> P if P points to a type of zero size. 2743 if (Q.TD) { 2744 Type *Ty = PtrTy->getElementType(); 2745 if (Ty->isSized() && Q.TD->getTypeAllocSize(Ty) == 0) 2746 return Ops[0]; 2747 } 2748 } 2749 2750 // Check to see if this is constant foldable. 2751 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2752 if (!isa<Constant>(Ops[i])) 2753 return 0; 2754 2755 return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1)); 2756 } 2757 2758 Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout *TD, 2759 const TargetLibraryInfo *TLI, 2760 const DominatorTree *DT) { 2761 return ::SimplifyGEPInst(Ops, Query (TD, TLI, DT), RecursionLimit); 2762 } 2763 2764 /// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we 2765 /// can fold the result. If not, this returns null. 2766 static Value *SimplifyInsertValueInst(Value *Agg, Value *Val, 2767 ArrayRef<unsigned> Idxs, const Query &Q, 2768 unsigned) { 2769 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 2770 if (Constant *CVal = dyn_cast<Constant>(Val)) 2771 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 2772 2773 // insertvalue x, undef, n -> x 2774 if (match(Val, m_Undef())) 2775 return Agg; 2776 2777 // insertvalue x, (extractvalue y, n), n 2778 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 2779 if (EV->getAggregateOperand()->getType() == Agg->getType() && 2780 EV->getIndices() == Idxs) { 2781 // insertvalue undef, (extractvalue y, n), n -> y 2782 if (match(Agg, m_Undef())) 2783 return EV->getAggregateOperand(); 2784 2785 // insertvalue y, (extractvalue y, n), n -> y 2786 if (Agg == EV->getAggregateOperand()) 2787 return Agg; 2788 } 2789 2790 return 0; 2791 } 2792 2793 Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val, 2794 ArrayRef<unsigned> Idxs, 2795 const DataLayout *TD, 2796 const TargetLibraryInfo *TLI, 2797 const DominatorTree *DT) { 2798 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (TD, TLI, DT), 2799 RecursionLimit); 2800 } 2801 2802 /// SimplifyPHINode - See if we can fold the given phi. If not, returns null. 2803 static Value *SimplifyPHINode(PHINode *PN, const Query &Q) { 2804 // If all of the PHI's incoming values are the same then replace the PHI node 2805 // with the common value. 2806 Value *CommonValue = 0; 2807 bool HasUndefInput = false; 2808 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2809 Value *Incoming = PN->getIncomingValue(i); 2810 // If the incoming value is the phi node itself, it can safely be skipped. 2811 if (Incoming == PN) continue; 2812 if (isa<UndefValue>(Incoming)) { 2813 // Remember that we saw an undef value, but otherwise ignore them. 2814 HasUndefInput = true; 2815 continue; 2816 } 2817 if (CommonValue && Incoming != CommonValue) 2818 return 0; // Not the same, bail out. 2819 CommonValue = Incoming; 2820 } 2821 2822 // If CommonValue is null then all of the incoming values were either undef or 2823 // equal to the phi node itself. 2824 if (!CommonValue) 2825 return UndefValue::get(PN->getType()); 2826 2827 // If we have a PHI node like phi(X, undef, X), where X is defined by some 2828 // instruction, we cannot return X as the result of the PHI node unless it 2829 // dominates the PHI block. 2830 if (HasUndefInput) 2831 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : 0; 2832 2833 return CommonValue; 2834 } 2835 2836 static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) { 2837 if (Constant *C = dyn_cast<Constant>(Op)) 2838 return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.TD, Q.TLI); 2839 2840 return 0; 2841 } 2842 2843 Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *TD, 2844 const TargetLibraryInfo *TLI, 2845 const DominatorTree *DT) { 2846 return ::SimplifyTruncInst(Op, Ty, Query (TD, TLI, DT), RecursionLimit); 2847 } 2848 2849 //=== Helper functions for higher up the class hierarchy. 2850 2851 /// SimplifyBinOp - Given operands for a BinaryOperator, see if we can 2852 /// fold the result. If not, this returns null. 2853 static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 2854 const Query &Q, unsigned MaxRecurse) { 2855 switch (Opcode) { 2856 case Instruction::Add: 2857 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 2858 Q, MaxRecurse); 2859 case Instruction::FAdd: 2860 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 2861 2862 case Instruction::Sub: 2863 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 2864 Q, MaxRecurse); 2865 case Instruction::FSub: 2866 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 2867 2868 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse); 2869 case Instruction::FMul: 2870 return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse); 2871 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse); 2872 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse); 2873 case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, Q, MaxRecurse); 2874 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse); 2875 case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse); 2876 case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, Q, MaxRecurse); 2877 case Instruction::Shl: 2878 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false, 2879 Q, MaxRecurse); 2880 case Instruction::LShr: 2881 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 2882 case Instruction::AShr: 2883 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse); 2884 case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse); 2885 case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse); 2886 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse); 2887 default: 2888 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 2889 if (Constant *CRHS = dyn_cast<Constant>(RHS)) { 2890 Constant *COps[] = {CLHS, CRHS}; 2891 return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.TD, 2892 Q.TLI); 2893 } 2894 2895 // If the operation is associative, try some generic simplifications. 2896 if (Instruction::isAssociative(Opcode)) 2897 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse)) 2898 return V; 2899 2900 // If the operation is with the result of a select instruction check whether 2901 // operating on either branch of the select always yields the same value. 2902 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 2903 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse)) 2904 return V; 2905 2906 // If the operation is with the result of a phi instruction, check whether 2907 // operating on all incoming values of the phi always yields the same value. 2908 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 2909 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse)) 2910 return V; 2911 2912 return 0; 2913 } 2914 } 2915 2916 Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 2917 const DataLayout *TD, const TargetLibraryInfo *TLI, 2918 const DominatorTree *DT) { 2919 return ::SimplifyBinOp(Opcode, LHS, RHS, Query (TD, TLI, DT), RecursionLimit); 2920 } 2921 2922 /// SimplifyCmpInst - Given operands for a CmpInst, see if we can 2923 /// fold the result. 2924 static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2925 const Query &Q, unsigned MaxRecurse) { 2926 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 2927 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 2928 return SimplifyFCmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 2929 } 2930 2931 Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 2932 const DataLayout *TD, const TargetLibraryInfo *TLI, 2933 const DominatorTree *DT) { 2934 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT), 2935 RecursionLimit); 2936 } 2937 2938 static bool IsIdempotent(Intrinsic::ID ID) { 2939 switch (ID) { 2940 default: return false; 2941 2942 // Unary idempotent: f(f(x)) = f(x) 2943 case Intrinsic::fabs: 2944 case Intrinsic::floor: 2945 case Intrinsic::ceil: 2946 case Intrinsic::trunc: 2947 case Intrinsic::rint: 2948 case Intrinsic::nearbyint: 2949 return true; 2950 } 2951 } 2952 2953 template <typename IterTy> 2954 static Value *SimplifyIntrinsic(Intrinsic::ID IID, IterTy ArgBegin, IterTy ArgEnd, 2955 const Query &Q, unsigned MaxRecurse) { 2956 // Perform idempotent optimizations 2957 if (!IsIdempotent(IID)) 2958 return 0; 2959 2960 // Unary Ops 2961 if (std::distance(ArgBegin, ArgEnd) == 1) 2962 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin)) 2963 if (II->getIntrinsicID() == IID) 2964 return II; 2965 2966 return 0; 2967 } 2968 2969 template <typename IterTy> 2970 static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd, 2971 const Query &Q, unsigned MaxRecurse) { 2972 Type *Ty = V->getType(); 2973 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) 2974 Ty = PTy->getElementType(); 2975 FunctionType *FTy = cast<FunctionType>(Ty); 2976 2977 // call undef -> undef 2978 if (isa<UndefValue>(V)) 2979 return UndefValue::get(FTy->getReturnType()); 2980 2981 Function *F = dyn_cast<Function>(V); 2982 if (!F) 2983 return 0; 2984 2985 if (unsigned IID = F->getIntrinsicID()) 2986 if (Value *Ret = 2987 SimplifyIntrinsic((Intrinsic::ID) IID, ArgBegin, ArgEnd, Q, MaxRecurse)) 2988 return Ret; 2989 2990 if (!canConstantFoldCallTo(F)) 2991 return 0; 2992 2993 SmallVector<Constant *, 4> ConstantArgs; 2994 ConstantArgs.reserve(ArgEnd - ArgBegin); 2995 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) { 2996 Constant *C = dyn_cast<Constant>(*I); 2997 if (!C) 2998 return 0; 2999 ConstantArgs.push_back(C); 3000 } 3001 3002 return ConstantFoldCall(F, ConstantArgs, Q.TLI); 3003 } 3004 3005 Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin, 3006 User::op_iterator ArgEnd, const DataLayout *TD, 3007 const TargetLibraryInfo *TLI, 3008 const DominatorTree *DT) { 3009 return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(TD, TLI, DT), 3010 RecursionLimit); 3011 } 3012 3013 Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args, 3014 const DataLayout *TD, const TargetLibraryInfo *TLI, 3015 const DominatorTree *DT) { 3016 return ::SimplifyCall(V, Args.begin(), Args.end(), Query(TD, TLI, DT), 3017 RecursionLimit); 3018 } 3019 3020 /// SimplifyInstruction - See if we can compute a simplified version of this 3021 /// instruction. If not, this returns null. 3022 Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *TD, 3023 const TargetLibraryInfo *TLI, 3024 const DominatorTree *DT) { 3025 Value *Result; 3026 3027 switch (I->getOpcode()) { 3028 default: 3029 Result = ConstantFoldInstruction(I, TD, TLI); 3030 break; 3031 case Instruction::FAdd: 3032 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1), 3033 I->getFastMathFlags(), TD, TLI, DT); 3034 break; 3035 case Instruction::Add: 3036 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1), 3037 cast<BinaryOperator>(I)->hasNoSignedWrap(), 3038 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), 3039 TD, TLI, DT); 3040 break; 3041 case Instruction::FSub: 3042 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1), 3043 I->getFastMathFlags(), TD, TLI, DT); 3044 break; 3045 case Instruction::Sub: 3046 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1), 3047 cast<BinaryOperator>(I)->hasNoSignedWrap(), 3048 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), 3049 TD, TLI, DT); 3050 break; 3051 case Instruction::FMul: 3052 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1), 3053 I->getFastMathFlags(), TD, TLI, DT); 3054 break; 3055 case Instruction::Mul: 3056 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); 3057 break; 3058 case Instruction::SDiv: 3059 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); 3060 break; 3061 case Instruction::UDiv: 3062 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); 3063 break; 3064 case Instruction::FDiv: 3065 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); 3066 break; 3067 case Instruction::SRem: 3068 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); 3069 break; 3070 case Instruction::URem: 3071 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); 3072 break; 3073 case Instruction::FRem: 3074 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); 3075 break; 3076 case Instruction::Shl: 3077 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1), 3078 cast<BinaryOperator>(I)->hasNoSignedWrap(), 3079 cast<BinaryOperator>(I)->hasNoUnsignedWrap(), 3080 TD, TLI, DT); 3081 break; 3082 case Instruction::LShr: 3083 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1), 3084 cast<BinaryOperator>(I)->isExact(), 3085 TD, TLI, DT); 3086 break; 3087 case Instruction::AShr: 3088 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1), 3089 cast<BinaryOperator>(I)->isExact(), 3090 TD, TLI, DT); 3091 break; 3092 case Instruction::And: 3093 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); 3094 break; 3095 case Instruction::Or: 3096 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); 3097 break; 3098 case Instruction::Xor: 3099 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT); 3100 break; 3101 case Instruction::ICmp: 3102 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), 3103 I->getOperand(0), I->getOperand(1), TD, TLI, DT); 3104 break; 3105 case Instruction::FCmp: 3106 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), 3107 I->getOperand(0), I->getOperand(1), TD, TLI, DT); 3108 break; 3109 case Instruction::Select: 3110 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1), 3111 I->getOperand(2), TD, TLI, DT); 3112 break; 3113 case Instruction::GetElementPtr: { 3114 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end()); 3115 Result = SimplifyGEPInst(Ops, TD, TLI, DT); 3116 break; 3117 } 3118 case Instruction::InsertValue: { 3119 InsertValueInst *IV = cast<InsertValueInst>(I); 3120 Result = SimplifyInsertValueInst(IV->getAggregateOperand(), 3121 IV->getInsertedValueOperand(), 3122 IV->getIndices(), TD, TLI, DT); 3123 break; 3124 } 3125 case Instruction::PHI: 3126 Result = SimplifyPHINode(cast<PHINode>(I), Query (TD, TLI, DT)); 3127 break; 3128 case Instruction::Call: { 3129 CallSite CS(cast<CallInst>(I)); 3130 Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(), 3131 TD, TLI, DT); 3132 break; 3133 } 3134 case Instruction::Trunc: 3135 Result = SimplifyTruncInst(I->getOperand(0), I->getType(), TD, TLI, DT); 3136 break; 3137 } 3138 3139 /// If called on unreachable code, the above logic may report that the 3140 /// instruction simplified to itself. Make life easier for users by 3141 /// detecting that case here, returning a safe value instead. 3142 return Result == I ? UndefValue::get(I->getType()) : Result; 3143 } 3144 3145 /// \brief Implementation of recursive simplification through an instructions 3146 /// uses. 3147 /// 3148 /// This is the common implementation of the recursive simplification routines. 3149 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 3150 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 3151 /// instructions to process and attempt to simplify it using 3152 /// InstructionSimplify. 3153 /// 3154 /// This routine returns 'true' only when *it* simplifies something. The passed 3155 /// in simplified value does not count toward this. 3156 static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV, 3157 const DataLayout *TD, 3158 const TargetLibraryInfo *TLI, 3159 const DominatorTree *DT) { 3160 bool Simplified = false; 3161 SmallSetVector<Instruction *, 8> Worklist; 3162 3163 // If we have an explicit value to collapse to, do that round of the 3164 // simplification loop by hand initially. 3165 if (SimpleV) { 3166 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; 3167 ++UI) 3168 if (*UI != I) 3169 Worklist.insert(cast<Instruction>(*UI)); 3170 3171 // Replace the instruction with its simplified value. 3172 I->replaceAllUsesWith(SimpleV); 3173 3174 // Gracefully handle edge cases where the instruction is not wired into any 3175 // parent block. 3176 if (I->getParent()) 3177 I->eraseFromParent(); 3178 } else { 3179 Worklist.insert(I); 3180 } 3181 3182 // Note that we must test the size on each iteration, the worklist can grow. 3183 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 3184 I = Worklist[Idx]; 3185 3186 // See if this instruction simplifies. 3187 SimpleV = SimplifyInstruction(I, TD, TLI, DT); 3188 if (!SimpleV) 3189 continue; 3190 3191 Simplified = true; 3192 3193 // Stash away all the uses of the old instruction so we can check them for 3194 // recursive simplifications after a RAUW. This is cheaper than checking all 3195 // uses of To on the recursive step in most cases. 3196 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; 3197 ++UI) 3198 Worklist.insert(cast<Instruction>(*UI)); 3199 3200 // Replace the instruction with its simplified value. 3201 I->replaceAllUsesWith(SimpleV); 3202 3203 // Gracefully handle edge cases where the instruction is not wired into any 3204 // parent block. 3205 if (I->getParent()) 3206 I->eraseFromParent(); 3207 } 3208 return Simplified; 3209 } 3210 3211 bool llvm::recursivelySimplifyInstruction(Instruction *I, 3212 const DataLayout *TD, 3213 const TargetLibraryInfo *TLI, 3214 const DominatorTree *DT) { 3215 return replaceAndRecursivelySimplifyImpl(I, 0, TD, TLI, DT); 3216 } 3217 3218 bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV, 3219 const DataLayout *TD, 3220 const TargetLibraryInfo *TLI, 3221 const DominatorTree *DT) { 3222 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 3223 assert(SimpleV && "Must provide a simplified value."); 3224 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TD, TLI, DT); 3225 } 3226