Home | History | Annotate | Download | only in tgsi
      1 /**************************************************************************
      2  *
      3  * Copyright 2008 Tungsten Graphics, Inc., Cedar Park, Texas.
      4  * All Rights Reserved.
      5  *
      6  * Permission is hereby granted, free of charge, to any person obtaining a
      7  * copy of this software and associated documentation files (the
      8  * "Software"), to deal in the Software without restriction, including
      9  * without limitation the rights to use, copy, modify, merge, publish,
     10  * distribute, sub license, and/or sell copies of the Software, and to
     11  * permit persons to whom the Software is furnished to do so, subject to
     12  * the following conditions:
     13  *
     14  * The above copyright notice and this permission notice (including the
     15  * next paragraph) shall be included in all copies or substantial portions
     16  * of the Software.
     17  *
     18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
     19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
     20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
     21  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
     22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
     23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
     24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
     25  *
     26  **************************************************************************/
     27 
     28 /**
     29  * TGSI to PowerPC code generation.
     30  */
     31 
     32 #include "pipe/p_config.h"
     33 
     34 #if defined(PIPE_ARCH_PPC)
     35 
     36 #include "util/u_debug.h"
     37 #include "pipe/p_shader_tokens.h"
     38 #include "util/u_math.h"
     39 #include "util/u_memory.h"
     40 #include "util/u_sse.h"
     41 #include "tgsi/tgsi_info.h"
     42 #include "tgsi/tgsi_parse.h"
     43 #include "tgsi/tgsi_util.h"
     44 #include "tgsi_dump.h"
     45 #include "tgsi_exec.h"
     46 #include "tgsi_ppc.h"
     47 #include "rtasm/rtasm_ppc.h"
     48 
     49 
     50 /**
     51  * Since it's pretty much impossible to form PPC vector immediates, load
     52  * them from memory here:
     53  */
     54 PIPE_ALIGN_VAR(16) const float
     55 ppc_builtin_constants[] = {
     56    1.0f, -128.0f, 128.0, 0.0
     57 };
     58 
     59 /**
     60  * How many TGSI temps should be implemented with real PPC vector registers
     61  * rather than memory.
     62  */
     63 #define MAX_PPC_TEMPS 3
     64 
     65 
     66 /**
     67  * Context/state used during code gen.
     68  */
     69 struct gen_context
     70 {
     71    struct ppc_function *f;
     72    int inputs_reg;    /**< GP register pointing to input params */
     73    int outputs_reg;   /**< GP register pointing to output params */
     74    int temps_reg;     /**< GP register pointing to temporary "registers" */
     75    int immed_reg;     /**< GP register pointing to immediates buffer */
     76    int const_reg;     /**< GP register pointing to constants buffer */
     77    int builtins_reg;  /**< GP register pointint to built-in constants */
     78 
     79    int offset_reg;    /**< used to reduce redundant li instructions */
     80    int offset_value;
     81 
     82    int one_vec;       /**< vector register with {1.0, 1.0, 1.0, 1.0} */
     83    int bit31_vec;     /**< vector register with {1<<31, 1<<31, 1<<31, 1<<31} */
     84 
     85    /**
     86     * Map TGSI temps to PPC vector temps.
     87     * We have 32 PPC vector regs.  Use 16 of them for storing 4 TGSI temps.
     88     * XXX currently only do this for TGSI temps [0..MAX_PPC_TEMPS-1].
     89     */
     90    int temps_map[MAX_PPC_TEMPS][4];
     91 
     92    /**
     93     * Cache of src registers.
     94     * This is used to avoid redundant load instructions.
     95     */
     96    struct {
     97       struct tgsi_full_src_register src;
     98       uint chan;
     99       uint vec;
    100    } regs[12];  /* 3 src regs, 4 channels */
    101    uint num_regs;
    102 };
    103 
    104 
    105 /**
    106  * Initialize code generation context.
    107  */
    108 static void
    109 init_gen_context(struct gen_context *gen, struct ppc_function *func)
    110 {
    111    uint i;
    112 
    113    memset(gen, 0, sizeof(*gen));
    114    gen->f = func;
    115    gen->inputs_reg = ppc_reserve_register(func, 3);   /* first function param */
    116    gen->outputs_reg = ppc_reserve_register(func, 4);  /* second function param */
    117    gen->temps_reg = ppc_reserve_register(func, 5);    /* ... */
    118    gen->immed_reg = ppc_reserve_register(func, 6);
    119    gen->const_reg = ppc_reserve_register(func, 7);
    120    gen->builtins_reg = ppc_reserve_register(func, 8);
    121    gen->one_vec = -1;
    122    gen->bit31_vec = -1;
    123    gen->offset_reg = -1;
    124    gen->offset_value = -9999999;
    125    for (i = 0; i < MAX_PPC_TEMPS; i++) {
    126       gen->temps_map[i][0] = ppc_allocate_vec_register(gen->f);
    127       gen->temps_map[i][1] = ppc_allocate_vec_register(gen->f);
    128       gen->temps_map[i][2] = ppc_allocate_vec_register(gen->f);
    129       gen->temps_map[i][3] = ppc_allocate_vec_register(gen->f);
    130    }
    131 }
    132 
    133 
    134 /**
    135  * Is the given TGSI register stored as a real PPC vector register?
    136  */
    137 static boolean
    138 is_ppc_vec_temporary(const struct tgsi_full_src_register *reg)
    139 {
    140    return (reg->Register.File == TGSI_FILE_TEMPORARY &&
    141            reg->Register.Index < MAX_PPC_TEMPS);
    142 }
    143 
    144 
    145 /**
    146  * Is the given TGSI register stored as a real PPC vector register?
    147  */
    148 static boolean
    149 is_ppc_vec_temporary_dst(const struct tgsi_full_dst_register *reg)
    150 {
    151    return (reg->Register.File == TGSI_FILE_TEMPORARY &&
    152            reg->Register.Index < MAX_PPC_TEMPS);
    153 }
    154 
    155 
    156 
    157 /**
    158  * All PPC vector load/store instructions form an effective address
    159  * by adding the contents of two registers.  For example:
    160  *    lvx v2,r8,r9   # v2 = memory[r8 + r9]
    161  *    stvx v2,r8,r9  # memory[r8 + r9] = v2;
    162  * So our lvx/stvx instructions are typically preceded by an 'li' instruction
    163  * to load r9 (above) with an immediate (an offset).
    164  * This code emits that 'li' instruction, but only if the offset value is
    165  * different than the previous 'li'.
    166  * This optimization seems to save about 10% in the instruction count.
    167  * Note that we need to unconditionally emit an 'li' inside basic blocks
    168  * (such as inside loops).
    169  */
    170 static int
    171 emit_li_offset(struct gen_context *gen, int offset)
    172 {
    173    if (gen->offset_reg <= 0) {
    174       /* allocate a GP register for storing load/store offset */
    175       gen->offset_reg = ppc_allocate_register(gen->f);
    176    }
    177 
    178    /* emit new 'li' if offset is changing */
    179    if (gen->offset_value < 0 || gen->offset_value != offset) {
    180       gen->offset_value = offset;
    181       ppc_li(gen->f, gen->offset_reg, offset);
    182    }
    183 
    184    return gen->offset_reg;
    185 }
    186 
    187 
    188 /**
    189  * Forces subsequent emit_li_offset() calls to emit an 'li'.
    190  * To be called at the top of basic blocks.
    191  */
    192 static void
    193 reset_li_offset(struct gen_context *gen)
    194 {
    195    gen->offset_value = -9999999;
    196 }
    197 
    198 
    199 
    200 /**
    201  * Load the given vector register with {value, value, value, value}.
    202  * The value must be in the ppu_builtin_constants[] array.
    203  * We wouldn't need this if there was a simple way to load PPC vector
    204  * registers with immediate values!
    205  */
    206 static void
    207 load_constant_vec(struct gen_context *gen, int dst_vec, float value)
    208 {
    209    uint pos;
    210    for (pos = 0; pos < Elements(ppc_builtin_constants); pos++) {
    211       if (ppc_builtin_constants[pos] == value) {
    212          int offset = pos * 4;
    213          int offset_reg = emit_li_offset(gen, offset);
    214 
    215          /* Load 4-byte word into vector register.
    216           * The vector slot depends on the effective address we load from.
    217           * We know that our builtins start at a 16-byte boundary so we
    218           * know that 'swizzle' tells us which vector slot will have the
    219           * loaded word.  The other vector slots will be undefined.
    220           */
    221          ppc_lvewx(gen->f, dst_vec, gen->builtins_reg, offset_reg);
    222          /* splat word[pos % 4] across the vector reg */
    223          ppc_vspltw(gen->f, dst_vec, dst_vec, pos % 4);
    224          return;
    225       }
    226    }
    227    assert(0 && "Need to add new constant to ppc_builtin_constants array");
    228 }
    229 
    230 
    231 /**
    232  * Return index of vector register containing {1.0, 1.0, 1.0, 1.0}.
    233  */
    234 static int
    235 gen_one_vec(struct gen_context *gen)
    236 {
    237    if (gen->one_vec < 0) {
    238       gen->one_vec = ppc_allocate_vec_register(gen->f);
    239       load_constant_vec(gen, gen->one_vec, 1.0f);
    240    }
    241    return gen->one_vec;
    242 }
    243 
    244 /**
    245  * Return index of vector register containing {1<<31, 1<<31, 1<<31, 1<<31}.
    246  */
    247 static int
    248 gen_get_bit31_vec(struct gen_context *gen)
    249 {
    250    if (gen->bit31_vec < 0) {
    251       gen->bit31_vec = ppc_allocate_vec_register(gen->f);
    252       ppc_vspltisw(gen->f, gen->bit31_vec, -1);
    253       ppc_vslw(gen->f, gen->bit31_vec, gen->bit31_vec, gen->bit31_vec);
    254    }
    255    return gen->bit31_vec;
    256 }
    257 
    258 
    259 /**
    260  * Register fetch.  Return PPC vector register with result.
    261  */
    262 static int
    263 emit_fetch(struct gen_context *gen,
    264            const struct tgsi_full_src_register *reg,
    265            const unsigned chan_index)
    266 {
    267    uint swizzle = tgsi_util_get_full_src_register_swizzle(reg, chan_index);
    268    int dst_vec = -1;
    269 
    270    switch (swizzle) {
    271    case TGSI_SWIZZLE_X:
    272    case TGSI_SWIZZLE_Y:
    273    case TGSI_SWIZZLE_Z:
    274    case TGSI_SWIZZLE_W:
    275       switch (reg->Register.File) {
    276       case TGSI_FILE_INPUT:
    277          {
    278             int offset = (reg->Register.Index * 4 + swizzle) * 16;
    279             int offset_reg = emit_li_offset(gen, offset);
    280             dst_vec = ppc_allocate_vec_register(gen->f);
    281             ppc_lvx(gen->f, dst_vec, gen->inputs_reg, offset_reg);
    282          }
    283          break;
    284       case TGSI_FILE_SYSTEM_VALUE:
    285          assert(!"unhandled system value in tgsi_ppc.c");
    286          break;
    287       case TGSI_FILE_TEMPORARY:
    288          if (is_ppc_vec_temporary(reg)) {
    289             /* use PPC vec register */
    290             dst_vec = gen->temps_map[reg->Register.Index][swizzle];
    291          }
    292          else {
    293             /* use memory-based temp register "file" */
    294             int offset = (reg->Register.Index * 4 + swizzle) * 16;
    295             int offset_reg = emit_li_offset(gen, offset);
    296             dst_vec = ppc_allocate_vec_register(gen->f);
    297             ppc_lvx(gen->f, dst_vec, gen->temps_reg, offset_reg);
    298          }
    299          break;
    300       case TGSI_FILE_IMMEDIATE:
    301          {
    302             int offset = (reg->Register.Index * 4 + swizzle) * 4;
    303             int offset_reg = emit_li_offset(gen, offset);
    304             dst_vec = ppc_allocate_vec_register(gen->f);
    305             /* Load 4-byte word into vector register.
    306              * The vector slot depends on the effective address we load from.
    307              * We know that our immediates start at a 16-byte boundary so we
    308              * know that 'swizzle' tells us which vector slot will have the
    309              * loaded word.  The other vector slots will be undefined.
    310              */
    311             ppc_lvewx(gen->f, dst_vec, gen->immed_reg, offset_reg);
    312             /* splat word[swizzle] across the vector reg */
    313             ppc_vspltw(gen->f, dst_vec, dst_vec, swizzle);
    314          }
    315          break;
    316       case TGSI_FILE_CONSTANT:
    317          {
    318             int offset = (reg->Register.Index * 4 + swizzle) * 4;
    319             int offset_reg = emit_li_offset(gen, offset);
    320             dst_vec = ppc_allocate_vec_register(gen->f);
    321             /* Load 4-byte word into vector register.
    322              * The vector slot depends on the effective address we load from.
    323              * We know that our constants start at a 16-byte boundary so we
    324              * know that 'swizzle' tells us which vector slot will have the
    325              * loaded word.  The other vector slots will be undefined.
    326              */
    327             ppc_lvewx(gen->f, dst_vec, gen->const_reg, offset_reg);
    328             /* splat word[swizzle] across the vector reg */
    329             ppc_vspltw(gen->f, dst_vec, dst_vec, swizzle);
    330          }
    331          break;
    332       default:
    333          assert( 0 );
    334       }
    335       break;
    336    default:
    337       assert( 0 );
    338    }
    339 
    340    assert(dst_vec >= 0);
    341 
    342    {
    343       uint sign_op = tgsi_util_get_full_src_register_sign_mode(reg, chan_index);
    344       if (sign_op != TGSI_UTIL_SIGN_KEEP) {
    345          int bit31_vec = gen_get_bit31_vec(gen);
    346          int dst_vec2;
    347 
    348          if (is_ppc_vec_temporary(reg)) {
    349             /* need to use a new temp */
    350             dst_vec2 = ppc_allocate_vec_register(gen->f);
    351          }
    352          else {
    353             dst_vec2 = dst_vec;
    354          }
    355 
    356          switch (sign_op) {
    357          case TGSI_UTIL_SIGN_CLEAR:
    358             /* vec = vec & ~bit31 */
    359             ppc_vandc(gen->f, dst_vec2, dst_vec, bit31_vec);
    360             break;
    361          case TGSI_UTIL_SIGN_SET:
    362             /* vec = vec | bit31 */
    363             ppc_vor(gen->f, dst_vec2, dst_vec, bit31_vec);
    364             break;
    365          case TGSI_UTIL_SIGN_TOGGLE:
    366             /* vec = vec ^ bit31 */
    367             ppc_vxor(gen->f, dst_vec2, dst_vec, bit31_vec);
    368             break;
    369          default:
    370             assert(0);
    371          }
    372          return dst_vec2;
    373       }
    374    }
    375 
    376    return dst_vec;
    377 }
    378 
    379 
    380 
    381 /**
    382  * Test if two TGSI src registers refer to the same memory location.
    383  * We use this to avoid redundant register loads.
    384  */
    385 static boolean
    386 equal_src_locs(const struct tgsi_full_src_register *a, uint chan_a,
    387                const struct tgsi_full_src_register *b, uint chan_b)
    388 {
    389    int swz_a, swz_b;
    390    int sign_a, sign_b;
    391    if (a->Register.File != b->Register.File)
    392       return FALSE;
    393    if (a->Register.Index != b->Register.Index)
    394       return FALSE;
    395    swz_a = tgsi_util_get_full_src_register_swizzle(a, chan_a);
    396    swz_b = tgsi_util_get_full_src_register_swizzle(b, chan_b);
    397    if (swz_a != swz_b)
    398       return FALSE;
    399    sign_a = tgsi_util_get_full_src_register_sign_mode(a, chan_a);
    400    sign_b = tgsi_util_get_full_src_register_sign_mode(b, chan_b);
    401    if (sign_a != sign_b)
    402       return FALSE;
    403    return TRUE;
    404 }
    405 
    406 
    407 /**
    408  * Given a TGSI src register and channel index, return the PPC vector
    409  * register containing the value.  We use a cache to prevent re-loading
    410  * the same register multiple times.
    411  * \return index of PPC vector register with the desired src operand
    412  */
    413 static int
    414 get_src_vec(struct gen_context *gen,
    415             struct tgsi_full_instruction *inst, int src_reg, uint chan)
    416 {
    417    const const struct tgsi_full_src_register *src =
    418       &inst->Src[src_reg];
    419    int vec;
    420    uint i;
    421 
    422    /* check the cache */
    423    for (i = 0; i < gen->num_regs; i++) {
    424       if (equal_src_locs(&gen->regs[i].src, gen->regs[i].chan, src, chan)) {
    425          /* cache hit */
    426          assert(gen->regs[i].vec >= 0);
    427          return gen->regs[i].vec;
    428       }
    429    }
    430 
    431    /* cache miss: allocate new vec reg and emit fetch/load code */
    432    vec = emit_fetch(gen, src, chan);
    433    gen->regs[gen->num_regs].src = *src;
    434    gen->regs[gen->num_regs].chan = chan;
    435    gen->regs[gen->num_regs].vec = vec;
    436    gen->num_regs++;
    437 
    438    assert(gen->num_regs <= Elements(gen->regs));
    439 
    440    assert(vec >= 0);
    441 
    442    return vec;
    443 }
    444 
    445 
    446 /**
    447  * Clear the src operand cache.  To be called at the end of each emit function.
    448  */
    449 static void
    450 release_src_vecs(struct gen_context *gen)
    451 {
    452    uint i;
    453    for (i = 0; i < gen->num_regs; i++) {
    454       const const struct tgsi_full_src_register src = gen->regs[i].src;
    455       if (!is_ppc_vec_temporary(&src)) {
    456          ppc_release_vec_register(gen->f, gen->regs[i].vec);
    457       }
    458    }
    459    gen->num_regs = 0;
    460 }
    461 
    462 
    463 
    464 static int
    465 get_dst_vec(struct gen_context *gen,
    466             const struct tgsi_full_instruction *inst,
    467             unsigned chan_index)
    468 {
    469    const struct tgsi_full_dst_register *reg = &inst->Dst[0];
    470 
    471    if (is_ppc_vec_temporary_dst(reg)) {
    472       int vec = gen->temps_map[reg->Register.Index][chan_index];
    473       return vec;
    474    }
    475    else {
    476       return ppc_allocate_vec_register(gen->f);
    477    }
    478 }
    479 
    480 
    481 /**
    482  * Register store.  Store 'src_vec' at location indicated by 'reg'.
    483  * \param free_vec  Should the src_vec be released when done?
    484  */
    485 static void
    486 emit_store(struct gen_context *gen,
    487            int src_vec,
    488            const struct tgsi_full_instruction *inst,
    489            unsigned chan_index,
    490            boolean free_vec)
    491 {
    492    const struct tgsi_full_dst_register *reg = &inst->Dst[0];
    493 
    494    switch (reg->Register.File) {
    495    case TGSI_FILE_OUTPUT:
    496       {
    497          int offset = (reg->Register.Index * 4 + chan_index) * 16;
    498          int offset_reg = emit_li_offset(gen, offset);
    499          ppc_stvx(gen->f, src_vec, gen->outputs_reg, offset_reg);
    500       }
    501       break;
    502    case TGSI_FILE_TEMPORARY:
    503       if (is_ppc_vec_temporary_dst(reg)) {
    504          if (!free_vec) {
    505             int dst_vec = gen->temps_map[reg->Register.Index][chan_index];
    506             if (dst_vec != src_vec)
    507                ppc_vmove(gen->f, dst_vec, src_vec);
    508          }
    509          free_vec = FALSE;
    510       }
    511       else {
    512          int offset = (reg->Register.Index * 4 + chan_index) * 16;
    513          int offset_reg = emit_li_offset(gen, offset);
    514          ppc_stvx(gen->f, src_vec, gen->temps_reg, offset_reg);
    515       }
    516       break;
    517 #if 0
    518    case TGSI_FILE_ADDRESS:
    519       emit_addrs(
    520          func,
    521          xmm,
    522          reg->Register.Index,
    523          chan_index );
    524       break;
    525 #endif
    526    default:
    527       assert( 0 );
    528    }
    529 
    530 #if 0
    531    switch( inst->Instruction.Saturate ) {
    532    case TGSI_SAT_NONE:
    533       break;
    534 
    535    case TGSI_SAT_ZERO_ONE:
    536       /* assert( 0 ); */
    537       break;
    538 
    539    case TGSI_SAT_MINUS_PLUS_ONE:
    540       assert( 0 );
    541       break;
    542    }
    543 #endif
    544 
    545    if (free_vec)
    546       ppc_release_vec_register(gen->f, src_vec);
    547 }
    548 
    549 
    550 static void
    551 emit_scalar_unaryop(struct gen_context *gen, struct tgsi_full_instruction *inst)
    552 {
    553    int v0, v1;
    554    uint chan_index;
    555 
    556    v0 = get_src_vec(gen, inst, 0, TGSI_CHAN_X);
    557    v1 = ppc_allocate_vec_register(gen->f);
    558 
    559    switch (inst->Instruction.Opcode) {
    560    case TGSI_OPCODE_RSQ:
    561       /* v1 = 1.0 / sqrt(v0) */
    562       ppc_vrsqrtefp(gen->f, v1, v0);
    563       break;
    564    case TGSI_OPCODE_RCP:
    565       /* v1 = 1.0 / v0 */
    566       ppc_vrefp(gen->f, v1, v0);
    567       break;
    568    default:
    569       assert(0);
    570    }
    571 
    572    TGSI_FOR_EACH_DST0_ENABLED_CHANNEL( inst, chan_index ) {
    573       emit_store(gen, v1, inst, chan_index, FALSE);
    574    }
    575 
    576    release_src_vecs(gen);
    577    ppc_release_vec_register(gen->f, v1);
    578 }
    579 
    580 
    581 static void
    582 emit_unaryop(struct gen_context *gen, struct tgsi_full_instruction *inst)
    583 {
    584    uint chan_index;
    585 
    586    TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan_index) {
    587       int v0 = get_src_vec(gen, inst, 0, chan_index);   /* v0 = srcreg[0] */
    588       int v1 = get_dst_vec(gen, inst, chan_index);
    589       switch (inst->Instruction.Opcode) {
    590       case TGSI_OPCODE_ABS:
    591          /* turn off the most significant bit of each vector float word */
    592          {
    593             int bit31_vec = gen_get_bit31_vec(gen);
    594             ppc_vandc(gen->f, v1, v0, bit31_vec); /* v1 = v0 & ~bit31 */
    595          }
    596          break;
    597       case TGSI_OPCODE_FLR:
    598          ppc_vrfim(gen->f, v1, v0);         /* v1 = floor(v0) */
    599          break;
    600       case TGSI_OPCODE_FRC:
    601          ppc_vrfim(gen->f, v1, v0);      /* tmp = floor(v0) */
    602          ppc_vsubfp(gen->f, v1, v0, v1); /* v1 = v0 - v1 */
    603          break;
    604       case TGSI_OPCODE_EX2:
    605          ppc_vexptefp(gen->f, v1, v0);     /* v1 = 2^v0 */
    606          break;
    607       case TGSI_OPCODE_LG2:
    608          /* XXX this may be broken! */
    609          ppc_vlogefp(gen->f, v1, v0);      /* v1 = log2(v0) */
    610          break;
    611       case TGSI_OPCODE_MOV:
    612          if (v0 != v1)
    613             ppc_vmove(gen->f, v1, v0);
    614          break;
    615       default:
    616          assert(0);
    617       }
    618       emit_store(gen, v1, inst, chan_index, TRUE);  /* store v0 */
    619    }
    620 
    621    release_src_vecs(gen);
    622 }
    623 
    624 
    625 static void
    626 emit_binop(struct gen_context *gen, struct tgsi_full_instruction *inst)
    627 {
    628    int zero_vec = -1;
    629    uint chan;
    630 
    631    if (inst->Instruction.Opcode == TGSI_OPCODE_MUL) {
    632       zero_vec = ppc_allocate_vec_register(gen->f);
    633       ppc_vzero(gen->f, zero_vec);
    634    }
    635 
    636    TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan) {
    637       /* fetch src operands */
    638       int v0 = get_src_vec(gen, inst, 0, chan);
    639       int v1 = get_src_vec(gen, inst, 1, chan);
    640       int v2 = get_dst_vec(gen, inst, chan);
    641 
    642       /* emit binop */
    643       switch (inst->Instruction.Opcode) {
    644       case TGSI_OPCODE_ADD:
    645          ppc_vaddfp(gen->f, v2, v0, v1);
    646          break;
    647       case TGSI_OPCODE_SUB:
    648          ppc_vsubfp(gen->f, v2, v0, v1);
    649          break;
    650       case TGSI_OPCODE_MUL:
    651          ppc_vmaddfp(gen->f, v2, v0, v1, zero_vec);
    652          break;
    653       case TGSI_OPCODE_MIN:
    654          ppc_vminfp(gen->f, v2, v0, v1);
    655          break;
    656       case TGSI_OPCODE_MAX:
    657          ppc_vmaxfp(gen->f, v2, v0, v1);
    658          break;
    659       default:
    660          assert(0);
    661       }
    662 
    663       /* store v2 */
    664       emit_store(gen, v2, inst, chan, TRUE);
    665    }
    666 
    667    if (inst->Instruction.Opcode == TGSI_OPCODE_MUL)
    668       ppc_release_vec_register(gen->f, zero_vec);
    669 
    670    release_src_vecs(gen);
    671 }
    672 
    673 
    674 static void
    675 emit_triop(struct gen_context *gen, struct tgsi_full_instruction *inst)
    676 {
    677    uint chan;
    678 
    679    TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan) {
    680       /* fetch src operands */
    681       int v0 = get_src_vec(gen, inst, 0, chan);
    682       int v1 = get_src_vec(gen, inst, 1, chan);
    683       int v2 = get_src_vec(gen, inst, 2, chan);
    684       int v3 = get_dst_vec(gen, inst, chan);
    685 
    686       /* emit ALU */
    687       switch (inst->Instruction.Opcode) {
    688       case TGSI_OPCODE_MAD:
    689          ppc_vmaddfp(gen->f, v3, v0, v1, v2);   /* v3 = v0 * v1 + v2 */
    690          break;
    691       case TGSI_OPCODE_LRP:
    692          ppc_vsubfp(gen->f, v3, v1, v2);        /* v3 = v1 - v2 */
    693          ppc_vmaddfp(gen->f, v3, v0, v3, v2);   /* v3 = v0 * v3 + v2 */
    694          break;
    695       default:
    696          assert(0);
    697       }
    698 
    699       /* store v3 */
    700       emit_store(gen, v3, inst, chan, TRUE);
    701    }
    702 
    703    release_src_vecs(gen);
    704 }
    705 
    706 
    707 /**
    708  * Vector comparisons, resulting in 1.0 or 0.0 values.
    709  */
    710 static void
    711 emit_inequality(struct gen_context *gen, struct tgsi_full_instruction *inst)
    712 {
    713    uint chan;
    714    int one_vec = gen_one_vec(gen);
    715 
    716    TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan) {
    717       /* fetch src operands */
    718       int v0 = get_src_vec(gen, inst, 0, chan);
    719       int v1 = get_src_vec(gen, inst, 1, chan);
    720       int v2 = get_dst_vec(gen, inst, chan);
    721       boolean complement = FALSE;
    722 
    723       switch (inst->Instruction.Opcode) {
    724       case TGSI_OPCODE_SNE:
    725          complement = TRUE;
    726          /* fall-through */
    727       case TGSI_OPCODE_SEQ:
    728          ppc_vcmpeqfpx(gen->f, v2, v0, v1); /* v2 = v0 == v1 ? ~0 : 0 */
    729          break;
    730 
    731       case TGSI_OPCODE_SGE:
    732          complement = TRUE;
    733          /* fall-through */
    734       case TGSI_OPCODE_SLT:
    735          ppc_vcmpgtfpx(gen->f, v2, v1, v0); /* v2 = v1 > v0 ? ~0 : 0 */
    736          break;
    737 
    738       case TGSI_OPCODE_SLE:
    739          complement = TRUE;
    740          /* fall-through */
    741       case TGSI_OPCODE_SGT:
    742          ppc_vcmpgtfpx(gen->f, v2, v0, v1); /* v2 = v0 > v1 ? ~0 : 0 */
    743          break;
    744       default:
    745          assert(0);
    746       }
    747 
    748       /* v2 is now {0,0,0,0} or {~0,~0,~0,~0} */
    749 
    750       if (complement)
    751          ppc_vandc(gen->f, v2, one_vec, v2);    /* v2 = one_vec & ~v2 */
    752       else
    753          ppc_vand(gen->f, v2, one_vec, v2);     /* v2 = one_vec & v2 */
    754 
    755       /* store v2 */
    756       emit_store(gen, v2, inst, chan, TRUE);
    757    }
    758 
    759    release_src_vecs(gen);
    760 }
    761 
    762 
    763 static void
    764 emit_dotprod(struct gen_context *gen, struct tgsi_full_instruction *inst)
    765 {
    766    int v0, v1, v2;
    767    uint chan_index;
    768 
    769    v2 = ppc_allocate_vec_register(gen->f);
    770 
    771    ppc_vzero(gen->f, v2);                  /* v2 = {0, 0, 0, 0} */
    772 
    773    v0 = get_src_vec(gen, inst, 0, TGSI_CHAN_X); /* v0 = src0.XXXX */
    774    v1 = get_src_vec(gen, inst, 1, TGSI_CHAN_X); /* v1 = src1.XXXX */
    775    ppc_vmaddfp(gen->f, v2, v0, v1, v2);    /* v2 = v0 * v1 + v2 */
    776 
    777    v0 = get_src_vec(gen, inst, 0, TGSI_CHAN_Y); /* v0 = src0.YYYY */
    778    v1 = get_src_vec(gen, inst, 1, TGSI_CHAN_Y); /* v1 = src1.YYYY */
    779    ppc_vmaddfp(gen->f, v2, v0, v1, v2);    /* v2 = v0 * v1 + v2 */
    780 
    781    v0 = get_src_vec(gen, inst, 0, TGSI_CHAN_Z); /* v0 = src0.ZZZZ */
    782    v1 = get_src_vec(gen, inst, 1, TGSI_CHAN_Z); /* v1 = src1.ZZZZ */
    783    ppc_vmaddfp(gen->f, v2, v0, v1, v2);    /* v2 = v0 * v1 + v2 */
    784 
    785    if (inst->Instruction.Opcode == TGSI_OPCODE_DP4) {
    786       v0 = get_src_vec(gen, inst, 0, TGSI_CHAN_W); /* v0 = src0.WWWW */
    787       v1 = get_src_vec(gen, inst, 1, TGSI_CHAN_W); /* v1 = src1.WWWW */
    788       ppc_vmaddfp(gen->f, v2, v0, v1, v2);    /* v2 = v0 * v1 + v2 */
    789    }
    790    else if (inst->Instruction.Opcode == TGSI_OPCODE_DPH) {
    791       v1 = get_src_vec(gen, inst, 1, TGSI_CHAN_W); /* v1 = src1.WWWW */
    792       ppc_vaddfp(gen->f, v2, v2, v1);         /* v2 = v2 + v1 */
    793    }
    794 
    795    TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan_index) {
    796       emit_store(gen, v2, inst, chan_index, FALSE);  /* store v2, free v2 later */
    797    }
    798 
    799    release_src_vecs(gen);
    800 
    801    ppc_release_vec_register(gen->f, v2);
    802 }
    803 
    804 
    805 /** Approximation for vr = pow(va, vb) */
    806 static void
    807 ppc_vec_pow(struct ppc_function *f, int vr, int va, int vb)
    808 {
    809    /* pow(a,b) ~= exp2(log2(a) * b) */
    810    int t_vec = ppc_allocate_vec_register(f);
    811    int zero_vec = ppc_allocate_vec_register(f);
    812 
    813    ppc_vzero(f, zero_vec);
    814 
    815    ppc_vlogefp(f, t_vec, va);                   /* t = log2(va) */
    816    ppc_vmaddfp(f, t_vec, t_vec, vb, zero_vec);  /* t = t * vb + zero */
    817    ppc_vexptefp(f, vr, t_vec);                  /* vr = 2^t */
    818 
    819    ppc_release_vec_register(f, t_vec);
    820    ppc_release_vec_register(f, zero_vec);
    821 }
    822 
    823 
    824 static void
    825 emit_lit(struct gen_context *gen, struct tgsi_full_instruction *inst)
    826 {
    827    int one_vec = gen_one_vec(gen);
    828 
    829    /* Compute X */
    830    if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X)) {
    831       emit_store(gen, one_vec, inst, TGSI_CHAN_X, FALSE);
    832    }
    833 
    834    /* Compute Y, Z */
    835    if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y) ||
    836       TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z)) {
    837       int x_vec;
    838       int zero_vec = ppc_allocate_vec_register(gen->f);
    839 
    840       x_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_X);  /* x_vec = src[0].x */
    841 
    842       ppc_vzero(gen->f, zero_vec);                /* zero = {0,0,0,0} */
    843       ppc_vmaxfp(gen->f, x_vec, x_vec, zero_vec); /* x_vec = max(x_vec, 0) */
    844 
    845       if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y)) {
    846          emit_store(gen, x_vec, inst, TGSI_CHAN_Y, FALSE);
    847       }
    848 
    849       if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z)) {
    850          int y_vec, w_vec;
    851          int z_vec = ppc_allocate_vec_register(gen->f);
    852          int pow_vec = ppc_allocate_vec_register(gen->f);
    853          int pos_vec = ppc_allocate_vec_register(gen->f);
    854          int p128_vec = ppc_allocate_vec_register(gen->f);
    855          int n128_vec = ppc_allocate_vec_register(gen->f);
    856 
    857          y_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_Y);  /* y_vec = src[0].y */
    858          ppc_vmaxfp(gen->f, y_vec, y_vec, zero_vec); /* y_vec = max(y_vec, 0) */
    859 
    860          w_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_W);  /* w_vec = src[0].w */
    861 
    862          /* clamp W to [-128, 128] */
    863          load_constant_vec(gen, p128_vec, 128.0f);
    864          load_constant_vec(gen, n128_vec, -128.0f);
    865          ppc_vmaxfp(gen->f, w_vec, w_vec, n128_vec); /* w = max(w, -128) */
    866          ppc_vminfp(gen->f, w_vec, w_vec, p128_vec); /* w = min(w, 128) */
    867 
    868          /* if temp.x > 0
    869           *    z = pow(tmp.y, tmp.w)
    870           * else
    871           *    z = 0.0
    872           */
    873          ppc_vec_pow(gen->f, pow_vec, y_vec, w_vec);      /* pow = pow(y, w) */
    874          ppc_vcmpgtfpx(gen->f, pos_vec, x_vec, zero_vec); /* pos = x > 0 */
    875          ppc_vand(gen->f, z_vec, pow_vec, pos_vec);       /* z = pow & pos */
    876 
    877          emit_store(gen, z_vec, inst, TGSI_CHAN_Z, FALSE);
    878 
    879          ppc_release_vec_register(gen->f, z_vec);
    880          ppc_release_vec_register(gen->f, pow_vec);
    881          ppc_release_vec_register(gen->f, pos_vec);
    882          ppc_release_vec_register(gen->f, p128_vec);
    883          ppc_release_vec_register(gen->f, n128_vec);
    884       }
    885 
    886       ppc_release_vec_register(gen->f, zero_vec);
    887    }
    888 
    889    /* Compute W */
    890    if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_W)) {
    891       emit_store(gen, one_vec, inst, TGSI_CHAN_W, FALSE);
    892    }
    893 
    894    release_src_vecs(gen);
    895 }
    896 
    897 
    898 static void
    899 emit_exp(struct gen_context *gen, struct tgsi_full_instruction *inst)
    900 {
    901    const int one_vec = gen_one_vec(gen);
    902    int src_vec;
    903 
    904    /* get src arg */
    905    src_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_X);
    906 
    907    /* Compute X = 2^floor(src) */
    908    if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X)) {
    909       int dst_vec = get_dst_vec(gen, inst, TGSI_CHAN_X);
    910       int tmp_vec = ppc_allocate_vec_register(gen->f);
    911       ppc_vrfim(gen->f, tmp_vec, src_vec);             /* tmp = floor(src); */
    912       ppc_vexptefp(gen->f, dst_vec, tmp_vec);          /* dst = 2 ^ tmp */
    913       emit_store(gen, dst_vec, inst, TGSI_CHAN_X, TRUE);
    914       ppc_release_vec_register(gen->f, tmp_vec);
    915    }
    916 
    917    /* Compute Y = src - floor(src) */
    918    if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y)) {
    919       int dst_vec = get_dst_vec(gen, inst, TGSI_CHAN_Y);
    920       int tmp_vec = ppc_allocate_vec_register(gen->f);
    921       ppc_vrfim(gen->f, tmp_vec, src_vec);             /* tmp = floor(src); */
    922       ppc_vsubfp(gen->f, dst_vec, src_vec, tmp_vec);   /* dst = src - tmp */
    923       emit_store(gen, dst_vec, inst, TGSI_CHAN_Y, TRUE);
    924       ppc_release_vec_register(gen->f, tmp_vec);
    925    }
    926 
    927    /* Compute Z = RoughApprox2ToX(src) */
    928    if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z)) {
    929       int dst_vec = get_dst_vec(gen, inst, TGSI_CHAN_Z);
    930       ppc_vexptefp(gen->f, dst_vec, src_vec);          /* dst = 2 ^ src */
    931       emit_store(gen, dst_vec, inst, TGSI_CHAN_Z, TRUE);
    932    }
    933 
    934    /* Compute W = 1.0 */
    935    if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_W)) {
    936       emit_store(gen, one_vec, inst, TGSI_CHAN_W, FALSE);
    937    }
    938 
    939    release_src_vecs(gen);
    940 }
    941 
    942 
    943 static void
    944 emit_log(struct gen_context *gen, struct tgsi_full_instruction *inst)
    945 {
    946    const int bit31_vec = gen_get_bit31_vec(gen);
    947    const int one_vec = gen_one_vec(gen);
    948    int src_vec, abs_vec;
    949 
    950    /* get src arg */
    951    src_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_X);
    952 
    953    /* compute abs(src) */
    954    abs_vec = ppc_allocate_vec_register(gen->f);
    955    ppc_vandc(gen->f, abs_vec, src_vec, bit31_vec);     /* abs = src & ~bit31 */
    956 
    957    if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X) &&
    958       TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y)) {
    959 
    960       /* compute tmp = floor(log2(abs)) */
    961       int tmp_vec = ppc_allocate_vec_register(gen->f);
    962       ppc_vlogefp(gen->f, tmp_vec, abs_vec);           /* tmp = log2(abs) */
    963       ppc_vrfim(gen->f, tmp_vec, tmp_vec);             /* tmp = floor(tmp); */
    964 
    965       /* Compute X = tmp */
    966       if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X)) {
    967          emit_store(gen, tmp_vec, inst, TGSI_CHAN_X, FALSE);
    968       }
    969 
    970       /* Compute Y = abs / 2^tmp */
    971       if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y)) {
    972          const int zero_vec = ppc_allocate_vec_register(gen->f);
    973          ppc_vzero(gen->f, zero_vec);
    974          ppc_vexptefp(gen->f, tmp_vec, tmp_vec);       /* tmp = 2 ^ tmp */
    975          ppc_vrefp(gen->f, tmp_vec, tmp_vec);          /* tmp = 1 / tmp */
    976          /* tmp = abs * tmp + zero */
    977          ppc_vmaddfp(gen->f, tmp_vec, abs_vec, tmp_vec, zero_vec);
    978          emit_store(gen, tmp_vec, inst, TGSI_CHAN_Y, FALSE);
    979          ppc_release_vec_register(gen->f, zero_vec);
    980       }
    981 
    982       ppc_release_vec_register(gen->f, tmp_vec);
    983    }
    984 
    985    /* Compute Z = RoughApproxLog2(abs) */
    986    if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z)) {
    987       int dst_vec = get_dst_vec(gen, inst, TGSI_CHAN_Z);
    988       ppc_vlogefp(gen->f, dst_vec, abs_vec);           /* dst = log2(abs) */
    989       emit_store(gen, dst_vec, inst, TGSI_CHAN_Z, TRUE);
    990    }
    991 
    992    /* Compute W = 1.0 */
    993    if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_W)) {
    994       emit_store(gen, one_vec, inst, TGSI_CHAN_W, FALSE);
    995    }
    996 
    997    ppc_release_vec_register(gen->f, abs_vec);
    998    release_src_vecs(gen);
    999 }
   1000 
   1001 
   1002 static void
   1003 emit_pow(struct gen_context *gen, struct tgsi_full_instruction *inst)
   1004 {
   1005    int s0_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_X);
   1006    int s1_vec = get_src_vec(gen, inst, 1, TGSI_CHAN_X);
   1007    int pow_vec = ppc_allocate_vec_register(gen->f);
   1008    int chan;
   1009 
   1010    ppc_vec_pow(gen->f, pow_vec, s0_vec, s1_vec);
   1011 
   1012    TGSI_FOR_EACH_DST0_ENABLED_CHANNEL(inst, chan) {
   1013       emit_store(gen, pow_vec, inst, chan, FALSE);
   1014    }
   1015 
   1016    ppc_release_vec_register(gen->f, pow_vec);
   1017 
   1018    release_src_vecs(gen);
   1019 }
   1020 
   1021 
   1022 static void
   1023 emit_xpd(struct gen_context *gen, struct tgsi_full_instruction *inst)
   1024 {
   1025    int x0_vec, y0_vec, z0_vec;
   1026    int x1_vec, y1_vec, z1_vec;
   1027    int zero_vec, tmp_vec;
   1028    int tmp2_vec;
   1029 
   1030    zero_vec = ppc_allocate_vec_register(gen->f);
   1031    ppc_vzero(gen->f, zero_vec);
   1032 
   1033    tmp_vec = ppc_allocate_vec_register(gen->f);
   1034    tmp2_vec = ppc_allocate_vec_register(gen->f);
   1035 
   1036    if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y) ||
   1037       TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z)) {
   1038       x0_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_X);
   1039       x1_vec = get_src_vec(gen, inst, 1, TGSI_CHAN_X);
   1040    }
   1041    if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X) ||
   1042       TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z)) {
   1043       y0_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_Y);
   1044       y1_vec = get_src_vec(gen, inst, 1, TGSI_CHAN_Y);
   1045    }
   1046    if (TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X) ||
   1047       TGSI_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y)) {
   1048       z0_vec = get_src_vec(gen, inst, 0, TGSI_CHAN_Z);
   1049       z1_vec = get_src_vec(gen, inst, 1, TGSI_CHAN_Z);
   1050    }
   1051 
   1052    TGSI_IF_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_X) {
   1053       /* tmp = y0 * z1 */
   1054       ppc_vmaddfp(gen->f, tmp_vec, y0_vec, z1_vec, zero_vec);
   1055       /* tmp = tmp - z0 * y1*/
   1056       ppc_vnmsubfp(gen->f, tmp_vec, tmp_vec, z0_vec, y1_vec);
   1057       emit_store(gen, tmp_vec, inst, TGSI_CHAN_X, FALSE);
   1058    }
   1059    TGSI_IF_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Y) {
   1060       /* tmp = z0 * x1 */
   1061       ppc_vmaddfp(gen->f, tmp_vec, z0_vec, x1_vec, zero_vec);
   1062       /* tmp = tmp - x0 * z1 */
   1063       ppc_vnmsubfp(gen->f, tmp_vec, tmp_vec, x0_vec, z1_vec);
   1064       emit_store(gen, tmp_vec, inst, TGSI_CHAN_Y, FALSE);
   1065    }
   1066    TGSI_IF_IS_DST0_CHANNEL_ENABLED(inst, TGSI_CHAN_Z) {
   1067       /* tmp = x0 * y1 */
   1068       ppc_vmaddfp(gen->f, tmp_vec, x0_vec, y1_vec, zero_vec);
   1069       /* tmp = tmp - y0 * x1 */
   1070       ppc_vnmsubfp(gen->f, tmp_vec, tmp_vec, y0_vec, x1_vec);
   1071       emit_store(gen, tmp_vec, inst, TGSI_CHAN_Z, FALSE);
   1072    }
   1073    /* W is undefined */
   1074 
   1075    ppc_release_vec_register(gen->f, tmp_vec);
   1076    ppc_release_vec_register(gen->f, zero_vec);
   1077    release_src_vecs(gen);
   1078 }
   1079 
   1080 static int
   1081 emit_instruction(struct gen_context *gen,
   1082                  struct tgsi_full_instruction *inst)
   1083 {
   1084 
   1085    /* we don't handle saturation/clamping yet */
   1086    if (inst->Instruction.Saturate != TGSI_SAT_NONE)
   1087       return 0;
   1088 
   1089    /* need to use extra temps to fix SOA dependencies : */
   1090    if (tgsi_check_soa_dependencies(inst))
   1091       return FALSE;
   1092 
   1093    switch (inst->Instruction.Opcode) {
   1094    case TGSI_OPCODE_MOV:
   1095    case TGSI_OPCODE_ABS:
   1096    case TGSI_OPCODE_FLR:
   1097    case TGSI_OPCODE_FRC:
   1098    case TGSI_OPCODE_EX2:
   1099    case TGSI_OPCODE_LG2:
   1100       emit_unaryop(gen, inst);
   1101       break;
   1102    case TGSI_OPCODE_RSQ:
   1103    case TGSI_OPCODE_RCP:
   1104       emit_scalar_unaryop(gen, inst);
   1105       break;
   1106    case TGSI_OPCODE_ADD:
   1107    case TGSI_OPCODE_SUB:
   1108    case TGSI_OPCODE_MUL:
   1109    case TGSI_OPCODE_MIN:
   1110    case TGSI_OPCODE_MAX:
   1111       emit_binop(gen, inst);
   1112       break;
   1113    case TGSI_OPCODE_SEQ:
   1114    case TGSI_OPCODE_SNE:
   1115    case TGSI_OPCODE_SLT:
   1116    case TGSI_OPCODE_SGT:
   1117    case TGSI_OPCODE_SLE:
   1118    case TGSI_OPCODE_SGE:
   1119       emit_inequality(gen, inst);
   1120       break;
   1121    case TGSI_OPCODE_MAD:
   1122    case TGSI_OPCODE_LRP:
   1123       emit_triop(gen, inst);
   1124       break;
   1125    case TGSI_OPCODE_DP3:
   1126    case TGSI_OPCODE_DP4:
   1127    case TGSI_OPCODE_DPH:
   1128       emit_dotprod(gen, inst);
   1129       break;
   1130    case TGSI_OPCODE_LIT:
   1131       emit_lit(gen, inst);
   1132       break;
   1133    case TGSI_OPCODE_LOG:
   1134       emit_log(gen, inst);
   1135       break;
   1136    case TGSI_OPCODE_EXP:
   1137       emit_exp(gen, inst);
   1138       break;
   1139    case TGSI_OPCODE_POW:
   1140       emit_pow(gen, inst);
   1141       break;
   1142    case TGSI_OPCODE_XPD:
   1143       emit_xpd(gen, inst);
   1144       break;
   1145    case TGSI_OPCODE_END:
   1146       /* normal end */
   1147       return 1;
   1148    default:
   1149       return 0;
   1150    }
   1151    return 1;
   1152 }
   1153 
   1154 
   1155 static void
   1156 emit_declaration(
   1157    struct ppc_function *func,
   1158    struct tgsi_full_declaration *decl )
   1159 {
   1160    if( decl->Declaration.File == TGSI_FILE_INPUT ||
   1161        decl->Declaration.File == TGSI_FILE_SYSTEM_VALUE ) {
   1162 #if 0
   1163       unsigned first, last, mask;
   1164       unsigned i, j;
   1165 
   1166       first = decl->Range.First;
   1167       last = decl->Range.Last;
   1168       mask = decl->Declaration.UsageMask;
   1169 
   1170       for( i = first; i <= last; i++ ) {
   1171          for( j = 0; j < NUM_CHANNELS; j++ ) {
   1172             if( mask & (1 << j) ) {
   1173                switch( decl->Interp.Interpolate ) {
   1174                case TGSI_INTERPOLATE_CONSTANT:
   1175                   emit_coef_a0( func, 0, i, j );
   1176                   emit_inputs( func, 0, i, j );
   1177                   break;
   1178 
   1179                case TGSI_INTERPOLATE_LINEAR:
   1180                   emit_tempf( func, 0, 0, TGSI_SWIZZLE_X );
   1181                   emit_coef_dadx( func, 1, i, j );
   1182                   emit_tempf( func, 2, 0, TGSI_SWIZZLE_Y );
   1183                   emit_coef_dady( func, 3, i, j );
   1184                   emit_mul( func, 0, 1 );    /* x * dadx */
   1185                   emit_coef_a0( func, 4, i, j );
   1186                   emit_mul( func, 2, 3 );    /* y * dady */
   1187                   emit_add( func, 0, 4 );    /* x * dadx + a0 */
   1188                   emit_add( func, 0, 2 );    /* x * dadx + y * dady + a0 */
   1189                   emit_inputs( func, 0, i, j );
   1190                   break;
   1191 
   1192                case TGSI_INTERPOLATE_PERSPECTIVE:
   1193                   emit_tempf( func, 0, 0, TGSI_SWIZZLE_X );
   1194                   emit_coef_dadx( func, 1, i, j );
   1195                   emit_tempf( func, 2, 0, TGSI_SWIZZLE_Y );
   1196                   emit_coef_dady( func, 3, i, j );
   1197                   emit_mul( func, 0, 1 );    /* x * dadx */
   1198                   emit_tempf( func, 4, 0, TGSI_SWIZZLE_W );
   1199                   emit_coef_a0( func, 5, i, j );
   1200                   emit_rcp( func, 4, 4 );    /* 1.0 / w */
   1201                   emit_mul( func, 2, 3 );    /* y * dady */
   1202                   emit_add( func, 0, 5 );    /* x * dadx + a0 */
   1203                   emit_add( func, 0, 2 );    /* x * dadx + y * dady + a0 */
   1204                   emit_mul( func, 0, 4 );    /* (x * dadx + y * dady + a0) / w */
   1205                   emit_inputs( func, 0, i, j );
   1206                   break;
   1207 
   1208                default:
   1209                   assert( 0 );
   1210 		  break;
   1211                }
   1212             }
   1213          }
   1214       }
   1215 #endif
   1216    }
   1217 }
   1218 
   1219 
   1220 
   1221 static void
   1222 emit_prologue(struct ppc_function *func)
   1223 {
   1224    /* XXX set up stack frame */
   1225 }
   1226 
   1227 
   1228 static void
   1229 emit_epilogue(struct ppc_function *func)
   1230 {
   1231    ppc_comment(func, -4, "Epilogue:");
   1232    ppc_return(func);
   1233    /* XXX restore prev stack frame */
   1234 #if 0
   1235    debug_printf("PPC: Emitted %u instructions\n", func->num_inst);
   1236 #endif
   1237 }
   1238 
   1239 
   1240 
   1241 /**
   1242  * Translate a TGSI vertex/fragment shader to PPC code.
   1243  *
   1244  * \param tokens  the TGSI input shader
   1245  * \param func  the output PPC code/function
   1246  * \param immediates  buffer to place immediates, later passed to PPC func
   1247  * \return TRUE for success, FALSE if translation failed
   1248  */
   1249 boolean
   1250 tgsi_emit_ppc(const struct tgsi_token *tokens,
   1251               struct ppc_function *func,
   1252               float (*immediates)[4],
   1253               boolean do_swizzles )
   1254 {
   1255    static int use_ppc_asm = -1;
   1256    struct tgsi_parse_context parse;
   1257    /*boolean instruction_phase = FALSE;*/
   1258    unsigned ok = 1;
   1259    uint num_immediates = 0;
   1260    struct gen_context gen;
   1261    uint ic = 0;
   1262 
   1263    if (use_ppc_asm < 0) {
   1264       /* If GALLIUM_NOPPC is set, don't use PPC codegen */
   1265       use_ppc_asm = !debug_get_bool_option("GALLIUM_NOPPC", FALSE);
   1266    }
   1267    if (!use_ppc_asm)
   1268       return FALSE;
   1269 
   1270    if (0) {
   1271       debug_printf("\n********* TGSI->PPC ********\n");
   1272       tgsi_dump(tokens, 0);
   1273    }
   1274 
   1275    util_init_math();
   1276 
   1277    init_gen_context(&gen, func);
   1278 
   1279    emit_prologue(func);
   1280 
   1281    tgsi_parse_init( &parse, tokens );
   1282 
   1283    while (!tgsi_parse_end_of_tokens(&parse) && ok) {
   1284       tgsi_parse_token(&parse);
   1285 
   1286       switch (parse.FullToken.Token.Type) {
   1287       case TGSI_TOKEN_TYPE_DECLARATION:
   1288          if (parse.FullHeader.Processor.Processor == TGSI_PROCESSOR_FRAGMENT) {
   1289             emit_declaration(func, &parse.FullToken.FullDeclaration );
   1290          }
   1291          break;
   1292 
   1293       case TGSI_TOKEN_TYPE_INSTRUCTION:
   1294          if (func->print) {
   1295             _debug_printf("# ");
   1296             ic++;
   1297             tgsi_dump_instruction(&parse.FullToken.FullInstruction, ic);
   1298          }
   1299 
   1300          ok = emit_instruction(&gen, &parse.FullToken.FullInstruction);
   1301 
   1302 	 if (!ok) {
   1303             uint opcode = parse.FullToken.FullInstruction.Instruction.Opcode;
   1304 	    debug_printf("failed to translate tgsi opcode %d (%s) to PPC (%s)\n",
   1305 			 opcode,
   1306                          tgsi_get_opcode_name(opcode),
   1307                          parse.FullHeader.Processor.Processor == TGSI_PROCESSOR_VERTEX ?
   1308                          "vertex shader" : "fragment shader");
   1309 	 }
   1310          break;
   1311 
   1312       case TGSI_TOKEN_TYPE_IMMEDIATE:
   1313          /* splat each immediate component into a float[4] vector for SoA */
   1314          {
   1315             const uint size = parse.FullToken.FullImmediate.Immediate.NrTokens - 1;
   1316             uint i;
   1317             assert(size <= 4);
   1318             assert(num_immediates < TGSI_EXEC_NUM_IMMEDIATES);
   1319             for (i = 0; i < size; i++) {
   1320                immediates[num_immediates][i] =
   1321 		  parse.FullToken.FullImmediate.u[i].Float;
   1322             }
   1323             num_immediates++;
   1324          }
   1325          break;
   1326 
   1327       case TGSI_TOKEN_TYPE_PROPERTY:
   1328          break;
   1329 
   1330       default:
   1331 	 ok = 0;
   1332          assert( 0 );
   1333       }
   1334    }
   1335 
   1336    emit_epilogue(func);
   1337 
   1338    tgsi_parse_free( &parse );
   1339 
   1340    if (ppc_num_instructions(func) == 0) {
   1341       /* ran out of memory for instructions */
   1342       ok = FALSE;
   1343    }
   1344 
   1345    if (!ok)
   1346       debug_printf("TGSI->PPC translation failed\n");
   1347 
   1348    return ok;
   1349 }
   1350 
   1351 #else
   1352 
   1353 void ppc_dummy_func(void);
   1354 
   1355 void ppc_dummy_func(void)
   1356 {
   1357 }
   1358 
   1359 #endif /* PIPE_ARCH_PPC */
   1360