1 //===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines structures to encapsulate information gleaned from the 11 // target register and register class definitions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc-emitter" 16 17 #include "CodeGenRegisters.h" 18 #include "CodeGenTarget.h" 19 #include "llvm/ADT/IntEqClasses.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/TableGen/Error.h" 26 27 using namespace llvm; 28 29 //===----------------------------------------------------------------------===// 30 // CodeGenSubRegIndex 31 //===----------------------------------------------------------------------===// 32 33 CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum) 34 : TheDef(R), EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) { 35 Name = R->getName(); 36 if (R->getValue("Namespace")) 37 Namespace = R->getValueAsString("Namespace"); 38 Size = R->getValueAsInt("Size"); 39 Offset = R->getValueAsInt("Offset"); 40 } 41 42 CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace, 43 unsigned Enum) 44 : TheDef(0), Name(N), Namespace(Nspace), Size(-1), Offset(-1), 45 EnumValue(Enum), LaneMask(0), AllSuperRegsCovered(true) { 46 } 47 48 std::string CodeGenSubRegIndex::getQualifiedName() const { 49 std::string N = getNamespace(); 50 if (!N.empty()) 51 N += "::"; 52 N += getName(); 53 return N; 54 } 55 56 void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) { 57 if (!TheDef) 58 return; 59 60 std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf"); 61 if (!Comps.empty()) { 62 if (Comps.size() != 2) 63 PrintFatalError(TheDef->getLoc(), 64 "ComposedOf must have exactly two entries"); 65 CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]); 66 CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]); 67 CodeGenSubRegIndex *X = A->addComposite(B, this); 68 if (X) 69 PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries"); 70 } 71 72 std::vector<Record*> Parts = 73 TheDef->getValueAsListOfDefs("CoveringSubRegIndices"); 74 if (!Parts.empty()) { 75 if (Parts.size() < 2) 76 PrintFatalError(TheDef->getLoc(), 77 "CoveredBySubRegs must have two or more entries"); 78 SmallVector<CodeGenSubRegIndex*, 8> IdxParts; 79 for (unsigned i = 0, e = Parts.size(); i != e; ++i) 80 IdxParts.push_back(RegBank.getSubRegIdx(Parts[i])); 81 RegBank.addConcatSubRegIndex(IdxParts, this); 82 } 83 } 84 85 unsigned CodeGenSubRegIndex::computeLaneMask() { 86 // Already computed? 87 if (LaneMask) 88 return LaneMask; 89 90 // Recursion guard, shouldn't be required. 91 LaneMask = ~0u; 92 93 // The lane mask is simply the union of all sub-indices. 94 unsigned M = 0; 95 for (CompMap::iterator I = Composed.begin(), E = Composed.end(); I != E; ++I) 96 M |= I->second->computeLaneMask(); 97 assert(M && "Missing lane mask, sub-register cycle?"); 98 LaneMask = M; 99 return LaneMask; 100 } 101 102 //===----------------------------------------------------------------------===// 103 // CodeGenRegister 104 //===----------------------------------------------------------------------===// 105 106 CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) 107 : TheDef(R), 108 EnumValue(Enum), 109 CostPerUse(R->getValueAsInt("CostPerUse")), 110 CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")), 111 NumNativeRegUnits(0), 112 SubRegsComplete(false), 113 SuperRegsComplete(false), 114 TopoSig(~0u) 115 {} 116 117 void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) { 118 std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices"); 119 std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs"); 120 121 if (SRIs.size() != SRs.size()) 122 PrintFatalError(TheDef->getLoc(), 123 "SubRegs and SubRegIndices must have the same size"); 124 125 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) { 126 ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i])); 127 ExplicitSubRegs.push_back(RegBank.getReg(SRs[i])); 128 } 129 130 // Also compute leading super-registers. Each register has a list of 131 // covered-by-subregs super-registers where it appears as the first explicit 132 // sub-register. 133 // 134 // This is used by computeSecondarySubRegs() to find candidates. 135 if (CoveredBySubRegs && !ExplicitSubRegs.empty()) 136 ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this); 137 138 // Add ad hoc alias links. This is a symmetric relationship between two 139 // registers, so build a symmetric graph by adding links in both ends. 140 std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases"); 141 for (unsigned i = 0, e = Aliases.size(); i != e; ++i) { 142 CodeGenRegister *Reg = RegBank.getReg(Aliases[i]); 143 ExplicitAliases.push_back(Reg); 144 Reg->ExplicitAliases.push_back(this); 145 } 146 } 147 148 const std::string &CodeGenRegister::getName() const { 149 return TheDef->getName(); 150 } 151 152 namespace { 153 // Iterate over all register units in a set of registers. 154 class RegUnitIterator { 155 CodeGenRegister::Set::const_iterator RegI, RegE; 156 CodeGenRegister::RegUnitList::const_iterator UnitI, UnitE; 157 158 public: 159 RegUnitIterator(const CodeGenRegister::Set &Regs): 160 RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() { 161 162 if (RegI != RegE) { 163 UnitI = (*RegI)->getRegUnits().begin(); 164 UnitE = (*RegI)->getRegUnits().end(); 165 advance(); 166 } 167 } 168 169 bool isValid() const { return UnitI != UnitE; } 170 171 unsigned operator* () const { assert(isValid()); return *UnitI; } 172 173 const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; } 174 175 /// Preincrement. Move to the next unit. 176 void operator++() { 177 assert(isValid() && "Cannot advance beyond the last operand"); 178 ++UnitI; 179 advance(); 180 } 181 182 protected: 183 void advance() { 184 while (UnitI == UnitE) { 185 if (++RegI == RegE) 186 break; 187 UnitI = (*RegI)->getRegUnits().begin(); 188 UnitE = (*RegI)->getRegUnits().end(); 189 } 190 } 191 }; 192 } // namespace 193 194 // Merge two RegUnitLists maintaining the order and removing duplicates. 195 // Overwrites MergedRU in the process. 196 static void mergeRegUnits(CodeGenRegister::RegUnitList &MergedRU, 197 const CodeGenRegister::RegUnitList &RRU) { 198 CodeGenRegister::RegUnitList LRU = MergedRU; 199 MergedRU.clear(); 200 std::set_union(LRU.begin(), LRU.end(), RRU.begin(), RRU.end(), 201 std::back_inserter(MergedRU)); 202 } 203 204 // Return true of this unit appears in RegUnits. 205 static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) { 206 return std::count(RegUnits.begin(), RegUnits.end(), Unit); 207 } 208 209 // Inherit register units from subregisters. 210 // Return true if the RegUnits changed. 211 bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) { 212 unsigned OldNumUnits = RegUnits.size(); 213 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 214 I != E; ++I) { 215 CodeGenRegister *SR = I->second; 216 // Merge the subregister's units into this register's RegUnits. 217 mergeRegUnits(RegUnits, SR->RegUnits); 218 } 219 return OldNumUnits != RegUnits.size(); 220 } 221 222 const CodeGenRegister::SubRegMap & 223 CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) { 224 // Only compute this map once. 225 if (SubRegsComplete) 226 return SubRegs; 227 SubRegsComplete = true; 228 229 // First insert the explicit subregs and make sure they are fully indexed. 230 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 231 CodeGenRegister *SR = ExplicitSubRegs[i]; 232 CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i]; 233 if (!SubRegs.insert(std::make_pair(Idx, SR)).second) 234 PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() + 235 " appears twice in Register " + getName()); 236 // Map explicit sub-registers first, so the names take precedence. 237 // The inherited sub-registers are mapped below. 238 SubReg2Idx.insert(std::make_pair(SR, Idx)); 239 } 240 241 // Keep track of inherited subregs and how they can be reached. 242 SmallPtrSet<CodeGenRegister*, 8> Orphans; 243 244 // Clone inherited subregs and place duplicate entries in Orphans. 245 // Here the order is important - earlier subregs take precedence. 246 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 247 CodeGenRegister *SR = ExplicitSubRegs[i]; 248 const SubRegMap &Map = SR->computeSubRegs(RegBank); 249 250 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; 251 ++SI) { 252 if (!SubRegs.insert(*SI).second) 253 Orphans.insert(SI->second); 254 } 255 } 256 257 // Expand any composed subreg indices. 258 // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a 259 // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process 260 // expanded subreg indices recursively. 261 SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices; 262 for (unsigned i = 0; i != Indices.size(); ++i) { 263 CodeGenSubRegIndex *Idx = Indices[i]; 264 const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites(); 265 CodeGenRegister *SR = SubRegs[Idx]; 266 const SubRegMap &Map = SR->computeSubRegs(RegBank); 267 268 // Look at the possible compositions of Idx. 269 // They may not all be supported by SR. 270 for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(), 271 E = Comps.end(); I != E; ++I) { 272 SubRegMap::const_iterator SRI = Map.find(I->first); 273 if (SRI == Map.end()) 274 continue; // Idx + I->first doesn't exist in SR. 275 // Add I->second as a name for the subreg SRI->second, assuming it is 276 // orphaned, and the name isn't already used for something else. 277 if (SubRegs.count(I->second) || !Orphans.erase(SRI->second)) 278 continue; 279 // We found a new name for the orphaned sub-register. 280 SubRegs.insert(std::make_pair(I->second, SRI->second)); 281 Indices.push_back(I->second); 282 } 283 } 284 285 // Now Orphans contains the inherited subregisters without a direct index. 286 // Create inferred indexes for all missing entries. 287 // Work backwards in the Indices vector in order to compose subregs bottom-up. 288 // Consider this subreg sequence: 289 // 290 // qsub_1 -> dsub_0 -> ssub_0 291 // 292 // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register 293 // can be reached in two different ways: 294 // 295 // qsub_1 -> ssub_0 296 // dsub_2 -> ssub_0 297 // 298 // We pick the latter composition because another register may have [dsub_0, 299 // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The 300 // dsub_2 -> ssub_0 composition can be shared. 301 while (!Indices.empty() && !Orphans.empty()) { 302 CodeGenSubRegIndex *Idx = Indices.pop_back_val(); 303 CodeGenRegister *SR = SubRegs[Idx]; 304 const SubRegMap &Map = SR->computeSubRegs(RegBank); 305 for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; 306 ++SI) 307 if (Orphans.erase(SI->second)) 308 SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second; 309 } 310 311 // Compute the inverse SubReg -> Idx map. 312 for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end(); 313 SI != SE; ++SI) { 314 if (SI->second == this) { 315 ArrayRef<SMLoc> Loc; 316 if (TheDef) 317 Loc = TheDef->getLoc(); 318 PrintFatalError(Loc, "Register " + getName() + 319 " has itself as a sub-register"); 320 } 321 322 // Compute AllSuperRegsCovered. 323 if (!CoveredBySubRegs) 324 SI->first->AllSuperRegsCovered = false; 325 326 // Ensure that every sub-register has a unique name. 327 DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins = 328 SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first; 329 if (Ins->second == SI->first) 330 continue; 331 // Trouble: Two different names for SI->second. 332 ArrayRef<SMLoc> Loc; 333 if (TheDef) 334 Loc = TheDef->getLoc(); 335 PrintFatalError(Loc, "Sub-register can't have two names: " + 336 SI->second->getName() + " available as " + 337 SI->first->getName() + " and " + Ins->second->getName()); 338 } 339 340 // Derive possible names for sub-register concatenations from any explicit 341 // sub-registers. By doing this before computeSecondarySubRegs(), we ensure 342 // that getConcatSubRegIndex() won't invent any concatenated indices that the 343 // user already specified. 344 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 345 CodeGenRegister *SR = ExplicitSubRegs[i]; 346 if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1) 347 continue; 348 349 // SR is composed of multiple sub-regs. Find their names in this register. 350 SmallVector<CodeGenSubRegIndex*, 8> Parts; 351 for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) 352 Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j])); 353 354 // Offer this as an existing spelling for the concatenation of Parts. 355 RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]); 356 } 357 358 // Initialize RegUnitList. Because getSubRegs is called recursively, this 359 // processes the register hierarchy in postorder. 360 // 361 // Inherit all sub-register units. It is good enough to look at the explicit 362 // sub-registers, the other registers won't contribute any more units. 363 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 364 CodeGenRegister *SR = ExplicitSubRegs[i]; 365 // Explicit sub-registers are usually disjoint, so this is a good way of 366 // computing the union. We may pick up a few duplicates that will be 367 // eliminated below. 368 unsigned N = RegUnits.size(); 369 RegUnits.append(SR->RegUnits.begin(), SR->RegUnits.end()); 370 std::inplace_merge(RegUnits.begin(), RegUnits.begin() + N, RegUnits.end()); 371 } 372 RegUnits.erase(std::unique(RegUnits.begin(), RegUnits.end()), RegUnits.end()); 373 374 // Absent any ad hoc aliasing, we create one register unit per leaf register. 375 // These units correspond to the maximal cliques in the register overlap 376 // graph which is optimal. 377 // 378 // When there is ad hoc aliasing, we simply create one unit per edge in the 379 // undirected ad hoc aliasing graph. Technically, we could do better by 380 // identifying maximal cliques in the ad hoc graph, but cliques larger than 2 381 // are extremely rare anyway (I've never seen one), so we don't bother with 382 // the added complexity. 383 for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) { 384 CodeGenRegister *AR = ExplicitAliases[i]; 385 // Only visit each edge once. 386 if (AR->SubRegsComplete) 387 continue; 388 // Create a RegUnit representing this alias edge, and add it to both 389 // registers. 390 unsigned Unit = RegBank.newRegUnit(this, AR); 391 RegUnits.push_back(Unit); 392 AR->RegUnits.push_back(Unit); 393 } 394 395 // Finally, create units for leaf registers without ad hoc aliases. Note that 396 // a leaf register with ad hoc aliases doesn't get its own unit - it isn't 397 // necessary. This means the aliasing leaf registers can share a single unit. 398 if (RegUnits.empty()) 399 RegUnits.push_back(RegBank.newRegUnit(this)); 400 401 // We have now computed the native register units. More may be adopted later 402 // for balancing purposes. 403 NumNativeRegUnits = RegUnits.size(); 404 405 return SubRegs; 406 } 407 408 // In a register that is covered by its sub-registers, try to find redundant 409 // sub-registers. For example: 410 // 411 // QQ0 = {Q0, Q1} 412 // Q0 = {D0, D1} 413 // Q1 = {D2, D3} 414 // 415 // We can infer that D1_D2 is also a sub-register, even if it wasn't named in 416 // the register definition. 417 // 418 // The explicitly specified registers form a tree. This function discovers 419 // sub-register relationships that would force a DAG. 420 // 421 void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) { 422 // Collect new sub-registers first, add them later. 423 SmallVector<SubRegMap::value_type, 8> NewSubRegs; 424 425 // Look at the leading super-registers of each sub-register. Those are the 426 // candidates for new sub-registers, assuming they are fully contained in 427 // this register. 428 for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){ 429 const CodeGenRegister *SubReg = I->second; 430 const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs; 431 for (unsigned i = 0, e = Leads.size(); i != e; ++i) { 432 CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]); 433 // Already got this sub-register? 434 if (Cand == this || getSubRegIndex(Cand)) 435 continue; 436 // Check if each component of Cand is already a sub-register. 437 // We know that the first component is I->second, and is present with the 438 // name I->first. 439 SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first); 440 assert(!Cand->ExplicitSubRegs.empty() && 441 "Super-register has no sub-registers"); 442 for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) { 443 if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j])) 444 Parts.push_back(Idx); 445 else { 446 // Sub-register doesn't exist. 447 Parts.clear(); 448 break; 449 } 450 } 451 // If some Cand sub-register is not part of this register, or if Cand only 452 // has one sub-register, there is nothing to do. 453 if (Parts.size() <= 1) 454 continue; 455 456 // Each part of Cand is a sub-register of this. Make the full Cand also 457 // a sub-register with a concatenated sub-register index. 458 CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts); 459 NewSubRegs.push_back(std::make_pair(Concat, Cand)); 460 } 461 } 462 463 // Now add all the new sub-registers. 464 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 465 // Don't add Cand if another sub-register is already using the index. 466 if (!SubRegs.insert(NewSubRegs[i]).second) 467 continue; 468 469 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 470 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 471 SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx)); 472 } 473 474 // Create sub-register index composition maps for the synthesized indices. 475 for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { 476 CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; 477 CodeGenRegister *NewSubReg = NewSubRegs[i].second; 478 for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(), 479 SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) { 480 CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second); 481 if (!SubIdx) 482 PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " + 483 SI->second->getName() + " in " + getName()); 484 NewIdx->addComposite(SI->first, SubIdx); 485 } 486 } 487 } 488 489 void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) { 490 // Only visit each register once. 491 if (SuperRegsComplete) 492 return; 493 SuperRegsComplete = true; 494 495 // Make sure all sub-registers have been visited first, so the super-reg 496 // lists will be topologically ordered. 497 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 498 I != E; ++I) 499 I->second->computeSuperRegs(RegBank); 500 501 // Now add this as a super-register on all sub-registers. 502 // Also compute the TopoSigId in post-order. 503 TopoSigId Id; 504 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 505 I != E; ++I) { 506 // Topological signature computed from SubIdx, TopoId(SubReg). 507 // Loops and idempotent indices have TopoSig = ~0u. 508 Id.push_back(I->first->EnumValue); 509 Id.push_back(I->second->TopoSig); 510 511 // Don't add duplicate entries. 512 if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this) 513 continue; 514 I->second->SuperRegs.push_back(this); 515 } 516 TopoSig = RegBank.getTopoSig(Id); 517 } 518 519 void 520 CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet, 521 CodeGenRegBank &RegBank) const { 522 assert(SubRegsComplete && "Must precompute sub-registers"); 523 for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { 524 CodeGenRegister *SR = ExplicitSubRegs[i]; 525 if (OSet.insert(SR)) 526 SR->addSubRegsPreOrder(OSet, RegBank); 527 } 528 // Add any secondary sub-registers that weren't part of the explicit tree. 529 for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); 530 I != E; ++I) 531 OSet.insert(I->second); 532 } 533 534 // Get the sum of this register's unit weights. 535 unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const { 536 unsigned Weight = 0; 537 for (RegUnitList::const_iterator I = RegUnits.begin(), E = RegUnits.end(); 538 I != E; ++I) { 539 Weight += RegBank.getRegUnit(*I).Weight; 540 } 541 return Weight; 542 } 543 544 //===----------------------------------------------------------------------===// 545 // RegisterTuples 546 //===----------------------------------------------------------------------===// 547 548 // A RegisterTuples def is used to generate pseudo-registers from lists of 549 // sub-registers. We provide a SetTheory expander class that returns the new 550 // registers. 551 namespace { 552 struct TupleExpander : SetTheory::Expander { 553 void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) { 554 std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices"); 555 unsigned Dim = Indices.size(); 556 ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); 557 if (Dim != SubRegs->getSize()) 558 PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); 559 if (Dim < 2) 560 PrintFatalError(Def->getLoc(), 561 "Tuples must have at least 2 sub-registers"); 562 563 // Evaluate the sub-register lists to be zipped. 564 unsigned Length = ~0u; 565 SmallVector<SetTheory::RecSet, 4> Lists(Dim); 566 for (unsigned i = 0; i != Dim; ++i) { 567 ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc()); 568 Length = std::min(Length, unsigned(Lists[i].size())); 569 } 570 571 if (Length == 0) 572 return; 573 574 // Precompute some types. 575 Record *RegisterCl = Def->getRecords().getClass("Register"); 576 RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); 577 StringInit *BlankName = StringInit::get(""); 578 579 // Zip them up. 580 for (unsigned n = 0; n != Length; ++n) { 581 std::string Name; 582 Record *Proto = Lists[0][n]; 583 std::vector<Init*> Tuple; 584 unsigned CostPerUse = 0; 585 for (unsigned i = 0; i != Dim; ++i) { 586 Record *Reg = Lists[i][n]; 587 if (i) Name += '_'; 588 Name += Reg->getName(); 589 Tuple.push_back(DefInit::get(Reg)); 590 CostPerUse = std::max(CostPerUse, 591 unsigned(Reg->getValueAsInt("CostPerUse"))); 592 } 593 594 // Create a new Record representing the synthesized register. This record 595 // is only for consumption by CodeGenRegister, it is not added to the 596 // RecordKeeper. 597 Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords()); 598 Elts.insert(NewReg); 599 600 // Copy Proto super-classes. 601 ArrayRef<Record *> Supers = Proto->getSuperClasses(); 602 ArrayRef<SMRange> Ranges = Proto->getSuperClassRanges(); 603 for (unsigned i = 0, e = Supers.size(); i != e; ++i) 604 NewReg->addSuperClass(Supers[i], Ranges[i]); 605 606 // Copy Proto fields. 607 for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { 608 RecordVal RV = Proto->getValues()[i]; 609 610 // Skip existing fields, like NAME. 611 if (NewReg->getValue(RV.getNameInit())) 612 continue; 613 614 StringRef Field = RV.getName(); 615 616 // Replace the sub-register list with Tuple. 617 if (Field == "SubRegs") 618 RV.setValue(ListInit::get(Tuple, RegisterRecTy)); 619 620 // Provide a blank AsmName. MC hacks are required anyway. 621 if (Field == "AsmName") 622 RV.setValue(BlankName); 623 624 // CostPerUse is aggregated from all Tuple members. 625 if (Field == "CostPerUse") 626 RV.setValue(IntInit::get(CostPerUse)); 627 628 // Composite registers are always covered by sub-registers. 629 if (Field == "CoveredBySubRegs") 630 RV.setValue(BitInit::get(true)); 631 632 // Copy fields from the RegisterTuples def. 633 if (Field == "SubRegIndices" || 634 Field == "CompositeIndices") { 635 NewReg->addValue(*Def->getValue(Field)); 636 continue; 637 } 638 639 // Some fields get their default uninitialized value. 640 if (Field == "DwarfNumbers" || 641 Field == "DwarfAlias" || 642 Field == "Aliases") { 643 if (const RecordVal *DefRV = RegisterCl->getValue(Field)) 644 NewReg->addValue(*DefRV); 645 continue; 646 } 647 648 // Everything else is copied from Proto. 649 NewReg->addValue(RV); 650 } 651 } 652 } 653 }; 654 } 655 656 //===----------------------------------------------------------------------===// 657 // CodeGenRegisterClass 658 //===----------------------------------------------------------------------===// 659 660 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) 661 : TheDef(R), 662 Name(R->getName()), 663 TopoSigs(RegBank.getNumTopoSigs()), 664 EnumValue(-1) { 665 // Rename anonymous register classes. 666 if (R->getName().size() > 9 && R->getName()[9] == '.') { 667 static unsigned AnonCounter = 0; 668 R->setName("AnonRegClass_" + utostr(AnonCounter)); 669 // MSVC2012 ICEs if AnonCounter++ is directly passed to utostr. 670 ++AnonCounter; 671 } 672 673 std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); 674 for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { 675 Record *Type = TypeList[i]; 676 if (!Type->isSubClassOf("ValueType")) 677 PrintFatalError("RegTypes list member '" + Type->getName() + 678 "' does not derive from the ValueType class!"); 679 VTs.push_back(getValueType(Type)); 680 } 681 assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); 682 683 // Allocation order 0 is the full set. AltOrders provides others. 684 const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); 685 ListInit *AltOrders = R->getValueAsListInit("AltOrders"); 686 Orders.resize(1 + AltOrders->size()); 687 688 // Default allocation order always contains all registers. 689 for (unsigned i = 0, e = Elements->size(); i != e; ++i) { 690 Orders[0].push_back((*Elements)[i]); 691 const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]); 692 Members.insert(Reg); 693 TopoSigs.set(Reg->getTopoSig()); 694 } 695 696 // Alternative allocation orders may be subsets. 697 SetTheory::RecSet Order; 698 for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { 699 RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc()); 700 Orders[1 + i].append(Order.begin(), Order.end()); 701 // Verify that all altorder members are regclass members. 702 while (!Order.empty()) { 703 CodeGenRegister *Reg = RegBank.getReg(Order.back()); 704 Order.pop_back(); 705 if (!contains(Reg)) 706 PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() + 707 " is not a class member"); 708 } 709 } 710 711 // Allow targets to override the size in bits of the RegisterClass. 712 unsigned Size = R->getValueAsInt("Size"); 713 714 Namespace = R->getValueAsString("Namespace"); 715 SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits(); 716 SpillAlignment = R->getValueAsInt("Alignment"); 717 CopyCost = R->getValueAsInt("CopyCost"); 718 Allocatable = R->getValueAsBit("isAllocatable"); 719 AltOrderSelect = R->getValueAsString("AltOrderSelect"); 720 } 721 722 // Create an inferred register class that was missing from the .td files. 723 // Most properties will be inherited from the closest super-class after the 724 // class structure has been computed. 725 CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, 726 StringRef Name, Key Props) 727 : Members(*Props.Members), 728 TheDef(0), 729 Name(Name), 730 TopoSigs(RegBank.getNumTopoSigs()), 731 EnumValue(-1), 732 SpillSize(Props.SpillSize), 733 SpillAlignment(Props.SpillAlignment), 734 CopyCost(0), 735 Allocatable(true) { 736 for (CodeGenRegister::Set::iterator I = Members.begin(), E = Members.end(); 737 I != E; ++I) 738 TopoSigs.set((*I)->getTopoSig()); 739 } 740 741 // Compute inherited propertied for a synthesized register class. 742 void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { 743 assert(!getDef() && "Only synthesized classes can inherit properties"); 744 assert(!SuperClasses.empty() && "Synthesized class without super class"); 745 746 // The last super-class is the smallest one. 747 CodeGenRegisterClass &Super = *SuperClasses.back(); 748 749 // Most properties are copied directly. 750 // Exceptions are members, size, and alignment 751 Namespace = Super.Namespace; 752 VTs = Super.VTs; 753 CopyCost = Super.CopyCost; 754 Allocatable = Super.Allocatable; 755 AltOrderSelect = Super.AltOrderSelect; 756 757 // Copy all allocation orders, filter out foreign registers from the larger 758 // super-class. 759 Orders.resize(Super.Orders.size()); 760 for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) 761 for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) 762 if (contains(RegBank.getReg(Super.Orders[i][j]))) 763 Orders[i].push_back(Super.Orders[i][j]); 764 } 765 766 bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { 767 return Members.count(Reg); 768 } 769 770 namespace llvm { 771 raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { 772 OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment; 773 for (CodeGenRegister::Set::const_iterator I = K.Members->begin(), 774 E = K.Members->end(); I != E; ++I) 775 OS << ", " << (*I)->getName(); 776 return OS << " }"; 777 } 778 } 779 780 // This is a simple lexicographical order that can be used to search for sets. 781 // It is not the same as the topological order provided by TopoOrderRC. 782 bool CodeGenRegisterClass::Key:: 783 operator<(const CodeGenRegisterClass::Key &B) const { 784 assert(Members && B.Members); 785 if (*Members != *B.Members) 786 return *Members < *B.Members; 787 if (SpillSize != B.SpillSize) 788 return SpillSize < B.SpillSize; 789 return SpillAlignment < B.SpillAlignment; 790 } 791 792 // Returns true if RC is a strict subclass. 793 // RC is a sub-class of this class if it is a valid replacement for any 794 // instruction operand where a register of this classis required. It must 795 // satisfy these conditions: 796 // 797 // 1. All RC registers are also in this. 798 // 2. The RC spill size must not be smaller than our spill size. 799 // 3. RC spill alignment must be compatible with ours. 800 // 801 static bool testSubClass(const CodeGenRegisterClass *A, 802 const CodeGenRegisterClass *B) { 803 return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 && 804 A->SpillSize <= B->SpillSize && 805 std::includes(A->getMembers().begin(), A->getMembers().end(), 806 B->getMembers().begin(), B->getMembers().end(), 807 CodeGenRegister::Less()); 808 } 809 810 /// Sorting predicate for register classes. This provides a topological 811 /// ordering that arranges all register classes before their sub-classes. 812 /// 813 /// Register classes with the same registers, spill size, and alignment form a 814 /// clique. They will be ordered alphabetically. 815 /// 816 static int TopoOrderRC(const void *PA, const void *PB) { 817 const CodeGenRegisterClass *A = *(const CodeGenRegisterClass* const*)PA; 818 const CodeGenRegisterClass *B = *(const CodeGenRegisterClass* const*)PB; 819 if (A == B) 820 return 0; 821 822 // Order by ascending spill size. 823 if (A->SpillSize < B->SpillSize) 824 return -1; 825 if (A->SpillSize > B->SpillSize) 826 return 1; 827 828 // Order by ascending spill alignment. 829 if (A->SpillAlignment < B->SpillAlignment) 830 return -1; 831 if (A->SpillAlignment > B->SpillAlignment) 832 return 1; 833 834 // Order by descending set size. Note that the classes' allocation order may 835 // not have been computed yet. The Members set is always vaild. 836 if (A->getMembers().size() > B->getMembers().size()) 837 return -1; 838 if (A->getMembers().size() < B->getMembers().size()) 839 return 1; 840 841 // Finally order by name as a tie breaker. 842 return StringRef(A->getName()).compare(B->getName()); 843 } 844 845 std::string CodeGenRegisterClass::getQualifiedName() const { 846 if (Namespace.empty()) 847 return getName(); 848 else 849 return Namespace + "::" + getName(); 850 } 851 852 // Compute sub-classes of all register classes. 853 // Assume the classes are ordered topologically. 854 void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { 855 ArrayRef<CodeGenRegisterClass*> RegClasses = RegBank.getRegClasses(); 856 857 // Visit backwards so sub-classes are seen first. 858 for (unsigned rci = RegClasses.size(); rci; --rci) { 859 CodeGenRegisterClass &RC = *RegClasses[rci - 1]; 860 RC.SubClasses.resize(RegClasses.size()); 861 RC.SubClasses.set(RC.EnumValue); 862 863 // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. 864 for (unsigned s = rci; s != RegClasses.size(); ++s) { 865 if (RC.SubClasses.test(s)) 866 continue; 867 CodeGenRegisterClass *SubRC = RegClasses[s]; 868 if (!testSubClass(&RC, SubRC)) 869 continue; 870 // SubRC is a sub-class. Grap all its sub-classes so we won't have to 871 // check them again. 872 RC.SubClasses |= SubRC->SubClasses; 873 } 874 875 // Sweep up missed clique members. They will be immediately preceding RC. 876 for (unsigned s = rci - 1; s && testSubClass(&RC, RegClasses[s - 1]); --s) 877 RC.SubClasses.set(s - 1); 878 } 879 880 // Compute the SuperClasses lists from the SubClasses vectors. 881 for (unsigned rci = 0; rci != RegClasses.size(); ++rci) { 882 const BitVector &SC = RegClasses[rci]->getSubClasses(); 883 for (int s = SC.find_first(); s >= 0; s = SC.find_next(s)) { 884 if (unsigned(s) == rci) 885 continue; 886 RegClasses[s]->SuperClasses.push_back(RegClasses[rci]); 887 } 888 } 889 890 // With the class hierarchy in place, let synthesized register classes inherit 891 // properties from their closest super-class. The iteration order here can 892 // propagate properties down multiple levels. 893 for (unsigned rci = 0; rci != RegClasses.size(); ++rci) 894 if (!RegClasses[rci]->getDef()) 895 RegClasses[rci]->inheritProperties(RegBank); 896 } 897 898 void 899 CodeGenRegisterClass::getSuperRegClasses(CodeGenSubRegIndex *SubIdx, 900 BitVector &Out) const { 901 DenseMap<CodeGenSubRegIndex*, 902 SmallPtrSet<CodeGenRegisterClass*, 8> >::const_iterator 903 FindI = SuperRegClasses.find(SubIdx); 904 if (FindI == SuperRegClasses.end()) 905 return; 906 for (SmallPtrSet<CodeGenRegisterClass*, 8>::const_iterator I = 907 FindI->second.begin(), E = FindI->second.end(); I != E; ++I) 908 Out.set((*I)->EnumValue); 909 } 910 911 // Populate a unique sorted list of units from a register set. 912 void CodeGenRegisterClass::buildRegUnitSet( 913 std::vector<unsigned> &RegUnits) const { 914 std::vector<unsigned> TmpUnits; 915 for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) 916 TmpUnits.push_back(*UnitI); 917 std::sort(TmpUnits.begin(), TmpUnits.end()); 918 std::unique_copy(TmpUnits.begin(), TmpUnits.end(), 919 std::back_inserter(RegUnits)); 920 } 921 922 //===----------------------------------------------------------------------===// 923 // CodeGenRegBank 924 //===----------------------------------------------------------------------===// 925 926 CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) { 927 // Configure register Sets to understand register classes and tuples. 928 Sets.addFieldExpander("RegisterClass", "MemberList"); 929 Sets.addFieldExpander("CalleeSavedRegs", "SaveList"); 930 Sets.addExpander("RegisterTuples", new TupleExpander()); 931 932 // Read in the user-defined (named) sub-register indices. 933 // More indices will be synthesized later. 934 std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex"); 935 std::sort(SRIs.begin(), SRIs.end(), LessRecord()); 936 for (unsigned i = 0, e = SRIs.size(); i != e; ++i) 937 getSubRegIdx(SRIs[i]); 938 // Build composite maps from ComposedOf fields. 939 for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) 940 SubRegIndices[i]->updateComponents(*this); 941 942 // Read in the register definitions. 943 std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); 944 std::sort(Regs.begin(), Regs.end(), LessRecordRegister()); 945 Registers.reserve(Regs.size()); 946 // Assign the enumeration values. 947 for (unsigned i = 0, e = Regs.size(); i != e; ++i) 948 getReg(Regs[i]); 949 950 // Expand tuples and number the new registers. 951 std::vector<Record*> Tups = 952 Records.getAllDerivedDefinitions("RegisterTuples"); 953 954 std::vector<Record*> TupRegsCopy; 955 for (unsigned i = 0, e = Tups.size(); i != e; ++i) { 956 const std::vector<Record*> *TupRegs = Sets.expand(Tups[i]); 957 TupRegsCopy.reserve(TupRegs->size()); 958 TupRegsCopy.assign(TupRegs->begin(), TupRegs->end()); 959 std::sort(TupRegsCopy.begin(), TupRegsCopy.end(), LessRecordRegister()); 960 for (unsigned j = 0, je = TupRegsCopy.size(); j != je; ++j) 961 getReg((TupRegsCopy)[j]); 962 TupRegsCopy.clear(); 963 } 964 965 // Now all the registers are known. Build the object graph of explicit 966 // register-register references. 967 for (unsigned i = 0, e = Registers.size(); i != e; ++i) 968 Registers[i]->buildObjectGraph(*this); 969 970 // Compute register name map. 971 for (unsigned i = 0, e = Registers.size(); i != e; ++i) 972 RegistersByName.GetOrCreateValue( 973 Registers[i]->TheDef->getValueAsString("AsmName"), 974 Registers[i]); 975 976 // Precompute all sub-register maps. 977 // This will create Composite entries for all inferred sub-register indices. 978 for (unsigned i = 0, e = Registers.size(); i != e; ++i) 979 Registers[i]->computeSubRegs(*this); 980 981 // Infer even more sub-registers by combining leading super-registers. 982 for (unsigned i = 0, e = Registers.size(); i != e; ++i) 983 if (Registers[i]->CoveredBySubRegs) 984 Registers[i]->computeSecondarySubRegs(*this); 985 986 // After the sub-register graph is complete, compute the topologically 987 // ordered SuperRegs list. 988 for (unsigned i = 0, e = Registers.size(); i != e; ++i) 989 Registers[i]->computeSuperRegs(*this); 990 991 // Native register units are associated with a leaf register. They've all been 992 // discovered now. 993 NumNativeRegUnits = RegUnits.size(); 994 995 // Read in register class definitions. 996 std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass"); 997 if (RCs.empty()) 998 PrintFatalError(std::string("No 'RegisterClass' subclasses defined!")); 999 1000 // Allocate user-defined register classes. 1001 RegClasses.reserve(RCs.size()); 1002 for (unsigned i = 0, e = RCs.size(); i != e; ++i) 1003 addToMaps(new CodeGenRegisterClass(*this, RCs[i])); 1004 1005 // Infer missing classes to create a full algebra. 1006 computeInferredRegisterClasses(); 1007 1008 // Order register classes topologically and assign enum values. 1009 array_pod_sort(RegClasses.begin(), RegClasses.end(), TopoOrderRC); 1010 for (unsigned i = 0, e = RegClasses.size(); i != e; ++i) 1011 RegClasses[i]->EnumValue = i; 1012 CodeGenRegisterClass::computeSubClasses(*this); 1013 } 1014 1015 // Create a synthetic CodeGenSubRegIndex without a corresponding Record. 1016 CodeGenSubRegIndex* 1017 CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) { 1018 CodeGenSubRegIndex *Idx = new CodeGenSubRegIndex(Name, Namespace, 1019 SubRegIndices.size() + 1); 1020 SubRegIndices.push_back(Idx); 1021 return Idx; 1022 } 1023 1024 CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) { 1025 CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def]; 1026 if (Idx) 1027 return Idx; 1028 Idx = new CodeGenSubRegIndex(Def, SubRegIndices.size() + 1); 1029 SubRegIndices.push_back(Idx); 1030 return Idx; 1031 } 1032 1033 CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { 1034 CodeGenRegister *&Reg = Def2Reg[Def]; 1035 if (Reg) 1036 return Reg; 1037 Reg = new CodeGenRegister(Def, Registers.size() + 1); 1038 Registers.push_back(Reg); 1039 return Reg; 1040 } 1041 1042 void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { 1043 RegClasses.push_back(RC); 1044 1045 if (Record *Def = RC->getDef()) 1046 Def2RC.insert(std::make_pair(Def, RC)); 1047 1048 // Duplicate classes are rejected by insert(). 1049 // That's OK, we only care about the properties handled by CGRC::Key. 1050 CodeGenRegisterClass::Key K(*RC); 1051 Key2RC.insert(std::make_pair(K, RC)); 1052 } 1053 1054 // Create a synthetic sub-class if it is missing. 1055 CodeGenRegisterClass* 1056 CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC, 1057 const CodeGenRegister::Set *Members, 1058 StringRef Name) { 1059 // Synthetic sub-class has the same size and alignment as RC. 1060 CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment); 1061 RCKeyMap::const_iterator FoundI = Key2RC.find(K); 1062 if (FoundI != Key2RC.end()) 1063 return FoundI->second; 1064 1065 // Sub-class doesn't exist, create a new one. 1066 CodeGenRegisterClass *NewRC = new CodeGenRegisterClass(*this, Name, K); 1067 addToMaps(NewRC); 1068 return NewRC; 1069 } 1070 1071 CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) { 1072 if (CodeGenRegisterClass *RC = Def2RC[Def]) 1073 return RC; 1074 1075 PrintFatalError(Def->getLoc(), "Not a known RegisterClass!"); 1076 } 1077 1078 CodeGenSubRegIndex* 1079 CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A, 1080 CodeGenSubRegIndex *B) { 1081 // Look for an existing entry. 1082 CodeGenSubRegIndex *Comp = A->compose(B); 1083 if (Comp) 1084 return Comp; 1085 1086 // None exists, synthesize one. 1087 std::string Name = A->getName() + "_then_" + B->getName(); 1088 Comp = createSubRegIndex(Name, A->getNamespace()); 1089 A->addComposite(B, Comp); 1090 return Comp; 1091 } 1092 1093 CodeGenSubRegIndex *CodeGenRegBank:: 1094 getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts) { 1095 assert(Parts.size() > 1 && "Need two parts to concatenate"); 1096 1097 // Look for an existing entry. 1098 CodeGenSubRegIndex *&Idx = ConcatIdx[Parts]; 1099 if (Idx) 1100 return Idx; 1101 1102 // None exists, synthesize one. 1103 std::string Name = Parts.front()->getName(); 1104 // Determine whether all parts are contiguous. 1105 bool isContinuous = true; 1106 unsigned Size = Parts.front()->Size; 1107 unsigned LastOffset = Parts.front()->Offset; 1108 unsigned LastSize = Parts.front()->Size; 1109 for (unsigned i = 1, e = Parts.size(); i != e; ++i) { 1110 Name += '_'; 1111 Name += Parts[i]->getName(); 1112 Size += Parts[i]->Size; 1113 if (Parts[i]->Offset != (LastOffset + LastSize)) 1114 isContinuous = false; 1115 LastOffset = Parts[i]->Offset; 1116 LastSize = Parts[i]->Size; 1117 } 1118 Idx = createSubRegIndex(Name, Parts.front()->getNamespace()); 1119 Idx->Size = Size; 1120 Idx->Offset = isContinuous ? Parts.front()->Offset : -1; 1121 return Idx; 1122 } 1123 1124 void CodeGenRegBank::computeComposites() { 1125 // Keep track of TopoSigs visited. We only need to visit each TopoSig once, 1126 // and many registers will share TopoSigs on regular architectures. 1127 BitVector TopoSigs(getNumTopoSigs()); 1128 1129 for (unsigned i = 0, e = Registers.size(); i != e; ++i) { 1130 CodeGenRegister *Reg1 = Registers[i]; 1131 1132 // Skip identical subreg structures already processed. 1133 if (TopoSigs.test(Reg1->getTopoSig())) 1134 continue; 1135 TopoSigs.set(Reg1->getTopoSig()); 1136 1137 const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs(); 1138 for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(), 1139 e1 = SRM1.end(); i1 != e1; ++i1) { 1140 CodeGenSubRegIndex *Idx1 = i1->first; 1141 CodeGenRegister *Reg2 = i1->second; 1142 // Ignore identity compositions. 1143 if (Reg1 == Reg2) 1144 continue; 1145 const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); 1146 // Try composing Idx1 with another SubRegIndex. 1147 for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(), 1148 e2 = SRM2.end(); i2 != e2; ++i2) { 1149 CodeGenSubRegIndex *Idx2 = i2->first; 1150 CodeGenRegister *Reg3 = i2->second; 1151 // Ignore identity compositions. 1152 if (Reg2 == Reg3) 1153 continue; 1154 // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. 1155 CodeGenSubRegIndex *Idx3 = Reg1->getSubRegIndex(Reg3); 1156 assert(Idx3 && "Sub-register doesn't have an index"); 1157 1158 // Conflicting composition? Emit a warning but allow it. 1159 if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) 1160 PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() + 1161 " and " + Idx2->getQualifiedName() + 1162 " compose ambiguously as " + Prev->getQualifiedName() + 1163 " or " + Idx3->getQualifiedName()); 1164 } 1165 } 1166 } 1167 } 1168 1169 // Compute lane masks. This is similar to register units, but at the 1170 // sub-register index level. Each bit in the lane mask is like a register unit 1171 // class, and two lane masks will have a bit in common if two sub-register 1172 // indices overlap in some register. 1173 // 1174 // Conservatively share a lane mask bit if two sub-register indices overlap in 1175 // some registers, but not in others. That shouldn't happen a lot. 1176 void CodeGenRegBank::computeSubRegIndexLaneMasks() { 1177 // First assign individual bits to all the leaf indices. 1178 unsigned Bit = 0; 1179 // Determine mask of lanes that cover their registers. 1180 CoveringLanes = ~0u; 1181 for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) { 1182 CodeGenSubRegIndex *Idx = SubRegIndices[i]; 1183 if (Idx->getComposites().empty()) { 1184 Idx->LaneMask = 1u << Bit; 1185 // Share bit 31 in the unlikely case there are more than 32 leafs. 1186 // 1187 // Sharing bits is harmless; it allows graceful degradation in targets 1188 // with more than 32 vector lanes. They simply get a limited resolution 1189 // view of lanes beyond the 32nd. 1190 // 1191 // See also the comment for getSubRegIndexLaneMask(). 1192 if (Bit < 31) 1193 ++Bit; 1194 else 1195 // Once bit 31 is shared among multiple leafs, the 'lane' it represents 1196 // is no longer covering its registers. 1197 CoveringLanes &= ~(1u << Bit); 1198 } else { 1199 Idx->LaneMask = 0; 1200 } 1201 } 1202 1203 // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented 1204 // by the sub-register graph? This doesn't occur in any known targets. 1205 1206 // Inherit lanes from composites. 1207 for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) { 1208 unsigned Mask = SubRegIndices[i]->computeLaneMask(); 1209 // If some super-registers without CoveredBySubRegs use this index, we can 1210 // no longer assume that the lanes are covering their registers. 1211 if (!SubRegIndices[i]->AllSuperRegsCovered) 1212 CoveringLanes &= ~Mask; 1213 } 1214 } 1215 1216 namespace { 1217 // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is 1218 // the transitive closure of the union of overlapping register 1219 // classes. Together, the UberRegSets form a partition of the registers. If we 1220 // consider overlapping register classes to be connected, then each UberRegSet 1221 // is a set of connected components. 1222 // 1223 // An UberRegSet will likely be a horizontal slice of register names of 1224 // the same width. Nontrivial subregisters should then be in a separate 1225 // UberRegSet. But this property isn't required for valid computation of 1226 // register unit weights. 1227 // 1228 // A Weight field caches the max per-register unit weight in each UberRegSet. 1229 // 1230 // A set of SingularDeterminants flags single units of some register in this set 1231 // for which the unit weight equals the set weight. These units should not have 1232 // their weight increased. 1233 struct UberRegSet { 1234 CodeGenRegister::Set Regs; 1235 unsigned Weight; 1236 CodeGenRegister::RegUnitList SingularDeterminants; 1237 1238 UberRegSet(): Weight(0) {} 1239 }; 1240 } // namespace 1241 1242 // Partition registers into UberRegSets, where each set is the transitive 1243 // closure of the union of overlapping register classes. 1244 // 1245 // UberRegSets[0] is a special non-allocatable set. 1246 static void computeUberSets(std::vector<UberRegSet> &UberSets, 1247 std::vector<UberRegSet*> &RegSets, 1248 CodeGenRegBank &RegBank) { 1249 1250 const std::vector<CodeGenRegister*> &Registers = RegBank.getRegisters(); 1251 1252 // The Register EnumValue is one greater than its index into Registers. 1253 assert(Registers.size() == Registers[Registers.size()-1]->EnumValue && 1254 "register enum value mismatch"); 1255 1256 // For simplicitly make the SetID the same as EnumValue. 1257 IntEqClasses UberSetIDs(Registers.size()+1); 1258 std::set<unsigned> AllocatableRegs; 1259 for (unsigned i = 0, e = RegBank.getRegClasses().size(); i != e; ++i) { 1260 1261 CodeGenRegisterClass *RegClass = RegBank.getRegClasses()[i]; 1262 if (!RegClass->Allocatable) 1263 continue; 1264 1265 const CodeGenRegister::Set &Regs = RegClass->getMembers(); 1266 if (Regs.empty()) 1267 continue; 1268 1269 unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue); 1270 assert(USetID && "register number 0 is invalid"); 1271 1272 AllocatableRegs.insert((*Regs.begin())->EnumValue); 1273 for (CodeGenRegister::Set::const_iterator I = llvm::next(Regs.begin()), 1274 E = Regs.end(); I != E; ++I) { 1275 AllocatableRegs.insert((*I)->EnumValue); 1276 UberSetIDs.join(USetID, (*I)->EnumValue); 1277 } 1278 } 1279 // Combine non-allocatable regs. 1280 for (unsigned i = 0, e = Registers.size(); i != e; ++i) { 1281 unsigned RegNum = Registers[i]->EnumValue; 1282 if (AllocatableRegs.count(RegNum)) 1283 continue; 1284 1285 UberSetIDs.join(0, RegNum); 1286 } 1287 UberSetIDs.compress(); 1288 1289 // Make the first UberSet a special unallocatable set. 1290 unsigned ZeroID = UberSetIDs[0]; 1291 1292 // Insert Registers into the UberSets formed by union-find. 1293 // Do not resize after this. 1294 UberSets.resize(UberSetIDs.getNumClasses()); 1295 for (unsigned i = 0, e = Registers.size(); i != e; ++i) { 1296 const CodeGenRegister *Reg = Registers[i]; 1297 unsigned USetID = UberSetIDs[Reg->EnumValue]; 1298 if (!USetID) 1299 USetID = ZeroID; 1300 else if (USetID == ZeroID) 1301 USetID = 0; 1302 1303 UberRegSet *USet = &UberSets[USetID]; 1304 USet->Regs.insert(Reg); 1305 RegSets[i] = USet; 1306 } 1307 } 1308 1309 // Recompute each UberSet weight after changing unit weights. 1310 static void computeUberWeights(std::vector<UberRegSet> &UberSets, 1311 CodeGenRegBank &RegBank) { 1312 // Skip the first unallocatable set. 1313 for (std::vector<UberRegSet>::iterator I = llvm::next(UberSets.begin()), 1314 E = UberSets.end(); I != E; ++I) { 1315 1316 // Initialize all unit weights in this set, and remember the max units/reg. 1317 const CodeGenRegister *Reg = 0; 1318 unsigned MaxWeight = 0, Weight = 0; 1319 for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) { 1320 if (Reg != UnitI.getReg()) { 1321 if (Weight > MaxWeight) 1322 MaxWeight = Weight; 1323 Reg = UnitI.getReg(); 1324 Weight = 0; 1325 } 1326 unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight; 1327 if (!UWeight) { 1328 UWeight = 1; 1329 RegBank.increaseRegUnitWeight(*UnitI, UWeight); 1330 } 1331 Weight += UWeight; 1332 } 1333 if (Weight > MaxWeight) 1334 MaxWeight = Weight; 1335 if (I->Weight != MaxWeight) { 1336 DEBUG( 1337 dbgs() << "UberSet " << I - UberSets.begin() << " Weight " << MaxWeight; 1338 for (CodeGenRegister::Set::iterator 1339 UnitI = I->Regs.begin(), UnitE = I->Regs.end(); 1340 UnitI != UnitE; ++UnitI) { 1341 dbgs() << " " << (*UnitI)->getName(); 1342 } 1343 dbgs() << "\n"); 1344 // Update the set weight. 1345 I->Weight = MaxWeight; 1346 } 1347 1348 // Find singular determinants. 1349 for (CodeGenRegister::Set::iterator RegI = I->Regs.begin(), 1350 RegE = I->Regs.end(); RegI != RegE; ++RegI) { 1351 if ((*RegI)->getRegUnits().size() == 1 1352 && (*RegI)->getWeight(RegBank) == I->Weight) 1353 mergeRegUnits(I->SingularDeterminants, (*RegI)->getRegUnits()); 1354 } 1355 } 1356 } 1357 1358 // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of 1359 // a register and its subregisters so that they have the same weight as their 1360 // UberSet. Self-recursion processes the subregister tree in postorder so 1361 // subregisters are normalized first. 1362 // 1363 // Side effects: 1364 // - creates new adopted register units 1365 // - causes superregisters to inherit adopted units 1366 // - increases the weight of "singular" units 1367 // - induces recomputation of UberWeights. 1368 static bool normalizeWeight(CodeGenRegister *Reg, 1369 std::vector<UberRegSet> &UberSets, 1370 std::vector<UberRegSet*> &RegSets, 1371 std::set<unsigned> &NormalRegs, 1372 CodeGenRegister::RegUnitList &NormalUnits, 1373 CodeGenRegBank &RegBank) { 1374 bool Changed = false; 1375 if (!NormalRegs.insert(Reg->EnumValue).second) 1376 return Changed; 1377 1378 const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); 1379 for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(), 1380 SRE = SRM.end(); SRI != SRE; ++SRI) { 1381 if (SRI->second == Reg) 1382 continue; // self-cycles happen 1383 1384 Changed |= normalizeWeight(SRI->second, UberSets, RegSets, 1385 NormalRegs, NormalUnits, RegBank); 1386 } 1387 // Postorder register normalization. 1388 1389 // Inherit register units newly adopted by subregisters. 1390 if (Reg->inheritRegUnits(RegBank)) 1391 computeUberWeights(UberSets, RegBank); 1392 1393 // Check if this register is too skinny for its UberRegSet. 1394 UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)]; 1395 1396 unsigned RegWeight = Reg->getWeight(RegBank); 1397 if (UberSet->Weight > RegWeight) { 1398 // A register unit's weight can be adjusted only if it is the singular unit 1399 // for this register, has not been used to normalize a subregister's set, 1400 // and has not already been used to singularly determine this UberRegSet. 1401 unsigned AdjustUnit = Reg->getRegUnits().front(); 1402 if (Reg->getRegUnits().size() != 1 1403 || hasRegUnit(NormalUnits, AdjustUnit) 1404 || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) { 1405 // We don't have an adjustable unit, so adopt a new one. 1406 AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight); 1407 Reg->adoptRegUnit(AdjustUnit); 1408 // Adopting a unit does not immediately require recomputing set weights. 1409 } 1410 else { 1411 // Adjust the existing single unit. 1412 RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight); 1413 // The unit may be shared among sets and registers within this set. 1414 computeUberWeights(UberSets, RegBank); 1415 } 1416 Changed = true; 1417 } 1418 1419 // Mark these units normalized so superregisters can't change their weights. 1420 mergeRegUnits(NormalUnits, Reg->getRegUnits()); 1421 1422 return Changed; 1423 } 1424 1425 // Compute a weight for each register unit created during getSubRegs. 1426 // 1427 // The goal is that two registers in the same class will have the same weight, 1428 // where each register's weight is defined as sum of its units' weights. 1429 void CodeGenRegBank::computeRegUnitWeights() { 1430 std::vector<UberRegSet> UberSets; 1431 std::vector<UberRegSet*> RegSets(Registers.size()); 1432 computeUberSets(UberSets, RegSets, *this); 1433 // UberSets and RegSets are now immutable. 1434 1435 computeUberWeights(UberSets, *this); 1436 1437 // Iterate over each Register, normalizing the unit weights until reaching 1438 // a fix point. 1439 unsigned NumIters = 0; 1440 for (bool Changed = true; Changed; ++NumIters) { 1441 assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights"); 1442 Changed = false; 1443 for (unsigned i = 0, e = Registers.size(); i != e; ++i) { 1444 CodeGenRegister::RegUnitList NormalUnits; 1445 std::set<unsigned> NormalRegs; 1446 Changed |= normalizeWeight(Registers[i], UberSets, RegSets, 1447 NormalRegs, NormalUnits, *this); 1448 } 1449 } 1450 } 1451 1452 // Find a set in UniqueSets with the same elements as Set. 1453 // Return an iterator into UniqueSets. 1454 static std::vector<RegUnitSet>::const_iterator 1455 findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets, 1456 const RegUnitSet &Set) { 1457 std::vector<RegUnitSet>::const_iterator 1458 I = UniqueSets.begin(), E = UniqueSets.end(); 1459 for(;I != E; ++I) { 1460 if (I->Units == Set.Units) 1461 break; 1462 } 1463 return I; 1464 } 1465 1466 // Return true if the RUSubSet is a subset of RUSuperSet. 1467 static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet, 1468 const std::vector<unsigned> &RUSuperSet) { 1469 return std::includes(RUSuperSet.begin(), RUSuperSet.end(), 1470 RUSubSet.begin(), RUSubSet.end()); 1471 } 1472 1473 /// Iteratively prune unit sets. Prune subsets that are close to the superset, 1474 /// but with one or two registers removed. We occasionally have registers like 1475 /// APSR and PC thrown in with the general registers. We also see many 1476 /// special-purpose register subsets, such as tail-call and Thumb 1477 /// encodings. Generating all possible overlapping sets is combinatorial and 1478 /// overkill for modeling pressure. Ideally we could fix this statically in 1479 /// tablegen by (1) having the target define register classes that only include 1480 /// the allocatable registers and marking other classes as non-allocatable and 1481 /// (2) having a way to mark special purpose classes as "don't-care" classes for 1482 /// the purpose of pressure. However, we make an attempt to handle targets that 1483 /// are not nicely defined by merging nearly identical register unit sets 1484 /// statically. This generates smaller tables. Then, dynamically, we adjust the 1485 /// set limit by filtering the reserved registers. 1486 /// 1487 /// Merge sets only if the units have the same weight. For example, on ARM, 1488 /// Q-tuples with ssub index 0 include all S regs but also include D16+. We 1489 /// should not expand the S set to include D regs. 1490 void CodeGenRegBank::pruneUnitSets() { 1491 assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets"); 1492 1493 // Form an equivalence class of UnitSets with no significant difference. 1494 std::vector<unsigned> SuperSetIDs; 1495 for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); 1496 SubIdx != EndIdx; ++SubIdx) { 1497 const RegUnitSet &SubSet = RegUnitSets[SubIdx]; 1498 unsigned SuperIdx = 0; 1499 for (; SuperIdx != EndIdx; ++SuperIdx) { 1500 if (SuperIdx == SubIdx) 1501 continue; 1502 1503 unsigned UnitWeight = RegUnits[SubSet.Units[0]].Weight; 1504 const RegUnitSet &SuperSet = RegUnitSets[SuperIdx]; 1505 if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) 1506 && (SubSet.Units.size() + 3 > SuperSet.Units.size()) 1507 && UnitWeight == RegUnits[SuperSet.Units[0]].Weight 1508 && UnitWeight == RegUnits[SuperSet.Units.back()].Weight) { 1509 DEBUG(dbgs() << "UnitSet " << SubIdx << " subsumed by " << SuperIdx 1510 << "\n"); 1511 break; 1512 } 1513 } 1514 if (SuperIdx == EndIdx) 1515 SuperSetIDs.push_back(SubIdx); 1516 } 1517 // Populate PrunedUnitSets with each equivalence class's superset. 1518 std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size()); 1519 for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) { 1520 unsigned SuperIdx = SuperSetIDs[i]; 1521 PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name; 1522 PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units); 1523 } 1524 RegUnitSets.swap(PrunedUnitSets); 1525 } 1526 1527 // Create a RegUnitSet for each RegClass that contains all units in the class 1528 // including adopted units that are necessary to model register pressure. Then 1529 // iteratively compute RegUnitSets such that the union of any two overlapping 1530 // RegUnitSets is repreresented. 1531 // 1532 // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any 1533 // RegUnitSet that is a superset of that RegUnitClass. 1534 void CodeGenRegBank::computeRegUnitSets() { 1535 assert(RegUnitSets.empty() && "dirty RegUnitSets"); 1536 1537 // Compute a unique RegUnitSet for each RegClass. 1538 const ArrayRef<CodeGenRegisterClass*> &RegClasses = getRegClasses(); 1539 unsigned NumRegClasses = RegClasses.size(); 1540 for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) { 1541 if (!RegClasses[RCIdx]->Allocatable) 1542 continue; 1543 1544 // Speculatively grow the RegUnitSets to hold the new set. 1545 RegUnitSets.resize(RegUnitSets.size() + 1); 1546 RegUnitSets.back().Name = RegClasses[RCIdx]->getName(); 1547 1548 // Compute a sorted list of units in this class. 1549 RegClasses[RCIdx]->buildRegUnitSet(RegUnitSets.back().Units); 1550 1551 // Find an existing RegUnitSet. 1552 std::vector<RegUnitSet>::const_iterator SetI = 1553 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1554 if (SetI != llvm::prior(RegUnitSets.end())) 1555 RegUnitSets.pop_back(); 1556 } 1557 1558 DEBUG(dbgs() << "\nBefore pruning:\n"; 1559 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1560 USIdx < USEnd; ++USIdx) { 1561 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name 1562 << ":"; 1563 ArrayRef<unsigned> Units = RegUnitSets[USIdx].Units; 1564 for (unsigned i = 0, e = Units.size(); i < e; ++i) 1565 dbgs() << " " << RegUnits[Units[i]].Roots[0]->getName(); 1566 dbgs() << "\n"; 1567 }); 1568 1569 // Iteratively prune unit sets. 1570 pruneUnitSets(); 1571 1572 DEBUG(dbgs() << "\nBefore union:\n"; 1573 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1574 USIdx < USEnd; ++USIdx) { 1575 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name 1576 << ":"; 1577 ArrayRef<unsigned> Units = RegUnitSets[USIdx].Units; 1578 for (unsigned i = 0, e = Units.size(); i < e; ++i) 1579 dbgs() << " " << RegUnits[Units[i]].Roots[0]->getName(); 1580 dbgs() << "\n"; 1581 } 1582 dbgs() << "\nUnion sets:\n"); 1583 1584 // Iterate over all unit sets, including new ones added by this loop. 1585 unsigned NumRegUnitSubSets = RegUnitSets.size(); 1586 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1587 // In theory, this is combinatorial. In practice, it needs to be bounded 1588 // by a small number of sets for regpressure to be efficient. 1589 // If the assert is hit, we need to implement pruning. 1590 assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference"); 1591 1592 // Compare new sets with all original classes. 1593 for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1; 1594 SearchIdx != EndIdx; ++SearchIdx) { 1595 std::set<unsigned> Intersection; 1596 std::set_intersection(RegUnitSets[Idx].Units.begin(), 1597 RegUnitSets[Idx].Units.end(), 1598 RegUnitSets[SearchIdx].Units.begin(), 1599 RegUnitSets[SearchIdx].Units.end(), 1600 std::inserter(Intersection, Intersection.begin())); 1601 if (Intersection.empty()) 1602 continue; 1603 1604 // Speculatively grow the RegUnitSets to hold the new set. 1605 RegUnitSets.resize(RegUnitSets.size() + 1); 1606 RegUnitSets.back().Name = 1607 RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name; 1608 1609 std::set_union(RegUnitSets[Idx].Units.begin(), 1610 RegUnitSets[Idx].Units.end(), 1611 RegUnitSets[SearchIdx].Units.begin(), 1612 RegUnitSets[SearchIdx].Units.end(), 1613 std::inserter(RegUnitSets.back().Units, 1614 RegUnitSets.back().Units.begin())); 1615 1616 // Find an existing RegUnitSet, or add the union to the unique sets. 1617 std::vector<RegUnitSet>::const_iterator SetI = 1618 findRegUnitSet(RegUnitSets, RegUnitSets.back()); 1619 if (SetI != llvm::prior(RegUnitSets.end())) 1620 RegUnitSets.pop_back(); 1621 else { 1622 DEBUG(dbgs() << "UnitSet " << RegUnitSets.size()-1 1623 << " " << RegUnitSets.back().Name << ":"; 1624 ArrayRef<unsigned> Units = RegUnitSets.back().Units; 1625 for (unsigned i = 0, e = Units.size(); i < e; ++i) 1626 dbgs() << " " << RegUnits[Units[i]].Roots[0]->getName(); 1627 dbgs() << "\n";); 1628 } 1629 } 1630 } 1631 1632 // Iteratively prune unit sets after inferring supersets. 1633 pruneUnitSets(); 1634 1635 DEBUG(dbgs() << "\n"; 1636 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1637 USIdx < USEnd; ++USIdx) { 1638 dbgs() << "UnitSet " << USIdx << " " << RegUnitSets[USIdx].Name 1639 << ":"; 1640 ArrayRef<unsigned> Units = RegUnitSets[USIdx].Units; 1641 for (unsigned i = 0, e = Units.size(); i < e; ++i) 1642 dbgs() << " " << RegUnits[Units[i]].Roots[0]->getName(); 1643 dbgs() << "\n"; 1644 }); 1645 1646 // For each register class, list the UnitSets that are supersets. 1647 RegClassUnitSets.resize(NumRegClasses); 1648 for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) { 1649 if (!RegClasses[RCIdx]->Allocatable) 1650 continue; 1651 1652 // Recompute the sorted list of units in this class. 1653 std::vector<unsigned> RCRegUnits; 1654 RegClasses[RCIdx]->buildRegUnitSet(RCRegUnits); 1655 1656 // Don't increase pressure for unallocatable regclasses. 1657 if (RCRegUnits.empty()) 1658 continue; 1659 1660 DEBUG(dbgs() << "RC " << RegClasses[RCIdx]->getName() << " Units: \n"; 1661 for (unsigned i = 0, e = RCRegUnits.size(); i < e; ++i) 1662 dbgs() << RegUnits[RCRegUnits[i]].getRoots()[0]->getName() << " "; 1663 dbgs() << "\n UnitSetIDs:"); 1664 1665 // Find all supersets. 1666 for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); 1667 USIdx != USEnd; ++USIdx) { 1668 if (isRegUnitSubSet(RCRegUnits, RegUnitSets[USIdx].Units)) { 1669 DEBUG(dbgs() << " " << USIdx); 1670 RegClassUnitSets[RCIdx].push_back(USIdx); 1671 } 1672 } 1673 DEBUG(dbgs() << "\n"); 1674 assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass"); 1675 } 1676 1677 // For each register unit, ensure that we have the list of UnitSets that 1678 // contain the unit. Normally, this matches an existing list of UnitSets for a 1679 // register class. If not, we create a new entry in RegClassUnitSets as a 1680 // "fake" register class. 1681 for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; 1682 UnitIdx < UnitEnd; ++UnitIdx) { 1683 std::vector<unsigned> RUSets; 1684 for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) { 1685 RegUnitSet &RUSet = RegUnitSets[i]; 1686 if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx) 1687 == RUSet.Units.end()) 1688 continue; 1689 RUSets.push_back(i); 1690 } 1691 unsigned RCUnitSetsIdx = 0; 1692 for (unsigned e = RegClassUnitSets.size(); 1693 RCUnitSetsIdx != e; ++RCUnitSetsIdx) { 1694 if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) { 1695 break; 1696 } 1697 } 1698 RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx; 1699 if (RCUnitSetsIdx == RegClassUnitSets.size()) { 1700 // Create a new list of UnitSets as a "fake" register class. 1701 RegClassUnitSets.resize(RCUnitSetsIdx + 1); 1702 RegClassUnitSets[RCUnitSetsIdx].swap(RUSets); 1703 } 1704 } 1705 } 1706 1707 struct LessUnits { 1708 const CodeGenRegBank &RegBank; 1709 LessUnits(const CodeGenRegBank &RB): RegBank(RB) {} 1710 1711 bool operator()(unsigned ID1, unsigned ID2) { 1712 return RegBank.getRegPressureSet(ID1).Units.size() 1713 < RegBank.getRegPressureSet(ID2).Units.size(); 1714 } 1715 }; 1716 1717 void CodeGenRegBank::computeDerivedInfo() { 1718 computeComposites(); 1719 computeSubRegIndexLaneMasks(); 1720 1721 // Compute a weight for each register unit created during getSubRegs. 1722 // This may create adopted register units (with unit # >= NumNativeRegUnits). 1723 computeRegUnitWeights(); 1724 1725 // Compute a unique set of RegUnitSets. One for each RegClass and inferred 1726 // supersets for the union of overlapping sets. 1727 computeRegUnitSets(); 1728 1729 // Get the weight of each set. 1730 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 1731 RegUnitSets[Idx].Weight = getRegUnitSetWeight(RegUnitSets[Idx].Units); 1732 1733 // Find the order of each set. 1734 RegUnitSetOrder.reserve(RegUnitSets.size()); 1735 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) 1736 RegUnitSetOrder.push_back(Idx); 1737 1738 std::stable_sort(RegUnitSetOrder.begin(), RegUnitSetOrder.end(), 1739 LessUnits(*this)); 1740 for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { 1741 RegUnitSets[RegUnitSetOrder[Idx]].Order = Idx; 1742 } 1743 } 1744 1745 // 1746 // Synthesize missing register class intersections. 1747 // 1748 // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X) 1749 // returns a maximal register class for all X. 1750 // 1751 void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) { 1752 for (unsigned rci = 0, rce = RegClasses.size(); rci != rce; ++rci) { 1753 CodeGenRegisterClass *RC1 = RC; 1754 CodeGenRegisterClass *RC2 = RegClasses[rci]; 1755 if (RC1 == RC2) 1756 continue; 1757 1758 // Compute the set intersection of RC1 and RC2. 1759 const CodeGenRegister::Set &Memb1 = RC1->getMembers(); 1760 const CodeGenRegister::Set &Memb2 = RC2->getMembers(); 1761 CodeGenRegister::Set Intersection; 1762 std::set_intersection(Memb1.begin(), Memb1.end(), 1763 Memb2.begin(), Memb2.end(), 1764 std::inserter(Intersection, Intersection.begin()), 1765 CodeGenRegister::Less()); 1766 1767 // Skip disjoint class pairs. 1768 if (Intersection.empty()) 1769 continue; 1770 1771 // If RC1 and RC2 have different spill sizes or alignments, use the 1772 // larger size for sub-classing. If they are equal, prefer RC1. 1773 if (RC2->SpillSize > RC1->SpillSize || 1774 (RC2->SpillSize == RC1->SpillSize && 1775 RC2->SpillAlignment > RC1->SpillAlignment)) 1776 std::swap(RC1, RC2); 1777 1778 getOrCreateSubClass(RC1, &Intersection, 1779 RC1->getName() + "_and_" + RC2->getName()); 1780 } 1781 } 1782 1783 // 1784 // Synthesize missing sub-classes for getSubClassWithSubReg(). 1785 // 1786 // Make sure that the set of registers in RC with a given SubIdx sub-register 1787 // form a register class. Update RC->SubClassWithSubReg. 1788 // 1789 void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) { 1790 // Map SubRegIndex to set of registers in RC supporting that SubRegIndex. 1791 typedef std::map<CodeGenSubRegIndex*, CodeGenRegister::Set, 1792 CodeGenSubRegIndex::Less> SubReg2SetMap; 1793 1794 // Compute the set of registers supporting each SubRegIndex. 1795 SubReg2SetMap SRSets; 1796 for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(), 1797 RE = RC->getMembers().end(); RI != RE; ++RI) { 1798 const CodeGenRegister::SubRegMap &SRM = (*RI)->getSubRegs(); 1799 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 1800 E = SRM.end(); I != E; ++I) 1801 SRSets[I->first].insert(*RI); 1802 } 1803 1804 // Find matching classes for all SRSets entries. Iterate in SubRegIndex 1805 // numerical order to visit synthetic indices last. 1806 for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) { 1807 CodeGenSubRegIndex *SubIdx = SubRegIndices[sri]; 1808 SubReg2SetMap::const_iterator I = SRSets.find(SubIdx); 1809 // Unsupported SubRegIndex. Skip it. 1810 if (I == SRSets.end()) 1811 continue; 1812 // In most cases, all RC registers support the SubRegIndex. 1813 if (I->second.size() == RC->getMembers().size()) { 1814 RC->setSubClassWithSubReg(SubIdx, RC); 1815 continue; 1816 } 1817 // This is a real subset. See if we have a matching class. 1818 CodeGenRegisterClass *SubRC = 1819 getOrCreateSubClass(RC, &I->second, 1820 RC->getName() + "_with_" + I->first->getName()); 1821 RC->setSubClassWithSubReg(SubIdx, SubRC); 1822 } 1823 } 1824 1825 // 1826 // Synthesize missing sub-classes of RC for getMatchingSuperRegClass(). 1827 // 1828 // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X) 1829 // has a maximal result for any SubIdx and any X >= FirstSubRegRC. 1830 // 1831 1832 void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC, 1833 unsigned FirstSubRegRC) { 1834 SmallVector<std::pair<const CodeGenRegister*, 1835 const CodeGenRegister*>, 16> SSPairs; 1836 BitVector TopoSigs(getNumTopoSigs()); 1837 1838 // Iterate in SubRegIndex numerical order to visit synthetic indices last. 1839 for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) { 1840 CodeGenSubRegIndex *SubIdx = SubRegIndices[sri]; 1841 // Skip indexes that aren't fully supported by RC's registers. This was 1842 // computed by inferSubClassWithSubReg() above which should have been 1843 // called first. 1844 if (RC->getSubClassWithSubReg(SubIdx) != RC) 1845 continue; 1846 1847 // Build list of (Super, Sub) pairs for this SubIdx. 1848 SSPairs.clear(); 1849 TopoSigs.reset(); 1850 for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(), 1851 RE = RC->getMembers().end(); RI != RE; ++RI) { 1852 const CodeGenRegister *Super = *RI; 1853 const CodeGenRegister *Sub = Super->getSubRegs().find(SubIdx)->second; 1854 assert(Sub && "Missing sub-register"); 1855 SSPairs.push_back(std::make_pair(Super, Sub)); 1856 TopoSigs.set(Sub->getTopoSig()); 1857 } 1858 1859 // Iterate over sub-register class candidates. Ignore classes created by 1860 // this loop. They will never be useful. 1861 for (unsigned rci = FirstSubRegRC, rce = RegClasses.size(); rci != rce; 1862 ++rci) { 1863 CodeGenRegisterClass *SubRC = RegClasses[rci]; 1864 // Topological shortcut: SubRC members have the wrong shape. 1865 if (!TopoSigs.anyCommon(SubRC->getTopoSigs())) 1866 continue; 1867 // Compute the subset of RC that maps into SubRC. 1868 CodeGenRegister::Set SubSet; 1869 for (unsigned i = 0, e = SSPairs.size(); i != e; ++i) 1870 if (SubRC->contains(SSPairs[i].second)) 1871 SubSet.insert(SSPairs[i].first); 1872 if (SubSet.empty()) 1873 continue; 1874 // RC injects completely into SubRC. 1875 if (SubSet.size() == SSPairs.size()) { 1876 SubRC->addSuperRegClass(SubIdx, RC); 1877 continue; 1878 } 1879 // Only a subset of RC maps into SubRC. Make sure it is represented by a 1880 // class. 1881 getOrCreateSubClass(RC, &SubSet, RC->getName() + 1882 "_with_" + SubIdx->getName() + 1883 "_in_" + SubRC->getName()); 1884 } 1885 } 1886 } 1887 1888 1889 // 1890 // Infer missing register classes. 1891 // 1892 void CodeGenRegBank::computeInferredRegisterClasses() { 1893 // When this function is called, the register classes have not been sorted 1894 // and assigned EnumValues yet. That means getSubClasses(), 1895 // getSuperClasses(), and hasSubClass() functions are defunct. 1896 unsigned FirstNewRC = RegClasses.size(); 1897 1898 // Visit all register classes, including the ones being added by the loop. 1899 for (unsigned rci = 0; rci != RegClasses.size(); ++rci) { 1900 CodeGenRegisterClass *RC = RegClasses[rci]; 1901 1902 // Synthesize answers for getSubClassWithSubReg(). 1903 inferSubClassWithSubReg(RC); 1904 1905 // Synthesize answers for getCommonSubClass(). 1906 inferCommonSubClass(RC); 1907 1908 // Synthesize answers for getMatchingSuperRegClass(). 1909 inferMatchingSuperRegClass(RC); 1910 1911 // New register classes are created while this loop is running, and we need 1912 // to visit all of them. I particular, inferMatchingSuperRegClass needs 1913 // to match old super-register classes with sub-register classes created 1914 // after inferMatchingSuperRegClass was called. At this point, 1915 // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC = 1916 // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci]. 1917 if (rci + 1 == FirstNewRC) { 1918 unsigned NextNewRC = RegClasses.size(); 1919 for (unsigned rci2 = 0; rci2 != FirstNewRC; ++rci2) 1920 inferMatchingSuperRegClass(RegClasses[rci2], FirstNewRC); 1921 FirstNewRC = NextNewRC; 1922 } 1923 } 1924 } 1925 1926 /// getRegisterClassForRegister - Find the register class that contains the 1927 /// specified physical register. If the register is not in a register class, 1928 /// return null. If the register is in multiple classes, and the classes have a 1929 /// superset-subset relationship and the same set of types, return the 1930 /// superclass. Otherwise return null. 1931 const CodeGenRegisterClass* 1932 CodeGenRegBank::getRegClassForRegister(Record *R) { 1933 const CodeGenRegister *Reg = getReg(R); 1934 ArrayRef<CodeGenRegisterClass*> RCs = getRegClasses(); 1935 const CodeGenRegisterClass *FoundRC = 0; 1936 for (unsigned i = 0, e = RCs.size(); i != e; ++i) { 1937 const CodeGenRegisterClass &RC = *RCs[i]; 1938 if (!RC.contains(Reg)) 1939 continue; 1940 1941 // If this is the first class that contains the register, 1942 // make a note of it and go on to the next class. 1943 if (!FoundRC) { 1944 FoundRC = &RC; 1945 continue; 1946 } 1947 1948 // If a register's classes have different types, return null. 1949 if (RC.getValueTypes() != FoundRC->getValueTypes()) 1950 return 0; 1951 1952 // Check to see if the previously found class that contains 1953 // the register is a subclass of the current class. If so, 1954 // prefer the superclass. 1955 if (RC.hasSubClass(FoundRC)) { 1956 FoundRC = &RC; 1957 continue; 1958 } 1959 1960 // Check to see if the previously found class that contains 1961 // the register is a superclass of the current class. If so, 1962 // prefer the superclass. 1963 if (FoundRC->hasSubClass(&RC)) 1964 continue; 1965 1966 // Multiple classes, and neither is a superclass of the other. 1967 // Return null. 1968 return 0; 1969 } 1970 return FoundRC; 1971 } 1972 1973 BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) { 1974 SetVector<const CodeGenRegister*> Set; 1975 1976 // First add Regs with all sub-registers. 1977 for (unsigned i = 0, e = Regs.size(); i != e; ++i) { 1978 CodeGenRegister *Reg = getReg(Regs[i]); 1979 if (Set.insert(Reg)) 1980 // Reg is new, add all sub-registers. 1981 // The pre-ordering is not important here. 1982 Reg->addSubRegsPreOrder(Set, *this); 1983 } 1984 1985 // Second, find all super-registers that are completely covered by the set. 1986 for (unsigned i = 0; i != Set.size(); ++i) { 1987 const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs(); 1988 for (unsigned j = 0, e = SR.size(); j != e; ++j) { 1989 const CodeGenRegister *Super = SR[j]; 1990 if (!Super->CoveredBySubRegs || Set.count(Super)) 1991 continue; 1992 // This new super-register is covered by its sub-registers. 1993 bool AllSubsInSet = true; 1994 const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs(); 1995 for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), 1996 E = SRM.end(); I != E; ++I) 1997 if (!Set.count(I->second)) { 1998 AllSubsInSet = false; 1999 break; 2000 } 2001 // All sub-registers in Set, add Super as well. 2002 // We will visit Super later to recheck its super-registers. 2003 if (AllSubsInSet) 2004 Set.insert(Super); 2005 } 2006 } 2007 2008 // Convert to BitVector. 2009 BitVector BV(Registers.size() + 1); 2010 for (unsigned i = 0, e = Set.size(); i != e; ++i) 2011 BV.set(Set[i]->EnumValue); 2012 return BV; 2013 } 2014