Home | History | Annotate | Download | only in BitReader_3_0
      1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This header defines the BitcodeReader class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Bitcode/ReaderWriter.h"
     15 #include "BitcodeReader.h"
     16 #include "BitReader_3_0.h"
     17 #include "llvm/ADT/SmallString.h"
     18 #include "llvm/ADT/SmallVector.h"
     19 #include "llvm/AutoUpgrade.h"
     20 #include "llvm/IR/Constants.h"
     21 #include "llvm/IR/DerivedTypes.h"
     22 #include "llvm/IR/InlineAsm.h"
     23 #include "llvm/IR/IntrinsicInst.h"
     24 #include "llvm/IR/IRBuilder.h"
     25 #include "llvm/IR/Module.h"
     26 #include "llvm/IR/OperandTraits.h"
     27 #include "llvm/IR/Operator.h"
     28 #include "llvm/ADT/SmallPtrSet.h"
     29 #include "llvm/Support/CFG.h"
     30 #include "llvm/Support/MathExtras.h"
     31 #include "llvm/Support/MemoryBuffer.h"
     32 using namespace llvm;
     33 using namespace llvm_3_0;
     34 
     35 #define FUNC_CODE_INST_UNWIND_2_7     14
     36 #define eh_exception_2_7             145
     37 #define eh_selector_2_7              149
     38 
     39 #define TYPE_BLOCK_ID_OLD_3_0         10
     40 #define TYPE_SYMTAB_BLOCK_ID_OLD_3_0  13
     41 #define TYPE_CODE_STRUCT_OLD_3_0      10
     42 
     43 namespace {
     44   void FindExnAndSelIntrinsics(BasicBlock *BB, CallInst *&Exn,
     45                                       CallInst *&Sel,
     46                                       SmallPtrSet<BasicBlock*, 8> &Visited) {
     47     if (!Visited.insert(BB)) return;
     48 
     49     for (BasicBlock::iterator
     50            I = BB->begin(), E = BB->end(); I != E; ++I) {
     51       if (CallInst *CI = dyn_cast<CallInst>(I)) {
     52         switch (CI->getCalledFunction()->getIntrinsicID()) {
     53         default: break;
     54         case eh_exception_2_7:
     55           assert(!Exn && "Found more than one eh.exception call!");
     56           Exn = CI;
     57           break;
     58         case eh_selector_2_7:
     59           assert(!Sel && "Found more than one eh.selector call!");
     60           Sel = CI;
     61           break;
     62         }
     63 
     64         if (Exn && Sel) return;
     65       }
     66     }
     67 
     68     if (Exn && Sel) return;
     69 
     70     for (succ_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
     71       FindExnAndSelIntrinsics(*I, Exn, Sel, Visited);
     72       if (Exn && Sel) return;
     73     }
     74   }
     75 
     76 
     77 
     78   /// TransferClausesToLandingPadInst - Transfer the exception handling clauses
     79   /// from the eh_selector call to the new landingpad instruction.
     80   void TransferClausesToLandingPadInst(LandingPadInst *LPI,
     81                                               CallInst *EHSel) {
     82     LLVMContext &Context = LPI->getContext();
     83     unsigned N = EHSel->getNumArgOperands();
     84 
     85     for (unsigned i = N - 1; i > 1; --i) {
     86       if (const ConstantInt *CI = dyn_cast<ConstantInt>(EHSel->getArgOperand(i))){
     87         unsigned FilterLength = CI->getZExtValue();
     88         unsigned FirstCatch = i + FilterLength + !FilterLength;
     89         assert(FirstCatch <= N && "Invalid filter length");
     90 
     91         if (FirstCatch < N)
     92           for (unsigned j = FirstCatch; j < N; ++j) {
     93             Value *Val = EHSel->getArgOperand(j);
     94             if (!Val->hasName() || Val->getName() != "llvm.eh.catch.all.value") {
     95               LPI->addClause(EHSel->getArgOperand(j));
     96             } else {
     97               GlobalVariable *GV = cast<GlobalVariable>(Val);
     98               LPI->addClause(GV->getInitializer());
     99             }
    100           }
    101 
    102         if (!FilterLength) {
    103           // Cleanup.
    104           LPI->setCleanup(true);
    105         } else {
    106           // Filter.
    107           SmallVector<Constant *, 4> TyInfo;
    108           TyInfo.reserve(FilterLength - 1);
    109           for (unsigned j = i + 1; j < FirstCatch; ++j)
    110             TyInfo.push_back(cast<Constant>(EHSel->getArgOperand(j)));
    111           ArrayType *AType =
    112             ArrayType::get(!TyInfo.empty() ? TyInfo[0]->getType() :
    113                            PointerType::getUnqual(Type::getInt8Ty(Context)),
    114                            TyInfo.size());
    115           LPI->addClause(ConstantArray::get(AType, TyInfo));
    116         }
    117 
    118         N = i;
    119       }
    120     }
    121 
    122     if (N > 2)
    123       for (unsigned j = 2; j < N; ++j) {
    124         Value *Val = EHSel->getArgOperand(j);
    125         if (!Val->hasName() || Val->getName() != "llvm.eh.catch.all.value") {
    126           LPI->addClause(EHSel->getArgOperand(j));
    127         } else {
    128           GlobalVariable *GV = cast<GlobalVariable>(Val);
    129           LPI->addClause(GV->getInitializer());
    130         }
    131       }
    132   }
    133 
    134 
    135   /// This function upgrades the old pre-3.0 exception handling system to the new
    136   /// one. N.B. This will be removed in 3.1.
    137   void UpgradeExceptionHandling(Module *M) {
    138     Function *EHException = M->getFunction("llvm.eh.exception");
    139     Function *EHSelector = M->getFunction("llvm.eh.selector");
    140     if (!EHException || !EHSelector)
    141       return;
    142 
    143     LLVMContext &Context = M->getContext();
    144     Type *ExnTy = PointerType::getUnqual(Type::getInt8Ty(Context));
    145     Type *SelTy = Type::getInt32Ty(Context);
    146     Type *LPadSlotTy = StructType::get(ExnTy, SelTy, NULL);
    147 
    148     // This map links the invoke instruction with the eh.exception and eh.selector
    149     // calls associated with it.
    150     DenseMap<InvokeInst*, std::pair<Value*, Value*> > InvokeToIntrinsicsMap;
    151     for (Module::iterator
    152            I = M->begin(), E = M->end(); I != E; ++I) {
    153       Function &F = *I;
    154 
    155       for (Function::iterator
    156              II = F.begin(), IE = F.end(); II != IE; ++II) {
    157         BasicBlock *BB = &*II;
    158         InvokeInst *Inst = dyn_cast<InvokeInst>(BB->getTerminator());
    159         if (!Inst) continue;
    160         BasicBlock *UnwindDest = Inst->getUnwindDest();
    161         if (UnwindDest->isLandingPad()) continue; // Already converted.
    162 
    163         SmallPtrSet<BasicBlock*, 8> Visited;
    164         CallInst *Exn = 0;
    165         CallInst *Sel = 0;
    166         FindExnAndSelIntrinsics(UnwindDest, Exn, Sel, Visited);
    167         assert(Exn && Sel && "Cannot find eh.exception and eh.selector calls!");
    168         InvokeToIntrinsicsMap[Inst] = std::make_pair(Exn, Sel);
    169       }
    170     }
    171 
    172     // This map stores the slots where the exception object and selector value are
    173     // stored within a function.
    174     DenseMap<Function*, std::pair<Value*, Value*> > FnToLPadSlotMap;
    175     SmallPtrSet<Instruction*, 32> DeadInsts;
    176     for (DenseMap<InvokeInst*, std::pair<Value*, Value*> >::iterator
    177            I = InvokeToIntrinsicsMap.begin(), E = InvokeToIntrinsicsMap.end();
    178          I != E; ++I) {
    179       InvokeInst *Invoke = I->first;
    180       BasicBlock *UnwindDest = Invoke->getUnwindDest();
    181       Function *F = UnwindDest->getParent();
    182       std::pair<Value*, Value*> EHIntrinsics = I->second;
    183       CallInst *Exn = cast<CallInst>(EHIntrinsics.first);
    184       CallInst *Sel = cast<CallInst>(EHIntrinsics.second);
    185 
    186       // Store the exception object and selector value in the entry block.
    187       Value *ExnSlot = 0;
    188       Value *SelSlot = 0;
    189       if (!FnToLPadSlotMap[F].first) {
    190         BasicBlock *Entry = &F->front();
    191         ExnSlot = new AllocaInst(ExnTy, "exn", Entry->getTerminator());
    192         SelSlot = new AllocaInst(SelTy, "sel", Entry->getTerminator());
    193         FnToLPadSlotMap[F] = std::make_pair(ExnSlot, SelSlot);
    194       } else {
    195         ExnSlot = FnToLPadSlotMap[F].first;
    196         SelSlot = FnToLPadSlotMap[F].second;
    197       }
    198 
    199       if (!UnwindDest->getSinglePredecessor()) {
    200         // The unwind destination doesn't have a single predecessor. Create an
    201         // unwind destination which has only one predecessor.
    202         BasicBlock *NewBB = BasicBlock::Create(Context, "new.lpad",
    203                                                UnwindDest->getParent());
    204         BranchInst::Create(UnwindDest, NewBB);
    205         Invoke->setUnwindDest(NewBB);
    206 
    207         // Fix up any PHIs in the original unwind destination block.
    208         for (BasicBlock::iterator
    209                II = UnwindDest->begin(); isa<PHINode>(II); ++II) {
    210           PHINode *PN = cast<PHINode>(II);
    211           int Idx = PN->getBasicBlockIndex(Invoke->getParent());
    212           if (Idx == -1) continue;
    213           PN->setIncomingBlock(Idx, NewBB);
    214         }
    215 
    216         UnwindDest = NewBB;
    217       }
    218 
    219       IRBuilder<> Builder(Context);
    220       Builder.SetInsertPoint(UnwindDest, UnwindDest->getFirstInsertionPt());
    221 
    222       Value *PersFn = Sel->getArgOperand(1);
    223       LandingPadInst *LPI = Builder.CreateLandingPad(LPadSlotTy, PersFn, 0);
    224       Value *LPExn = Builder.CreateExtractValue(LPI, 0);
    225       Value *LPSel = Builder.CreateExtractValue(LPI, 1);
    226       Builder.CreateStore(LPExn, ExnSlot);
    227       Builder.CreateStore(LPSel, SelSlot);
    228 
    229       TransferClausesToLandingPadInst(LPI, Sel);
    230 
    231       DeadInsts.insert(Exn);
    232       DeadInsts.insert(Sel);
    233     }
    234 
    235     // Replace the old intrinsic calls with the values from the landingpad
    236     // instruction(s). These values were stored in allocas for us to use here.
    237     for (DenseMap<InvokeInst*, std::pair<Value*, Value*> >::iterator
    238            I = InvokeToIntrinsicsMap.begin(), E = InvokeToIntrinsicsMap.end();
    239          I != E; ++I) {
    240       std::pair<Value*, Value*> EHIntrinsics = I->second;
    241       CallInst *Exn = cast<CallInst>(EHIntrinsics.first);
    242       CallInst *Sel = cast<CallInst>(EHIntrinsics.second);
    243       BasicBlock *Parent = Exn->getParent();
    244 
    245       std::pair<Value*,Value*> ExnSelSlots = FnToLPadSlotMap[Parent->getParent()];
    246 
    247       IRBuilder<> Builder(Context);
    248       Builder.SetInsertPoint(Parent, Exn);
    249       LoadInst *LPExn = Builder.CreateLoad(ExnSelSlots.first, "exn.load");
    250       LoadInst *LPSel = Builder.CreateLoad(ExnSelSlots.second, "sel.load");
    251 
    252       Exn->replaceAllUsesWith(LPExn);
    253       Sel->replaceAllUsesWith(LPSel);
    254     }
    255 
    256     // Remove the dead instructions.
    257     for (SmallPtrSet<Instruction*, 32>::iterator
    258            I = DeadInsts.begin(), E = DeadInsts.end(); I != E; ++I) {
    259       Instruction *Inst = *I;
    260       Inst->eraseFromParent();
    261     }
    262 
    263     // Replace calls to "llvm.eh.resume" with the 'resume' instruction. Load the
    264     // exception and selector values from the stored place.
    265     Function *EHResume = M->getFunction("llvm.eh.resume");
    266     if (!EHResume) return;
    267 
    268     while (!EHResume->use_empty()) {
    269       CallInst *Resume = cast<CallInst>(EHResume->use_back());
    270       BasicBlock *BB = Resume->getParent();
    271 
    272       IRBuilder<> Builder(Context);
    273       Builder.SetInsertPoint(BB, Resume);
    274 
    275       Value *LPadVal =
    276         Builder.CreateInsertValue(UndefValue::get(LPadSlotTy),
    277                                   Resume->getArgOperand(0), 0, "lpad.val");
    278       LPadVal = Builder.CreateInsertValue(LPadVal, Resume->getArgOperand(1),
    279                                           1, "lpad.val");
    280       Builder.CreateResume(LPadVal);
    281 
    282       // Remove all instructions after the 'resume.'
    283       BasicBlock::iterator I = Resume;
    284       while (I != BB->end()) {
    285         Instruction *Inst = &*I++;
    286         Inst->eraseFromParent();
    287       }
    288     }
    289   }
    290 
    291 
    292   /// This function strips all debug info intrinsics, except for llvm.dbg.declare.
    293   /// If an llvm.dbg.declare intrinsic is invalid, then this function simply
    294   /// strips that use.
    295   void CheckDebugInfoIntrinsics(Module *M) {
    296     if (Function *FuncStart = M->getFunction("llvm.dbg.func.start")) {
    297       while (!FuncStart->use_empty())
    298         cast<CallInst>(FuncStart->use_back())->eraseFromParent();
    299       FuncStart->eraseFromParent();
    300     }
    301 
    302     if (Function *StopPoint = M->getFunction("llvm.dbg.stoppoint")) {
    303       while (!StopPoint->use_empty())
    304         cast<CallInst>(StopPoint->use_back())->eraseFromParent();
    305       StopPoint->eraseFromParent();
    306     }
    307 
    308     if (Function *RegionStart = M->getFunction("llvm.dbg.region.start")) {
    309       while (!RegionStart->use_empty())
    310         cast<CallInst>(RegionStart->use_back())->eraseFromParent();
    311       RegionStart->eraseFromParent();
    312     }
    313 
    314     if (Function *RegionEnd = M->getFunction("llvm.dbg.region.end")) {
    315       while (!RegionEnd->use_empty())
    316         cast<CallInst>(RegionEnd->use_back())->eraseFromParent();
    317       RegionEnd->eraseFromParent();
    318     }
    319 
    320     if (Function *Declare = M->getFunction("llvm.dbg.declare")) {
    321       if (!Declare->use_empty()) {
    322         DbgDeclareInst *DDI = cast<DbgDeclareInst>(Declare->use_back());
    323         if (!isa<MDNode>(DDI->getArgOperand(0)) ||
    324             !isa<MDNode>(DDI->getArgOperand(1))) {
    325           while (!Declare->use_empty()) {
    326             CallInst *CI = cast<CallInst>(Declare->use_back());
    327             CI->eraseFromParent();
    328           }
    329           Declare->eraseFromParent();
    330         }
    331       }
    332     }
    333   }
    334 } // end anonymous namespace
    335 
    336 void BitcodeReader::FreeState() {
    337   if (BufferOwned)
    338     delete Buffer;
    339   Buffer = 0;
    340   std::vector<Type*>().swap(TypeList);
    341   ValueList.clear();
    342   MDValueList.clear();
    343 
    344   std::vector<AttributeSet>().swap(MAttributes);
    345   std::vector<BasicBlock*>().swap(FunctionBBs);
    346   std::vector<Function*>().swap(FunctionsWithBodies);
    347   DeferredFunctionInfo.clear();
    348   MDKindMap.clear();
    349 }
    350 
    351 //===----------------------------------------------------------------------===//
    352 //  Helper functions to implement forward reference resolution, etc.
    353 //===----------------------------------------------------------------------===//
    354 
    355 /// ConvertToString - Convert a string from a record into an std::string, return
    356 /// true on failure.
    357 template<typename StrTy>
    358 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
    359                             StrTy &Result) {
    360   if (Idx > Record.size())
    361     return true;
    362 
    363   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
    364     Result += (char)Record[i];
    365   return false;
    366 }
    367 
    368 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
    369   switch (Val) {
    370   default: // Map unknown/new linkages to external
    371   case 0:  return GlobalValue::ExternalLinkage;
    372   case 1:  return GlobalValue::WeakAnyLinkage;
    373   case 2:  return GlobalValue::AppendingLinkage;
    374   case 3:  return GlobalValue::InternalLinkage;
    375   case 4:  return GlobalValue::LinkOnceAnyLinkage;
    376   case 5:  return GlobalValue::DLLImportLinkage;
    377   case 6:  return GlobalValue::DLLExportLinkage;
    378   case 7:  return GlobalValue::ExternalWeakLinkage;
    379   case 8:  return GlobalValue::CommonLinkage;
    380   case 9:  return GlobalValue::PrivateLinkage;
    381   case 10: return GlobalValue::WeakODRLinkage;
    382   case 11: return GlobalValue::LinkOnceODRLinkage;
    383   case 12: return GlobalValue::AvailableExternallyLinkage;
    384   case 13: return GlobalValue::LinkerPrivateLinkage;
    385   case 14: return GlobalValue::LinkerPrivateWeakLinkage;
    386   case 15: return GlobalValue::LinkOnceODRAutoHideLinkage;
    387   }
    388 }
    389 
    390 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
    391   switch (Val) {
    392   default: // Map unknown visibilities to default.
    393   case 0: return GlobalValue::DefaultVisibility;
    394   case 1: return GlobalValue::HiddenVisibility;
    395   case 2: return GlobalValue::ProtectedVisibility;
    396   }
    397 }
    398 
    399 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
    400   switch (Val) {
    401     case 0: return GlobalVariable::NotThreadLocal;
    402     default: // Map unknown non-zero value to general dynamic.
    403     case 1: return GlobalVariable::GeneralDynamicTLSModel;
    404     case 2: return GlobalVariable::LocalDynamicTLSModel;
    405     case 3: return GlobalVariable::InitialExecTLSModel;
    406     case 4: return GlobalVariable::LocalExecTLSModel;
    407   }
    408 }
    409 
    410 static int GetDecodedCastOpcode(unsigned Val) {
    411   switch (Val) {
    412   default: return -1;
    413   case bitc::CAST_TRUNC   : return Instruction::Trunc;
    414   case bitc::CAST_ZEXT    : return Instruction::ZExt;
    415   case bitc::CAST_SEXT    : return Instruction::SExt;
    416   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
    417   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
    418   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
    419   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
    420   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
    421   case bitc::CAST_FPEXT   : return Instruction::FPExt;
    422   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
    423   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
    424   case bitc::CAST_BITCAST : return Instruction::BitCast;
    425   }
    426 }
    427 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
    428   switch (Val) {
    429   default: return -1;
    430   case bitc::BINOP_ADD:
    431     return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
    432   case bitc::BINOP_SUB:
    433     return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
    434   case bitc::BINOP_MUL:
    435     return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
    436   case bitc::BINOP_UDIV: return Instruction::UDiv;
    437   case bitc::BINOP_SDIV:
    438     return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
    439   case bitc::BINOP_UREM: return Instruction::URem;
    440   case bitc::BINOP_SREM:
    441     return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
    442   case bitc::BINOP_SHL:  return Instruction::Shl;
    443   case bitc::BINOP_LSHR: return Instruction::LShr;
    444   case bitc::BINOP_ASHR: return Instruction::AShr;
    445   case bitc::BINOP_AND:  return Instruction::And;
    446   case bitc::BINOP_OR:   return Instruction::Or;
    447   case bitc::BINOP_XOR:  return Instruction::Xor;
    448   }
    449 }
    450 
    451 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
    452   switch (Val) {
    453   default: return AtomicRMWInst::BAD_BINOP;
    454   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
    455   case bitc::RMW_ADD: return AtomicRMWInst::Add;
    456   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
    457   case bitc::RMW_AND: return AtomicRMWInst::And;
    458   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
    459   case bitc::RMW_OR: return AtomicRMWInst::Or;
    460   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
    461   case bitc::RMW_MAX: return AtomicRMWInst::Max;
    462   case bitc::RMW_MIN: return AtomicRMWInst::Min;
    463   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
    464   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
    465   }
    466 }
    467 
    468 static AtomicOrdering GetDecodedOrdering(unsigned Val) {
    469   switch (Val) {
    470   case bitc::ORDERING_NOTATOMIC: return NotAtomic;
    471   case bitc::ORDERING_UNORDERED: return Unordered;
    472   case bitc::ORDERING_MONOTONIC: return Monotonic;
    473   case bitc::ORDERING_ACQUIRE: return Acquire;
    474   case bitc::ORDERING_RELEASE: return Release;
    475   case bitc::ORDERING_ACQREL: return AcquireRelease;
    476   default: // Map unknown orderings to sequentially-consistent.
    477   case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
    478   }
    479 }
    480 
    481 static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
    482   switch (Val) {
    483   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
    484   default: // Map unknown scopes to cross-thread.
    485   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
    486   }
    487 }
    488 
    489 namespace llvm {
    490 namespace {
    491   /// @brief A class for maintaining the slot number definition
    492   /// as a placeholder for the actual definition for forward constants defs.
    493   class ConstantPlaceHolder : public ConstantExpr {
    494     void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
    495   public:
    496     // allocate space for exactly one operand
    497     void *operator new(size_t s) {
    498       return User::operator new(s, 1);
    499     }
    500     explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
    501       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
    502       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
    503     }
    504 
    505     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
    506     //static inline bool classof(const ConstantPlaceHolder *) { return true; }
    507     static bool classof(const Value *V) {
    508       return isa<ConstantExpr>(V) &&
    509              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
    510     }
    511 
    512 
    513     /// Provide fast operand accessors
    514     //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
    515   };
    516 }
    517 
    518 // FIXME: can we inherit this from ConstantExpr?
    519 template <>
    520 struct OperandTraits<ConstantPlaceHolder> :
    521   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
    522 };
    523 }
    524 
    525 
    526 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
    527   if (Idx == size()) {
    528     push_back(V);
    529     return;
    530   }
    531 
    532   if (Idx >= size())
    533     resize(Idx+1);
    534 
    535   WeakVH &OldV = ValuePtrs[Idx];
    536   if (OldV == 0) {
    537     OldV = V;
    538     return;
    539   }
    540 
    541   // Handle constants and non-constants (e.g. instrs) differently for
    542   // efficiency.
    543   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
    544     ResolveConstants.push_back(std::make_pair(PHC, Idx));
    545     OldV = V;
    546   } else {
    547     // If there was a forward reference to this value, replace it.
    548     Value *PrevVal = OldV;
    549     OldV->replaceAllUsesWith(V);
    550     delete PrevVal;
    551   }
    552 }
    553 
    554 
    555 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
    556                                                     Type *Ty) {
    557   if (Idx >= size())
    558     resize(Idx + 1);
    559 
    560   if (Value *V = ValuePtrs[Idx]) {
    561     assert(Ty == V->getType() && "Type mismatch in constant table!");
    562     return cast<Constant>(V);
    563   }
    564 
    565   // Create and return a placeholder, which will later be RAUW'd.
    566   Constant *C = new ConstantPlaceHolder(Ty, Context);
    567   ValuePtrs[Idx] = C;
    568   return C;
    569 }
    570 
    571 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
    572   if (Idx >= size())
    573     resize(Idx + 1);
    574 
    575   if (Value *V = ValuePtrs[Idx]) {
    576     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
    577     return V;
    578   }
    579 
    580   // No type specified, must be invalid reference.
    581   if (Ty == 0) return 0;
    582 
    583   // Create and return a placeholder, which will later be RAUW'd.
    584   Value *V = new Argument(Ty);
    585   ValuePtrs[Idx] = V;
    586   return V;
    587 }
    588 
    589 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
    590 /// resolves any forward references.  The idea behind this is that we sometimes
    591 /// get constants (such as large arrays) which reference *many* forward ref
    592 /// constants.  Replacing each of these causes a lot of thrashing when
    593 /// building/reuniquing the constant.  Instead of doing this, we look at all the
    594 /// uses and rewrite all the place holders at once for any constant that uses
    595 /// a placeholder.
    596 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
    597   // Sort the values by-pointer so that they are efficient to look up with a
    598   // binary search.
    599   std::sort(ResolveConstants.begin(), ResolveConstants.end());
    600 
    601   SmallVector<Constant*, 64> NewOps;
    602 
    603   while (!ResolveConstants.empty()) {
    604     Value *RealVal = operator[](ResolveConstants.back().second);
    605     Constant *Placeholder = ResolveConstants.back().first;
    606     ResolveConstants.pop_back();
    607 
    608     // Loop over all users of the placeholder, updating them to reference the
    609     // new value.  If they reference more than one placeholder, update them all
    610     // at once.
    611     while (!Placeholder->use_empty()) {
    612       Value::use_iterator UI = Placeholder->use_begin();
    613       User *U = *UI;
    614 
    615       // If the using object isn't uniqued, just update the operands.  This
    616       // handles instructions and initializers for global variables.
    617       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
    618         UI.getUse().set(RealVal);
    619         continue;
    620       }
    621 
    622       // Otherwise, we have a constant that uses the placeholder.  Replace that
    623       // constant with a new constant that has *all* placeholder uses updated.
    624       Constant *UserC = cast<Constant>(U);
    625       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
    626            I != E; ++I) {
    627         Value *NewOp;
    628         if (!isa<ConstantPlaceHolder>(*I)) {
    629           // Not a placeholder reference.
    630           NewOp = *I;
    631         } else if (*I == Placeholder) {
    632           // Common case is that it just references this one placeholder.
    633           NewOp = RealVal;
    634         } else {
    635           // Otherwise, look up the placeholder in ResolveConstants.
    636           ResolveConstantsTy::iterator It =
    637             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
    638                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
    639                                                             0));
    640           assert(It != ResolveConstants.end() && It->first == *I);
    641           NewOp = operator[](It->second);
    642         }
    643 
    644         NewOps.push_back(cast<Constant>(NewOp));
    645       }
    646 
    647       // Make the new constant.
    648       Constant *NewC;
    649       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
    650         NewC = ConstantArray::get(UserCA->getType(), NewOps);
    651       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
    652         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
    653       } else if (isa<ConstantVector>(UserC)) {
    654         NewC = ConstantVector::get(NewOps);
    655       } else {
    656         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
    657         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
    658       }
    659 
    660       UserC->replaceAllUsesWith(NewC);
    661       UserC->destroyConstant();
    662       NewOps.clear();
    663     }
    664 
    665     // Update all ValueHandles, they should be the only users at this point.
    666     Placeholder->replaceAllUsesWith(RealVal);
    667     delete Placeholder;
    668   }
    669 }
    670 
    671 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
    672   if (Idx == size()) {
    673     push_back(V);
    674     return;
    675   }
    676 
    677   if (Idx >= size())
    678     resize(Idx+1);
    679 
    680   WeakVH &OldV = MDValuePtrs[Idx];
    681   if (OldV == 0) {
    682     OldV = V;
    683     return;
    684   }
    685 
    686   // If there was a forward reference to this value, replace it.
    687   MDNode *PrevVal = cast<MDNode>(OldV);
    688   OldV->replaceAllUsesWith(V);
    689   MDNode::deleteTemporary(PrevVal);
    690   // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
    691   // value for Idx.
    692   MDValuePtrs[Idx] = V;
    693 }
    694 
    695 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
    696   if (Idx >= size())
    697     resize(Idx + 1);
    698 
    699   if (Value *V = MDValuePtrs[Idx]) {
    700     assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
    701     return V;
    702   }
    703 
    704   // Create and return a placeholder, which will later be RAUW'd.
    705   Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
    706   MDValuePtrs[Idx] = V;
    707   return V;
    708 }
    709 
    710 Type *BitcodeReader::getTypeByID(unsigned ID) {
    711   // The type table size is always specified correctly.
    712   if (ID >= TypeList.size())
    713     return 0;
    714 
    715   if (Type *Ty = TypeList[ID])
    716     return Ty;
    717 
    718   // If we have a forward reference, the only possible case is when it is to a
    719   // named struct.  Just create a placeholder for now.
    720   return TypeList[ID] = StructType::create(Context);
    721 }
    722 
    723 /// FIXME: Remove in LLVM 3.1, only used by ParseOldTypeTable.
    724 Type *BitcodeReader::getTypeByIDOrNull(unsigned ID) {
    725   if (ID >= TypeList.size())
    726     TypeList.resize(ID+1);
    727 
    728   return TypeList[ID];
    729 }
    730 
    731 
    732 //===----------------------------------------------------------------------===//
    733 //  Functions for parsing blocks from the bitcode file
    734 //===----------------------------------------------------------------------===//
    735 
    736 
    737 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
    738 /// been decoded from the given integer. This function must stay in sync with
    739 /// 'encodeLLVMAttributesForBitcode'.
    740 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
    741                                            uint64_t EncodedAttrs) {
    742   // FIXME: Remove in 4.0.
    743 
    744   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
    745   // the bits above 31 down by 11 bits.
    746   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
    747   assert((!Alignment || isPowerOf2_32(Alignment)) &&
    748          "Alignment must be a power of two.");
    749 
    750   if (Alignment)
    751     B.addAlignmentAttr(Alignment);
    752   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
    753                 (EncodedAttrs & 0xffff));
    754 }
    755 
    756 bool BitcodeReader::ParseAttributeBlock() {
    757   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
    758     return Error("Malformed block record");
    759 
    760   if (!MAttributes.empty())
    761     return Error("Multiple PARAMATTR blocks found!");
    762 
    763   SmallVector<uint64_t, 64> Record;
    764 
    765   SmallVector<AttributeSet, 8> Attrs;
    766 
    767   // Read all the records.
    768   while (1) {
    769     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
    770 
    771     switch (Entry.Kind) {
    772     case BitstreamEntry::SubBlock: // Handled for us already.
    773     case BitstreamEntry::Error:
    774       return Error("Error at end of PARAMATTR block");
    775     case BitstreamEntry::EndBlock:
    776       return false;
    777     case BitstreamEntry::Record:
    778       // The interesting case.
    779       break;
    780     }
    781 
    782     // Read a record.
    783     Record.clear();
    784     switch (Stream.readRecord(Entry.ID, Record)) {
    785     default:  // Default behavior: ignore.
    786       break;
    787     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
    788       // FIXME: Remove in 4.0.
    789       if (Record.size() & 1)
    790         return Error("Invalid ENTRY record");
    791 
    792       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
    793         AttrBuilder B;
    794         decodeLLVMAttributesForBitcode(B, Record[i+1]);
    795         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
    796       }
    797 
    798       MAttributes.push_back(AttributeSet::get(Context, Attrs));
    799       Attrs.clear();
    800       break;
    801     }
    802     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
    803       for (unsigned i = 0, e = Record.size(); i != e; ++i)
    804         Attrs.push_back(MAttributeGroups[Record[i]]);
    805 
    806       MAttributes.push_back(AttributeSet::get(Context, Attrs));
    807       Attrs.clear();
    808       break;
    809     }
    810     }
    811   }
    812 }
    813 
    814 
    815 bool BitcodeReader::ParseTypeTable() {
    816   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
    817     return Error("Malformed block record");
    818 
    819   return ParseTypeTableBody();
    820 }
    821 
    822 bool BitcodeReader::ParseTypeTableBody() {
    823   if (!TypeList.empty())
    824     return Error("Multiple TYPE_BLOCKs found!");
    825 
    826   SmallVector<uint64_t, 64> Record;
    827   unsigned NumRecords = 0;
    828 
    829   SmallString<64> TypeName;
    830 
    831   // Read all the records for this type table.
    832   while (1) {
    833     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
    834 
    835     switch (Entry.Kind) {
    836     case BitstreamEntry::SubBlock: // Handled for us already.
    837     case BitstreamEntry::Error:
    838       Error("Error in the type table block");
    839       return true;
    840     case BitstreamEntry::EndBlock:
    841       if (NumRecords != TypeList.size())
    842         return Error("Invalid type forward reference in TYPE_BLOCK");
    843       return false;
    844     case BitstreamEntry::Record:
    845       // The interesting case.
    846       break;
    847     }
    848 
    849     // Read a record.
    850     Record.clear();
    851     Type *ResultTy = 0;
    852     switch (Stream.readRecord(Entry.ID, Record)) {
    853     default: return Error("unknown type in type table");
    854     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
    855       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
    856       // type list.  This allows us to reserve space.
    857       if (Record.size() < 1)
    858         return Error("Invalid TYPE_CODE_NUMENTRY record");
    859       TypeList.resize(Record[0]);
    860       continue;
    861     case bitc::TYPE_CODE_VOID:      // VOID
    862       ResultTy = Type::getVoidTy(Context);
    863       break;
    864     case bitc::TYPE_CODE_HALF:     // HALF
    865       ResultTy = Type::getHalfTy(Context);
    866       break;
    867     case bitc::TYPE_CODE_FLOAT:     // FLOAT
    868       ResultTy = Type::getFloatTy(Context);
    869       break;
    870     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
    871       ResultTy = Type::getDoubleTy(Context);
    872       break;
    873     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
    874       ResultTy = Type::getX86_FP80Ty(Context);
    875       break;
    876     case bitc::TYPE_CODE_FP128:     // FP128
    877       ResultTy = Type::getFP128Ty(Context);
    878       break;
    879     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
    880       ResultTy = Type::getPPC_FP128Ty(Context);
    881       break;
    882     case bitc::TYPE_CODE_LABEL:     // LABEL
    883       ResultTy = Type::getLabelTy(Context);
    884       break;
    885     case bitc::TYPE_CODE_METADATA:  // METADATA
    886       ResultTy = Type::getMetadataTy(Context);
    887       break;
    888     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
    889       ResultTy = Type::getX86_MMXTy(Context);
    890       break;
    891     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
    892       if (Record.size() < 1)
    893         return Error("Invalid Integer type record");
    894 
    895       ResultTy = IntegerType::get(Context, Record[0]);
    896       break;
    897     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
    898                                     //          [pointee type, address space]
    899       if (Record.size() < 1)
    900         return Error("Invalid POINTER type record");
    901       unsigned AddressSpace = 0;
    902       if (Record.size() == 2)
    903         AddressSpace = Record[1];
    904       ResultTy = getTypeByID(Record[0]);
    905       if (ResultTy == 0) return Error("invalid element type in pointer type");
    906       ResultTy = PointerType::get(ResultTy, AddressSpace);
    907       break;
    908     }
    909     case bitc::TYPE_CODE_FUNCTION_OLD: {
    910       // FIXME: attrid is dead, remove it in LLVM 4.0
    911       // FUNCTION: [vararg, attrid, retty, paramty x N]
    912       if (Record.size() < 3)
    913         return Error("Invalid FUNCTION type record");
    914       SmallVector<Type*, 8> ArgTys;
    915       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
    916         if (Type *T = getTypeByID(Record[i]))
    917           ArgTys.push_back(T);
    918         else
    919           break;
    920       }
    921 
    922       ResultTy = getTypeByID(Record[2]);
    923       if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
    924         return Error("invalid type in function type");
    925 
    926       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
    927       break;
    928     }
    929     case bitc::TYPE_CODE_FUNCTION: {
    930       // FUNCTION: [vararg, retty, paramty x N]
    931       if (Record.size() < 2)
    932         return Error("Invalid FUNCTION type record");
    933       SmallVector<Type*, 8> ArgTys;
    934       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
    935         if (Type *T = getTypeByID(Record[i]))
    936           ArgTys.push_back(T);
    937         else
    938           break;
    939       }
    940 
    941       ResultTy = getTypeByID(Record[1]);
    942       if (ResultTy == 0 || ArgTys.size() < Record.size()-2)
    943         return Error("invalid type in function type");
    944 
    945       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
    946       break;
    947     }
    948     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
    949       if (Record.size() < 1)
    950         return Error("Invalid STRUCT type record");
    951       SmallVector<Type*, 8> EltTys;
    952       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
    953         if (Type *T = getTypeByID(Record[i]))
    954           EltTys.push_back(T);
    955         else
    956           break;
    957       }
    958       if (EltTys.size() != Record.size()-1)
    959         return Error("invalid type in struct type");
    960       ResultTy = StructType::get(Context, EltTys, Record[0]);
    961       break;
    962     }
    963     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
    964       if (ConvertToString(Record, 0, TypeName))
    965         return Error("Invalid STRUCT_NAME record");
    966       continue;
    967 
    968     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
    969       if (Record.size() < 1)
    970         return Error("Invalid STRUCT type record");
    971 
    972       if (NumRecords >= TypeList.size())
    973         return Error("invalid TYPE table");
    974 
    975       // Check to see if this was forward referenced, if so fill in the temp.
    976       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
    977       if (Res) {
    978         Res->setName(TypeName);
    979         TypeList[NumRecords] = 0;
    980       } else  // Otherwise, create a new struct.
    981         Res = StructType::create(Context, TypeName);
    982       TypeName.clear();
    983 
    984       SmallVector<Type*, 8> EltTys;
    985       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
    986         if (Type *T = getTypeByID(Record[i]))
    987           EltTys.push_back(T);
    988         else
    989           break;
    990       }
    991       if (EltTys.size() != Record.size()-1)
    992         return Error("invalid STRUCT type record");
    993       Res->setBody(EltTys, Record[0]);
    994       ResultTy = Res;
    995       break;
    996     }
    997     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
    998       if (Record.size() != 1)
    999         return Error("Invalid OPAQUE type record");
   1000 
   1001       if (NumRecords >= TypeList.size())
   1002         return Error("invalid TYPE table");
   1003 
   1004       // Check to see if this was forward referenced, if so fill in the temp.
   1005       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
   1006       if (Res) {
   1007         Res->setName(TypeName);
   1008         TypeList[NumRecords] = 0;
   1009       } else  // Otherwise, create a new struct with no body.
   1010         Res = StructType::create(Context, TypeName);
   1011       TypeName.clear();
   1012       ResultTy = Res;
   1013       break;
   1014     }
   1015     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
   1016       if (Record.size() < 2)
   1017         return Error("Invalid ARRAY type record");
   1018       if ((ResultTy = getTypeByID(Record[1])))
   1019         ResultTy = ArrayType::get(ResultTy, Record[0]);
   1020       else
   1021         return Error("Invalid ARRAY type element");
   1022       break;
   1023     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
   1024       if (Record.size() < 2)
   1025         return Error("Invalid VECTOR type record");
   1026       if ((ResultTy = getTypeByID(Record[1])))
   1027         ResultTy = VectorType::get(ResultTy, Record[0]);
   1028       else
   1029         return Error("Invalid ARRAY type element");
   1030       break;
   1031     }
   1032 
   1033     if (NumRecords >= TypeList.size())
   1034       return Error("invalid TYPE table");
   1035     assert(ResultTy && "Didn't read a type?");
   1036     assert(TypeList[NumRecords] == 0 && "Already read type?");
   1037     TypeList[NumRecords++] = ResultTy;
   1038   }
   1039 }
   1040 
   1041 // FIXME: Remove in LLVM 3.1
   1042 bool BitcodeReader::ParseOldTypeTable() {
   1043   if (Stream.EnterSubBlock(TYPE_BLOCK_ID_OLD_3_0))
   1044     return Error("Malformed block record");
   1045 
   1046   if (!TypeList.empty())
   1047     return Error("Multiple TYPE_BLOCKs found!");
   1048 
   1049 
   1050   // While horrible, we have no good ordering of types in the bc file.  Just
   1051   // iteratively parse types out of the bc file in multiple passes until we get
   1052   // them all.  Do this by saving a cursor for the start of the type block.
   1053   BitstreamCursor StartOfTypeBlockCursor(Stream);
   1054 
   1055   unsigned NumTypesRead = 0;
   1056 
   1057   SmallVector<uint64_t, 64> Record;
   1058 RestartScan:
   1059   unsigned NextTypeID = 0;
   1060   bool ReadAnyTypes = false;
   1061 
   1062   // Read all the records for this type table.
   1063   while (1) {
   1064     unsigned Code = Stream.ReadCode();
   1065     if (Code == bitc::END_BLOCK) {
   1066       if (NextTypeID != TypeList.size())
   1067         return Error("Invalid type forward reference in TYPE_BLOCK_ID_OLD");
   1068 
   1069       // If we haven't read all of the types yet, iterate again.
   1070       if (NumTypesRead != TypeList.size()) {
   1071         // If we didn't successfully read any types in this pass, then we must
   1072         // have an unhandled forward reference.
   1073         if (!ReadAnyTypes)
   1074           return Error("Obsolete bitcode contains unhandled recursive type");
   1075 
   1076         Stream = StartOfTypeBlockCursor;
   1077         goto RestartScan;
   1078       }
   1079 
   1080       if (Stream.ReadBlockEnd())
   1081         return Error("Error at end of type table block");
   1082       return false;
   1083     }
   1084 
   1085     if (Code == bitc::ENTER_SUBBLOCK) {
   1086       // No known subblocks, always skip them.
   1087       Stream.ReadSubBlockID();
   1088       if (Stream.SkipBlock())
   1089         return Error("Malformed block record");
   1090       continue;
   1091     }
   1092 
   1093     if (Code == bitc::DEFINE_ABBREV) {
   1094       Stream.ReadAbbrevRecord();
   1095       continue;
   1096     }
   1097 
   1098     // Read a record.
   1099     Record.clear();
   1100     Type *ResultTy = 0;
   1101     switch (Stream.readRecord(Code, Record)) {
   1102     default: return Error("unknown type in type table");
   1103     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
   1104       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
   1105       // type list.  This allows us to reserve space.
   1106       if (Record.size() < 1)
   1107         return Error("Invalid TYPE_CODE_NUMENTRY record");
   1108       TypeList.resize(Record[0]);
   1109       continue;
   1110     case bitc::TYPE_CODE_VOID:      // VOID
   1111       ResultTy = Type::getVoidTy(Context);
   1112       break;
   1113     case bitc::TYPE_CODE_FLOAT:     // FLOAT
   1114       ResultTy = Type::getFloatTy(Context);
   1115       break;
   1116     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
   1117       ResultTy = Type::getDoubleTy(Context);
   1118       break;
   1119     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
   1120       ResultTy = Type::getX86_FP80Ty(Context);
   1121       break;
   1122     case bitc::TYPE_CODE_FP128:     // FP128
   1123       ResultTy = Type::getFP128Ty(Context);
   1124       break;
   1125     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
   1126       ResultTy = Type::getPPC_FP128Ty(Context);
   1127       break;
   1128     case bitc::TYPE_CODE_LABEL:     // LABEL
   1129       ResultTy = Type::getLabelTy(Context);
   1130       break;
   1131     case bitc::TYPE_CODE_METADATA:  // METADATA
   1132       ResultTy = Type::getMetadataTy(Context);
   1133       break;
   1134     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
   1135       ResultTy = Type::getX86_MMXTy(Context);
   1136       break;
   1137     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
   1138       if (Record.size() < 1)
   1139         return Error("Invalid Integer type record");
   1140       ResultTy = IntegerType::get(Context, Record[0]);
   1141       break;
   1142     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
   1143       if (NextTypeID < TypeList.size() && TypeList[NextTypeID] == 0)
   1144         ResultTy = StructType::create(Context, "");
   1145       break;
   1146     case TYPE_CODE_STRUCT_OLD_3_0: {// STRUCT_OLD
   1147       if (NextTypeID >= TypeList.size()) break;
   1148       // If we already read it, don't reprocess.
   1149       if (TypeList[NextTypeID] &&
   1150           !cast<StructType>(TypeList[NextTypeID])->isOpaque())
   1151         break;
   1152 
   1153       // Set a type.
   1154       if (TypeList[NextTypeID] == 0)
   1155         TypeList[NextTypeID] = StructType::create(Context, "");
   1156 
   1157       std::vector<Type*> EltTys;
   1158       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
   1159         if (Type *Elt = getTypeByIDOrNull(Record[i]))
   1160           EltTys.push_back(Elt);
   1161         else
   1162           break;
   1163       }
   1164 
   1165       if (EltTys.size() != Record.size()-1)
   1166         break;      // Not all elements are ready.
   1167 
   1168       cast<StructType>(TypeList[NextTypeID])->setBody(EltTys, Record[0]);
   1169       ResultTy = TypeList[NextTypeID];
   1170       TypeList[NextTypeID] = 0;
   1171       break;
   1172     }
   1173     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
   1174       //          [pointee type, address space]
   1175       if (Record.size() < 1)
   1176         return Error("Invalid POINTER type record");
   1177       unsigned AddressSpace = 0;
   1178       if (Record.size() == 2)
   1179         AddressSpace = Record[1];
   1180       if ((ResultTy = getTypeByIDOrNull(Record[0])))
   1181         ResultTy = PointerType::get(ResultTy, AddressSpace);
   1182       break;
   1183     }
   1184     case bitc::TYPE_CODE_FUNCTION_OLD: {
   1185       // FIXME: attrid is dead, remove it in LLVM 3.0
   1186       // FUNCTION: [vararg, attrid, retty, paramty x N]
   1187       if (Record.size() < 3)
   1188         return Error("Invalid FUNCTION type record");
   1189       std::vector<Type*> ArgTys;
   1190       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
   1191         if (Type *Elt = getTypeByIDOrNull(Record[i]))
   1192           ArgTys.push_back(Elt);
   1193         else
   1194           break;
   1195       }
   1196       if (ArgTys.size()+3 != Record.size())
   1197         break;  // Something was null.
   1198       if ((ResultTy = getTypeByIDOrNull(Record[2])))
   1199         ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
   1200       break;
   1201     }
   1202     case bitc::TYPE_CODE_FUNCTION: {
   1203       // FUNCTION: [vararg, retty, paramty x N]
   1204       if (Record.size() < 2)
   1205         return Error("Invalid FUNCTION type record");
   1206       std::vector<Type*> ArgTys;
   1207       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
   1208         if (Type *Elt = getTypeByIDOrNull(Record[i]))
   1209           ArgTys.push_back(Elt);
   1210         else
   1211           break;
   1212       }
   1213       if (ArgTys.size()+2 != Record.size())
   1214         break;  // Something was null.
   1215       if ((ResultTy = getTypeByIDOrNull(Record[1])))
   1216         ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
   1217       break;
   1218     }
   1219     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
   1220       if (Record.size() < 2)
   1221         return Error("Invalid ARRAY type record");
   1222       if ((ResultTy = getTypeByIDOrNull(Record[1])))
   1223         ResultTy = ArrayType::get(ResultTy, Record[0]);
   1224       break;
   1225     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
   1226       if (Record.size() < 2)
   1227         return Error("Invalid VECTOR type record");
   1228       if ((ResultTy = getTypeByIDOrNull(Record[1])))
   1229         ResultTy = VectorType::get(ResultTy, Record[0]);
   1230       break;
   1231     }
   1232 
   1233     if (NextTypeID >= TypeList.size())
   1234       return Error("invalid TYPE table");
   1235 
   1236     if (ResultTy && TypeList[NextTypeID] == 0) {
   1237       ++NumTypesRead;
   1238       ReadAnyTypes = true;
   1239 
   1240       TypeList[NextTypeID] = ResultTy;
   1241     }
   1242 
   1243     ++NextTypeID;
   1244   }
   1245 }
   1246 
   1247 
   1248 bool BitcodeReader::ParseOldTypeSymbolTable() {
   1249   if (Stream.EnterSubBlock(TYPE_SYMTAB_BLOCK_ID_OLD_3_0))
   1250     return Error("Malformed block record");
   1251 
   1252   SmallVector<uint64_t, 64> Record;
   1253 
   1254   // Read all the records for this type table.
   1255   std::string TypeName;
   1256   while (1) {
   1257     unsigned Code = Stream.ReadCode();
   1258     if (Code == bitc::END_BLOCK) {
   1259       if (Stream.ReadBlockEnd())
   1260         return Error("Error at end of type symbol table block");
   1261       return false;
   1262     }
   1263 
   1264     if (Code == bitc::ENTER_SUBBLOCK) {
   1265       // No known subblocks, always skip them.
   1266       Stream.ReadSubBlockID();
   1267       if (Stream.SkipBlock())
   1268         return Error("Malformed block record");
   1269       continue;
   1270     }
   1271 
   1272     if (Code == bitc::DEFINE_ABBREV) {
   1273       Stream.ReadAbbrevRecord();
   1274       continue;
   1275     }
   1276 
   1277     // Read a record.
   1278     Record.clear();
   1279     switch (Stream.readRecord(Code, Record)) {
   1280     default:  // Default behavior: unknown type.
   1281       break;
   1282     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
   1283       if (ConvertToString(Record, 1, TypeName))
   1284         return Error("Invalid TST_ENTRY record");
   1285       unsigned TypeID = Record[0];
   1286       if (TypeID >= TypeList.size())
   1287         return Error("Invalid Type ID in TST_ENTRY record");
   1288 
   1289       // Only apply the type name to a struct type with no name.
   1290       if (StructType *STy = dyn_cast<StructType>(TypeList[TypeID]))
   1291         if (!STy->isLiteral() && !STy->hasName())
   1292           STy->setName(TypeName);
   1293       TypeName.clear();
   1294       break;
   1295     }
   1296   }
   1297 }
   1298 
   1299 bool BitcodeReader::ParseValueSymbolTable() {
   1300   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
   1301     return Error("Malformed block record");
   1302 
   1303   SmallVector<uint64_t, 64> Record;
   1304 
   1305   // Read all the records for this value table.
   1306   SmallString<128> ValueName;
   1307   while (1) {
   1308     unsigned Code = Stream.ReadCode();
   1309     if (Code == bitc::END_BLOCK) {
   1310       if (Stream.ReadBlockEnd())
   1311         return Error("Error at end of value symbol table block");
   1312       return false;
   1313     }
   1314     if (Code == bitc::ENTER_SUBBLOCK) {
   1315       // No known subblocks, always skip them.
   1316       Stream.ReadSubBlockID();
   1317       if (Stream.SkipBlock())
   1318         return Error("Malformed block record");
   1319       continue;
   1320     }
   1321 
   1322     if (Code == bitc::DEFINE_ABBREV) {
   1323       Stream.ReadAbbrevRecord();
   1324       continue;
   1325     }
   1326 
   1327     // Read a record.
   1328     Record.clear();
   1329     switch (Stream.readRecord(Code, Record)) {
   1330     default:  // Default behavior: unknown type.
   1331       break;
   1332     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
   1333       if (ConvertToString(Record, 1, ValueName))
   1334         return Error("Invalid VST_ENTRY record");
   1335       unsigned ValueID = Record[0];
   1336       if (ValueID >= ValueList.size())
   1337         return Error("Invalid Value ID in VST_ENTRY record");
   1338       Value *V = ValueList[ValueID];
   1339 
   1340       V->setName(StringRef(ValueName.data(), ValueName.size()));
   1341       ValueName.clear();
   1342       break;
   1343     }
   1344     case bitc::VST_CODE_BBENTRY: {
   1345       if (ConvertToString(Record, 1, ValueName))
   1346         return Error("Invalid VST_BBENTRY record");
   1347       BasicBlock *BB = getBasicBlock(Record[0]);
   1348       if (BB == 0)
   1349         return Error("Invalid BB ID in VST_BBENTRY record");
   1350 
   1351       BB->setName(StringRef(ValueName.data(), ValueName.size()));
   1352       ValueName.clear();
   1353       break;
   1354     }
   1355     }
   1356   }
   1357 }
   1358 
   1359 bool BitcodeReader::ParseMetadata() {
   1360   unsigned NextMDValueNo = MDValueList.size();
   1361 
   1362   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
   1363     return Error("Malformed block record");
   1364 
   1365   SmallVector<uint64_t, 64> Record;
   1366 
   1367   // Read all the records.
   1368   while (1) {
   1369     unsigned Code = Stream.ReadCode();
   1370     if (Code == bitc::END_BLOCK) {
   1371       if (Stream.ReadBlockEnd())
   1372         return Error("Error at end of PARAMATTR block");
   1373       return false;
   1374     }
   1375 
   1376     if (Code == bitc::ENTER_SUBBLOCK) {
   1377       // No known subblocks, always skip them.
   1378       Stream.ReadSubBlockID();
   1379       if (Stream.SkipBlock())
   1380         return Error("Malformed block record");
   1381       continue;
   1382     }
   1383 
   1384     if (Code == bitc::DEFINE_ABBREV) {
   1385       Stream.ReadAbbrevRecord();
   1386       continue;
   1387     }
   1388 
   1389     bool IsFunctionLocal = false;
   1390     // Read a record.
   1391     Record.clear();
   1392     Code = Stream.readRecord(Code, Record);
   1393     switch (Code) {
   1394     default:  // Default behavior: ignore.
   1395       break;
   1396     case bitc::METADATA_NAME: {
   1397       // Read named of the named metadata.
   1398       unsigned NameLength = Record.size();
   1399       SmallString<8> Name;
   1400       Name.resize(NameLength);
   1401       for (unsigned i = 0; i != NameLength; ++i)
   1402         Name[i] = Record[i];
   1403       Record.clear();
   1404       Code = Stream.ReadCode();
   1405 
   1406       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
   1407       unsigned NextBitCode = Stream.readRecord(Code, Record);
   1408       assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
   1409 
   1410       // Read named metadata elements.
   1411       unsigned Size = Record.size();
   1412       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
   1413       for (unsigned i = 0; i != Size; ++i) {
   1414         MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
   1415         if (MD == 0)
   1416           return Error("Malformed metadata record");
   1417         NMD->addOperand(MD);
   1418       }
   1419       break;
   1420     }
   1421     case bitc::METADATA_FN_NODE:
   1422       IsFunctionLocal = true;
   1423       // fall-through
   1424     case bitc::METADATA_NODE: {
   1425       if (Record.size() % 2 == 1)
   1426         return Error("Invalid METADATA_NODE record");
   1427 
   1428       unsigned Size = Record.size();
   1429       SmallVector<Value*, 8> Elts;
   1430       for (unsigned i = 0; i != Size; i += 2) {
   1431         Type *Ty = getTypeByID(Record[i]);
   1432         if (!Ty) return Error("Invalid METADATA_NODE record");
   1433         if (Ty->isMetadataTy())
   1434           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
   1435         else if (!Ty->isVoidTy())
   1436           Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
   1437         else
   1438           Elts.push_back(NULL);
   1439       }
   1440       Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
   1441       IsFunctionLocal = false;
   1442       MDValueList.AssignValue(V, NextMDValueNo++);
   1443       break;
   1444     }
   1445     case bitc::METADATA_STRING: {
   1446       unsigned MDStringLength = Record.size();
   1447       SmallString<8> String;
   1448       String.resize(MDStringLength);
   1449       for (unsigned i = 0; i != MDStringLength; ++i)
   1450         String[i] = Record[i];
   1451       Value *V = MDString::get(Context,
   1452                                StringRef(String.data(), String.size()));
   1453       MDValueList.AssignValue(V, NextMDValueNo++);
   1454       break;
   1455     }
   1456     case bitc::METADATA_KIND: {
   1457       unsigned RecordLength = Record.size();
   1458       if (Record.empty() || RecordLength < 2)
   1459         return Error("Invalid METADATA_KIND record");
   1460       SmallString<8> Name;
   1461       Name.resize(RecordLength-1);
   1462       unsigned Kind = Record[0];
   1463       for (unsigned i = 1; i != RecordLength; ++i)
   1464         Name[i-1] = Record[i];
   1465 
   1466       unsigned NewKind = TheModule->getMDKindID(Name.str());
   1467       if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
   1468         return Error("Conflicting METADATA_KIND records");
   1469       break;
   1470     }
   1471     }
   1472   }
   1473 }
   1474 
   1475 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
   1476 /// the LSB for dense VBR encoding.
   1477 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
   1478   if ((V & 1) == 0)
   1479     return V >> 1;
   1480   if (V != 1)
   1481     return -(V >> 1);
   1482   // There is no such thing as -0 with integers.  "-0" really means MININT.
   1483   return 1ULL << 63;
   1484 }
   1485 
   1486 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
   1487 /// values and aliases that we can.
   1488 bool BitcodeReader::ResolveGlobalAndAliasInits() {
   1489   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
   1490   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
   1491 
   1492   GlobalInitWorklist.swap(GlobalInits);
   1493   AliasInitWorklist.swap(AliasInits);
   1494 
   1495   while (!GlobalInitWorklist.empty()) {
   1496     unsigned ValID = GlobalInitWorklist.back().second;
   1497     if (ValID >= ValueList.size()) {
   1498       // Not ready to resolve this yet, it requires something later in the file.
   1499       GlobalInits.push_back(GlobalInitWorklist.back());
   1500     } else {
   1501       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
   1502         GlobalInitWorklist.back().first->setInitializer(C);
   1503       else
   1504         return Error("Global variable initializer is not a constant!");
   1505     }
   1506     GlobalInitWorklist.pop_back();
   1507   }
   1508 
   1509   while (!AliasInitWorklist.empty()) {
   1510     unsigned ValID = AliasInitWorklist.back().second;
   1511     if (ValID >= ValueList.size()) {
   1512       AliasInits.push_back(AliasInitWorklist.back());
   1513     } else {
   1514       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
   1515         AliasInitWorklist.back().first->setAliasee(C);
   1516       else
   1517         return Error("Alias initializer is not a constant!");
   1518     }
   1519     AliasInitWorklist.pop_back();
   1520   }
   1521   return false;
   1522 }
   1523 
   1524 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
   1525   SmallVector<uint64_t, 8> Words(Vals.size());
   1526   std::transform(Vals.begin(), Vals.end(), Words.begin(),
   1527                  BitcodeReader::decodeSignRotatedValue);
   1528 
   1529   return APInt(TypeBits, Words);
   1530 }
   1531 
   1532 bool BitcodeReader::ParseConstants() {
   1533   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
   1534     return Error("Malformed block record");
   1535 
   1536   SmallVector<uint64_t, 64> Record;
   1537 
   1538   // Read all the records for this value table.
   1539   Type *CurTy = Type::getInt32Ty(Context);
   1540   unsigned NextCstNo = ValueList.size();
   1541   while (1) {
   1542     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   1543 
   1544     switch (Entry.Kind) {
   1545     case BitstreamEntry::SubBlock: // Handled for us already.
   1546     case BitstreamEntry::Error:
   1547       return Error("malformed block record in AST file");
   1548     case BitstreamEntry::EndBlock:
   1549       if (NextCstNo != ValueList.size())
   1550         return Error("Invalid constant reference!");
   1551 
   1552       // Once all the constants have been read, go through and resolve forward
   1553       // references.
   1554       ValueList.ResolveConstantForwardRefs();
   1555       return false;
   1556     case BitstreamEntry::Record:
   1557       // The interesting case.
   1558       break;
   1559     }
   1560 
   1561     // Read a record.
   1562     Record.clear();
   1563     Value *V = 0;
   1564     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
   1565     switch (BitCode) {
   1566     default:  // Default behavior: unknown constant
   1567     case bitc::CST_CODE_UNDEF:     // UNDEF
   1568       V = UndefValue::get(CurTy);
   1569       break;
   1570     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
   1571       if (Record.empty())
   1572         return Error("Malformed CST_SETTYPE record");
   1573       if (Record[0] >= TypeList.size())
   1574         return Error("Invalid Type ID in CST_SETTYPE record");
   1575       CurTy = TypeList[Record[0]];
   1576       continue;  // Skip the ValueList manipulation.
   1577     case bitc::CST_CODE_NULL:      // NULL
   1578       V = Constant::getNullValue(CurTy);
   1579       break;
   1580     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
   1581       if (!CurTy->isIntegerTy() || Record.empty())
   1582         return Error("Invalid CST_INTEGER record");
   1583       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
   1584       break;
   1585     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
   1586       if (!CurTy->isIntegerTy() || Record.empty())
   1587         return Error("Invalid WIDE_INTEGER record");
   1588 
   1589       APInt VInt = ReadWideAPInt(Record,
   1590                                  cast<IntegerType>(CurTy)->getBitWidth());
   1591       V = ConstantInt::get(Context, VInt);
   1592 
   1593       break;
   1594     }
   1595     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
   1596       if (Record.empty())
   1597         return Error("Invalid FLOAT record");
   1598       if (CurTy->isHalfTy())
   1599         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
   1600                                              APInt(16, (uint16_t)Record[0])));
   1601       else if (CurTy->isFloatTy())
   1602         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
   1603                                              APInt(32, (uint32_t)Record[0])));
   1604       else if (CurTy->isDoubleTy())
   1605         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
   1606                                              APInt(64, Record[0])));
   1607       else if (CurTy->isX86_FP80Ty()) {
   1608         // Bits are not stored the same way as a normal i80 APInt, compensate.
   1609         uint64_t Rearrange[2];
   1610         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
   1611         Rearrange[1] = Record[0] >> 48;
   1612         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
   1613                                              APInt(80, Rearrange)));
   1614       } else if (CurTy->isFP128Ty())
   1615         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
   1616                                              APInt(128, Record)));
   1617       else if (CurTy->isPPC_FP128Ty())
   1618         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
   1619                                              APInt(128, Record)));
   1620       else
   1621         V = UndefValue::get(CurTy);
   1622       break;
   1623     }
   1624 
   1625     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
   1626       if (Record.empty())
   1627         return Error("Invalid CST_AGGREGATE record");
   1628 
   1629       unsigned Size = Record.size();
   1630       SmallVector<Constant*, 16> Elts;
   1631 
   1632       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
   1633         for (unsigned i = 0; i != Size; ++i)
   1634           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
   1635                                                      STy->getElementType(i)));
   1636         V = ConstantStruct::get(STy, Elts);
   1637       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
   1638         Type *EltTy = ATy->getElementType();
   1639         for (unsigned i = 0; i != Size; ++i)
   1640           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
   1641         V = ConstantArray::get(ATy, Elts);
   1642       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
   1643         Type *EltTy = VTy->getElementType();
   1644         for (unsigned i = 0; i != Size; ++i)
   1645           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
   1646         V = ConstantVector::get(Elts);
   1647       } else {
   1648         V = UndefValue::get(CurTy);
   1649       }
   1650       break;
   1651     }
   1652     case bitc::CST_CODE_STRING: { // STRING: [values]
   1653       if (Record.empty())
   1654         return Error("Invalid CST_AGGREGATE record");
   1655 
   1656       ArrayType *ATy = cast<ArrayType>(CurTy);
   1657       Type *EltTy = ATy->getElementType();
   1658 
   1659       unsigned Size = Record.size();
   1660       std::vector<Constant*> Elts;
   1661       for (unsigned i = 0; i != Size; ++i)
   1662         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
   1663       V = ConstantArray::get(ATy, Elts);
   1664       break;
   1665     }
   1666     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
   1667       if (Record.empty())
   1668         return Error("Invalid CST_AGGREGATE record");
   1669 
   1670       ArrayType *ATy = cast<ArrayType>(CurTy);
   1671       Type *EltTy = ATy->getElementType();
   1672 
   1673       unsigned Size = Record.size();
   1674       std::vector<Constant*> Elts;
   1675       for (unsigned i = 0; i != Size; ++i)
   1676         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
   1677       Elts.push_back(Constant::getNullValue(EltTy));
   1678       V = ConstantArray::get(ATy, Elts);
   1679       break;
   1680     }
   1681     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
   1682       if (Record.size() < 3) return Error("Invalid CE_BINOP record");
   1683       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
   1684       if (Opc < 0) {
   1685         V = UndefValue::get(CurTy);  // Unknown binop.
   1686       } else {
   1687         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
   1688         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
   1689         unsigned Flags = 0;
   1690         if (Record.size() >= 4) {
   1691           if (Opc == Instruction::Add ||
   1692               Opc == Instruction::Sub ||
   1693               Opc == Instruction::Mul ||
   1694               Opc == Instruction::Shl) {
   1695             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
   1696               Flags |= OverflowingBinaryOperator::NoSignedWrap;
   1697             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
   1698               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
   1699           } else if (Opc == Instruction::SDiv ||
   1700                      Opc == Instruction::UDiv ||
   1701                      Opc == Instruction::LShr ||
   1702                      Opc == Instruction::AShr) {
   1703             if (Record[3] & (1 << bitc::PEO_EXACT))
   1704               Flags |= SDivOperator::IsExact;
   1705           }
   1706         }
   1707         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
   1708       }
   1709       break;
   1710     }
   1711     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
   1712       if (Record.size() < 3) return Error("Invalid CE_CAST record");
   1713       int Opc = GetDecodedCastOpcode(Record[0]);
   1714       if (Opc < 0) {
   1715         V = UndefValue::get(CurTy);  // Unknown cast.
   1716       } else {
   1717         Type *OpTy = getTypeByID(Record[1]);
   1718         if (!OpTy) return Error("Invalid CE_CAST record");
   1719         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
   1720         V = ConstantExpr::getCast(Opc, Op, CurTy);
   1721       }
   1722       break;
   1723     }
   1724     case bitc::CST_CODE_CE_INBOUNDS_GEP:
   1725     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
   1726       if (Record.size() & 1) return Error("Invalid CE_GEP record");
   1727       SmallVector<Constant*, 16> Elts;
   1728       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
   1729         Type *ElTy = getTypeByID(Record[i]);
   1730         if (!ElTy) return Error("Invalid CE_GEP record");
   1731         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
   1732       }
   1733       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
   1734       V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
   1735                                          BitCode ==
   1736                                            bitc::CST_CODE_CE_INBOUNDS_GEP);
   1737       break;
   1738     }
   1739     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
   1740       if (Record.size() < 3) return Error("Invalid CE_SELECT record");
   1741       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
   1742                                                               Type::getInt1Ty(Context)),
   1743                                   ValueList.getConstantFwdRef(Record[1],CurTy),
   1744                                   ValueList.getConstantFwdRef(Record[2],CurTy));
   1745       break;
   1746     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
   1747       if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
   1748       VectorType *OpTy =
   1749         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
   1750       if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
   1751       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
   1752       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
   1753       V = ConstantExpr::getExtractElement(Op0, Op1);
   1754       break;
   1755     }
   1756     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
   1757       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
   1758       if (Record.size() < 3 || OpTy == 0)
   1759         return Error("Invalid CE_INSERTELT record");
   1760       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
   1761       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
   1762                                                   OpTy->getElementType());
   1763       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
   1764       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
   1765       break;
   1766     }
   1767     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
   1768       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
   1769       if (Record.size() < 3 || OpTy == 0)
   1770         return Error("Invalid CE_SHUFFLEVEC record");
   1771       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
   1772       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
   1773       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
   1774                                                  OpTy->getNumElements());
   1775       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
   1776       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
   1777       break;
   1778     }
   1779     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
   1780       VectorType *RTy = dyn_cast<VectorType>(CurTy);
   1781       VectorType *OpTy =
   1782         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
   1783       if (Record.size() < 4 || RTy == 0 || OpTy == 0)
   1784         return Error("Invalid CE_SHUFVEC_EX record");
   1785       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
   1786       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
   1787       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
   1788                                                  RTy->getNumElements());
   1789       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
   1790       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
   1791       break;
   1792     }
   1793     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
   1794       if (Record.size() < 4) return Error("Invalid CE_CMP record");
   1795       Type *OpTy = getTypeByID(Record[0]);
   1796       if (OpTy == 0) return Error("Invalid CE_CMP record");
   1797       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
   1798       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
   1799 
   1800       if (OpTy->isFPOrFPVectorTy())
   1801         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
   1802       else
   1803         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
   1804       break;
   1805     }
   1806     case bitc::CST_CODE_INLINEASM: {
   1807       if (Record.size() < 2) return Error("Invalid INLINEASM record");
   1808       std::string AsmStr, ConstrStr;
   1809       bool HasSideEffects = Record[0] & 1;
   1810       bool IsAlignStack = Record[0] >> 1;
   1811       unsigned AsmStrSize = Record[1];
   1812       if (2+AsmStrSize >= Record.size())
   1813         return Error("Invalid INLINEASM record");
   1814       unsigned ConstStrSize = Record[2+AsmStrSize];
   1815       if (3+AsmStrSize+ConstStrSize > Record.size())
   1816         return Error("Invalid INLINEASM record");
   1817 
   1818       for (unsigned i = 0; i != AsmStrSize; ++i)
   1819         AsmStr += (char)Record[2+i];
   1820       for (unsigned i = 0; i != ConstStrSize; ++i)
   1821         ConstrStr += (char)Record[3+AsmStrSize+i];
   1822       PointerType *PTy = cast<PointerType>(CurTy);
   1823       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
   1824                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
   1825       break;
   1826     }
   1827     case bitc::CST_CODE_BLOCKADDRESS:{
   1828       if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
   1829       Type *FnTy = getTypeByID(Record[0]);
   1830       if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
   1831       Function *Fn =
   1832         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
   1833       if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
   1834 
   1835       GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
   1836                                                   Type::getInt8Ty(Context),
   1837                                             false, GlobalValue::InternalLinkage,
   1838                                                   0, "");
   1839       BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
   1840       V = FwdRef;
   1841       break;
   1842     }
   1843     }
   1844 
   1845     ValueList.AssignValue(V, NextCstNo);
   1846     ++NextCstNo;
   1847   }
   1848 
   1849   if (NextCstNo != ValueList.size())
   1850     return Error("Invalid constant reference!");
   1851 
   1852   if (Stream.ReadBlockEnd())
   1853     return Error("Error at end of constants block");
   1854 
   1855   // Once all the constants have been read, go through and resolve forward
   1856   // references.
   1857   ValueList.ResolveConstantForwardRefs();
   1858   return false;
   1859 }
   1860 
   1861 /// RememberAndSkipFunctionBody - When we see the block for a function body,
   1862 /// remember where it is and then skip it.  This lets us lazily deserialize the
   1863 /// functions.
   1864 bool BitcodeReader::RememberAndSkipFunctionBody() {
   1865   // Get the function we are talking about.
   1866   if (FunctionsWithBodies.empty())
   1867     return Error("Insufficient function protos");
   1868 
   1869   Function *Fn = FunctionsWithBodies.back();
   1870   FunctionsWithBodies.pop_back();
   1871 
   1872   // Save the current stream state.
   1873   uint64_t CurBit = Stream.GetCurrentBitNo();
   1874   DeferredFunctionInfo[Fn] = CurBit;
   1875 
   1876   // Skip over the function block for now.
   1877   if (Stream.SkipBlock())
   1878     return Error("Malformed block record");
   1879   return false;
   1880 }
   1881 
   1882 bool BitcodeReader::GlobalCleanup() {
   1883   // Patch the initializers for globals and aliases up.
   1884   ResolveGlobalAndAliasInits();
   1885   if (!GlobalInits.empty() || !AliasInits.empty())
   1886     return Error("Malformed global initializer set");
   1887 
   1888   // Look for intrinsic functions which need to be upgraded at some point
   1889   for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
   1890        FI != FE; ++FI) {
   1891     Function *NewFn;
   1892     if (UpgradeIntrinsicFunction(FI, NewFn))
   1893       UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
   1894   }
   1895 
   1896   // Look for global variables which need to be renamed.
   1897   for (Module::global_iterator
   1898          GI = TheModule->global_begin(), GE = TheModule->global_end();
   1899        GI != GE; ++GI)
   1900     UpgradeGlobalVariable(GI);
   1901   // Force deallocation of memory for these vectors to favor the client that
   1902   // want lazy deserialization.
   1903   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
   1904   std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
   1905   return false;
   1906 }
   1907 
   1908 bool BitcodeReader::ParseModule(bool Resume) {
   1909   if (Resume)
   1910     Stream.JumpToBit(NextUnreadBit);
   1911   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
   1912     return Error("Malformed block record");
   1913 
   1914   SmallVector<uint64_t, 64> Record;
   1915   std::vector<std::string> SectionTable;
   1916   std::vector<std::string> GCTable;
   1917 
   1918   // Read all the records for this module.
   1919   while (1) {
   1920     BitstreamEntry Entry = Stream.advance();
   1921 
   1922     switch (Entry.Kind) {
   1923     case BitstreamEntry::Error:
   1924       Error("malformed module block");
   1925       return true;
   1926     case BitstreamEntry::EndBlock:
   1927       return GlobalCleanup();
   1928 
   1929     case BitstreamEntry::SubBlock:
   1930       switch (Entry.ID) {
   1931       default:  // Skip unknown content.
   1932         if (Stream.SkipBlock())
   1933           return Error("Malformed block record");
   1934         break;
   1935       case bitc::BLOCKINFO_BLOCK_ID:
   1936         if (Stream.ReadBlockInfoBlock())
   1937           return Error("Malformed BlockInfoBlock");
   1938         break;
   1939       case bitc::PARAMATTR_BLOCK_ID:
   1940         if (ParseAttributeBlock())
   1941           return true;
   1942         break;
   1943       case bitc::TYPE_BLOCK_ID_NEW:
   1944         if (ParseTypeTable())
   1945           return true;
   1946         break;
   1947       case TYPE_BLOCK_ID_OLD_3_0:
   1948         if (ParseOldTypeTable())
   1949           return true;
   1950         break;
   1951       case TYPE_SYMTAB_BLOCK_ID_OLD_3_0:
   1952         if (ParseOldTypeSymbolTable())
   1953           return true;
   1954         break;
   1955       case bitc::VALUE_SYMTAB_BLOCK_ID:
   1956         if (ParseValueSymbolTable())
   1957           return true;
   1958         SeenValueSymbolTable = true;
   1959         break;
   1960       case bitc::CONSTANTS_BLOCK_ID:
   1961         if (ParseConstants() || ResolveGlobalAndAliasInits())
   1962           return true;
   1963         break;
   1964       case bitc::METADATA_BLOCK_ID:
   1965         if (ParseMetadata())
   1966           return true;
   1967         break;
   1968       case bitc::FUNCTION_BLOCK_ID:
   1969         // If this is the first function body we've seen, reverse the
   1970         // FunctionsWithBodies list.
   1971         if (!SeenFirstFunctionBody) {
   1972           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
   1973           if (GlobalCleanup())
   1974             return true;
   1975           SeenFirstFunctionBody = true;
   1976         }
   1977 
   1978         if (RememberAndSkipFunctionBody())
   1979           return true;
   1980         // For streaming bitcode, suspend parsing when we reach the function
   1981         // bodies. Subsequent materialization calls will resume it when
   1982         // necessary. For streaming, the function bodies must be at the end of
   1983         // the bitcode. If the bitcode file is old, the symbol table will be
   1984         // at the end instead and will not have been seen yet. In this case,
   1985         // just finish the parse now.
   1986         if (LazyStreamer && SeenValueSymbolTable) {
   1987           NextUnreadBit = Stream.GetCurrentBitNo();
   1988           return false;
   1989         }
   1990         break;
   1991         break;
   1992       }
   1993       continue;
   1994 
   1995     case BitstreamEntry::Record:
   1996       // The interesting case.
   1997       break;
   1998     }
   1999 
   2000 
   2001     // Read a record.
   2002     switch (Stream.readRecord(Entry.ID, Record)) {
   2003     default: break;  // Default behavior, ignore unknown content.
   2004     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
   2005       if (Record.size() < 1)
   2006         return Error("Malformed MODULE_CODE_VERSION");
   2007       // Only version #0 is supported so far.
   2008       if (Record[0] != 0)
   2009         return Error("Unknown bitstream version!");
   2010       break;
   2011     }
   2012     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
   2013       std::string S;
   2014       if (ConvertToString(Record, 0, S))
   2015         return Error("Invalid MODULE_CODE_TRIPLE record");
   2016       TheModule->setTargetTriple(S);
   2017       break;
   2018     }
   2019     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
   2020       std::string S;
   2021       if (ConvertToString(Record, 0, S))
   2022         return Error("Invalid MODULE_CODE_DATALAYOUT record");
   2023       TheModule->setDataLayout(S);
   2024       break;
   2025     }
   2026     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
   2027       std::string S;
   2028       if (ConvertToString(Record, 0, S))
   2029         return Error("Invalid MODULE_CODE_ASM record");
   2030       TheModule->setModuleInlineAsm(S);
   2031       break;
   2032     }
   2033     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
   2034       std::string S;
   2035       if (ConvertToString(Record, 0, S))
   2036         return Error("Invalid MODULE_CODE_DEPLIB record");
   2037       // ANDROID: Ignore value, since we never used it anyways.
   2038       // TheModule->addLibrary(S);
   2039       break;
   2040     }
   2041     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
   2042       std::string S;
   2043       if (ConvertToString(Record, 0, S))
   2044         return Error("Invalid MODULE_CODE_SECTIONNAME record");
   2045       SectionTable.push_back(S);
   2046       break;
   2047     }
   2048     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
   2049       std::string S;
   2050       if (ConvertToString(Record, 0, S))
   2051         return Error("Invalid MODULE_CODE_GCNAME record");
   2052       GCTable.push_back(S);
   2053       break;
   2054     }
   2055     // GLOBALVAR: [pointer type, isconst, initid,
   2056     //             linkage, alignment, section, visibility, threadlocal,
   2057     //             unnamed_addr]
   2058     case bitc::MODULE_CODE_GLOBALVAR: {
   2059       if (Record.size() < 6)
   2060         return Error("Invalid MODULE_CODE_GLOBALVAR record");
   2061       Type *Ty = getTypeByID(Record[0]);
   2062       if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
   2063       if (!Ty->isPointerTy())
   2064         return Error("Global not a pointer type!");
   2065       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
   2066       Ty = cast<PointerType>(Ty)->getElementType();
   2067 
   2068       bool isConstant = Record[1];
   2069       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
   2070       unsigned Alignment = (1 << Record[4]) >> 1;
   2071       std::string Section;
   2072       if (Record[5]) {
   2073         if (Record[5]-1 >= SectionTable.size())
   2074           return Error("Invalid section ID");
   2075         Section = SectionTable[Record[5]-1];
   2076       }
   2077       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
   2078       if (Record.size() > 6)
   2079         Visibility = GetDecodedVisibility(Record[6]);
   2080 
   2081       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
   2082       if (Record.size() > 7)
   2083         TLM = GetDecodedThreadLocalMode(Record[7]);
   2084 
   2085       bool UnnamedAddr = false;
   2086       if (Record.size() > 8)
   2087         UnnamedAddr = Record[8];
   2088 
   2089       GlobalVariable *NewGV =
   2090         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
   2091                            TLM, AddressSpace);
   2092       NewGV->setAlignment(Alignment);
   2093       if (!Section.empty())
   2094         NewGV->setSection(Section);
   2095       NewGV->setVisibility(Visibility);
   2096       NewGV->setUnnamedAddr(UnnamedAddr);
   2097 
   2098       ValueList.push_back(NewGV);
   2099 
   2100       // Remember which value to use for the global initializer.
   2101       if (unsigned InitID = Record[2])
   2102         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
   2103       break;
   2104     }
   2105     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
   2106     //             alignment, section, visibility, gc, unnamed_addr]
   2107     case bitc::MODULE_CODE_FUNCTION: {
   2108       if (Record.size() < 8)
   2109         return Error("Invalid MODULE_CODE_FUNCTION record");
   2110       Type *Ty = getTypeByID(Record[0]);
   2111       if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
   2112       if (!Ty->isPointerTy())
   2113         return Error("Function not a pointer type!");
   2114       FunctionType *FTy =
   2115         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
   2116       if (!FTy)
   2117         return Error("Function not a pointer to function type!");
   2118 
   2119       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
   2120                                         "", TheModule);
   2121 
   2122       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
   2123       bool isProto = Record[2];
   2124       Func->setLinkage(GetDecodedLinkage(Record[3]));
   2125       Func->setAttributes(getAttributes(Record[4]));
   2126 
   2127       Func->setAlignment((1 << Record[5]) >> 1);
   2128       if (Record[6]) {
   2129         if (Record[6]-1 >= SectionTable.size())
   2130           return Error("Invalid section ID");
   2131         Func->setSection(SectionTable[Record[6]-1]);
   2132       }
   2133       Func->setVisibility(GetDecodedVisibility(Record[7]));
   2134       if (Record.size() > 8 && Record[8]) {
   2135         if (Record[8]-1 > GCTable.size())
   2136           return Error("Invalid GC ID");
   2137         Func->setGC(GCTable[Record[8]-1].c_str());
   2138       }
   2139       bool UnnamedAddr = false;
   2140       if (Record.size() > 9)
   2141         UnnamedAddr = Record[9];
   2142       Func->setUnnamedAddr(UnnamedAddr);
   2143       ValueList.push_back(Func);
   2144 
   2145       // If this is a function with a body, remember the prototype we are
   2146       // creating now, so that we can match up the body with them later.
   2147       if (!isProto) {
   2148         FunctionsWithBodies.push_back(Func);
   2149         if (LazyStreamer) DeferredFunctionInfo[Func] = 0;
   2150       }
   2151       break;
   2152     }
   2153     // ALIAS: [alias type, aliasee val#, linkage]
   2154     // ALIAS: [alias type, aliasee val#, linkage, visibility]
   2155     case bitc::MODULE_CODE_ALIAS: {
   2156       if (Record.size() < 3)
   2157         return Error("Invalid MODULE_ALIAS record");
   2158       Type *Ty = getTypeByID(Record[0]);
   2159       if (!Ty) return Error("Invalid MODULE_ALIAS record");
   2160       if (!Ty->isPointerTy())
   2161         return Error("Function not a pointer type!");
   2162 
   2163       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
   2164                                            "", 0, TheModule);
   2165       // Old bitcode files didn't have visibility field.
   2166       if (Record.size() > 3)
   2167         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
   2168       ValueList.push_back(NewGA);
   2169       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
   2170       break;
   2171     }
   2172     /// MODULE_CODE_PURGEVALS: [numvals]
   2173     case bitc::MODULE_CODE_PURGEVALS:
   2174       // Trim down the value list to the specified size.
   2175       if (Record.size() < 1 || Record[0] > ValueList.size())
   2176         return Error("Invalid MODULE_PURGEVALS record");
   2177       ValueList.shrinkTo(Record[0]);
   2178       break;
   2179     }
   2180     Record.clear();
   2181   }
   2182 }
   2183 
   2184 bool BitcodeReader::ParseBitcodeInto(Module *M) {
   2185   TheModule = 0;
   2186 
   2187   if (InitStream()) return true;
   2188 
   2189   // Sniff for the signature.
   2190   if (Stream.Read(8) != 'B' ||
   2191       Stream.Read(8) != 'C' ||
   2192       Stream.Read(4) != 0x0 ||
   2193       Stream.Read(4) != 0xC ||
   2194       Stream.Read(4) != 0xE ||
   2195       Stream.Read(4) != 0xD)
   2196     return Error("Invalid bitcode signature");
   2197 
   2198   // We expect a number of well-defined blocks, though we don't necessarily
   2199   // need to understand them all.
   2200   while (1) {
   2201     if (Stream.AtEndOfStream())
   2202       return false;
   2203 
   2204     BitstreamEntry Entry =
   2205       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
   2206 
   2207     switch (Entry.Kind) {
   2208     case BitstreamEntry::Error:
   2209       Error("malformed module file");
   2210       return true;
   2211     case BitstreamEntry::EndBlock:
   2212       return false;
   2213 
   2214     case BitstreamEntry::SubBlock:
   2215       switch (Entry.ID) {
   2216       case bitc::BLOCKINFO_BLOCK_ID:
   2217         if (Stream.ReadBlockInfoBlock())
   2218           return Error("Malformed BlockInfoBlock");
   2219         break;
   2220       case bitc::MODULE_BLOCK_ID:
   2221         // Reject multiple MODULE_BLOCK's in a single bitstream.
   2222         if (TheModule)
   2223           return Error("Multiple MODULE_BLOCKs in same stream");
   2224         TheModule = M;
   2225         if (ParseModule(false))
   2226           return true;
   2227         if (LazyStreamer) return false;
   2228         break;
   2229       default:
   2230         if (Stream.SkipBlock())
   2231           return Error("Malformed block record");
   2232         break;
   2233       }
   2234       continue;
   2235     case BitstreamEntry::Record:
   2236       // There should be no records in the top-level of blocks.
   2237 
   2238       // The ranlib in Xcode 4 will align archive members by appending newlines
   2239       // to the end of them. If this file size is a multiple of 4 but not 8, we
   2240       // have to read and ignore these final 4 bytes :-(
   2241       if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
   2242           Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
   2243           Stream.AtEndOfStream())
   2244         return false;
   2245 
   2246       return Error("Invalid record at top-level");
   2247     }
   2248   }
   2249 }
   2250 
   2251 bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
   2252   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
   2253     return Error("Malformed block record");
   2254 
   2255   SmallVector<uint64_t, 64> Record;
   2256 
   2257   // Read all the records for this module.
   2258   while (1) {
   2259     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   2260 
   2261     switch (Entry.Kind) {
   2262     case BitstreamEntry::SubBlock: // Handled for us already.
   2263     case BitstreamEntry::Error:
   2264       return Error("malformed module block");
   2265     case BitstreamEntry::EndBlock:
   2266       return false;
   2267     case BitstreamEntry::Record:
   2268       // The interesting case.
   2269       break;
   2270     }
   2271 
   2272     // Read a record.
   2273     switch (Stream.readRecord(Entry.ID, Record)) {
   2274     default: break;  // Default behavior, ignore unknown content.
   2275     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
   2276       std::string S;
   2277       if (ConvertToString(Record, 0, S))
   2278         return Error("Invalid MODULE_CODE_TRIPLE record");
   2279       Triple = S;
   2280       break;
   2281     }
   2282     }
   2283     Record.clear();
   2284   }
   2285 }
   2286 
   2287 bool BitcodeReader::ParseTriple(std::string &Triple) {
   2288   if (InitStream()) return true;
   2289 
   2290   // Sniff for the signature.
   2291   if (Stream.Read(8) != 'B' ||
   2292       Stream.Read(8) != 'C' ||
   2293       Stream.Read(4) != 0x0 ||
   2294       Stream.Read(4) != 0xC ||
   2295       Stream.Read(4) != 0xE ||
   2296       Stream.Read(4) != 0xD)
   2297     return Error("Invalid bitcode signature");
   2298 
   2299   // We expect a number of well-defined blocks, though we don't necessarily
   2300   // need to understand them all.
   2301   while (1) {
   2302     BitstreamEntry Entry = Stream.advance();
   2303 
   2304     switch (Entry.Kind) {
   2305     case BitstreamEntry::Error:
   2306       Error("malformed module file");
   2307       return true;
   2308     case BitstreamEntry::EndBlock:
   2309       return false;
   2310 
   2311     case BitstreamEntry::SubBlock:
   2312       if (Entry.ID == bitc::MODULE_BLOCK_ID)
   2313         return ParseModuleTriple(Triple);
   2314 
   2315       // Ignore other sub-blocks.
   2316       if (Stream.SkipBlock()) {
   2317         Error("malformed block record in AST file");
   2318         return true;
   2319       }
   2320       continue;
   2321 
   2322     case BitstreamEntry::Record:
   2323       Stream.skipRecord(Entry.ID);
   2324       continue;
   2325     }
   2326   }
   2327 }
   2328 
   2329 /// ParseMetadataAttachment - Parse metadata attachments.
   2330 bool BitcodeReader::ParseMetadataAttachment() {
   2331   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
   2332     return Error("Malformed block record");
   2333 
   2334   SmallVector<uint64_t, 64> Record;
   2335   while (1) {
   2336     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   2337 
   2338     switch (Entry.Kind) {
   2339     case BitstreamEntry::SubBlock: // Handled for us already.
   2340     case BitstreamEntry::Error:
   2341       return Error("malformed metadata block");
   2342     case BitstreamEntry::EndBlock:
   2343       return false;
   2344     case BitstreamEntry::Record:
   2345       // The interesting case.
   2346       break;
   2347     }
   2348 
   2349     // Read a metadata attachment record.
   2350     Record.clear();
   2351     switch (Stream.readRecord(Entry.ID, Record)) {
   2352     default:  // Default behavior: ignore.
   2353       break;
   2354     case bitc::METADATA_ATTACHMENT: {
   2355       unsigned RecordLength = Record.size();
   2356       if (Record.empty() || (RecordLength - 1) % 2 == 1)
   2357         return Error ("Invalid METADATA_ATTACHMENT reader!");
   2358       Instruction *Inst = InstructionList[Record[0]];
   2359       for (unsigned i = 1; i != RecordLength; i = i+2) {
   2360         unsigned Kind = Record[i];
   2361         DenseMap<unsigned, unsigned>::iterator I =
   2362           MDKindMap.find(Kind);
   2363         if (I == MDKindMap.end())
   2364           return Error("Invalid metadata kind ID");
   2365         Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
   2366         Inst->setMetadata(I->second, cast<MDNode>(Node));
   2367       }
   2368       break;
   2369     }
   2370     }
   2371   }
   2372 }
   2373 
   2374 /// ParseFunctionBody - Lazily parse the specified function body block.
   2375 bool BitcodeReader::ParseFunctionBody(Function *F) {
   2376   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
   2377     return Error("Malformed block record");
   2378 
   2379   InstructionList.clear();
   2380   unsigned ModuleValueListSize = ValueList.size();
   2381   unsigned ModuleMDValueListSize = MDValueList.size();
   2382 
   2383   // Add all the function arguments to the value table.
   2384   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
   2385     ValueList.push_back(I);
   2386 
   2387   unsigned NextValueNo = ValueList.size();
   2388   BasicBlock *CurBB = 0;
   2389   unsigned CurBBNo = 0;
   2390 
   2391   DebugLoc LastLoc;
   2392 
   2393   // Read all the records.
   2394   SmallVector<uint64_t, 64> Record;
   2395   while (1) {
   2396     unsigned Code = Stream.ReadCode();
   2397     if (Code == bitc::END_BLOCK) {
   2398       if (Stream.ReadBlockEnd())
   2399         return Error("Error at end of function block");
   2400       break;
   2401     }
   2402 
   2403     if (Code == bitc::ENTER_SUBBLOCK) {
   2404       switch (Stream.ReadSubBlockID()) {
   2405       default:  // Skip unknown content.
   2406         if (Stream.SkipBlock())
   2407           return Error("Malformed block record");
   2408         break;
   2409       case bitc::CONSTANTS_BLOCK_ID:
   2410         if (ParseConstants()) return true;
   2411         NextValueNo = ValueList.size();
   2412         break;
   2413       case bitc::VALUE_SYMTAB_BLOCK_ID:
   2414         if (ParseValueSymbolTable()) return true;
   2415         break;
   2416       case bitc::METADATA_ATTACHMENT_ID:
   2417         if (ParseMetadataAttachment()) return true;
   2418         break;
   2419       case bitc::METADATA_BLOCK_ID:
   2420         if (ParseMetadata()) return true;
   2421         break;
   2422       }
   2423       continue;
   2424     }
   2425 
   2426     if (Code == bitc::DEFINE_ABBREV) {
   2427       Stream.ReadAbbrevRecord();
   2428       continue;
   2429     }
   2430 
   2431     // Read a record.
   2432     Record.clear();
   2433     Instruction *I = 0;
   2434     unsigned BitCode = Stream.readRecord(Code, Record);
   2435     switch (BitCode) {
   2436     default: // Default behavior: reject
   2437       return Error("Unknown instruction");
   2438     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
   2439       if (Record.size() < 1 || Record[0] == 0)
   2440         return Error("Invalid DECLAREBLOCKS record");
   2441       // Create all the basic blocks for the function.
   2442       FunctionBBs.resize(Record[0]);
   2443       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
   2444         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
   2445       CurBB = FunctionBBs[0];
   2446       continue;
   2447 
   2448     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
   2449       // This record indicates that the last instruction is at the same
   2450       // location as the previous instruction with a location.
   2451       I = 0;
   2452 
   2453       // Get the last instruction emitted.
   2454       if (CurBB && !CurBB->empty())
   2455         I = &CurBB->back();
   2456       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
   2457                !FunctionBBs[CurBBNo-1]->empty())
   2458         I = &FunctionBBs[CurBBNo-1]->back();
   2459 
   2460       if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
   2461       I->setDebugLoc(LastLoc);
   2462       I = 0;
   2463       continue;
   2464 
   2465     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
   2466       I = 0;     // Get the last instruction emitted.
   2467       if (CurBB && !CurBB->empty())
   2468         I = &CurBB->back();
   2469       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
   2470                !FunctionBBs[CurBBNo-1]->empty())
   2471         I = &FunctionBBs[CurBBNo-1]->back();
   2472       if (I == 0 || Record.size() < 4)
   2473         return Error("Invalid FUNC_CODE_DEBUG_LOC record");
   2474 
   2475       unsigned Line = Record[0], Col = Record[1];
   2476       unsigned ScopeID = Record[2], IAID = Record[3];
   2477 
   2478       MDNode *Scope = 0, *IA = 0;
   2479       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
   2480       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
   2481       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
   2482       I->setDebugLoc(LastLoc);
   2483       I = 0;
   2484       continue;
   2485     }
   2486 
   2487     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
   2488       unsigned OpNum = 0;
   2489       Value *LHS, *RHS;
   2490       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
   2491           getValue(Record, OpNum, LHS->getType(), RHS) ||
   2492           OpNum+1 > Record.size())
   2493         return Error("Invalid BINOP record");
   2494 
   2495       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
   2496       if (Opc == -1) return Error("Invalid BINOP record");
   2497       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
   2498       InstructionList.push_back(I);
   2499       if (OpNum < Record.size()) {
   2500         if (Opc == Instruction::Add ||
   2501             Opc == Instruction::Sub ||
   2502             Opc == Instruction::Mul ||
   2503             Opc == Instruction::Shl) {
   2504           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
   2505             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
   2506           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
   2507             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
   2508         } else if (Opc == Instruction::SDiv ||
   2509                    Opc == Instruction::UDiv ||
   2510                    Opc == Instruction::LShr ||
   2511                    Opc == Instruction::AShr) {
   2512           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
   2513             cast<BinaryOperator>(I)->setIsExact(true);
   2514         }
   2515       }
   2516       break;
   2517     }
   2518     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
   2519       unsigned OpNum = 0;
   2520       Value *Op;
   2521       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
   2522           OpNum+2 != Record.size())
   2523         return Error("Invalid CAST record");
   2524 
   2525       Type *ResTy = getTypeByID(Record[OpNum]);
   2526       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
   2527       if (Opc == -1 || ResTy == 0)
   2528         return Error("Invalid CAST record");
   2529       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
   2530       InstructionList.push_back(I);
   2531       break;
   2532     }
   2533     case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
   2534     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
   2535       unsigned OpNum = 0;
   2536       Value *BasePtr;
   2537       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
   2538         return Error("Invalid GEP record");
   2539 
   2540       SmallVector<Value*, 16> GEPIdx;
   2541       while (OpNum != Record.size()) {
   2542         Value *Op;
   2543         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   2544           return Error("Invalid GEP record");
   2545         GEPIdx.push_back(Op);
   2546       }
   2547 
   2548       I = GetElementPtrInst::Create(BasePtr, GEPIdx);
   2549       InstructionList.push_back(I);
   2550       if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
   2551         cast<GetElementPtrInst>(I)->setIsInBounds(true);
   2552       break;
   2553     }
   2554 
   2555     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
   2556                                        // EXTRACTVAL: [opty, opval, n x indices]
   2557       unsigned OpNum = 0;
   2558       Value *Agg;
   2559       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
   2560         return Error("Invalid EXTRACTVAL record");
   2561 
   2562       SmallVector<unsigned, 4> EXTRACTVALIdx;
   2563       for (unsigned RecSize = Record.size();
   2564            OpNum != RecSize; ++OpNum) {
   2565         uint64_t Index = Record[OpNum];
   2566         if ((unsigned)Index != Index)
   2567           return Error("Invalid EXTRACTVAL index");
   2568         EXTRACTVALIdx.push_back((unsigned)Index);
   2569       }
   2570 
   2571       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
   2572       InstructionList.push_back(I);
   2573       break;
   2574     }
   2575 
   2576     case bitc::FUNC_CODE_INST_INSERTVAL: {
   2577                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
   2578       unsigned OpNum = 0;
   2579       Value *Agg;
   2580       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
   2581         return Error("Invalid INSERTVAL record");
   2582       Value *Val;
   2583       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
   2584         return Error("Invalid INSERTVAL record");
   2585 
   2586       SmallVector<unsigned, 4> INSERTVALIdx;
   2587       for (unsigned RecSize = Record.size();
   2588            OpNum != RecSize; ++OpNum) {
   2589         uint64_t Index = Record[OpNum];
   2590         if ((unsigned)Index != Index)
   2591           return Error("Invalid INSERTVAL index");
   2592         INSERTVALIdx.push_back((unsigned)Index);
   2593       }
   2594 
   2595       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
   2596       InstructionList.push_back(I);
   2597       break;
   2598     }
   2599 
   2600     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
   2601       // obsolete form of select
   2602       // handles select i1 ... in old bitcode
   2603       unsigned OpNum = 0;
   2604       Value *TrueVal, *FalseVal, *Cond;
   2605       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
   2606           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
   2607           getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
   2608         return Error("Invalid SELECT record");
   2609 
   2610       I = SelectInst::Create(Cond, TrueVal, FalseVal);
   2611       InstructionList.push_back(I);
   2612       break;
   2613     }
   2614 
   2615     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
   2616       // new form of select
   2617       // handles select i1 or select [N x i1]
   2618       unsigned OpNum = 0;
   2619       Value *TrueVal, *FalseVal, *Cond;
   2620       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
   2621           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
   2622           getValueTypePair(Record, OpNum, NextValueNo, Cond))
   2623         return Error("Invalid SELECT record");
   2624 
   2625       // select condition can be either i1 or [N x i1]
   2626       if (VectorType* vector_type =
   2627           dyn_cast<VectorType>(Cond->getType())) {
   2628         // expect <n x i1>
   2629         if (vector_type->getElementType() != Type::getInt1Ty(Context))
   2630           return Error("Invalid SELECT condition type");
   2631       } else {
   2632         // expect i1
   2633         if (Cond->getType() != Type::getInt1Ty(Context))
   2634           return Error("Invalid SELECT condition type");
   2635       }
   2636 
   2637       I = SelectInst::Create(Cond, TrueVal, FalseVal);
   2638       InstructionList.push_back(I);
   2639       break;
   2640     }
   2641 
   2642     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
   2643       unsigned OpNum = 0;
   2644       Value *Vec, *Idx;
   2645       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
   2646           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
   2647         return Error("Invalid EXTRACTELT record");
   2648       I = ExtractElementInst::Create(Vec, Idx);
   2649       InstructionList.push_back(I);
   2650       break;
   2651     }
   2652 
   2653     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
   2654       unsigned OpNum = 0;
   2655       Value *Vec, *Elt, *Idx;
   2656       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
   2657           getValue(Record, OpNum,
   2658                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
   2659           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
   2660         return Error("Invalid INSERTELT record");
   2661       I = InsertElementInst::Create(Vec, Elt, Idx);
   2662       InstructionList.push_back(I);
   2663       break;
   2664     }
   2665 
   2666     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
   2667       unsigned OpNum = 0;
   2668       Value *Vec1, *Vec2, *Mask;
   2669       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
   2670           getValue(Record, OpNum, Vec1->getType(), Vec2))
   2671         return Error("Invalid SHUFFLEVEC record");
   2672 
   2673       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
   2674         return Error("Invalid SHUFFLEVEC record");
   2675       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
   2676       InstructionList.push_back(I);
   2677       break;
   2678     }
   2679 
   2680     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
   2681       // Old form of ICmp/FCmp returning bool
   2682       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
   2683       // both legal on vectors but had different behaviour.
   2684     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
   2685       // FCmp/ICmp returning bool or vector of bool
   2686 
   2687       unsigned OpNum = 0;
   2688       Value *LHS, *RHS;
   2689       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
   2690           getValue(Record, OpNum, LHS->getType(), RHS) ||
   2691           OpNum+1 != Record.size())
   2692         return Error("Invalid CMP record");
   2693 
   2694       if (LHS->getType()->isFPOrFPVectorTy())
   2695         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
   2696       else
   2697         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
   2698       InstructionList.push_back(I);
   2699       break;
   2700     }
   2701 
   2702     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
   2703       {
   2704         unsigned Size = Record.size();
   2705         if (Size == 0) {
   2706           I = ReturnInst::Create(Context);
   2707           InstructionList.push_back(I);
   2708           break;
   2709         }
   2710 
   2711         unsigned OpNum = 0;
   2712         Value *Op = NULL;
   2713         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   2714           return Error("Invalid RET record");
   2715         if (OpNum != Record.size())
   2716           return Error("Invalid RET record");
   2717 
   2718         I = ReturnInst::Create(Context, Op);
   2719         InstructionList.push_back(I);
   2720         break;
   2721       }
   2722     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
   2723       if (Record.size() != 1 && Record.size() != 3)
   2724         return Error("Invalid BR record");
   2725       BasicBlock *TrueDest = getBasicBlock(Record[0]);
   2726       if (TrueDest == 0)
   2727         return Error("Invalid BR record");
   2728 
   2729       if (Record.size() == 1) {
   2730         I = BranchInst::Create(TrueDest);
   2731         InstructionList.push_back(I);
   2732       }
   2733       else {
   2734         BasicBlock *FalseDest = getBasicBlock(Record[1]);
   2735         Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
   2736         if (FalseDest == 0 || Cond == 0)
   2737           return Error("Invalid BR record");
   2738         I = BranchInst::Create(TrueDest, FalseDest, Cond);
   2739         InstructionList.push_back(I);
   2740       }
   2741       break;
   2742     }
   2743     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
   2744       if (Record.size() < 3 || (Record.size() & 1) == 0)
   2745         return Error("Invalid SWITCH record");
   2746       Type *OpTy = getTypeByID(Record[0]);
   2747       Value *Cond = getFnValueByID(Record[1], OpTy);
   2748       BasicBlock *Default = getBasicBlock(Record[2]);
   2749       if (OpTy == 0 || Cond == 0 || Default == 0)
   2750         return Error("Invalid SWITCH record");
   2751       unsigned NumCases = (Record.size()-3)/2;
   2752       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
   2753       InstructionList.push_back(SI);
   2754       for (unsigned i = 0, e = NumCases; i != e; ++i) {
   2755         ConstantInt *CaseVal =
   2756           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
   2757         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
   2758         if (CaseVal == 0 || DestBB == 0) {
   2759           delete SI;
   2760           return Error("Invalid SWITCH record!");
   2761         }
   2762         SI->addCase(CaseVal, DestBB);
   2763       }
   2764       I = SI;
   2765       break;
   2766     }
   2767     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
   2768       if (Record.size() < 2)
   2769         return Error("Invalid INDIRECTBR record");
   2770       Type *OpTy = getTypeByID(Record[0]);
   2771       Value *Address = getFnValueByID(Record[1], OpTy);
   2772       if (OpTy == 0 || Address == 0)
   2773         return Error("Invalid INDIRECTBR record");
   2774       unsigned NumDests = Record.size()-2;
   2775       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
   2776       InstructionList.push_back(IBI);
   2777       for (unsigned i = 0, e = NumDests; i != e; ++i) {
   2778         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
   2779           IBI->addDestination(DestBB);
   2780         } else {
   2781           delete IBI;
   2782           return Error("Invalid INDIRECTBR record!");
   2783         }
   2784       }
   2785       I = IBI;
   2786       break;
   2787     }
   2788 
   2789     case bitc::FUNC_CODE_INST_INVOKE: {
   2790       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
   2791       if (Record.size() < 4) return Error("Invalid INVOKE record");
   2792       AttributeSet PAL = getAttributes(Record[0]);
   2793       unsigned CCInfo = Record[1];
   2794       BasicBlock *NormalBB = getBasicBlock(Record[2]);
   2795       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
   2796 
   2797       unsigned OpNum = 4;
   2798       Value *Callee;
   2799       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
   2800         return Error("Invalid INVOKE record");
   2801 
   2802       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
   2803       FunctionType *FTy = !CalleeTy ? 0 :
   2804         dyn_cast<FunctionType>(CalleeTy->getElementType());
   2805 
   2806       // Check that the right number of fixed parameters are here.
   2807       if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
   2808           Record.size() < OpNum+FTy->getNumParams())
   2809         return Error("Invalid INVOKE record");
   2810 
   2811       SmallVector<Value*, 16> Ops;
   2812       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
   2813         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
   2814         if (Ops.back() == 0) return Error("Invalid INVOKE record");
   2815       }
   2816 
   2817       if (!FTy->isVarArg()) {
   2818         if (Record.size() != OpNum)
   2819           return Error("Invalid INVOKE record");
   2820       } else {
   2821         // Read type/value pairs for varargs params.
   2822         while (OpNum != Record.size()) {
   2823           Value *Op;
   2824           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   2825             return Error("Invalid INVOKE record");
   2826           Ops.push_back(Op);
   2827         }
   2828       }
   2829 
   2830       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
   2831       InstructionList.push_back(I);
   2832       cast<InvokeInst>(I)->setCallingConv(
   2833         static_cast<CallingConv::ID>(CCInfo));
   2834       cast<InvokeInst>(I)->setAttributes(PAL);
   2835       break;
   2836     }
   2837     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
   2838       unsigned Idx = 0;
   2839       Value *Val = 0;
   2840       if (getValueTypePair(Record, Idx, NextValueNo, Val))
   2841         return Error("Invalid RESUME record");
   2842       I = ResumeInst::Create(Val);
   2843       InstructionList.push_back(I);
   2844       break;
   2845     }
   2846     case FUNC_CODE_INST_UNWIND_2_7: { // UNWIND_OLD
   2847       // 'unwind' instruction has been removed in LLVM 3.1
   2848       // Replace 'unwind' with 'landingpad' and 'resume'.
   2849       Type *ExnTy = StructType::get(Type::getInt8PtrTy(Context),
   2850                                     Type::getInt32Ty(Context), NULL);
   2851       Constant *PersFn =
   2852         F->getParent()->
   2853         getOrInsertFunction("__gcc_personality_v0",
   2854                           FunctionType::get(Type::getInt32Ty(Context), true));
   2855 
   2856       LandingPadInst *LP = LandingPadInst::Create(ExnTy, PersFn, 1);
   2857       LP->setCleanup(true);
   2858 
   2859       CurBB->getInstList().push_back(LP);
   2860       I = ResumeInst::Create(LP);
   2861       InstructionList.push_back(I);
   2862       break;
   2863     }
   2864     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
   2865       I = new UnreachableInst(Context);
   2866       InstructionList.push_back(I);
   2867       break;
   2868     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
   2869       if (Record.size() < 1 || ((Record.size()-1)&1))
   2870         return Error("Invalid PHI record");
   2871       Type *Ty = getTypeByID(Record[0]);
   2872       if (!Ty) return Error("Invalid PHI record");
   2873 
   2874       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
   2875       InstructionList.push_back(PN);
   2876 
   2877       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
   2878         Value *V = getFnValueByID(Record[1+i], Ty);
   2879         BasicBlock *BB = getBasicBlock(Record[2+i]);
   2880         if (!V || !BB) return Error("Invalid PHI record");
   2881         PN->addIncoming(V, BB);
   2882       }
   2883       I = PN;
   2884       break;
   2885     }
   2886 
   2887     case bitc::FUNC_CODE_INST_LANDINGPAD: {
   2888       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
   2889       unsigned Idx = 0;
   2890       if (Record.size() < 4)
   2891         return Error("Invalid LANDINGPAD record");
   2892       Type *Ty = getTypeByID(Record[Idx++]);
   2893       if (!Ty) return Error("Invalid LANDINGPAD record");
   2894       Value *PersFn = 0;
   2895       if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
   2896         return Error("Invalid LANDINGPAD record");
   2897 
   2898       bool IsCleanup = !!Record[Idx++];
   2899       unsigned NumClauses = Record[Idx++];
   2900       LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
   2901       LP->setCleanup(IsCleanup);
   2902       for (unsigned J = 0; J != NumClauses; ++J) {
   2903         LandingPadInst::ClauseType CT =
   2904           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
   2905         Value *Val;
   2906 
   2907         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
   2908           delete LP;
   2909           return Error("Invalid LANDINGPAD record");
   2910         }
   2911 
   2912         assert((CT != LandingPadInst::Catch ||
   2913                 !isa<ArrayType>(Val->getType())) &&
   2914                "Catch clause has a invalid type!");
   2915         assert((CT != LandingPadInst::Filter ||
   2916                 isa<ArrayType>(Val->getType())) &&
   2917                "Filter clause has invalid type!");
   2918         LP->addClause(Val);
   2919       }
   2920 
   2921       I = LP;
   2922       InstructionList.push_back(I);
   2923       break;
   2924     }
   2925 
   2926     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
   2927       if (Record.size() != 4)
   2928         return Error("Invalid ALLOCA record");
   2929       PointerType *Ty =
   2930         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
   2931       Type *OpTy = getTypeByID(Record[1]);
   2932       Value *Size = getFnValueByID(Record[2], OpTy);
   2933       unsigned Align = Record[3];
   2934       if (!Ty || !Size) return Error("Invalid ALLOCA record");
   2935       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
   2936       InstructionList.push_back(I);
   2937       break;
   2938     }
   2939     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
   2940       unsigned OpNum = 0;
   2941       Value *Op;
   2942       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
   2943           OpNum+2 != Record.size())
   2944         return Error("Invalid LOAD record");
   2945 
   2946       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
   2947       InstructionList.push_back(I);
   2948       break;
   2949     }
   2950     case bitc::FUNC_CODE_INST_LOADATOMIC: {
   2951        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
   2952       unsigned OpNum = 0;
   2953       Value *Op;
   2954       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
   2955           OpNum+4 != Record.size())
   2956         return Error("Invalid LOADATOMIC record");
   2957 
   2958 
   2959       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
   2960       if (Ordering == NotAtomic || Ordering == Release ||
   2961           Ordering == AcquireRelease)
   2962         return Error("Invalid LOADATOMIC record");
   2963       if (Ordering != NotAtomic && Record[OpNum] == 0)
   2964         return Error("Invalid LOADATOMIC record");
   2965       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
   2966 
   2967       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
   2968                        Ordering, SynchScope);
   2969       InstructionList.push_back(I);
   2970       break;
   2971     }
   2972     case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
   2973       unsigned OpNum = 0;
   2974       Value *Val, *Ptr;
   2975       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   2976           getValue(Record, OpNum,
   2977                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
   2978           OpNum+2 != Record.size())
   2979         return Error("Invalid STORE record");
   2980 
   2981       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
   2982       InstructionList.push_back(I);
   2983       break;
   2984     }
   2985     case bitc::FUNC_CODE_INST_STOREATOMIC: {
   2986       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
   2987       unsigned OpNum = 0;
   2988       Value *Val, *Ptr;
   2989       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   2990           getValue(Record, OpNum,
   2991                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
   2992           OpNum+4 != Record.size())
   2993         return Error("Invalid STOREATOMIC record");
   2994 
   2995       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
   2996       if (Ordering == NotAtomic || Ordering == Acquire ||
   2997           Ordering == AcquireRelease)
   2998         return Error("Invalid STOREATOMIC record");
   2999       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
   3000       if (Ordering != NotAtomic && Record[OpNum] == 0)
   3001         return Error("Invalid STOREATOMIC record");
   3002 
   3003       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
   3004                         Ordering, SynchScope);
   3005       InstructionList.push_back(I);
   3006       break;
   3007     }
   3008     case bitc::FUNC_CODE_INST_CMPXCHG: {
   3009       // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope]
   3010       unsigned OpNum = 0;
   3011       Value *Ptr, *Cmp, *New;
   3012       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   3013           getValue(Record, OpNum,
   3014                     cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
   3015           getValue(Record, OpNum,
   3016                     cast<PointerType>(Ptr->getType())->getElementType(), New) ||
   3017           OpNum+3 != Record.size())
   3018         return Error("Invalid CMPXCHG record");
   3019       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]);
   3020       if (Ordering == NotAtomic || Ordering == Unordered)
   3021         return Error("Invalid CMPXCHG record");
   3022       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
   3023       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, SynchScope);
   3024       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
   3025       InstructionList.push_back(I);
   3026       break;
   3027     }
   3028     case bitc::FUNC_CODE_INST_ATOMICRMW: {
   3029       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
   3030       unsigned OpNum = 0;
   3031       Value *Ptr, *Val;
   3032       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   3033           getValue(Record, OpNum,
   3034                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
   3035           OpNum+4 != Record.size())
   3036         return Error("Invalid ATOMICRMW record");
   3037       AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
   3038       if (Operation < AtomicRMWInst::FIRST_BINOP ||
   3039           Operation > AtomicRMWInst::LAST_BINOP)
   3040         return Error("Invalid ATOMICRMW record");
   3041       AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
   3042       if (Ordering == NotAtomic || Ordering == Unordered)
   3043         return Error("Invalid ATOMICRMW record");
   3044       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
   3045       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
   3046       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
   3047       InstructionList.push_back(I);
   3048       break;
   3049     }
   3050     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
   3051       if (2 != Record.size())
   3052         return Error("Invalid FENCE record");
   3053       AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
   3054       if (Ordering == NotAtomic || Ordering == Unordered ||
   3055           Ordering == Monotonic)
   3056         return Error("Invalid FENCE record");
   3057       SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
   3058       I = new FenceInst(Context, Ordering, SynchScope);
   3059       InstructionList.push_back(I);
   3060       break;
   3061     }
   3062     case bitc::FUNC_CODE_INST_CALL: {
   3063       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
   3064       if (Record.size() < 3)
   3065         return Error("Invalid CALL record");
   3066 
   3067       AttributeSet PAL = getAttributes(Record[0]);
   3068       unsigned CCInfo = Record[1];
   3069 
   3070       unsigned OpNum = 2;
   3071       Value *Callee;
   3072       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
   3073         return Error("Invalid CALL record");
   3074 
   3075       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
   3076       FunctionType *FTy = 0;
   3077       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
   3078       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
   3079         return Error("Invalid CALL record");
   3080 
   3081       SmallVector<Value*, 16> Args;
   3082       // Read the fixed params.
   3083       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
   3084         if (FTy->getParamType(i)->isLabelTy())
   3085           Args.push_back(getBasicBlock(Record[OpNum]));
   3086         else
   3087           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
   3088         if (Args.back() == 0) return Error("Invalid CALL record");
   3089       }
   3090 
   3091       // Read type/value pairs for varargs params.
   3092       if (!FTy->isVarArg()) {
   3093         if (OpNum != Record.size())
   3094           return Error("Invalid CALL record");
   3095       } else {
   3096         while (OpNum != Record.size()) {
   3097           Value *Op;
   3098           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   3099             return Error("Invalid CALL record");
   3100           Args.push_back(Op);
   3101         }
   3102       }
   3103 
   3104       I = CallInst::Create(Callee, Args);
   3105       InstructionList.push_back(I);
   3106       cast<CallInst>(I)->setCallingConv(
   3107         static_cast<CallingConv::ID>(CCInfo>>1));
   3108       cast<CallInst>(I)->setTailCall(CCInfo & 1);
   3109       cast<CallInst>(I)->setAttributes(PAL);
   3110       break;
   3111     }
   3112     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
   3113       if (Record.size() < 3)
   3114         return Error("Invalid VAARG record");
   3115       Type *OpTy = getTypeByID(Record[0]);
   3116       Value *Op = getFnValueByID(Record[1], OpTy);
   3117       Type *ResTy = getTypeByID(Record[2]);
   3118       if (!OpTy || !Op || !ResTy)
   3119         return Error("Invalid VAARG record");
   3120       I = new VAArgInst(Op, ResTy);
   3121       InstructionList.push_back(I);
   3122       break;
   3123     }
   3124     }
   3125 
   3126     // Add instruction to end of current BB.  If there is no current BB, reject
   3127     // this file.
   3128     if (CurBB == 0) {
   3129       delete I;
   3130       return Error("Invalid instruction with no BB");
   3131     }
   3132     CurBB->getInstList().push_back(I);
   3133 
   3134     // If this was a terminator instruction, move to the next block.
   3135     if (isa<TerminatorInst>(I)) {
   3136       ++CurBBNo;
   3137       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
   3138     }
   3139 
   3140     // Non-void values get registered in the value table for future use.
   3141     if (I && !I->getType()->isVoidTy())
   3142       ValueList.AssignValue(I, NextValueNo++);
   3143   }
   3144 
   3145   // Check the function list for unresolved values.
   3146   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
   3147     if (A->getParent() == 0) {
   3148       // We found at least one unresolved value.  Nuke them all to avoid leaks.
   3149       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
   3150         if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
   3151           A->replaceAllUsesWith(UndefValue::get(A->getType()));
   3152           delete A;
   3153         }
   3154       }
   3155       return Error("Never resolved value found in function!");
   3156     }
   3157   }
   3158 
   3159   // FIXME: Check for unresolved forward-declared metadata references
   3160   // and clean up leaks.
   3161 
   3162   // See if anything took the address of blocks in this function.  If so,
   3163   // resolve them now.
   3164   DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
   3165     BlockAddrFwdRefs.find(F);
   3166   if (BAFRI != BlockAddrFwdRefs.end()) {
   3167     std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
   3168     for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
   3169       unsigned BlockIdx = RefList[i].first;
   3170       if (BlockIdx >= FunctionBBs.size())
   3171         return Error("Invalid blockaddress block #");
   3172 
   3173       GlobalVariable *FwdRef = RefList[i].second;
   3174       FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
   3175       FwdRef->eraseFromParent();
   3176     }
   3177 
   3178     BlockAddrFwdRefs.erase(BAFRI);
   3179   }
   3180 
   3181   // Trim the value list down to the size it was before we parsed this function.
   3182   ValueList.shrinkTo(ModuleValueListSize);
   3183   MDValueList.shrinkTo(ModuleMDValueListSize);
   3184   std::vector<BasicBlock*>().swap(FunctionBBs);
   3185   return false;
   3186 }
   3187 
   3188 //===----------------------------------------------------------------------===//
   3189 // GVMaterializer implementation
   3190 //===----------------------------------------------------------------------===//
   3191 
   3192 
   3193 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
   3194   if (const Function *F = dyn_cast<Function>(GV)) {
   3195     return F->isDeclaration() &&
   3196       DeferredFunctionInfo.count(const_cast<Function*>(F));
   3197   }
   3198   return false;
   3199 }
   3200 
   3201 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
   3202   Function *F = dyn_cast<Function>(GV);
   3203   // If it's not a function or is already material, ignore the request.
   3204   if (!F || !F->isMaterializable()) return false;
   3205 
   3206   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
   3207   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
   3208 
   3209   // Move the bit stream to the saved position of the deferred function body.
   3210   Stream.JumpToBit(DFII->second);
   3211 
   3212   if (ParseFunctionBody(F)) {
   3213     if (ErrInfo) *ErrInfo = ErrorString;
   3214     return true;
   3215   }
   3216 
   3217   // Upgrade any old intrinsic calls in the function.
   3218   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
   3219        E = UpgradedIntrinsics.end(); I != E; ++I) {
   3220     if (I->first != I->second) {
   3221       for (Value::use_iterator UI = I->first->use_begin(),
   3222            UE = I->first->use_end(); UI != UE; ) {
   3223         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
   3224           UpgradeIntrinsicCall(CI, I->second);
   3225       }
   3226     }
   3227   }
   3228 
   3229   return false;
   3230 }
   3231 
   3232 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
   3233   const Function *F = dyn_cast<Function>(GV);
   3234   if (!F || F->isDeclaration())
   3235     return false;
   3236   return DeferredFunctionInfo.count(const_cast<Function*>(F));
   3237 }
   3238 
   3239 void BitcodeReader::Dematerialize(GlobalValue *GV) {
   3240   Function *F = dyn_cast<Function>(GV);
   3241   // If this function isn't dematerializable, this is a noop.
   3242   if (!F || !isDematerializable(F))
   3243     return;
   3244 
   3245   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
   3246 
   3247   // Just forget the function body, we can remat it later.
   3248   F->deleteBody();
   3249 }
   3250 
   3251 
   3252 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
   3253   assert(M == TheModule &&
   3254          "Can only Materialize the Module this BitcodeReader is attached to.");
   3255   // Iterate over the module, deserializing any functions that are still on
   3256   // disk.
   3257   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
   3258        F != E; ++F)
   3259     if (F->isMaterializable() &&
   3260         Materialize(F, ErrInfo))
   3261       return true;
   3262 
   3263   // Upgrade any intrinsic calls that slipped through (should not happen!) and
   3264   // delete the old functions to clean up. We can't do this unless the entire
   3265   // module is materialized because there could always be another function body
   3266   // with calls to the old function.
   3267   for (std::vector<std::pair<Function*, Function*> >::iterator I =
   3268        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
   3269     if (I->first != I->second) {
   3270       for (Value::use_iterator UI = I->first->use_begin(),
   3271            UE = I->first->use_end(); UI != UE; ) {
   3272         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
   3273           UpgradeIntrinsicCall(CI, I->second);
   3274       }
   3275       if (!I->first->use_empty())
   3276         I->first->replaceAllUsesWith(I->second);
   3277       I->first->eraseFromParent();
   3278     }
   3279   }
   3280   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
   3281 
   3282   // Upgrade to new EH scheme. N.B. This will go away in 3.1.
   3283   UpgradeExceptionHandling(M);
   3284 
   3285   // Check debug info intrinsics.
   3286   CheckDebugInfoIntrinsics(TheModule);
   3287 
   3288   return false;
   3289 }
   3290 
   3291 bool BitcodeReader::InitStream() {
   3292   if (LazyStreamer) return InitLazyStream();
   3293   return InitStreamFromBuffer();
   3294 }
   3295 
   3296 bool BitcodeReader::InitStreamFromBuffer() {
   3297   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
   3298   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
   3299 
   3300   if (Buffer->getBufferSize() & 3) {
   3301     if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
   3302       return Error("Invalid bitcode signature");
   3303     else
   3304       return Error("Bitcode stream should be a multiple of 4 bytes in length");
   3305   }
   3306 
   3307   // If we have a wrapper header, parse it and ignore the non-bc file contents.
   3308   // The magic number is 0x0B17C0DE stored in little endian.
   3309   if (isBitcodeWrapper(BufPtr, BufEnd))
   3310     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
   3311       return Error("Invalid bitcode wrapper header");
   3312 
   3313   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
   3314   Stream.init(*StreamFile);
   3315 
   3316   return false;
   3317 }
   3318 
   3319 bool BitcodeReader::InitLazyStream() {
   3320   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
   3321   // see it.
   3322   StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer);
   3323   StreamFile.reset(new BitstreamReader(Bytes));
   3324   Stream.init(*StreamFile);
   3325 
   3326   unsigned char buf[16];
   3327   if (Bytes->readBytes(0, 16, buf) == -1)
   3328     return Error("Bitcode stream must be at least 16 bytes in length");
   3329 
   3330   if (!isBitcode(buf, buf + 16))
   3331     return Error("Invalid bitcode signature");
   3332 
   3333   if (isBitcodeWrapper(buf, buf + 4)) {
   3334     const unsigned char *bitcodeStart = buf;
   3335     const unsigned char *bitcodeEnd = buf + 16;
   3336     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
   3337     Bytes->dropLeadingBytes(bitcodeStart - buf);
   3338     Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart);
   3339   }
   3340   return false;
   3341 }
   3342 
   3343 //===----------------------------------------------------------------------===//
   3344 // External interface
   3345 //===----------------------------------------------------------------------===//
   3346 
   3347 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
   3348 ///
   3349 Module *llvm_3_0::getLazyBitcodeModule(MemoryBuffer *Buffer,
   3350                                        LLVMContext& Context,
   3351                                        std::string *ErrMsg) {
   3352   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
   3353   BitcodeReader *R = new BitcodeReader(Buffer, Context);
   3354   M->setMaterializer(R);
   3355   if (R->ParseBitcodeInto(M)) {
   3356     if (ErrMsg)
   3357       *ErrMsg = R->getErrorString();
   3358 
   3359     delete M;  // Also deletes R.
   3360     return 0;
   3361   }
   3362   // Have the BitcodeReader dtor delete 'Buffer'.
   3363   R->setBufferOwned(true);
   3364   return M;
   3365 }
   3366 
   3367 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
   3368 /// If an error occurs, return null and fill in *ErrMsg if non-null.
   3369 Module *llvm_3_0::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
   3370                                    std::string *ErrMsg){
   3371   Module *M = llvm_3_0::getLazyBitcodeModule(Buffer, Context, ErrMsg);
   3372   if (!M) return 0;
   3373 
   3374   // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
   3375   // there was an error.
   3376   static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
   3377 
   3378   // Read in the entire module, and destroy the BitcodeReader.
   3379   if (M->MaterializeAllPermanently(ErrMsg)) {
   3380     delete M;
   3381     return 0;
   3382   }
   3383 
   3384   return M;
   3385 }
   3386 
   3387 std::string llvm_3_0::getBitcodeTargetTriple(MemoryBuffer *Buffer,
   3388                                              LLVMContext& Context,
   3389                                              std::string *ErrMsg) {
   3390   BitcodeReader *R = new BitcodeReader(Buffer, Context);
   3391   // Don't let the BitcodeReader dtor delete 'Buffer'.
   3392   R->setBufferOwned(false);
   3393 
   3394   std::string Triple("");
   3395   if (R->ParseTriple(Triple))
   3396     if (ErrMsg)
   3397       *ErrMsg = R->getErrorString();
   3398 
   3399   delete R;
   3400   return Triple;
   3401 }
   3402