Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: sameeragarwal (at) google.com (Sameer Agarwal)
     30 //
     31 // Preconditioners for linear systems that arise in Structure from
     32 // Motion problems. VisibilityBasedPreconditioner implements:
     33 //
     34 //  CLUSTER_JACOBI
     35 //  CLUSTER_TRIDIAGONAL
     36 //
     37 // Detailed descriptions of these preconditions beyond what is
     38 // documented here can be found in
     39 //
     40 // Visibility Based Preconditioning for Bundle Adjustment
     41 // A. Kushal & S. Agarwal, CVPR 2012.
     42 //
     43 // http://www.cs.washington.edu/homes/sagarwal/vbp.pdf
     44 //
     45 // The two preconditioners share enough code that its most efficient
     46 // to implement them as part of the same code base.
     47 
     48 #ifndef CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_
     49 #define CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_
     50 
     51 #include <set>
     52 #include <vector>
     53 #include <utility>
     54 #include "ceres/collections_port.h"
     55 #include "ceres/graph.h"
     56 #include "ceres/internal/macros.h"
     57 #include "ceres/internal/scoped_ptr.h"
     58 #include "ceres/preconditioner.h"
     59 #include "ceres/suitesparse.h"
     60 
     61 namespace ceres {
     62 namespace internal {
     63 
     64 class BlockRandomAccessSparseMatrix;
     65 class BlockSparseMatrix;
     66 struct CompressedRowBlockStructure;
     67 class SchurEliminatorBase;
     68 
     69 // This class implements visibility based preconditioners for
     70 // Structure from Motion/Bundle Adjustment problems. The name
     71 // VisibilityBasedPreconditioner comes from the fact that the sparsity
     72 // structure of the preconditioner matrix is determined by analyzing
     73 // the visibility structure of the scene, i.e. which cameras see which
     74 // points.
     75 //
     76 // The key idea of visibility based preconditioning is to identify
     77 // cameras that we expect have strong interactions, and then using the
     78 // entries in the Schur complement matrix corresponding to these
     79 // camera pairs as an approximation to the full Schur complement.
     80 //
     81 // CLUSTER_JACOBI identifies these camera pairs by clustering cameras,
     82 // and considering all non-zero camera pairs within each cluster. The
     83 // clustering in the current implementation is done using the
     84 // Canonical Views algorithm of Simon et al. (see
     85 // canonical_views_clustering.h). For the purposes of clustering, the
     86 // similarity or the degree of interaction between a pair of cameras
     87 // is measured by counting the number of points visible in both the
     88 // cameras. Thus the name VisibilityBasedPreconditioner. Further, if we
     89 // were to permute the parameter blocks such that all the cameras in
     90 // the same cluster occur contiguously, the preconditioner matrix will
     91 // be a block diagonal matrix with blocks corresponding to the
     92 // clusters. Thus in analogy with the Jacobi preconditioner we refer
     93 // to this as the CLUSTER_JACOBI preconditioner.
     94 //
     95 // CLUSTER_TRIDIAGONAL adds more mass to the CLUSTER_JACOBI
     96 // preconditioner by considering the interaction between clusters and
     97 // identifying strong interactions between cluster pairs. This is done
     98 // by constructing a weighted graph on the clusters, with the weight
     99 // on the edges connecting two clusters proportional to the number of
    100 // 3D points visible to cameras in both the clusters. A degree-2
    101 // maximum spanning forest is identified in this graph and the camera
    102 // pairs contained in the edges of this forest are added to the
    103 // preconditioner. The detailed reasoning for this construction is
    104 // explained in the paper mentioned above.
    105 //
    106 // Degree-2 spanning trees and forests have the property that they
    107 // correspond to tri-diagonal matrices. Thus there exist a permutation
    108 // of the camera blocks under which the CLUSTER_TRIDIAGONAL
    109 // preconditioner matrix is a block tridiagonal matrix, and thus the
    110 // name for the preconditioner.
    111 //
    112 // Thread Safety: This class is NOT thread safe.
    113 //
    114 // Example usage:
    115 //
    116 //   LinearSolver::Options options;
    117 //   options.preconditioner_type = CLUSTER_JACOBI;
    118 //   options.elimination_groups.push_back(num_points);
    119 //   options.elimination_groups.push_back(num_cameras);
    120 //   VisibilityBasedPreconditioner preconditioner(
    121 //      *A.block_structure(), options);
    122 //   preconditioner.Update(A, NULL);
    123 //   preconditioner.RightMultiply(x, y);
    124 //
    125 #ifndef CERES_NO_SUITESPARSE
    126 class VisibilityBasedPreconditioner : public BlockSparseMatrixPreconditioner {
    127  public:
    128   // Initialize the symbolic structure of the preconditioner. bs is
    129   // the block structure of the linear system to be solved. It is used
    130   // to determine the sparsity structure of the preconditioner matrix.
    131   //
    132   // It has the same structural requirement as other Schur complement
    133   // based solvers. Please see schur_eliminator.h for more details.
    134   VisibilityBasedPreconditioner(const CompressedRowBlockStructure& bs,
    135                                 const Preconditioner::Options& options);
    136   virtual ~VisibilityBasedPreconditioner();
    137 
    138   // Preconditioner interface
    139   virtual void RightMultiply(const double* x, double* y) const;
    140   virtual int num_rows() const;
    141 
    142   friend class VisibilityBasedPreconditionerTest;
    143 
    144  private:
    145   virtual bool UpdateImpl(const BlockSparseMatrix& A, const double* D);
    146   void ComputeClusterJacobiSparsity(const CompressedRowBlockStructure& bs);
    147   void ComputeClusterTridiagonalSparsity(const CompressedRowBlockStructure& bs);
    148   void InitStorage(const CompressedRowBlockStructure& bs);
    149   void InitEliminator(const CompressedRowBlockStructure& bs);
    150   bool Factorize();
    151   void ScaleOffDiagonalCells();
    152 
    153   void ClusterCameras(const vector< set<int> >& visibility);
    154   void FlattenMembershipMap(const HashMap<int, int>& membership_map,
    155                             vector<int>* membership_vector) const;
    156   void ComputeClusterVisibility(const vector<set<int> >& visibility,
    157                                 vector<set<int> >* cluster_visibility) const;
    158   Graph<int>* CreateClusterGraph(const vector<set<int> >& visibility) const;
    159   void ForestToClusterPairs(const Graph<int>& forest,
    160                             HashSet<pair<int, int> >* cluster_pairs) const;
    161   void ComputeBlockPairsInPreconditioner(const CompressedRowBlockStructure& bs);
    162   bool IsBlockPairInPreconditioner(int block1, int block2) const;
    163   bool IsBlockPairOffDiagonal(int block1, int block2) const;
    164 
    165   Preconditioner::Options options_;
    166 
    167   // Number of parameter blocks in the schur complement.
    168   int num_blocks_;
    169   int num_clusters_;
    170 
    171   // Sizes of the blocks in the schur complement.
    172   vector<int> block_size_;
    173 
    174   // Mapping from cameras to clusters.
    175   vector<int> cluster_membership_;
    176 
    177   // Non-zero camera pairs from the schur complement matrix that are
    178   // present in the preconditioner, sorted by row (first element of
    179   // each pair), then column (second).
    180   set<pair<int, int> > block_pairs_;
    181 
    182   // Set of cluster pairs (including self pairs (i,i)) in the
    183   // preconditioner.
    184   HashSet<pair<int, int> > cluster_pairs_;
    185   scoped_ptr<SchurEliminatorBase> eliminator_;
    186 
    187   // Preconditioner matrix.
    188   scoped_ptr<BlockRandomAccessSparseMatrix> m_;
    189 
    190   // RightMultiply is a const method for LinearOperators. It is
    191   // implemented using CHOLMOD's sparse triangular matrix solve
    192   // function. This however requires non-const access to the
    193   // SuiteSparse context object, even though it does not result in any
    194   // of the state of the preconditioner being modified.
    195   SuiteSparse ss_;
    196 
    197   // Symbolic and numeric factorization of the preconditioner.
    198   cholmod_factor* factor_;
    199 
    200   // Temporary vector used by RightMultiply.
    201   cholmod_dense* tmp_rhs_;
    202   CERES_DISALLOW_COPY_AND_ASSIGN(VisibilityBasedPreconditioner);
    203 };
    204 #else  // SuiteSparse
    205 // If SuiteSparse is not compiled in, the preconditioner is not
    206 // available.
    207 class VisibilityBasedPreconditioner : public BlockSparseMatrixPreconditioner {
    208  public:
    209   VisibilityBasedPreconditioner(const CompressedRowBlockStructure& bs,
    210                                 const Preconditioner::Options& options) {
    211     LOG(FATAL) << "Visibility based preconditioning is not available. Please "
    212         "build Ceres with SuiteSparse.";
    213   }
    214   virtual ~VisibilityBasedPreconditioner() {}
    215   virtual void RightMultiply(const double* x, double* y) const {}
    216   virtual void LeftMultiply(const double* x, double* y) const {}
    217   virtual int num_rows() const { return -1; }
    218   virtual int num_cols() const { return -1; }
    219 
    220  private:
    221   bool UpdateImpl(const BlockSparseMatrix& A, const double* D) {
    222     return false;
    223   }
    224 };
    225 #endif  // CERES_NO_SUITESPARSE
    226 
    227 }  // namespace internal
    228 }  // namespace ceres
    229 
    230 #endif  // CERES_INTERNAL_VISIBILITY_BASED_PRECONDITIONER_H_
    231