Home | History | Annotate | Download | only in X86
      1 //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 /// This file implements a TargetTransformInfo analysis pass specific to the
     11 /// X86 target machine. It uses the target's detailed information to provide
     12 /// more precise answers to certain TTI queries, while letting the target
     13 /// independent and default TTI implementations handle the rest.
     14 ///
     15 //===----------------------------------------------------------------------===//
     16 
     17 #define DEBUG_TYPE "x86tti"
     18 #include "X86.h"
     19 #include "X86TargetMachine.h"
     20 #include "llvm/Analysis/TargetTransformInfo.h"
     21 #include "llvm/Support/Debug.h"
     22 #include "llvm/Target/TargetLowering.h"
     23 #include "llvm/Target/CostTable.h"
     24 using namespace llvm;
     25 
     26 // Declare the pass initialization routine locally as target-specific passes
     27 // don't havve a target-wide initialization entry point, and so we rely on the
     28 // pass constructor initialization.
     29 namespace llvm {
     30 void initializeX86TTIPass(PassRegistry &);
     31 }
     32 
     33 namespace {
     34 
     35 class X86TTI : public ImmutablePass, public TargetTransformInfo {
     36   const X86Subtarget *ST;
     37   const X86TargetLowering *TLI;
     38 
     39   /// Estimate the overhead of scalarizing an instruction. Insert and Extract
     40   /// are set if the result needs to be inserted and/or extracted from vectors.
     41   unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
     42 
     43 public:
     44   X86TTI() : ImmutablePass(ID), ST(0), TLI(0) {
     45     llvm_unreachable("This pass cannot be directly constructed");
     46   }
     47 
     48   X86TTI(const X86TargetMachine *TM)
     49       : ImmutablePass(ID), ST(TM->getSubtargetImpl()),
     50         TLI(TM->getTargetLowering()) {
     51     initializeX86TTIPass(*PassRegistry::getPassRegistry());
     52   }
     53 
     54   virtual void initializePass() {
     55     pushTTIStack(this);
     56   }
     57 
     58   virtual void finalizePass() {
     59     popTTIStack();
     60   }
     61 
     62   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     63     TargetTransformInfo::getAnalysisUsage(AU);
     64   }
     65 
     66   /// Pass identification.
     67   static char ID;
     68 
     69   /// Provide necessary pointer adjustments for the two base classes.
     70   virtual void *getAdjustedAnalysisPointer(const void *ID) {
     71     if (ID == &TargetTransformInfo::ID)
     72       return (TargetTransformInfo*)this;
     73     return this;
     74   }
     75 
     76   /// \name Scalar TTI Implementations
     77   /// @{
     78   virtual PopcntSupportKind getPopcntSupport(unsigned TyWidth) const;
     79 
     80   /// @}
     81 
     82   /// \name Vector TTI Implementations
     83   /// @{
     84 
     85   virtual unsigned getNumberOfRegisters(bool Vector) const;
     86   virtual unsigned getRegisterBitWidth(bool Vector) const;
     87   virtual unsigned getMaximumUnrollFactor() const;
     88   virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty,
     89                                           OperandValueKind,
     90                                           OperandValueKind) const;
     91   virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
     92                                   int Index, Type *SubTp) const;
     93   virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
     94                                     Type *Src) const;
     95   virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
     96                                       Type *CondTy) const;
     97   virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
     98                                       unsigned Index) const;
     99   virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
    100                                    unsigned Alignment,
    101                                    unsigned AddressSpace) const;
    102 
    103   virtual unsigned getAddressComputationCost(Type *PtrTy, bool IsComplex) const;
    104 
    105   /// @}
    106 };
    107 
    108 } // end anonymous namespace
    109 
    110 INITIALIZE_AG_PASS(X86TTI, TargetTransformInfo, "x86tti",
    111                    "X86 Target Transform Info", true, true, false)
    112 char X86TTI::ID = 0;
    113 
    114 ImmutablePass *
    115 llvm::createX86TargetTransformInfoPass(const X86TargetMachine *TM) {
    116   return new X86TTI(TM);
    117 }
    118 
    119 
    120 //===----------------------------------------------------------------------===//
    121 //
    122 // X86 cost model.
    123 //
    124 //===----------------------------------------------------------------------===//
    125 
    126 X86TTI::PopcntSupportKind X86TTI::getPopcntSupport(unsigned TyWidth) const {
    127   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
    128   // TODO: Currently the __builtin_popcount() implementation using SSE3
    129   //   instructions is inefficient. Once the problem is fixed, we should
    130   //   call ST->hasSSE3() instead of ST->hasSSE4().
    131   return ST->hasSSE41() ? PSK_FastHardware : PSK_Software;
    132 }
    133 
    134 unsigned X86TTI::getNumberOfRegisters(bool Vector) const {
    135   if (Vector && !ST->hasSSE1())
    136     return 0;
    137 
    138   if (ST->is64Bit())
    139     return 16;
    140   return 8;
    141 }
    142 
    143 unsigned X86TTI::getRegisterBitWidth(bool Vector) const {
    144   if (Vector) {
    145     if (ST->hasAVX()) return 256;
    146     if (ST->hasSSE1()) return 128;
    147     return 0;
    148   }
    149 
    150   if (ST->is64Bit())
    151     return 64;
    152   return 32;
    153 
    154 }
    155 
    156 unsigned X86TTI::getMaximumUnrollFactor() const {
    157   if (ST->isAtom())
    158     return 1;
    159 
    160   // Sandybridge and Haswell have multiple execution ports and pipelined
    161   // vector units.
    162   if (ST->hasAVX())
    163     return 4;
    164 
    165   return 2;
    166 }
    167 
    168 unsigned X86TTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
    169                                         OperandValueKind Op1Info,
    170                                         OperandValueKind Op2Info) const {
    171   // Legalize the type.
    172   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
    173 
    174   int ISD = TLI->InstructionOpcodeToISD(Opcode);
    175   assert(ISD && "Invalid opcode");
    176 
    177   static const CostTblEntry<MVT> AVX2CostTable[] = {
    178     // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
    179     // customize them to detect the cases where shift amount is a scalar one.
    180     { ISD::SHL,     MVT::v4i32,    1 },
    181     { ISD::SRL,     MVT::v4i32,    1 },
    182     { ISD::SRA,     MVT::v4i32,    1 },
    183     { ISD::SHL,     MVT::v8i32,    1 },
    184     { ISD::SRL,     MVT::v8i32,    1 },
    185     { ISD::SRA,     MVT::v8i32,    1 },
    186     { ISD::SHL,     MVT::v2i64,    1 },
    187     { ISD::SRL,     MVT::v2i64,    1 },
    188     { ISD::SHL,     MVT::v4i64,    1 },
    189     { ISD::SRL,     MVT::v4i64,    1 },
    190 
    191     { ISD::SHL,  MVT::v32i8,  42 }, // cmpeqb sequence.
    192     { ISD::SHL,  MVT::v16i16,  16*10 }, // Scalarized.
    193 
    194     { ISD::SRL,  MVT::v32i8,  32*10 }, // Scalarized.
    195     { ISD::SRL,  MVT::v16i16,  8*10 }, // Scalarized.
    196 
    197     { ISD::SRA,  MVT::v32i8,  32*10 }, // Scalarized.
    198     { ISD::SRA,  MVT::v16i16,  16*10 }, // Scalarized.
    199     { ISD::SRA,  MVT::v4i64,  4*10 }, // Scalarized.
    200 
    201     // Vectorizing division is a bad idea. See the SSE2 table for more comments.
    202     { ISD::SDIV,  MVT::v32i8,  32*20 },
    203     { ISD::SDIV,  MVT::v16i16, 16*20 },
    204     { ISD::SDIV,  MVT::v8i32,  8*20 },
    205     { ISD::SDIV,  MVT::v4i64,  4*20 },
    206     { ISD::UDIV,  MVT::v32i8,  32*20 },
    207     { ISD::UDIV,  MVT::v16i16, 16*20 },
    208     { ISD::UDIV,  MVT::v8i32,  8*20 },
    209     { ISD::UDIV,  MVT::v4i64,  4*20 },
    210   };
    211 
    212   // Look for AVX2 lowering tricks.
    213   if (ST->hasAVX2()) {
    214     int Idx = CostTableLookup<MVT>(AVX2CostTable, array_lengthof(AVX2CostTable),
    215                                    ISD, LT.second);
    216     if (Idx != -1)
    217       return LT.first * AVX2CostTable[Idx].Cost;
    218   }
    219 
    220   static const CostTblEntry<MVT> SSE2UniformConstCostTable[] = {
    221     // We don't correctly identify costs of casts because they are marked as
    222     // custom.
    223     // Constant splats are cheaper for the following instructions.
    224     { ISD::SHL,  MVT::v16i8,  1 }, // psllw.
    225     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
    226     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
    227     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
    228 
    229     { ISD::SRL,  MVT::v16i8,  1 }, // psrlw.
    230     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
    231     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
    232     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
    233 
    234     { ISD::SRA,  MVT::v16i8,  4 }, // psrlw, pand, pxor, psubb.
    235     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
    236     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
    237   };
    238 
    239   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
    240       ST->hasSSE2()) {
    241     int Idx = CostTableLookup<MVT>(SSE2UniformConstCostTable,
    242                                    array_lengthof(SSE2UniformConstCostTable),
    243                                    ISD, LT.second);
    244     if (Idx != -1)
    245       return LT.first * SSE2UniformConstCostTable[Idx].Cost;
    246   }
    247 
    248 
    249   static const CostTblEntry<MVT> SSE2CostTable[] = {
    250     // We don't correctly identify costs of casts because they are marked as
    251     // custom.
    252     // For some cases, where the shift amount is a scalar we would be able
    253     // to generate better code. Unfortunately, when this is the case the value
    254     // (the splat) will get hoisted out of the loop, thereby making it invisible
    255     // to ISel. The cost model must return worst case assumptions because it is
    256     // used for vectorization and we don't want to make vectorized code worse
    257     // than scalar code.
    258     { ISD::SHL,  MVT::v16i8,  30 }, // cmpeqb sequence.
    259     { ISD::SHL,  MVT::v8i16,  8*10 }, // Scalarized.
    260     { ISD::SHL,  MVT::v4i32,  2*5 }, // We optimized this using mul.
    261     { ISD::SHL,  MVT::v2i64,  2*10 }, // Scalarized.
    262 
    263     { ISD::SRL,  MVT::v16i8,  16*10 }, // Scalarized.
    264     { ISD::SRL,  MVT::v8i16,  8*10 }, // Scalarized.
    265     { ISD::SRL,  MVT::v4i32,  4*10 }, // Scalarized.
    266     { ISD::SRL,  MVT::v2i64,  2*10 }, // Scalarized.
    267 
    268     { ISD::SRA,  MVT::v16i8,  16*10 }, // Scalarized.
    269     { ISD::SRA,  MVT::v8i16,  8*10 }, // Scalarized.
    270     { ISD::SRA,  MVT::v4i32,  4*10 }, // Scalarized.
    271     { ISD::SRA,  MVT::v2i64,  2*10 }, // Scalarized.
    272 
    273     // It is not a good idea to vectorize division. We have to scalarize it and
    274     // in the process we will often end up having to spilling regular
    275     // registers. The overhead of division is going to dominate most kernels
    276     // anyways so try hard to prevent vectorization of division - it is
    277     // generally a bad idea. Assume somewhat arbitrarily that we have to be able
    278     // to hide "20 cycles" for each lane.
    279     { ISD::SDIV,  MVT::v16i8,  16*20 },
    280     { ISD::SDIV,  MVT::v8i16,  8*20 },
    281     { ISD::SDIV,  MVT::v4i32,  4*20 },
    282     { ISD::SDIV,  MVT::v2i64,  2*20 },
    283     { ISD::UDIV,  MVT::v16i8,  16*20 },
    284     { ISD::UDIV,  MVT::v8i16,  8*20 },
    285     { ISD::UDIV,  MVT::v4i32,  4*20 },
    286     { ISD::UDIV,  MVT::v2i64,  2*20 },
    287   };
    288 
    289   if (ST->hasSSE2()) {
    290     int Idx = CostTableLookup<MVT>(SSE2CostTable, array_lengthof(SSE2CostTable),
    291                                    ISD, LT.second);
    292     if (Idx != -1)
    293       return LT.first * SSE2CostTable[Idx].Cost;
    294   }
    295 
    296   static const CostTblEntry<MVT> AVX1CostTable[] = {
    297     // We don't have to scalarize unsupported ops. We can issue two half-sized
    298     // operations and we only need to extract the upper YMM half.
    299     // Two ops + 1 extract + 1 insert = 4.
    300     { ISD::MUL,     MVT::v8i32,    4 },
    301     { ISD::SUB,     MVT::v8i32,    4 },
    302     { ISD::ADD,     MVT::v8i32,    4 },
    303     { ISD::SUB,     MVT::v4i64,    4 },
    304     { ISD::ADD,     MVT::v4i64,    4 },
    305     // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
    306     // are lowered as a series of long multiplies(3), shifts(4) and adds(2)
    307     // Because we believe v4i64 to be a legal type, we must also include the
    308     // split factor of two in the cost table. Therefore, the cost here is 18
    309     // instead of 9.
    310     { ISD::MUL,     MVT::v4i64,    18 },
    311   };
    312 
    313   // Look for AVX1 lowering tricks.
    314   if (ST->hasAVX() && !ST->hasAVX2()) {
    315     int Idx = CostTableLookup<MVT>(AVX1CostTable, array_lengthof(AVX1CostTable),
    316                                    ISD, LT.second);
    317     if (Idx != -1)
    318       return LT.first * AVX1CostTable[Idx].Cost;
    319   }
    320 
    321   // Custom lowering of vectors.
    322   static const CostTblEntry<MVT> CustomLowered[] = {
    323     // A v2i64/v4i64 and multiply is custom lowered as a series of long
    324     // multiplies(3), shifts(4) and adds(2).
    325     { ISD::MUL,     MVT::v2i64,    9 },
    326     { ISD::MUL,     MVT::v4i64,    9 },
    327   };
    328   int Idx = CostTableLookup<MVT>(CustomLowered, array_lengthof(CustomLowered),
    329                                  ISD, LT.second);
    330   if (Idx != -1)
    331     return LT.first * CustomLowered[Idx].Cost;
    332 
    333   // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle,
    334   // 2x pmuludq, 2x shuffle.
    335   if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() &&
    336       !ST->hasSSE41())
    337     return 6;
    338 
    339   // Fallback to the default implementation.
    340   return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info,
    341                                                      Op2Info);
    342 }
    343 
    344 unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
    345                                 Type *SubTp) const {
    346   // We only estimate the cost of reverse shuffles.
    347   if (Kind != SK_Reverse)
    348     return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
    349 
    350   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
    351   unsigned Cost = 1;
    352   if (LT.second.getSizeInBits() > 128)
    353     Cost = 3; // Extract + insert + copy.
    354 
    355   // Multiple by the number of parts.
    356   return Cost * LT.first;
    357 }
    358 
    359 unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
    360   int ISD = TLI->InstructionOpcodeToISD(Opcode);
    361   assert(ISD && "Invalid opcode");
    362 
    363   std::pair<unsigned, MVT> LTSrc = TLI->getTypeLegalizationCost(Src);
    364   std::pair<unsigned, MVT> LTDest = TLI->getTypeLegalizationCost(Dst);
    365 
    366   static const TypeConversionCostTblEntry<MVT> SSE2ConvTbl[] = {
    367     // These are somewhat magic numbers justified by looking at the output of
    368     // Intel's IACA, running some kernels and making sure when we take
    369     // legalization into account the throughput will be overestimated.
    370     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
    371     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
    372     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
    373     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
    374     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
    375     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
    376     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
    377     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
    378     // There are faster sequences for float conversions.
    379     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
    380     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
    381     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
    382     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
    383     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
    384     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
    385     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
    386     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
    387   };
    388 
    389   if (ST->hasSSE2() && !ST->hasAVX()) {
    390     int Idx = ConvertCostTableLookup<MVT>(SSE2ConvTbl,
    391                                           array_lengthof(SSE2ConvTbl),
    392                                           ISD, LTDest.second, LTSrc.second);
    393     if (Idx != -1)
    394       return LTSrc.first * SSE2ConvTbl[Idx].Cost;
    395   }
    396 
    397   EVT SrcTy = TLI->getValueType(Src);
    398   EVT DstTy = TLI->getValueType(Dst);
    399 
    400   // The function getSimpleVT only handles simple value types.
    401   if (!SrcTy.isSimple() || !DstTy.isSimple())
    402     return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
    403 
    404   static const TypeConversionCostTblEntry<MVT> AVXConversionTbl[] = {
    405     { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
    406     { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
    407     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
    408     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
    409     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64, 1 },
    410     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32, 1 },
    411 
    412     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
    413     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
    414     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
    415     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
    416     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
    417     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
    418     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
    419     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
    420     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
    421     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
    422     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
    423     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
    424 
    425     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
    426     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
    427     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
    428     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
    429     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
    430     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
    431     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
    432     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
    433     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
    434     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
    435     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
    436     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
    437 
    438     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 1 },
    439     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f32, 1 },
    440     { ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1,  6 },
    441     { ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1,  9 },
    442     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1,  8 },
    443     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8,  6 },
    444     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16, 6 },
    445     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64, 3 },
    446   };
    447 
    448   if (ST->hasAVX()) {
    449     int Idx = ConvertCostTableLookup<MVT>(AVXConversionTbl,
    450                                  array_lengthof(AVXConversionTbl),
    451                                  ISD, DstTy.getSimpleVT(), SrcTy.getSimpleVT());
    452     if (Idx != -1)
    453       return AVXConversionTbl[Idx].Cost;
    454   }
    455 
    456   return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
    457 }
    458 
    459 unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
    460                                     Type *CondTy) const {
    461   // Legalize the type.
    462   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
    463 
    464   MVT MTy = LT.second;
    465 
    466   int ISD = TLI->InstructionOpcodeToISD(Opcode);
    467   assert(ISD && "Invalid opcode");
    468 
    469   static const CostTblEntry<MVT> SSE42CostTbl[] = {
    470     { ISD::SETCC,   MVT::v2f64,   1 },
    471     { ISD::SETCC,   MVT::v4f32,   1 },
    472     { ISD::SETCC,   MVT::v2i64,   1 },
    473     { ISD::SETCC,   MVT::v4i32,   1 },
    474     { ISD::SETCC,   MVT::v8i16,   1 },
    475     { ISD::SETCC,   MVT::v16i8,   1 },
    476   };
    477 
    478   static const CostTblEntry<MVT> AVX1CostTbl[] = {
    479     { ISD::SETCC,   MVT::v4f64,   1 },
    480     { ISD::SETCC,   MVT::v8f32,   1 },
    481     // AVX1 does not support 8-wide integer compare.
    482     { ISD::SETCC,   MVT::v4i64,   4 },
    483     { ISD::SETCC,   MVT::v8i32,   4 },
    484     { ISD::SETCC,   MVT::v16i16,  4 },
    485     { ISD::SETCC,   MVT::v32i8,   4 },
    486   };
    487 
    488   static const CostTblEntry<MVT> AVX2CostTbl[] = {
    489     { ISD::SETCC,   MVT::v4i64,   1 },
    490     { ISD::SETCC,   MVT::v8i32,   1 },
    491     { ISD::SETCC,   MVT::v16i16,  1 },
    492     { ISD::SETCC,   MVT::v32i8,   1 },
    493   };
    494 
    495   if (ST->hasAVX2()) {
    496     int Idx = CostTableLookup<MVT>(AVX2CostTbl, array_lengthof(AVX2CostTbl),
    497                                    ISD, MTy);
    498     if (Idx != -1)
    499       return LT.first * AVX2CostTbl[Idx].Cost;
    500   }
    501 
    502   if (ST->hasAVX()) {
    503     int Idx = CostTableLookup<MVT>(AVX1CostTbl, array_lengthof(AVX1CostTbl),
    504                                    ISD, MTy);
    505     if (Idx != -1)
    506       return LT.first * AVX1CostTbl[Idx].Cost;
    507   }
    508 
    509   if (ST->hasSSE42()) {
    510     int Idx = CostTableLookup<MVT>(SSE42CostTbl, array_lengthof(SSE42CostTbl),
    511                                    ISD, MTy);
    512     if (Idx != -1)
    513       return LT.first * SSE42CostTbl[Idx].Cost;
    514   }
    515 
    516   return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
    517 }
    518 
    519 unsigned X86TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
    520                                     unsigned Index) const {
    521   assert(Val->isVectorTy() && "This must be a vector type");
    522 
    523   if (Index != -1U) {
    524     // Legalize the type.
    525     std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
    526 
    527     // This type is legalized to a scalar type.
    528     if (!LT.second.isVector())
    529       return 0;
    530 
    531     // The type may be split. Normalize the index to the new type.
    532     unsigned Width = LT.second.getVectorNumElements();
    533     Index = Index % Width;
    534 
    535     // Floating point scalars are already located in index #0.
    536     if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
    537       return 0;
    538   }
    539 
    540   return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
    541 }
    542 
    543 unsigned X86TTI::getScalarizationOverhead(Type *Ty, bool Insert,
    544                                             bool Extract) const {
    545   assert (Ty->isVectorTy() && "Can only scalarize vectors");
    546   unsigned Cost = 0;
    547 
    548   for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
    549     if (Insert)
    550       Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
    551     if (Extract)
    552       Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
    553   }
    554 
    555   return Cost;
    556 }
    557 
    558 unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
    559                                  unsigned AddressSpace) const {
    560   // Handle non power of two vectors such as <3 x float>
    561   if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
    562     unsigned NumElem = VTy->getVectorNumElements();
    563 
    564     // Handle a few common cases:
    565     // <3 x float>
    566     if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
    567       // Cost = 64 bit store + extract + 32 bit store.
    568       return 3;
    569 
    570     // <3 x double>
    571     if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
    572       // Cost = 128 bit store + unpack + 64 bit store.
    573       return 3;
    574 
    575     // Assume that all other non power-of-two numbers are scalarized.
    576     if (!isPowerOf2_32(NumElem)) {
    577       unsigned Cost = TargetTransformInfo::getMemoryOpCost(Opcode,
    578                                                            VTy->getScalarType(),
    579                                                            Alignment,
    580                                                            AddressSpace);
    581       unsigned SplitCost = getScalarizationOverhead(Src,
    582                                                     Opcode == Instruction::Load,
    583                                                     Opcode==Instruction::Store);
    584       return NumElem * Cost + SplitCost;
    585     }
    586   }
    587 
    588   // Legalize the type.
    589   std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
    590   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
    591          "Invalid Opcode");
    592 
    593   // Each load/store unit costs 1.
    594   unsigned Cost = LT.first * 1;
    595 
    596   // On Sandybridge 256bit load/stores are double pumped
    597   // (but not on Haswell).
    598   if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2())
    599     Cost*=2;
    600 
    601   return Cost;
    602 }
    603 
    604 unsigned X86TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
    605   // Address computations in vectorized code with non-consecutive addresses will
    606   // likely result in more instructions compared to scalar code where the
    607   // computation can more often be merged into the index mode. The resulting
    608   // extra micro-ops can significantly decrease throughput.
    609   unsigned NumVectorInstToHideOverhead = 10;
    610 
    611   if (Ty->isVectorTy() && IsComplex)
    612     return NumVectorInstToHideOverhead;
    613 
    614   return TargetTransformInfo::getAddressComputationCost(Ty, IsComplex);
    615 }
    616