Home | History | Annotate | Download | only in Scalar
      1 //===- LoopDeletion.cpp - Dead Loop Deletion Pass ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Dead Loop Deletion Pass. This pass is responsible
     11 // for eliminating loops with non-infinite computable trip counts that have no
     12 // side effects or volatile instructions, and do not contribute to the
     13 // computation of the function's return value.
     14 //
     15 //===----------------------------------------------------------------------===//
     16 
     17 #define DEBUG_TYPE "loop-delete"
     18 #include "llvm/Transforms/Scalar.h"
     19 #include "llvm/ADT/SmallVector.h"
     20 #include "llvm/ADT/Statistic.h"
     21 #include "llvm/Analysis/Dominators.h"
     22 #include "llvm/Analysis/LoopPass.h"
     23 #include "llvm/Analysis/ScalarEvolution.h"
     24 using namespace llvm;
     25 
     26 STATISTIC(NumDeleted, "Number of loops deleted");
     27 
     28 namespace {
     29   class LoopDeletion : public LoopPass {
     30   public:
     31     static char ID; // Pass ID, replacement for typeid
     32     LoopDeletion() : LoopPass(ID) {
     33       initializeLoopDeletionPass(*PassRegistry::getPassRegistry());
     34     }
     35 
     36     // Possibly eliminate loop L if it is dead.
     37     bool runOnLoop(Loop *L, LPPassManager &LPM);
     38 
     39     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
     40       AU.addRequired<DominatorTree>();
     41       AU.addRequired<LoopInfo>();
     42       AU.addRequired<ScalarEvolution>();
     43       AU.addRequiredID(LoopSimplifyID);
     44       AU.addRequiredID(LCSSAID);
     45 
     46       AU.addPreserved<ScalarEvolution>();
     47       AU.addPreserved<DominatorTree>();
     48       AU.addPreserved<LoopInfo>();
     49       AU.addPreservedID(LoopSimplifyID);
     50       AU.addPreservedID(LCSSAID);
     51     }
     52 
     53   private:
     54     bool isLoopDead(Loop *L, SmallVectorImpl<BasicBlock *> &exitingBlocks,
     55                     SmallVectorImpl<BasicBlock *> &exitBlocks,
     56                     bool &Changed, BasicBlock *Preheader);
     57 
     58   };
     59 }
     60 
     61 char LoopDeletion::ID = 0;
     62 INITIALIZE_PASS_BEGIN(LoopDeletion, "loop-deletion",
     63                 "Delete dead loops", false, false)
     64 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
     65 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
     66 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
     67 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
     68 INITIALIZE_PASS_DEPENDENCY(LCSSA)
     69 INITIALIZE_PASS_END(LoopDeletion, "loop-deletion",
     70                 "Delete dead loops", false, false)
     71 
     72 Pass *llvm::createLoopDeletionPass() {
     73   return new LoopDeletion();
     74 }
     75 
     76 /// isLoopDead - Determined if a loop is dead.  This assumes that we've already
     77 /// checked for unique exit and exiting blocks, and that the code is in LCSSA
     78 /// form.
     79 bool LoopDeletion::isLoopDead(Loop *L,
     80                               SmallVectorImpl<BasicBlock *> &exitingBlocks,
     81                               SmallVectorImpl<BasicBlock *> &exitBlocks,
     82                               bool &Changed, BasicBlock *Preheader) {
     83   BasicBlock *exitBlock = exitBlocks[0];
     84 
     85   // Make sure that all PHI entries coming from the loop are loop invariant.
     86   // Because the code is in LCSSA form, any values used outside of the loop
     87   // must pass through a PHI in the exit block, meaning that this check is
     88   // sufficient to guarantee that no loop-variant values are used outside
     89   // of the loop.
     90   BasicBlock::iterator BI = exitBlock->begin();
     91   while (PHINode *P = dyn_cast<PHINode>(BI)) {
     92     Value *incoming = P->getIncomingValueForBlock(exitingBlocks[0]);
     93 
     94     // Make sure all exiting blocks produce the same incoming value for the exit
     95     // block.  If there are different incoming values for different exiting
     96     // blocks, then it is impossible to statically determine which value should
     97     // be used.
     98     for (unsigned i = 1, e = exitingBlocks.size(); i < e; ++i) {
     99       if (incoming != P->getIncomingValueForBlock(exitingBlocks[i]))
    100         return false;
    101     }
    102 
    103     if (Instruction *I = dyn_cast<Instruction>(incoming))
    104       if (!L->makeLoopInvariant(I, Changed, Preheader->getTerminator()))
    105         return false;
    106 
    107     ++BI;
    108   }
    109 
    110   // Make sure that no instructions in the block have potential side-effects.
    111   // This includes instructions that could write to memory, and loads that are
    112   // marked volatile.  This could be made more aggressive by using aliasing
    113   // information to identify readonly and readnone calls.
    114   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
    115        LI != LE; ++LI) {
    116     for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end();
    117          BI != BE; ++BI) {
    118       if (BI->mayHaveSideEffects())
    119         return false;
    120     }
    121   }
    122 
    123   return true;
    124 }
    125 
    126 /// runOnLoop - Remove dead loops, by which we mean loops that do not impact the
    127 /// observable behavior of the program other than finite running time.  Note
    128 /// we do ensure that this never remove a loop that might be infinite, as doing
    129 /// so could change the halting/non-halting nature of a program.
    130 /// NOTE: This entire process relies pretty heavily on LoopSimplify and LCSSA
    131 /// in order to make various safety checks work.
    132 bool LoopDeletion::runOnLoop(Loop *L, LPPassManager &LPM) {
    133   // We can only remove the loop if there is a preheader that we can
    134   // branch from after removing it.
    135   BasicBlock *preheader = L->getLoopPreheader();
    136   if (!preheader)
    137     return false;
    138 
    139   // If LoopSimplify form is not available, stay out of trouble.
    140   if (!L->hasDedicatedExits())
    141     return false;
    142 
    143   // We can't remove loops that contain subloops.  If the subloops were dead,
    144   // they would already have been removed in earlier executions of this pass.
    145   if (L->begin() != L->end())
    146     return false;
    147 
    148   SmallVector<BasicBlock*, 4> exitingBlocks;
    149   L->getExitingBlocks(exitingBlocks);
    150 
    151   SmallVector<BasicBlock*, 4> exitBlocks;
    152   L->getUniqueExitBlocks(exitBlocks);
    153 
    154   // We require that the loop only have a single exit block.  Otherwise, we'd
    155   // be in the situation of needing to be able to solve statically which exit
    156   // block will be branched to, or trying to preserve the branching logic in
    157   // a loop invariant manner.
    158   if (exitBlocks.size() != 1)
    159     return false;
    160 
    161   // Finally, we have to check that the loop really is dead.
    162   bool Changed = false;
    163   if (!isLoopDead(L, exitingBlocks, exitBlocks, Changed, preheader))
    164     return Changed;
    165 
    166   // Don't remove loops for which we can't solve the trip count.
    167   // They could be infinite, in which case we'd be changing program behavior.
    168   ScalarEvolution &SE = getAnalysis<ScalarEvolution>();
    169   const SCEV *S = SE.getMaxBackedgeTakenCount(L);
    170   if (isa<SCEVCouldNotCompute>(S))
    171     return Changed;
    172 
    173   // Now that we know the removal is safe, remove the loop by changing the
    174   // branch from the preheader to go to the single exit block.
    175   BasicBlock *exitBlock = exitBlocks[0];
    176 
    177   // Because we're deleting a large chunk of code at once, the sequence in which
    178   // we remove things is very important to avoid invalidation issues.  Don't
    179   // mess with this unless you have good reason and know what you're doing.
    180 
    181   // Tell ScalarEvolution that the loop is deleted. Do this before
    182   // deleting the loop so that ScalarEvolution can look at the loop
    183   // to determine what it needs to clean up.
    184   SE.forgetLoop(L);
    185 
    186   // Connect the preheader directly to the exit block.
    187   TerminatorInst *TI = preheader->getTerminator();
    188   TI->replaceUsesOfWith(L->getHeader(), exitBlock);
    189 
    190   // Rewrite phis in the exit block to get their inputs from
    191   // the preheader instead of the exiting block.
    192   BasicBlock *exitingBlock = exitingBlocks[0];
    193   BasicBlock::iterator BI = exitBlock->begin();
    194   while (PHINode *P = dyn_cast<PHINode>(BI)) {
    195     int j = P->getBasicBlockIndex(exitingBlock);
    196     assert(j >= 0 && "Can't find exiting block in exit block's phi node!");
    197     P->setIncomingBlock(j, preheader);
    198     for (unsigned i = 1; i < exitingBlocks.size(); ++i)
    199       P->removeIncomingValue(exitingBlocks[i]);
    200     ++BI;
    201   }
    202 
    203   // Update the dominator tree and remove the instructions and blocks that will
    204   // be deleted from the reference counting scheme.
    205   DominatorTree &DT = getAnalysis<DominatorTree>();
    206   SmallVector<DomTreeNode*, 8> ChildNodes;
    207   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
    208        LI != LE; ++LI) {
    209     // Move all of the block's children to be children of the preheader, which
    210     // allows us to remove the domtree entry for the block.
    211     ChildNodes.insert(ChildNodes.begin(), DT[*LI]->begin(), DT[*LI]->end());
    212     for (SmallVectorImpl<DomTreeNode *>::iterator DI = ChildNodes.begin(),
    213          DE = ChildNodes.end(); DI != DE; ++DI) {
    214       DT.changeImmediateDominator(*DI, DT[preheader]);
    215     }
    216 
    217     ChildNodes.clear();
    218     DT.eraseNode(*LI);
    219 
    220     // Remove the block from the reference counting scheme, so that we can
    221     // delete it freely later.
    222     (*LI)->dropAllReferences();
    223   }
    224 
    225   // Erase the instructions and the blocks without having to worry
    226   // about ordering because we already dropped the references.
    227   // NOTE: This iteration is safe because erasing the block does not remove its
    228   // entry from the loop's block list.  We do that in the next section.
    229   for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end();
    230        LI != LE; ++LI)
    231     (*LI)->eraseFromParent();
    232 
    233   // Finally, the blocks from loopinfo.  This has to happen late because
    234   // otherwise our loop iterators won't work.
    235   LoopInfo &loopInfo = getAnalysis<LoopInfo>();
    236   SmallPtrSet<BasicBlock*, 8> blocks;
    237   blocks.insert(L->block_begin(), L->block_end());
    238   for (SmallPtrSet<BasicBlock*,8>::iterator I = blocks.begin(),
    239        E = blocks.end(); I != E; ++I)
    240     loopInfo.removeBlock(*I);
    241 
    242   // The last step is to inform the loop pass manager that we've
    243   // eliminated this loop.
    244   LPM.deleteLoopFromQueue(L);
    245   Changed = true;
    246 
    247   ++NumDeleted;
    248 
    249   return Changed;
    250 }
    251