Home | History | Annotate | Download | only in Vectorize
      1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
     10 // stores that can be put together into vector-stores. Next, it attempts to
     11 // construct vectorizable tree using the use-def chains. If a profitable tree
     12 // was found, the SLP vectorizer performs vectorization on the tree.
     13 //
     14 // The pass is inspired by the work described in the paper:
     15 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
     16 //
     17 //===----------------------------------------------------------------------===//
     18 #define SV_NAME "slp-vectorizer"
     19 #define DEBUG_TYPE "SLP"
     20 
     21 #include "llvm/Transforms/Vectorize.h"
     22 #include "llvm/ADT/MapVector.h"
     23 #include "llvm/ADT/PostOrderIterator.h"
     24 #include "llvm/ADT/SetVector.h"
     25 #include "llvm/Analysis/AliasAnalysis.h"
     26 #include "llvm/Analysis/ScalarEvolution.h"
     27 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
     28 #include "llvm/Analysis/AliasAnalysis.h"
     29 #include "llvm/Analysis/TargetTransformInfo.h"
     30 #include "llvm/Analysis/Verifier.h"
     31 #include "llvm/Analysis/LoopInfo.h"
     32 #include "llvm/IR/DataLayout.h"
     33 #include "llvm/IR/Instructions.h"
     34 #include "llvm/IR/IntrinsicInst.h"
     35 #include "llvm/IR/IRBuilder.h"
     36 #include "llvm/IR/Module.h"
     37 #include "llvm/IR/Type.h"
     38 #include "llvm/IR/Value.h"
     39 #include "llvm/Pass.h"
     40 #include "llvm/Support/CommandLine.h"
     41 #include "llvm/Support/Debug.h"
     42 #include "llvm/Support/raw_ostream.h"
     43 #include <algorithm>
     44 #include <map>
     45 
     46 using namespace llvm;
     47 
     48 static cl::opt<int>
     49     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
     50                      cl::desc("Only vectorize if you gain more than this "
     51                               "number "));
     52 namespace {
     53 
     54 static const unsigned MinVecRegSize = 128;
     55 
     56 static const unsigned RecursionMaxDepth = 12;
     57 
     58 /// RAII pattern to save the insertion point of the IR builder.
     59 class BuilderLocGuard {
     60 public:
     61   BuilderLocGuard(IRBuilder<> &B) : Builder(B), Loc(B.GetInsertPoint()),
     62   DbgLoc(B.getCurrentDebugLocation()) {}
     63   ~BuilderLocGuard() {
     64     Builder.SetCurrentDebugLocation(DbgLoc);
     65     if (Loc)
     66       Builder.SetInsertPoint(Loc);
     67   }
     68 
     69 private:
     70   // Prevent copying.
     71   BuilderLocGuard(const BuilderLocGuard &);
     72   BuilderLocGuard &operator=(const BuilderLocGuard &);
     73   IRBuilder<> &Builder;
     74   AssertingVH<Instruction> Loc;
     75   DebugLoc DbgLoc;
     76 };
     77 
     78 /// A helper class for numbering instructions in multible blocks.
     79 /// Numbers starts at zero for each basic block.
     80 struct BlockNumbering {
     81 
     82   BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {}
     83 
     84   BlockNumbering() : BB(0), Valid(false) {}
     85 
     86   void numberInstructions() {
     87     unsigned Loc = 0;
     88     InstrIdx.clear();
     89     InstrVec.clear();
     90     // Number the instructions in the block.
     91     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
     92       InstrIdx[it] = Loc++;
     93       InstrVec.push_back(it);
     94       assert(InstrVec[InstrIdx[it]] == it && "Invalid allocation");
     95     }
     96     Valid = true;
     97   }
     98 
     99   int getIndex(Instruction *I) {
    100     assert(I->getParent() == BB && "Invalid instruction");
    101     if (!Valid)
    102       numberInstructions();
    103     assert(InstrIdx.count(I) && "Unknown instruction");
    104     return InstrIdx[I];
    105   }
    106 
    107   Instruction *getInstruction(unsigned loc) {
    108     if (!Valid)
    109       numberInstructions();
    110     assert(InstrVec.size() > loc && "Invalid Index");
    111     return InstrVec[loc];
    112   }
    113 
    114   void forget() { Valid = false; }
    115 
    116 private:
    117   /// The block we are numbering.
    118   BasicBlock *BB;
    119   /// Is the block numbered.
    120   bool Valid;
    121   /// Maps instructions to numbers and back.
    122   SmallDenseMap<Instruction *, int> InstrIdx;
    123   /// Maps integers to Instructions.
    124   SmallVector<Instruction *, 32> InstrVec;
    125 };
    126 
    127 /// \returns the parent basic block if all of the instructions in \p VL
    128 /// are in the same block or null otherwise.
    129 static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
    130   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
    131   if (!I0)
    132     return 0;
    133   BasicBlock *BB = I0->getParent();
    134   for (int i = 1, e = VL.size(); i < e; i++) {
    135     Instruction *I = dyn_cast<Instruction>(VL[i]);
    136     if (!I)
    137       return 0;
    138 
    139     if (BB != I->getParent())
    140       return 0;
    141   }
    142   return BB;
    143 }
    144 
    145 /// \returns True if all of the values in \p VL are constants.
    146 static bool allConstant(ArrayRef<Value *> VL) {
    147   for (unsigned i = 0, e = VL.size(); i < e; ++i)
    148     if (!isa<Constant>(VL[i]))
    149       return false;
    150   return true;
    151 }
    152 
    153 /// \returns True if all of the values in \p VL are identical.
    154 static bool isSplat(ArrayRef<Value *> VL) {
    155   for (unsigned i = 1, e = VL.size(); i < e; ++i)
    156     if (VL[i] != VL[0])
    157       return false;
    158   return true;
    159 }
    160 
    161 /// \returns The opcode if all of the Instructions in \p VL have the same
    162 /// opcode, or zero.
    163 static unsigned getSameOpcode(ArrayRef<Value *> VL) {
    164   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
    165   if (!I0)
    166     return 0;
    167   unsigned Opcode = I0->getOpcode();
    168   for (int i = 1, e = VL.size(); i < e; i++) {
    169     Instruction *I = dyn_cast<Instruction>(VL[i]);
    170     if (!I || Opcode != I->getOpcode())
    171       return 0;
    172   }
    173   return Opcode;
    174 }
    175 
    176 /// \returns The type that all of the values in \p VL have or null if there
    177 /// are different types.
    178 static Type* getSameType(ArrayRef<Value *> VL) {
    179   Type *Ty = VL[0]->getType();
    180   for (int i = 1, e = VL.size(); i < e; i++)
    181     if (VL[i]->getType() != Ty)
    182       return 0;
    183 
    184   return Ty;
    185 }
    186 
    187 /// \returns True if the ExtractElement instructions in VL can be vectorized
    188 /// to use the original vector.
    189 static bool CanReuseExtract(ArrayRef<Value *> VL) {
    190   assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
    191   // Check if all of the extracts come from the same vector and from the
    192   // correct offset.
    193   Value *VL0 = VL[0];
    194   ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
    195   Value *Vec = E0->getOperand(0);
    196 
    197   // We have to extract from the same vector type.
    198   unsigned NElts = Vec->getType()->getVectorNumElements();
    199 
    200   if (NElts != VL.size())
    201     return false;
    202 
    203   // Check that all of the indices extract from the correct offset.
    204   ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
    205   if (!CI || CI->getZExtValue())
    206     return false;
    207 
    208   for (unsigned i = 1, e = VL.size(); i < e; ++i) {
    209     ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
    210     ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
    211 
    212     if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
    213       return false;
    214   }
    215 
    216   return true;
    217 }
    218 
    219 /// Bottom Up SLP Vectorizer.
    220 class BoUpSLP {
    221 public:
    222   typedef SmallVector<Value *, 8> ValueList;
    223   typedef SmallVector<Instruction *, 16> InstrList;
    224   typedef SmallPtrSet<Value *, 16> ValueSet;
    225   typedef SmallVector<StoreInst *, 8> StoreList;
    226 
    227   BoUpSLP(Function *Func, ScalarEvolution *Se, DataLayout *Dl,
    228           TargetTransformInfo *Tti, AliasAnalysis *Aa, LoopInfo *Li,
    229           DominatorTree *Dt) :
    230     F(Func), SE(Se), DL(Dl), TTI(Tti), AA(Aa), LI(Li), DT(Dt),
    231     Builder(Se->getContext()) {
    232       // Setup the block numbering utility for all of the blocks in the
    233       // function.
    234       for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
    235         BasicBlock *BB = it;
    236         BlocksNumbers[BB] = BlockNumbering(BB);
    237       }
    238     }
    239 
    240   /// \brief Vectorize the tree that starts with the elements in \p VL.
    241   void vectorizeTree();
    242 
    243   /// \returns the vectorization cost of the subtree that starts at \p VL.
    244   /// A negative number means that this is profitable.
    245   int getTreeCost();
    246 
    247   /// Construct a vectorizable tree that starts at \p Roots.
    248   void buildTree(ArrayRef<Value *> Roots);
    249 
    250   /// Clear the internal data structures that are created by 'buildTree'.
    251   void deleteTree() {
    252     VectorizableTree.clear();
    253     ScalarToTreeEntry.clear();
    254     MustGather.clear();
    255     ExternalUses.clear();
    256     MemBarrierIgnoreList.clear();
    257   }
    258 
    259   /// \returns true if the memory operations A and B are consecutive.
    260   bool isConsecutiveAccess(Value *A, Value *B);
    261 
    262   /// \brief Perform LICM and CSE on the newly generated gather sequences.
    263   void optimizeGatherSequence();
    264 private:
    265   struct TreeEntry;
    266 
    267   /// \returns the cost of the vectorizable entry.
    268   int getEntryCost(TreeEntry *E);
    269 
    270   /// This is the recursive part of buildTree.
    271   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
    272 
    273   /// Vectorize a single entry in the tree.
    274   Value *vectorizeTree(TreeEntry *E);
    275 
    276   /// Vectorize a single entry in the tree, starting in \p VL.
    277   Value *vectorizeTree(ArrayRef<Value *> VL);
    278 
    279   /// \returns the pointer to the vectorized value if \p VL is already
    280   /// vectorized, or NULL. They may happen in cycles.
    281   Value *alreadyVectorized(ArrayRef<Value *> VL);
    282 
    283   /// \brief Take the pointer operand from the Load/Store instruction.
    284   /// \returns NULL if this is not a valid Load/Store instruction.
    285   static Value *getPointerOperand(Value *I);
    286 
    287   /// \brief Take the address space operand from the Load/Store instruction.
    288   /// \returns -1 if this is not a valid Load/Store instruction.
    289   static unsigned getAddressSpaceOperand(Value *I);
    290 
    291   /// \returns the scalarization cost for this type. Scalarization in this
    292   /// context means the creation of vectors from a group of scalars.
    293   int getGatherCost(Type *Ty);
    294 
    295   /// \returns the scalarization cost for this list of values. Assuming that
    296   /// this subtree gets vectorized, we may need to extract the values from the
    297   /// roots. This method calculates the cost of extracting the values.
    298   int getGatherCost(ArrayRef<Value *> VL);
    299 
    300   /// \returns the AA location that is being access by the instruction.
    301   AliasAnalysis::Location getLocation(Instruction *I);
    302 
    303   /// \brief Checks if it is possible to sink an instruction from
    304   /// \p Src to \p Dst.
    305   /// \returns the pointer to the barrier instruction if we can't sink.
    306   Value *getSinkBarrier(Instruction *Src, Instruction *Dst);
    307 
    308   /// \returns the index of the last instrucion in the BB from \p VL.
    309   int getLastIndex(ArrayRef<Value *> VL);
    310 
    311   /// \returns the Instrucion in the bundle \p VL.
    312   Instruction *getLastInstruction(ArrayRef<Value *> VL);
    313 
    314   /// \returns a vector from a collection of scalars in \p VL.
    315   Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
    316 
    317   struct TreeEntry {
    318     TreeEntry() : Scalars(), VectorizedValue(0), LastScalarIndex(0),
    319     NeedToGather(0) {}
    320 
    321     /// \returns true if the scalars in VL are equal to this entry.
    322     bool isSame(ArrayRef<Value *> VL) {
    323       assert(VL.size() == Scalars.size() && "Invalid size");
    324       for (int i = 0, e = VL.size(); i != e; ++i)
    325         if (VL[i] != Scalars[i])
    326           return false;
    327       return true;
    328     }
    329 
    330     /// A vector of scalars.
    331     ValueList Scalars;
    332 
    333     /// The Scalars are vectorized into this value. It is initialized to Null.
    334     Value *VectorizedValue;
    335 
    336     /// The index in the basic block of the last scalar.
    337     int LastScalarIndex;
    338 
    339     /// Do we need to gather this sequence ?
    340     bool NeedToGather;
    341   };
    342 
    343   /// Create a new VectorizableTree entry.
    344   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
    345     VectorizableTree.push_back(TreeEntry());
    346     int idx = VectorizableTree.size() - 1;
    347     TreeEntry *Last = &VectorizableTree[idx];
    348     Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
    349     Last->NeedToGather = !Vectorized;
    350     if (Vectorized) {
    351       Last->LastScalarIndex = getLastIndex(VL);
    352       for (int i = 0, e = VL.size(); i != e; ++i) {
    353         assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
    354         ScalarToTreeEntry[VL[i]] = idx;
    355       }
    356     } else {
    357       Last->LastScalarIndex = 0;
    358       MustGather.insert(VL.begin(), VL.end());
    359     }
    360     return Last;
    361   }
    362 
    363   /// -- Vectorization State --
    364   /// Holds all of the tree entries.
    365   std::vector<TreeEntry> VectorizableTree;
    366 
    367   /// Maps a specific scalar to its tree entry.
    368   SmallDenseMap<Value*, int> ScalarToTreeEntry;
    369 
    370   /// A list of scalars that we found that we need to keep as scalars.
    371   ValueSet MustGather;
    372 
    373   /// This POD struct describes one external user in the vectorized tree.
    374   struct ExternalUser {
    375     ExternalUser (Value *S, llvm::User *U, int L) :
    376       Scalar(S), User(U), Lane(L){};
    377     // Which scalar in our function.
    378     Value *Scalar;
    379     // Which user that uses the scalar.
    380     llvm::User *User;
    381     // Which lane does the scalar belong to.
    382     int Lane;
    383   };
    384   typedef SmallVector<ExternalUser, 16> UserList;
    385 
    386   /// A list of values that need to extracted out of the tree.
    387   /// This list holds pairs of (Internal Scalar : External User).
    388   UserList ExternalUses;
    389 
    390   /// A list of instructions to ignore while sinking
    391   /// memory instructions. This map must be reset between runs of getCost.
    392   ValueSet MemBarrierIgnoreList;
    393 
    394   /// Holds all of the instructions that we gathered.
    395   SetVector<Instruction *> GatherSeq;
    396 
    397   /// Numbers instructions in different blocks.
    398   DenseMap<BasicBlock *, BlockNumbering> BlocksNumbers;
    399 
    400   // Analysis and block reference.
    401   Function *F;
    402   ScalarEvolution *SE;
    403   DataLayout *DL;
    404   TargetTransformInfo *TTI;
    405   AliasAnalysis *AA;
    406   LoopInfo *LI;
    407   DominatorTree *DT;
    408   /// Instruction builder to construct the vectorized tree.
    409   IRBuilder<> Builder;
    410 };
    411 
    412 void BoUpSLP::buildTree(ArrayRef<Value *> Roots) {
    413   deleteTree();
    414   if (!getSameType(Roots))
    415     return;
    416   buildTree_rec(Roots, 0);
    417 
    418   // Collect the values that we need to extract from the tree.
    419   for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
    420     TreeEntry *Entry = &VectorizableTree[EIdx];
    421 
    422     // For each lane:
    423     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
    424       Value *Scalar = Entry->Scalars[Lane];
    425 
    426       // No need to handle users of gathered values.
    427       if (Entry->NeedToGather)
    428         continue;
    429 
    430       for (Value::use_iterator User = Scalar->use_begin(),
    431            UE = Scalar->use_end(); User != UE; ++User) {
    432         DEBUG(dbgs() << "SLP: Checking user:" << **User << ".\n");
    433 
    434         bool Gathered = MustGather.count(*User);
    435 
    436         // Skip in-tree scalars that become vectors.
    437         if (ScalarToTreeEntry.count(*User) && !Gathered) {
    438           DEBUG(dbgs() << "SLP: \tInternal user will be removed:" <<
    439                 **User << ".\n");
    440           int Idx = ScalarToTreeEntry[*User]; (void) Idx;
    441           assert(!VectorizableTree[Idx].NeedToGather && "Bad state");
    442           continue;
    443         }
    444 
    445         if (!isa<Instruction>(*User))
    446           continue;
    447 
    448         DEBUG(dbgs() << "SLP: Need to extract:" << **User << " from lane " <<
    449               Lane << " from " << *Scalar << ".\n");
    450         ExternalUses.push_back(ExternalUser(Scalar, *User, Lane));
    451       }
    452     }
    453   }
    454 }
    455 
    456 
    457 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
    458   bool SameTy = getSameType(VL); (void)SameTy;
    459   assert(SameTy && "Invalid types!");
    460 
    461   if (Depth == RecursionMaxDepth) {
    462     DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
    463     newTreeEntry(VL, false);
    464     return;
    465   }
    466 
    467   // Don't handle vectors.
    468   if (VL[0]->getType()->isVectorTy()) {
    469     DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
    470     newTreeEntry(VL, false);
    471     return;
    472   }
    473 
    474   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
    475     if (SI->getValueOperand()->getType()->isVectorTy()) {
    476       DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
    477       newTreeEntry(VL, false);
    478       return;
    479     }
    480 
    481   // If all of the operands are identical or constant we have a simple solution.
    482   if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) ||
    483       !getSameOpcode(VL)) {
    484     DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
    485     newTreeEntry(VL, false);
    486     return;
    487   }
    488 
    489   // We now know that this is a vector of instructions of the same type from
    490   // the same block.
    491 
    492   // Check if this is a duplicate of another entry.
    493   if (ScalarToTreeEntry.count(VL[0])) {
    494     int Idx = ScalarToTreeEntry[VL[0]];
    495     TreeEntry *E = &VectorizableTree[Idx];
    496     for (unsigned i = 0, e = VL.size(); i != e; ++i) {
    497       DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
    498       if (E->Scalars[i] != VL[i]) {
    499         DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
    500         newTreeEntry(VL, false);
    501         return;
    502       }
    503     }
    504     DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
    505     return;
    506   }
    507 
    508   // Check that none of the instructions in the bundle are already in the tree.
    509   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
    510     if (ScalarToTreeEntry.count(VL[i])) {
    511       DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
    512             ") is already in tree.\n");
    513       newTreeEntry(VL, false);
    514       return;
    515     }
    516   }
    517 
    518   // If any of the scalars appears in the table OR it is marked as a value that
    519   // needs to stat scalar then we need to gather the scalars.
    520   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
    521     if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) {
    522       DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n");
    523       newTreeEntry(VL, false);
    524       return;
    525     }
    526   }
    527 
    528   // Check that all of the users of the scalars that we want to vectorize are
    529   // schedulable.
    530   Instruction *VL0 = cast<Instruction>(VL[0]);
    531   int MyLastIndex = getLastIndex(VL);
    532   BasicBlock *BB = cast<Instruction>(VL0)->getParent();
    533 
    534   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
    535     Instruction *Scalar = cast<Instruction>(VL[i]);
    536     DEBUG(dbgs() << "SLP: Checking users of  " << *Scalar << ". \n");
    537     for (Value::use_iterator U = Scalar->use_begin(), UE = Scalar->use_end();
    538          U != UE; ++U) {
    539       DEBUG(dbgs() << "SLP: \tUser " << **U << ". \n");
    540       Instruction *User = dyn_cast<Instruction>(*U);
    541       if (!User) {
    542         DEBUG(dbgs() << "SLP: Gathering due unknown user. \n");
    543         newTreeEntry(VL, false);
    544         return;
    545       }
    546 
    547       // We don't care if the user is in a different basic block.
    548       BasicBlock *UserBlock = User->getParent();
    549       if (UserBlock != BB) {
    550         DEBUG(dbgs() << "SLP: User from a different basic block "
    551               << *User << ". \n");
    552         continue;
    553       }
    554 
    555       // If this is a PHINode within this basic block then we can place the
    556       // extract wherever we want.
    557       if (isa<PHINode>(*User)) {
    558         DEBUG(dbgs() << "SLP: \tWe can schedule PHIs:" << *User << ". \n");
    559         continue;
    560       }
    561 
    562       // Check if this is a safe in-tree user.
    563       if (ScalarToTreeEntry.count(User)) {
    564         int Idx = ScalarToTreeEntry[User];
    565         int VecLocation = VectorizableTree[Idx].LastScalarIndex;
    566         if (VecLocation <= MyLastIndex) {
    567           DEBUG(dbgs() << "SLP: Gathering due to unschedulable vector. \n");
    568           newTreeEntry(VL, false);
    569           return;
    570         }
    571         DEBUG(dbgs() << "SLP: In-tree user (" << *User << ") at #" <<
    572               VecLocation << " vector value (" << *Scalar << ") at #"
    573               << MyLastIndex << ".\n");
    574         continue;
    575       }
    576 
    577       // Make sure that we can schedule this unknown user.
    578       BlockNumbering &BN = BlocksNumbers[BB];
    579       int UserIndex = BN.getIndex(User);
    580       if (UserIndex < MyLastIndex) {
    581 
    582         DEBUG(dbgs() << "SLP: Can't schedule extractelement for "
    583               << *User << ". \n");
    584         newTreeEntry(VL, false);
    585         return;
    586       }
    587     }
    588   }
    589 
    590   // Check that every instructions appears once in this bundle.
    591   for (unsigned i = 0, e = VL.size(); i < e; ++i)
    592     for (unsigned j = i+1; j < e; ++j)
    593       if (VL[i] == VL[j]) {
    594         DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
    595         newTreeEntry(VL, false);
    596         return;
    597       }
    598 
    599   // Check that instructions in this bundle don't reference other instructions.
    600   // The runtime of this check is O(N * N-1 * uses(N)) and a typical N is 4.
    601   for (unsigned i = 0, e = VL.size(); i < e; ++i) {
    602     for (Value::use_iterator U = VL[i]->use_begin(), UE = VL[i]->use_end();
    603          U != UE; ++U) {
    604       for (unsigned j = 0; j < e; ++j) {
    605         if (i != j && *U == VL[j]) {
    606           DEBUG(dbgs() << "SLP: Intra-bundle dependencies!" << **U << ". \n");
    607           newTreeEntry(VL, false);
    608           return;
    609         }
    610       }
    611     }
    612   }
    613 
    614   DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
    615 
    616   unsigned Opcode = getSameOpcode(VL);
    617 
    618   // Check if it is safe to sink the loads or the stores.
    619   if (Opcode == Instruction::Load || Opcode == Instruction::Store) {
    620     Instruction *Last = getLastInstruction(VL);
    621 
    622     for (unsigned i = 0, e = VL.size(); i < e; ++i) {
    623       if (VL[i] == Last)
    624         continue;
    625       Value *Barrier = getSinkBarrier(cast<Instruction>(VL[i]), Last);
    626       if (Barrier) {
    627         DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last
    628               << "\n because of " << *Barrier << ".  Gathering.\n");
    629         newTreeEntry(VL, false);
    630         return;
    631       }
    632     }
    633   }
    634 
    635   switch (Opcode) {
    636     case Instruction::PHI: {
    637       PHINode *PH = dyn_cast<PHINode>(VL0);
    638       newTreeEntry(VL, true);
    639       DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
    640 
    641       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
    642         ValueList Operands;
    643         // Prepare the operand vector.
    644         for (unsigned j = 0; j < VL.size(); ++j)
    645           Operands.push_back(cast<PHINode>(VL[j])->getIncomingValue(i));
    646 
    647         buildTree_rec(Operands, Depth + 1);
    648       }
    649       return;
    650     }
    651     case Instruction::ExtractElement: {
    652       bool Reuse = CanReuseExtract(VL);
    653       if (Reuse) {
    654         DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
    655       }
    656       newTreeEntry(VL, Reuse);
    657       return;
    658     }
    659     case Instruction::Load: {
    660       // Check if the loads are consecutive or of we need to swizzle them.
    661       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
    662         if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
    663           newTreeEntry(VL, false);
    664           DEBUG(dbgs() << "SLP: Need to swizzle loads.\n");
    665           return;
    666         }
    667 
    668       newTreeEntry(VL, true);
    669       DEBUG(dbgs() << "SLP: added a vector of loads.\n");
    670       return;
    671     }
    672     case Instruction::ZExt:
    673     case Instruction::SExt:
    674     case Instruction::FPToUI:
    675     case Instruction::FPToSI:
    676     case Instruction::FPExt:
    677     case Instruction::PtrToInt:
    678     case Instruction::IntToPtr:
    679     case Instruction::SIToFP:
    680     case Instruction::UIToFP:
    681     case Instruction::Trunc:
    682     case Instruction::FPTrunc:
    683     case Instruction::BitCast: {
    684       Type *SrcTy = VL0->getOperand(0)->getType();
    685       for (unsigned i = 0; i < VL.size(); ++i) {
    686         Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
    687         if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) {
    688           newTreeEntry(VL, false);
    689           DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
    690           return;
    691         }
    692       }
    693       newTreeEntry(VL, true);
    694       DEBUG(dbgs() << "SLP: added a vector of casts.\n");
    695 
    696       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
    697         ValueList Operands;
    698         // Prepare the operand vector.
    699         for (unsigned j = 0; j < VL.size(); ++j)
    700           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
    701 
    702         buildTree_rec(Operands, Depth+1);
    703       }
    704       return;
    705     }
    706     case Instruction::ICmp:
    707     case Instruction::FCmp: {
    708       // Check that all of the compares have the same predicate.
    709       CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
    710       Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
    711       for (unsigned i = 1, e = VL.size(); i < e; ++i) {
    712         CmpInst *Cmp = cast<CmpInst>(VL[i]);
    713         if (Cmp->getPredicate() != P0 ||
    714             Cmp->getOperand(0)->getType() != ComparedTy) {
    715           newTreeEntry(VL, false);
    716           DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
    717           return;
    718         }
    719       }
    720 
    721       newTreeEntry(VL, true);
    722       DEBUG(dbgs() << "SLP: added a vector of compares.\n");
    723 
    724       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
    725         ValueList Operands;
    726         // Prepare the operand vector.
    727         for (unsigned j = 0; j < VL.size(); ++j)
    728           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
    729 
    730         buildTree_rec(Operands, Depth+1);
    731       }
    732       return;
    733     }
    734     case Instruction::Select:
    735     case Instruction::Add:
    736     case Instruction::FAdd:
    737     case Instruction::Sub:
    738     case Instruction::FSub:
    739     case Instruction::Mul:
    740     case Instruction::FMul:
    741     case Instruction::UDiv:
    742     case Instruction::SDiv:
    743     case Instruction::FDiv:
    744     case Instruction::URem:
    745     case Instruction::SRem:
    746     case Instruction::FRem:
    747     case Instruction::Shl:
    748     case Instruction::LShr:
    749     case Instruction::AShr:
    750     case Instruction::And:
    751     case Instruction::Or:
    752     case Instruction::Xor: {
    753       newTreeEntry(VL, true);
    754       DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
    755 
    756       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
    757         ValueList Operands;
    758         // Prepare the operand vector.
    759         for (unsigned j = 0; j < VL.size(); ++j)
    760           Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
    761 
    762         buildTree_rec(Operands, Depth+1);
    763       }
    764       return;
    765     }
    766     case Instruction::Store: {
    767       // Check if the stores are consecutive or of we need to swizzle them.
    768       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
    769         if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
    770           newTreeEntry(VL, false);
    771           DEBUG(dbgs() << "SLP: Non consecutive store.\n");
    772           return;
    773         }
    774 
    775       newTreeEntry(VL, true);
    776       DEBUG(dbgs() << "SLP: added a vector of stores.\n");
    777 
    778       ValueList Operands;
    779       for (unsigned j = 0; j < VL.size(); ++j)
    780         Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
    781 
    782       // We can ignore these values because we are sinking them down.
    783       MemBarrierIgnoreList.insert(VL.begin(), VL.end());
    784       buildTree_rec(Operands, Depth + 1);
    785       return;
    786     }
    787     default:
    788       newTreeEntry(VL, false);
    789       DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
    790       return;
    791   }
    792 }
    793 
    794 int BoUpSLP::getEntryCost(TreeEntry *E) {
    795   ArrayRef<Value*> VL = E->Scalars;
    796 
    797   Type *ScalarTy = VL[0]->getType();
    798   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
    799     ScalarTy = SI->getValueOperand()->getType();
    800   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
    801 
    802   if (E->NeedToGather) {
    803     if (allConstant(VL))
    804       return 0;
    805     if (isSplat(VL)) {
    806       return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
    807     }
    808     return getGatherCost(E->Scalars);
    809   }
    810 
    811   assert(getSameOpcode(VL) && getSameType(VL) && getSameBlock(VL) &&
    812          "Invalid VL");
    813   Instruction *VL0 = cast<Instruction>(VL[0]);
    814   unsigned Opcode = VL0->getOpcode();
    815   switch (Opcode) {
    816     case Instruction::PHI: {
    817       return 0;
    818     }
    819     case Instruction::ExtractElement: {
    820       if (CanReuseExtract(VL))
    821         return 0;
    822       return getGatherCost(VecTy);
    823     }
    824     case Instruction::ZExt:
    825     case Instruction::SExt:
    826     case Instruction::FPToUI:
    827     case Instruction::FPToSI:
    828     case Instruction::FPExt:
    829     case Instruction::PtrToInt:
    830     case Instruction::IntToPtr:
    831     case Instruction::SIToFP:
    832     case Instruction::UIToFP:
    833     case Instruction::Trunc:
    834     case Instruction::FPTrunc:
    835     case Instruction::BitCast: {
    836       Type *SrcTy = VL0->getOperand(0)->getType();
    837 
    838       // Calculate the cost of this instruction.
    839       int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
    840                                                          VL0->getType(), SrcTy);
    841 
    842       VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
    843       int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
    844       return VecCost - ScalarCost;
    845     }
    846     case Instruction::FCmp:
    847     case Instruction::ICmp:
    848     case Instruction::Select:
    849     case Instruction::Add:
    850     case Instruction::FAdd:
    851     case Instruction::Sub:
    852     case Instruction::FSub:
    853     case Instruction::Mul:
    854     case Instruction::FMul:
    855     case Instruction::UDiv:
    856     case Instruction::SDiv:
    857     case Instruction::FDiv:
    858     case Instruction::URem:
    859     case Instruction::SRem:
    860     case Instruction::FRem:
    861     case Instruction::Shl:
    862     case Instruction::LShr:
    863     case Instruction::AShr:
    864     case Instruction::And:
    865     case Instruction::Or:
    866     case Instruction::Xor: {
    867       // Calculate the cost of this instruction.
    868       int ScalarCost = 0;
    869       int VecCost = 0;
    870       if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
    871           Opcode == Instruction::Select) {
    872         VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
    873         ScalarCost = VecTy->getNumElements() *
    874         TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
    875         VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
    876       } else {
    877         ScalarCost = VecTy->getNumElements() *
    878         TTI->getArithmeticInstrCost(Opcode, ScalarTy);
    879         VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy);
    880       }
    881       return VecCost - ScalarCost;
    882     }
    883     case Instruction::Load: {
    884       // Cost of wide load - cost of scalar loads.
    885       int ScalarLdCost = VecTy->getNumElements() *
    886       TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
    887       int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
    888       return VecLdCost - ScalarLdCost;
    889     }
    890     case Instruction::Store: {
    891       // We know that we can merge the stores. Calculate the cost.
    892       int ScalarStCost = VecTy->getNumElements() *
    893       TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
    894       int VecStCost = TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
    895       return VecStCost - ScalarStCost;
    896     }
    897     default:
    898       llvm_unreachable("Unknown instruction");
    899   }
    900 }
    901 
    902 int BoUpSLP::getTreeCost() {
    903   int Cost = 0;
    904   DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
    905         VectorizableTree.size() << ".\n");
    906 
    907   // Don't vectorize tiny trees. Small load/store chains or consecutive stores
    908   // of constants will be vectoried in SelectionDAG in MergeConsecutiveStores.
    909   // The SelectionDAG vectorizer can only handle pairs (trees of height = 2).
    910   if (VectorizableTree.size() < 3) {
    911     if (!VectorizableTree.size()) {
    912       assert(!ExternalUses.size() && "We should not have any external users");
    913     }
    914     return 0;
    915   }
    916 
    917   unsigned BundleWidth = VectorizableTree[0].Scalars.size();
    918 
    919   for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) {
    920     int C = getEntryCost(&VectorizableTree[i]);
    921     DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
    922           << *VectorizableTree[i].Scalars[0] << " .\n");
    923     Cost += C;
    924   }
    925 
    926   int ExtractCost = 0;
    927   for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
    928        I != E; ++I) {
    929 
    930     VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth);
    931     ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
    932                                            I->Lane);
    933   }
    934 
    935 
    936   DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n");
    937   return  Cost + ExtractCost;
    938 }
    939 
    940 int BoUpSLP::getGatherCost(Type *Ty) {
    941   int Cost = 0;
    942   for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
    943     Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
    944   return Cost;
    945 }
    946 
    947 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
    948   // Find the type of the operands in VL.
    949   Type *ScalarTy = VL[0]->getType();
    950   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
    951     ScalarTy = SI->getValueOperand()->getType();
    952   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
    953   // Find the cost of inserting/extracting values from the vector.
    954   return getGatherCost(VecTy);
    955 }
    956 
    957 AliasAnalysis::Location BoUpSLP::getLocation(Instruction *I) {
    958   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    959     return AA->getLocation(SI);
    960   if (LoadInst *LI = dyn_cast<LoadInst>(I))
    961     return AA->getLocation(LI);
    962   return AliasAnalysis::Location();
    963 }
    964 
    965 Value *BoUpSLP::getPointerOperand(Value *I) {
    966   if (LoadInst *LI = dyn_cast<LoadInst>(I))
    967     return LI->getPointerOperand();
    968   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    969     return SI->getPointerOperand();
    970   return 0;
    971 }
    972 
    973 unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
    974   if (LoadInst *L = dyn_cast<LoadInst>(I))
    975     return L->getPointerAddressSpace();
    976   if (StoreInst *S = dyn_cast<StoreInst>(I))
    977     return S->getPointerAddressSpace();
    978   return -1;
    979 }
    980 
    981 bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) {
    982   Value *PtrA = getPointerOperand(A);
    983   Value *PtrB = getPointerOperand(B);
    984   unsigned ASA = getAddressSpaceOperand(A);
    985   unsigned ASB = getAddressSpaceOperand(B);
    986 
    987   // Check that the address spaces match and that the pointers are valid.
    988   if (!PtrA || !PtrB || (ASA != ASB))
    989     return false;
    990 
    991   // Make sure that A and B are different pointers of the same type.
    992   if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
    993     return false;
    994 
    995   // Calculate a constant offset from the base pointer without using SCEV
    996   // in the supported cases.
    997   // TODO: Add support for the case where one of the pointers is a GEP that
    998   // uses the other pointer.
    999   GetElementPtrInst *GepA = dyn_cast<GetElementPtrInst>(PtrA);
   1000   GetElementPtrInst *GepB = dyn_cast<GetElementPtrInst>(PtrB);
   1001 
   1002   unsigned BW = DL->getPointerSizeInBits(ASA);
   1003   Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
   1004   int64_t Sz = DL->getTypeStoreSize(Ty);
   1005 
   1006   // Check if PtrA is the base and PtrB is a constant offset.
   1007   if (GepB && GepB->getPointerOperand() == PtrA) {
   1008     APInt Offset(BW, 0);
   1009     if (GepB->accumulateConstantOffset(*DL, Offset))
   1010       return Offset.getSExtValue() == Sz;
   1011     return false;
   1012   }
   1013 
   1014   // Check if PtrB is the base and PtrA is a constant offset.
   1015   if (GepA && GepA->getPointerOperand() == PtrB) {
   1016     APInt Offset(BW, 0);
   1017     if (GepA->accumulateConstantOffset(*DL, Offset))
   1018       return Offset.getSExtValue() == -Sz;
   1019     return false;
   1020   }
   1021 
   1022   // If both pointers are GEPs:
   1023   if (GepA && GepB) {
   1024     // Check that they have the same base pointer and number of indices.
   1025     if (GepA->getPointerOperand() != GepB->getPointerOperand() ||
   1026         GepA->getNumIndices() != GepB->getNumIndices())
   1027       return false;
   1028 
   1029     // Try to strip the geps. This makes SCEV faster.
   1030     // Make sure that all of the indices except for the last are identical.
   1031     int LastIdx = GepA->getNumIndices();
   1032     for (int i = 0; i < LastIdx - 1; i++) {
   1033       if (GepA->getOperand(i+1) != GepB->getOperand(i+1))
   1034           return false;
   1035     }
   1036 
   1037     PtrA = GepA->getOperand(LastIdx);
   1038     PtrB = GepB->getOperand(LastIdx);
   1039     Sz = 1;
   1040   }
   1041 
   1042   ConstantInt *CA = dyn_cast<ConstantInt>(PtrA);
   1043   ConstantInt *CB = dyn_cast<ConstantInt>(PtrB);
   1044   if (CA && CB) {
   1045     return (CA->getSExtValue() + Sz == CB->getSExtValue());
   1046   }
   1047 
   1048   // Calculate the distance.
   1049   const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
   1050   const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
   1051   const SCEV *C = SE->getConstant(PtrSCEVA->getType(), Sz);
   1052   const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
   1053   return X == PtrSCEVB;
   1054 }
   1055 
   1056 Value *BoUpSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) {
   1057   assert(Src->getParent() == Dst->getParent() && "Not the same BB");
   1058   BasicBlock::iterator I = Src, E = Dst;
   1059   /// Scan all of the instruction from SRC to DST and check if
   1060   /// the source may alias.
   1061   for (++I; I != E; ++I) {
   1062     // Ignore store instructions that are marked as 'ignore'.
   1063     if (MemBarrierIgnoreList.count(I))
   1064       continue;
   1065     if (Src->mayWriteToMemory()) /* Write */ {
   1066       if (!I->mayReadOrWriteMemory())
   1067         continue;
   1068     } else /* Read */ {
   1069       if (!I->mayWriteToMemory())
   1070         continue;
   1071     }
   1072     AliasAnalysis::Location A = getLocation(&*I);
   1073     AliasAnalysis::Location B = getLocation(Src);
   1074 
   1075     if (!A.Ptr || !B.Ptr || AA->alias(A, B))
   1076       return I;
   1077   }
   1078   return 0;
   1079 }
   1080 
   1081 int BoUpSLP::getLastIndex(ArrayRef<Value *> VL) {
   1082   BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
   1083   assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
   1084   BlockNumbering &BN = BlocksNumbers[BB];
   1085 
   1086   int MaxIdx = BN.getIndex(BB->getFirstNonPHI());
   1087   for (unsigned i = 0, e = VL.size(); i < e; ++i)
   1088     MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
   1089   return MaxIdx;
   1090 }
   1091 
   1092 Instruction *BoUpSLP::getLastInstruction(ArrayRef<Value *> VL) {
   1093   BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
   1094   assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
   1095   BlockNumbering &BN = BlocksNumbers[BB];
   1096 
   1097   int MaxIdx = BN.getIndex(cast<Instruction>(VL[0]));
   1098   for (unsigned i = 1, e = VL.size(); i < e; ++i)
   1099     MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
   1100   Instruction *I = BN.getInstruction(MaxIdx);
   1101   assert(I && "bad location");
   1102   return I;
   1103 }
   1104 
   1105 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
   1106   Value *Vec = UndefValue::get(Ty);
   1107   // Generate the 'InsertElement' instruction.
   1108   for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
   1109     Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
   1110     if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
   1111       GatherSeq.insert(Insrt);
   1112 
   1113       // Add to our 'need-to-extract' list.
   1114       if (ScalarToTreeEntry.count(VL[i])) {
   1115         int Idx = ScalarToTreeEntry[VL[i]];
   1116         TreeEntry *E = &VectorizableTree[Idx];
   1117         // Find which lane we need to extract.
   1118         int FoundLane = -1;
   1119         for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
   1120           // Is this the lane of the scalar that we are looking for ?
   1121           if (E->Scalars[Lane] == VL[i]) {
   1122             FoundLane = Lane;
   1123             break;
   1124           }
   1125         }
   1126         assert(FoundLane >= 0 && "Could not find the correct lane");
   1127         ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
   1128       }
   1129     }
   1130   }
   1131 
   1132   return Vec;
   1133 }
   1134 
   1135 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) {
   1136   if (ScalarToTreeEntry.count(VL[0])) {
   1137     int Idx = ScalarToTreeEntry[VL[0]];
   1138     TreeEntry *En = &VectorizableTree[Idx];
   1139     if (En->isSame(VL) && En->VectorizedValue)
   1140       return En->VectorizedValue;
   1141   }
   1142   return 0;
   1143 }
   1144 
   1145 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
   1146   if (ScalarToTreeEntry.count(VL[0])) {
   1147     int Idx = ScalarToTreeEntry[VL[0]];
   1148     TreeEntry *E = &VectorizableTree[Idx];
   1149     if (E->isSame(VL))
   1150       return vectorizeTree(E);
   1151   }
   1152 
   1153   Type *ScalarTy = VL[0]->getType();
   1154   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
   1155     ScalarTy = SI->getValueOperand()->getType();
   1156   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
   1157 
   1158   return Gather(VL, VecTy);
   1159 }
   1160 
   1161 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
   1162   BuilderLocGuard Guard(Builder);
   1163 
   1164   if (E->VectorizedValue) {
   1165     DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
   1166     return E->VectorizedValue;
   1167   }
   1168 
   1169   Type *ScalarTy = E->Scalars[0]->getType();
   1170   if (StoreInst *SI = dyn_cast<StoreInst>(E->Scalars[0]))
   1171     ScalarTy = SI->getValueOperand()->getType();
   1172   VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
   1173 
   1174   if (E->NeedToGather) {
   1175     return Gather(E->Scalars, VecTy);
   1176   }
   1177 
   1178   Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
   1179   unsigned Opcode = VL0->getOpcode();
   1180   assert(Opcode == getSameOpcode(E->Scalars) && "Invalid opcode");
   1181 
   1182   switch (Opcode) {
   1183     case Instruction::PHI: {
   1184       PHINode *PH = dyn_cast<PHINode>(VL0);
   1185       Builder.SetInsertPoint(PH->getParent()->getFirstInsertionPt());
   1186       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
   1187       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
   1188       E->VectorizedValue = NewPhi;
   1189 
   1190       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
   1191         ValueList Operands;
   1192         BasicBlock *IBB = PH->getIncomingBlock(i);
   1193 
   1194         // Prepare the operand vector.
   1195         for (unsigned j = 0; j < E->Scalars.size(); ++j)
   1196           Operands.push_back(cast<PHINode>(E->Scalars[j])->
   1197                              getIncomingValueForBlock(IBB));
   1198 
   1199         Builder.SetInsertPoint(IBB->getTerminator());
   1200         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
   1201         Value *Vec = vectorizeTree(Operands);
   1202         NewPhi->addIncoming(Vec, IBB);
   1203       }
   1204 
   1205       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
   1206              "Invalid number of incoming values");
   1207       return NewPhi;
   1208     }
   1209 
   1210     case Instruction::ExtractElement: {
   1211       if (CanReuseExtract(E->Scalars)) {
   1212         Value *V = VL0->getOperand(0);
   1213         E->VectorizedValue = V;
   1214         return V;
   1215       }
   1216       return Gather(E->Scalars, VecTy);
   1217     }
   1218     case Instruction::ZExt:
   1219     case Instruction::SExt:
   1220     case Instruction::FPToUI:
   1221     case Instruction::FPToSI:
   1222     case Instruction::FPExt:
   1223     case Instruction::PtrToInt:
   1224     case Instruction::IntToPtr:
   1225     case Instruction::SIToFP:
   1226     case Instruction::UIToFP:
   1227     case Instruction::Trunc:
   1228     case Instruction::FPTrunc:
   1229     case Instruction::BitCast: {
   1230       ValueList INVL;
   1231       for (int i = 0, e = E->Scalars.size(); i < e; ++i)
   1232         INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
   1233 
   1234       Builder.SetInsertPoint(getLastInstruction(E->Scalars));
   1235       Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
   1236 
   1237       Value *InVec = vectorizeTree(INVL);
   1238 
   1239       if (Value *V = alreadyVectorized(E->Scalars))
   1240         return V;
   1241 
   1242       CastInst *CI = dyn_cast<CastInst>(VL0);
   1243       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
   1244       E->VectorizedValue = V;
   1245       return V;
   1246     }
   1247     case Instruction::FCmp:
   1248     case Instruction::ICmp: {
   1249       ValueList LHSV, RHSV;
   1250       for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
   1251         LHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
   1252         RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
   1253       }
   1254 
   1255       Builder.SetInsertPoint(getLastInstruction(E->Scalars));
   1256       Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
   1257 
   1258       Value *L = vectorizeTree(LHSV);
   1259       Value *R = vectorizeTree(RHSV);
   1260 
   1261       if (Value *V = alreadyVectorized(E->Scalars))
   1262         return V;
   1263 
   1264       CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
   1265       Value *V;
   1266       if (Opcode == Instruction::FCmp)
   1267         V = Builder.CreateFCmp(P0, L, R);
   1268       else
   1269         V = Builder.CreateICmp(P0, L, R);
   1270 
   1271       E->VectorizedValue = V;
   1272       return V;
   1273     }
   1274     case Instruction::Select: {
   1275       ValueList TrueVec, FalseVec, CondVec;
   1276       for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
   1277         CondVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
   1278         TrueVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
   1279         FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2));
   1280       }
   1281 
   1282       Builder.SetInsertPoint(getLastInstruction(E->Scalars));
   1283       Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
   1284 
   1285       Value *Cond = vectorizeTree(CondVec);
   1286       Value *True = vectorizeTree(TrueVec);
   1287       Value *False = vectorizeTree(FalseVec);
   1288 
   1289       if (Value *V = alreadyVectorized(E->Scalars))
   1290         return V;
   1291 
   1292       Value *V = Builder.CreateSelect(Cond, True, False);
   1293       E->VectorizedValue = V;
   1294       return V;
   1295     }
   1296     case Instruction::Add:
   1297     case Instruction::FAdd:
   1298     case Instruction::Sub:
   1299     case Instruction::FSub:
   1300     case Instruction::Mul:
   1301     case Instruction::FMul:
   1302     case Instruction::UDiv:
   1303     case Instruction::SDiv:
   1304     case Instruction::FDiv:
   1305     case Instruction::URem:
   1306     case Instruction::SRem:
   1307     case Instruction::FRem:
   1308     case Instruction::Shl:
   1309     case Instruction::LShr:
   1310     case Instruction::AShr:
   1311     case Instruction::And:
   1312     case Instruction::Or:
   1313     case Instruction::Xor: {
   1314       ValueList LHSVL, RHSVL;
   1315       for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
   1316         LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
   1317         RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
   1318       }
   1319 
   1320       Builder.SetInsertPoint(getLastInstruction(E->Scalars));
   1321       Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
   1322 
   1323       Value *LHS = vectorizeTree(LHSVL);
   1324       Value *RHS = vectorizeTree(RHSVL);
   1325 
   1326       if (LHS == RHS && isa<Instruction>(LHS)) {
   1327         assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
   1328       }
   1329 
   1330       if (Value *V = alreadyVectorized(E->Scalars))
   1331         return V;
   1332 
   1333       BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
   1334       Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
   1335       E->VectorizedValue = V;
   1336       return V;
   1337     }
   1338     case Instruction::Load: {
   1339       // Loads are inserted at the head of the tree because we don't want to
   1340       // sink them all the way down past store instructions.
   1341       Builder.SetInsertPoint(getLastInstruction(E->Scalars));
   1342       Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
   1343 
   1344       LoadInst *LI = cast<LoadInst>(VL0);
   1345       Value *VecPtr =
   1346       Builder.CreateBitCast(LI->getPointerOperand(), VecTy->getPointerTo());
   1347       unsigned Alignment = LI->getAlignment();
   1348       LI = Builder.CreateLoad(VecPtr);
   1349       LI->setAlignment(Alignment);
   1350       E->VectorizedValue = LI;
   1351       return LI;
   1352     }
   1353     case Instruction::Store: {
   1354       StoreInst *SI = cast<StoreInst>(VL0);
   1355       unsigned Alignment = SI->getAlignment();
   1356 
   1357       ValueList ValueOp;
   1358       for (int i = 0, e = E->Scalars.size(); i < e; ++i)
   1359         ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand());
   1360 
   1361       Builder.SetInsertPoint(getLastInstruction(E->Scalars));
   1362       Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
   1363 
   1364       Value *VecValue = vectorizeTree(ValueOp);
   1365       Value *VecPtr =
   1366       Builder.CreateBitCast(SI->getPointerOperand(), VecTy->getPointerTo());
   1367       StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
   1368       S->setAlignment(Alignment);
   1369       E->VectorizedValue = S;
   1370       return S;
   1371     }
   1372     default:
   1373     llvm_unreachable("unknown inst");
   1374   }
   1375   return 0;
   1376 }
   1377 
   1378 void BoUpSLP::vectorizeTree() {
   1379   Builder.SetInsertPoint(F->getEntryBlock().begin());
   1380   vectorizeTree(&VectorizableTree[0]);
   1381 
   1382   DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
   1383 
   1384   // Extract all of the elements with the external uses.
   1385   for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end();
   1386        it != e; ++it) {
   1387     Value *Scalar = it->Scalar;
   1388     llvm::User *User = it->User;
   1389 
   1390     // Skip users that we already RAUW. This happens when one instruction
   1391     // has multiple uses of the same value.
   1392     if (std::find(Scalar->use_begin(), Scalar->use_end(), User) ==
   1393         Scalar->use_end())
   1394       continue;
   1395     assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar");
   1396 
   1397     int Idx = ScalarToTreeEntry[Scalar];
   1398     TreeEntry *E = &VectorizableTree[Idx];
   1399     assert(!E->NeedToGather && "Extracting from a gather list");
   1400 
   1401     Value *Vec = E->VectorizedValue;
   1402     assert(Vec && "Can't find vectorizable value");
   1403 
   1404     Value *Lane = Builder.getInt32(it->Lane);
   1405     // Generate extracts for out-of-tree users.
   1406     // Find the insertion point for the extractelement lane.
   1407     if (PHINode *PN = dyn_cast<PHINode>(Vec)) {
   1408       Builder.SetInsertPoint(PN->getParent()->getFirstInsertionPt());
   1409       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
   1410       User->replaceUsesOfWith(Scalar, Ex);
   1411     } else if (isa<Instruction>(Vec)){
   1412       if (PHINode *PH = dyn_cast<PHINode>(User)) {
   1413         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
   1414           if (PH->getIncomingValue(i) == Scalar) {
   1415             Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
   1416             Value *Ex = Builder.CreateExtractElement(Vec, Lane);
   1417             PH->setOperand(i, Ex);
   1418           }
   1419         }
   1420       } else {
   1421         Builder.SetInsertPoint(cast<Instruction>(User));
   1422         Value *Ex = Builder.CreateExtractElement(Vec, Lane);
   1423         User->replaceUsesOfWith(Scalar, Ex);
   1424      }
   1425     } else {
   1426       Builder.SetInsertPoint(F->getEntryBlock().begin());
   1427       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
   1428       User->replaceUsesOfWith(Scalar, Ex);
   1429     }
   1430 
   1431     DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
   1432   }
   1433 
   1434   // For each vectorized value:
   1435   for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
   1436     TreeEntry *Entry = &VectorizableTree[EIdx];
   1437 
   1438     // For each lane:
   1439     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
   1440       Value *Scalar = Entry->Scalars[Lane];
   1441 
   1442       // No need to handle users of gathered values.
   1443       if (Entry->NeedToGather)
   1444         continue;
   1445 
   1446       assert(Entry->VectorizedValue && "Can't find vectorizable value");
   1447 
   1448       Type *Ty = Scalar->getType();
   1449       if (!Ty->isVoidTy()) {
   1450         for (Value::use_iterator User = Scalar->use_begin(),
   1451              UE = Scalar->use_end(); User != UE; ++User) {
   1452           DEBUG(dbgs() << "SLP: \tvalidating user:" << **User << ".\n");
   1453           assert(!MustGather.count(*User) &&
   1454                  "Replacing gathered value with undef");
   1455           assert(ScalarToTreeEntry.count(*User) &&
   1456                  "Replacing out-of-tree value with undef");
   1457         }
   1458         Value *Undef = UndefValue::get(Ty);
   1459         Scalar->replaceAllUsesWith(Undef);
   1460       }
   1461       DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
   1462       cast<Instruction>(Scalar)->eraseFromParent();
   1463     }
   1464   }
   1465 
   1466   for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
   1467     BlocksNumbers[it].forget();
   1468   }
   1469   Builder.ClearInsertionPoint();
   1470 }
   1471 
   1472 void BoUpSLP::optimizeGatherSequence() {
   1473   DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
   1474         << " gather sequences instructions.\n");
   1475   // LICM InsertElementInst sequences.
   1476   for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
   1477        e = GatherSeq.end(); it != e; ++it) {
   1478     InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
   1479 
   1480     if (!Insert)
   1481       continue;
   1482 
   1483     // Check if this block is inside a loop.
   1484     Loop *L = LI->getLoopFor(Insert->getParent());
   1485     if (!L)
   1486       continue;
   1487 
   1488     // Check if it has a preheader.
   1489     BasicBlock *PreHeader = L->getLoopPreheader();
   1490     if (!PreHeader)
   1491       continue;
   1492 
   1493     // If the vector or the element that we insert into it are
   1494     // instructions that are defined in this basic block then we can't
   1495     // hoist this instruction.
   1496     Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
   1497     Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
   1498     if (CurrVec && L->contains(CurrVec))
   1499       continue;
   1500     if (NewElem && L->contains(NewElem))
   1501       continue;
   1502 
   1503     // We can hoist this instruction. Move it to the pre-header.
   1504     Insert->moveBefore(PreHeader->getTerminator());
   1505   }
   1506 
   1507   // Perform O(N^2) search over the gather sequences and merge identical
   1508   // instructions. TODO: We can further optimize this scan if we split the
   1509   // instructions into different buckets based on the insert lane.
   1510   SmallPtrSet<Instruction*, 16> Visited;
   1511   SmallVector<Instruction*, 16> ToRemove;
   1512   ReversePostOrderTraversal<Function*> RPOT(F);
   1513   for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
   1514        E = RPOT.end(); I != E; ++I) {
   1515     BasicBlock *BB = *I;
   1516     // For all instructions in the function:
   1517     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
   1518       Instruction *In = it;
   1519       if ((!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) ||
   1520           !GatherSeq.count(In))
   1521         continue;
   1522 
   1523       // Check if we can replace this instruction with any of the
   1524       // visited instructions.
   1525       for (SmallPtrSet<Instruction*, 16>::iterator v = Visited.begin(),
   1526            ve = Visited.end(); v != ve; ++v) {
   1527         if (In->isIdenticalTo(*v) &&
   1528             DT->dominates((*v)->getParent(), In->getParent())) {
   1529           In->replaceAllUsesWith(*v);
   1530           ToRemove.push_back(In);
   1531           In = 0;
   1532           break;
   1533         }
   1534       }
   1535       if (In)
   1536         Visited.insert(In);
   1537     }
   1538   }
   1539 
   1540   // Erase all of the instructions that we RAUWed.
   1541   for (SmallVectorImpl<Instruction *>::iterator v = ToRemove.begin(),
   1542        ve = ToRemove.end(); v != ve; ++v) {
   1543     assert((*v)->getNumUses() == 0 && "Can't remove instructions with uses");
   1544     (*v)->eraseFromParent();
   1545   }
   1546 }
   1547 
   1548 /// The SLPVectorizer Pass.
   1549 struct SLPVectorizer : public FunctionPass {
   1550   typedef SmallVector<StoreInst *, 8> StoreList;
   1551   typedef MapVector<Value *, StoreList> StoreListMap;
   1552 
   1553   /// Pass identification, replacement for typeid
   1554   static char ID;
   1555 
   1556   explicit SLPVectorizer() : FunctionPass(ID) {
   1557     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
   1558   }
   1559 
   1560   ScalarEvolution *SE;
   1561   DataLayout *DL;
   1562   TargetTransformInfo *TTI;
   1563   AliasAnalysis *AA;
   1564   LoopInfo *LI;
   1565   DominatorTree *DT;
   1566 
   1567   virtual bool runOnFunction(Function &F) {
   1568     SE = &getAnalysis<ScalarEvolution>();
   1569     DL = getAnalysisIfAvailable<DataLayout>();
   1570     TTI = &getAnalysis<TargetTransformInfo>();
   1571     AA = &getAnalysis<AliasAnalysis>();
   1572     LI = &getAnalysis<LoopInfo>();
   1573     DT = &getAnalysis<DominatorTree>();
   1574 
   1575     StoreRefs.clear();
   1576     bool Changed = false;
   1577 
   1578     // Must have DataLayout. We can't require it because some tests run w/o
   1579     // triple.
   1580     if (!DL)
   1581       return false;
   1582 
   1583     // Don't vectorize when the attribute NoImplicitFloat is used.
   1584     if (F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
   1585                                        Attribute::NoImplicitFloat))
   1586       return false;
   1587 
   1588     DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
   1589 
   1590     // Use the bollom up slp vectorizer to construct chains that start with
   1591     // he store instructions.
   1592     BoUpSLP R(&F, SE, DL, TTI, AA, LI, DT);
   1593 
   1594     // Scan the blocks in the function in post order.
   1595     for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()),
   1596          e = po_end(&F.getEntryBlock()); it != e; ++it) {
   1597       BasicBlock *BB = *it;
   1598 
   1599       // Vectorize trees that end at stores.
   1600       if (unsigned count = collectStores(BB, R)) {
   1601         (void)count;
   1602         DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n");
   1603         Changed |= vectorizeStoreChains(R);
   1604       }
   1605 
   1606       // Vectorize trees that end at reductions.
   1607       Changed |= vectorizeChainsInBlock(BB, R);
   1608     }
   1609 
   1610     if (Changed) {
   1611       R.optimizeGatherSequence();
   1612       DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
   1613       DEBUG(verifyFunction(F));
   1614     }
   1615     return Changed;
   1616   }
   1617 
   1618   virtual void getAnalysisUsage(AnalysisUsage &AU) const {
   1619     FunctionPass::getAnalysisUsage(AU);
   1620     AU.addRequired<ScalarEvolution>();
   1621     AU.addRequired<AliasAnalysis>();
   1622     AU.addRequired<TargetTransformInfo>();
   1623     AU.addRequired<LoopInfo>();
   1624     AU.addRequired<DominatorTree>();
   1625     AU.addPreserved<LoopInfo>();
   1626     AU.addPreserved<DominatorTree>();
   1627     AU.setPreservesCFG();
   1628   }
   1629 
   1630 private:
   1631 
   1632   /// \brief Collect memory references and sort them according to their base
   1633   /// object. We sort the stores to their base objects to reduce the cost of the
   1634   /// quadratic search on the stores. TODO: We can further reduce this cost
   1635   /// if we flush the chain creation every time we run into a memory barrier.
   1636   unsigned collectStores(BasicBlock *BB, BoUpSLP &R);
   1637 
   1638   /// \brief Try to vectorize a chain that starts at two arithmetic instrs.
   1639   bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
   1640 
   1641   /// \brief Try to vectorize a list of operands.
   1642   /// \returns true if a value was vectorized.
   1643   bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R);
   1644 
   1645   /// \brief Try to vectorize a chain that may start at the operands of \V;
   1646   bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
   1647 
   1648   /// \brief Vectorize the stores that were collected in StoreRefs.
   1649   bool vectorizeStoreChains(BoUpSLP &R);
   1650 
   1651   /// \brief Scan the basic block and look for patterns that are likely to start
   1652   /// a vectorization chain.
   1653   bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
   1654 
   1655   bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
   1656                            BoUpSLP &R);
   1657 
   1658   bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
   1659                        BoUpSLP &R);
   1660 private:
   1661   StoreListMap StoreRefs;
   1662 };
   1663 
   1664 bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
   1665                                           int CostThreshold, BoUpSLP &R) {
   1666   unsigned ChainLen = Chain.size();
   1667   DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
   1668         << "\n");
   1669   Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
   1670   unsigned Sz = DL->getTypeSizeInBits(StoreTy);
   1671   unsigned VF = MinVecRegSize / Sz;
   1672 
   1673   if (!isPowerOf2_32(Sz) || VF < 2)
   1674     return false;
   1675 
   1676   bool Changed = false;
   1677   // Look for profitable vectorizable trees at all offsets, starting at zero.
   1678   for (unsigned i = 0, e = ChainLen; i < e; ++i) {
   1679     if (i + VF > e)
   1680       break;
   1681     DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
   1682           << "\n");
   1683     ArrayRef<Value *> Operands = Chain.slice(i, VF);
   1684 
   1685     R.buildTree(Operands);
   1686 
   1687     int Cost = R.getTreeCost();
   1688 
   1689     DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
   1690     if (Cost < CostThreshold) {
   1691       DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
   1692       R.vectorizeTree();
   1693 
   1694       // Move to the next bundle.
   1695       i += VF - 1;
   1696       Changed = true;
   1697     }
   1698   }
   1699 
   1700     return Changed;
   1701 }
   1702 
   1703 bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
   1704                                     int costThreshold, BoUpSLP &R) {
   1705   SetVector<Value *> Heads, Tails;
   1706   SmallDenseMap<Value *, Value *> ConsecutiveChain;
   1707 
   1708   // We may run into multiple chains that merge into a single chain. We mark the
   1709   // stores that we vectorized so that we don't visit the same store twice.
   1710   BoUpSLP::ValueSet VectorizedStores;
   1711   bool Changed = false;
   1712 
   1713   // Do a quadratic search on all of the given stores and find
   1714   // all of the pairs of stores that follow each other.
   1715   for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
   1716     for (unsigned j = 0; j < e; ++j) {
   1717       if (i == j)
   1718         continue;
   1719 
   1720       if (R.isConsecutiveAccess(Stores[i], Stores[j])) {
   1721         Tails.insert(Stores[j]);
   1722         Heads.insert(Stores[i]);
   1723         ConsecutiveChain[Stores[i]] = Stores[j];
   1724       }
   1725     }
   1726   }
   1727 
   1728   // For stores that start but don't end a link in the chain:
   1729   for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end();
   1730        it != e; ++it) {
   1731     if (Tails.count(*it))
   1732       continue;
   1733 
   1734     // We found a store instr that starts a chain. Now follow the chain and try
   1735     // to vectorize it.
   1736     BoUpSLP::ValueList Operands;
   1737     Value *I = *it;
   1738     // Collect the chain into a list.
   1739     while (Tails.count(I) || Heads.count(I)) {
   1740       if (VectorizedStores.count(I))
   1741         break;
   1742       Operands.push_back(I);
   1743       // Move to the next value in the chain.
   1744       I = ConsecutiveChain[I];
   1745     }
   1746 
   1747     bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R);
   1748 
   1749     // Mark the vectorized stores so that we don't vectorize them again.
   1750     if (Vectorized)
   1751       VectorizedStores.insert(Operands.begin(), Operands.end());
   1752     Changed |= Vectorized;
   1753   }
   1754 
   1755   return Changed;
   1756 }
   1757 
   1758 
   1759 unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
   1760   unsigned count = 0;
   1761   StoreRefs.clear();
   1762   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
   1763     StoreInst *SI = dyn_cast<StoreInst>(it);
   1764     if (!SI)
   1765       continue;
   1766 
   1767     // Check that the pointer points to scalars.
   1768     Type *Ty = SI->getValueOperand()->getType();
   1769     if (Ty->isAggregateType() || Ty->isVectorTy())
   1770       return 0;
   1771 
   1772     // Find the base of the GEP.
   1773     Value *Ptr = SI->getPointerOperand();
   1774     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
   1775       Ptr = GEP->getPointerOperand();
   1776 
   1777     // Save the store locations.
   1778     StoreRefs[Ptr].push_back(SI);
   1779     count++;
   1780   }
   1781   return count;
   1782 }
   1783 
   1784 bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
   1785   if (!A || !B)
   1786     return false;
   1787   Value *VL[] = { A, B };
   1788   return tryToVectorizeList(VL, R);
   1789 }
   1790 
   1791 bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R) {
   1792   if (VL.size() < 2)
   1793     return false;
   1794 
   1795   DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n");
   1796 
   1797   // Check that all of the parts are scalar instructions of the same type.
   1798   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
   1799   if (!I0)
   1800     return 0;
   1801 
   1802   unsigned Opcode0 = I0->getOpcode();
   1803 
   1804   for (int i = 0, e = VL.size(); i < e; ++i) {
   1805     Type *Ty = VL[i]->getType();
   1806     if (Ty->isAggregateType() || Ty->isVectorTy())
   1807       return 0;
   1808     Instruction *Inst = dyn_cast<Instruction>(VL[i]);
   1809     if (!Inst || Inst->getOpcode() != Opcode0)
   1810       return 0;
   1811   }
   1812 
   1813   R.buildTree(VL);
   1814   int Cost = R.getTreeCost();
   1815 
   1816   if (Cost >= -SLPCostThreshold)
   1817     return false;
   1818 
   1819   DEBUG(dbgs() << "SLP: Vectorizing pair at cost:" << Cost << ".\n");
   1820   R.vectorizeTree();
   1821   return true;
   1822 }
   1823 
   1824 bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
   1825   if (!V)
   1826     return false;
   1827 
   1828   // Try to vectorize V.
   1829   if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
   1830     return true;
   1831 
   1832   BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
   1833   BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
   1834   // Try to skip B.
   1835   if (B && B->hasOneUse()) {
   1836     BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
   1837     BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
   1838     if (tryToVectorizePair(A, B0, R)) {
   1839       B->moveBefore(V);
   1840       return true;
   1841     }
   1842     if (tryToVectorizePair(A, B1, R)) {
   1843       B->moveBefore(V);
   1844       return true;
   1845     }
   1846   }
   1847 
   1848   // Try to skip A.
   1849   if (A && A->hasOneUse()) {
   1850     BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
   1851     BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
   1852     if (tryToVectorizePair(A0, B, R)) {
   1853       A->moveBefore(V);
   1854       return true;
   1855     }
   1856     if (tryToVectorizePair(A1, B, R)) {
   1857       A->moveBefore(V);
   1858       return true;
   1859     }
   1860   }
   1861   return 0;
   1862 }
   1863 
   1864 bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
   1865   bool Changed = false;
   1866   SmallVector<Value *, 4> Incoming;
   1867   // Collect the incoming values from the PHIs.
   1868   for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
   1869        ++instr) {
   1870     PHINode *P = dyn_cast<PHINode>(instr);
   1871 
   1872     if (!P)
   1873       break;
   1874 
   1875     // Stop constructing the list when you reach a different type.
   1876     if (Incoming.size() && P->getType() != Incoming[0]->getType()) {
   1877       Changed |= tryToVectorizeList(Incoming, R);
   1878       Incoming.clear();
   1879     }
   1880 
   1881     Incoming.push_back(P);
   1882   }
   1883 
   1884   if (Incoming.size() > 1)
   1885     Changed |= tryToVectorizeList(Incoming, R);
   1886 
   1887   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
   1888     if (isa<DbgInfoIntrinsic>(it))
   1889       continue;
   1890 
   1891     // Try to vectorize reductions that use PHINodes.
   1892     if (PHINode *P = dyn_cast<PHINode>(it)) {
   1893       // Check that the PHI is a reduction PHI.
   1894       if (P->getNumIncomingValues() != 2)
   1895         return Changed;
   1896       Value *Rdx =
   1897           (P->getIncomingBlock(0) == BB
   1898                ? (P->getIncomingValue(0))
   1899                : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) : 0));
   1900       // Check if this is a Binary Operator.
   1901       BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
   1902       if (!BI)
   1903         continue;
   1904 
   1905       Value *Inst = BI->getOperand(0);
   1906       if (Inst == P)
   1907         Inst = BI->getOperand(1);
   1908 
   1909       Changed |= tryToVectorize(dyn_cast<BinaryOperator>(Inst), R);
   1910       continue;
   1911     }
   1912 
   1913     // Try to vectorize trees that start at compare instructions.
   1914     if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
   1915       if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
   1916         Changed |= true;
   1917         continue;
   1918       }
   1919       for (int i = 0; i < 2; ++i)
   1920         if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i)))
   1921           Changed |=
   1922               tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R);
   1923       continue;
   1924     }
   1925   }
   1926 
   1927   return Changed;
   1928 }
   1929 
   1930 bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
   1931   bool Changed = false;
   1932   // Attempt to sort and vectorize each of the store-groups.
   1933   for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
   1934        it != e; ++it) {
   1935     if (it->second.size() < 2)
   1936       continue;
   1937 
   1938     DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
   1939           << it->second.size() << ".\n");
   1940 
   1941     // Process the stores in chunks of 16.
   1942     for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
   1943       unsigned Len = std::min<unsigned>(CE - CI, 16);
   1944       ArrayRef<StoreInst *> Chunk(&it->second[CI], Len);
   1945       Changed |= vectorizeStores(Chunk, -SLPCostThreshold, R);
   1946     }
   1947   }
   1948   return Changed;
   1949 }
   1950 
   1951 } // end anonymous namespace
   1952 
   1953 char SLPVectorizer::ID = 0;
   1954 static const char lv_name[] = "SLP Vectorizer";
   1955 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
   1956 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
   1957 INITIALIZE_AG_DEPENDENCY(TargetTransformInfo)
   1958 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
   1959 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
   1960 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
   1961 
   1962 namespace llvm {
   1963 Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
   1964 }
   1965