Home | History | Annotate | Download | only in Analysis
      1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains the implementation of the scalar evolution expander,
     11 // which is used to generate the code corresponding to a given scalar evolution
     12 // expression.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     17 #include "llvm/ADT/STLExtras.h"
     18 #include "llvm/Analysis/LoopInfo.h"
     19 #include "llvm/Analysis/TargetTransformInfo.h"
     20 #include "llvm/IR/DataLayout.h"
     21 #include "llvm/IR/IntrinsicInst.h"
     22 #include "llvm/IR/LLVMContext.h"
     23 #include "llvm/Support/Debug.h"
     24 
     25 using namespace llvm;
     26 
     27 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
     28 /// reusing an existing cast if a suitable one exists, moving an existing
     29 /// cast if a suitable one exists but isn't in the right place, or
     30 /// creating a new one.
     31 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
     32                                        Instruction::CastOps Op,
     33                                        BasicBlock::iterator IP) {
     34   // This function must be called with the builder having a valid insertion
     35   // point. It doesn't need to be the actual IP where the uses of the returned
     36   // cast will be added, but it must dominate such IP.
     37   // We use this precondition to produce a cast that will dominate all its
     38   // uses. In particular, this is crucial for the case where the builder's
     39   // insertion point *is* the point where we were asked to put the cast.
     40   // Since we don't know the builder's insertion point is actually
     41   // where the uses will be added (only that it dominates it), we are
     42   // not allowed to move it.
     43   BasicBlock::iterator BIP = Builder.GetInsertPoint();
     44 
     45   Instruction *Ret = NULL;
     46 
     47   // Check to see if there is already a cast!
     48   for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
     49        UI != E; ++UI) {
     50     User *U = *UI;
     51     if (U->getType() == Ty)
     52       if (CastInst *CI = dyn_cast<CastInst>(U))
     53         if (CI->getOpcode() == Op) {
     54           // If the cast isn't where we want it, create a new cast at IP.
     55           // Likewise, do not reuse a cast at BIP because it must dominate
     56           // instructions that might be inserted before BIP.
     57           if (BasicBlock::iterator(CI) != IP || BIP == IP) {
     58             // Create a new cast, and leave the old cast in place in case
     59             // it is being used as an insert point. Clear its operand
     60             // so that it doesn't hold anything live.
     61             Ret = CastInst::Create(Op, V, Ty, "", IP);
     62             Ret->takeName(CI);
     63             CI->replaceAllUsesWith(Ret);
     64             CI->setOperand(0, UndefValue::get(V->getType()));
     65             break;
     66           }
     67           Ret = CI;
     68           break;
     69         }
     70   }
     71 
     72   // Create a new cast.
     73   if (!Ret)
     74     Ret = CastInst::Create(Op, V, Ty, V->getName(), IP);
     75 
     76   // We assert at the end of the function since IP might point to an
     77   // instruction with different dominance properties than a cast
     78   // (an invoke for example) and not dominate BIP (but the cast does).
     79   assert(SE.DT->dominates(Ret, BIP));
     80 
     81   rememberInstruction(Ret);
     82   return Ret;
     83 }
     84 
     85 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
     86 /// which must be possible with a noop cast, doing what we can to share
     87 /// the casts.
     88 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
     89   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
     90   assert((Op == Instruction::BitCast ||
     91           Op == Instruction::PtrToInt ||
     92           Op == Instruction::IntToPtr) &&
     93          "InsertNoopCastOfTo cannot perform non-noop casts!");
     94   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
     95          "InsertNoopCastOfTo cannot change sizes!");
     96 
     97   // Short-circuit unnecessary bitcasts.
     98   if (Op == Instruction::BitCast) {
     99     if (V->getType() == Ty)
    100       return V;
    101     if (CastInst *CI = dyn_cast<CastInst>(V)) {
    102       if (CI->getOperand(0)->getType() == Ty)
    103         return CI->getOperand(0);
    104     }
    105   }
    106   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
    107   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
    108       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
    109     if (CastInst *CI = dyn_cast<CastInst>(V))
    110       if ((CI->getOpcode() == Instruction::PtrToInt ||
    111            CI->getOpcode() == Instruction::IntToPtr) &&
    112           SE.getTypeSizeInBits(CI->getType()) ==
    113           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
    114         return CI->getOperand(0);
    115     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
    116       if ((CE->getOpcode() == Instruction::PtrToInt ||
    117            CE->getOpcode() == Instruction::IntToPtr) &&
    118           SE.getTypeSizeInBits(CE->getType()) ==
    119           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
    120         return CE->getOperand(0);
    121   }
    122 
    123   // Fold a cast of a constant.
    124   if (Constant *C = dyn_cast<Constant>(V))
    125     return ConstantExpr::getCast(Op, C, Ty);
    126 
    127   // Cast the argument at the beginning of the entry block, after
    128   // any bitcasts of other arguments.
    129   if (Argument *A = dyn_cast<Argument>(V)) {
    130     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
    131     while ((isa<BitCastInst>(IP) &&
    132             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
    133             cast<BitCastInst>(IP)->getOperand(0) != A) ||
    134            isa<DbgInfoIntrinsic>(IP) ||
    135            isa<LandingPadInst>(IP))
    136       ++IP;
    137     return ReuseOrCreateCast(A, Ty, Op, IP);
    138   }
    139 
    140   // Cast the instruction immediately after the instruction.
    141   Instruction *I = cast<Instruction>(V);
    142   BasicBlock::iterator IP = I; ++IP;
    143   if (InvokeInst *II = dyn_cast<InvokeInst>(I))
    144     IP = II->getNormalDest()->begin();
    145   while (isa<PHINode>(IP) || isa<LandingPadInst>(IP))
    146     ++IP;
    147   return ReuseOrCreateCast(I, Ty, Op, IP);
    148 }
    149 
    150 /// InsertBinop - Insert the specified binary operator, doing a small amount
    151 /// of work to avoid inserting an obviously redundant operation.
    152 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
    153                                  Value *LHS, Value *RHS) {
    154   // Fold a binop with constant operands.
    155   if (Constant *CLHS = dyn_cast<Constant>(LHS))
    156     if (Constant *CRHS = dyn_cast<Constant>(RHS))
    157       return ConstantExpr::get(Opcode, CLHS, CRHS);
    158 
    159   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
    160   unsigned ScanLimit = 6;
    161   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
    162   // Scanning starts from the last instruction before the insertion point.
    163   BasicBlock::iterator IP = Builder.GetInsertPoint();
    164   if (IP != BlockBegin) {
    165     --IP;
    166     for (; ScanLimit; --IP, --ScanLimit) {
    167       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
    168       // generated code.
    169       if (isa<DbgInfoIntrinsic>(IP))
    170         ScanLimit++;
    171       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
    172           IP->getOperand(1) == RHS)
    173         return IP;
    174       if (IP == BlockBegin) break;
    175     }
    176   }
    177 
    178   // Save the original insertion point so we can restore it when we're done.
    179   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
    180   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
    181 
    182   // Move the insertion point out of as many loops as we can.
    183   while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
    184     if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
    185     BasicBlock *Preheader = L->getLoopPreheader();
    186     if (!Preheader) break;
    187 
    188     // Ok, move up a level.
    189     Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
    190   }
    191 
    192   // If we haven't found this binop, insert it.
    193   Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
    194   BO->setDebugLoc(SaveInsertPt->getDebugLoc());
    195   rememberInstruction(BO);
    196 
    197   // Restore the original insert point.
    198   if (SaveInsertBB)
    199     restoreInsertPoint(SaveInsertBB, SaveInsertPt);
    200 
    201   return BO;
    202 }
    203 
    204 /// FactorOutConstant - Test if S is divisible by Factor, using signed
    205 /// division. If so, update S with Factor divided out and return true.
    206 /// S need not be evenly divisible if a reasonable remainder can be
    207 /// computed.
    208 /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
    209 /// unnecessary; in its place, just signed-divide Ops[i] by the scale and
    210 /// check to see if the divide was folded.
    211 static bool FactorOutConstant(const SCEV *&S,
    212                               const SCEV *&Remainder,
    213                               const SCEV *Factor,
    214                               ScalarEvolution &SE,
    215                               const DataLayout *TD) {
    216   // Everything is divisible by one.
    217   if (Factor->isOne())
    218     return true;
    219 
    220   // x/x == 1.
    221   if (S == Factor) {
    222     S = SE.getConstant(S->getType(), 1);
    223     return true;
    224   }
    225 
    226   // For a Constant, check for a multiple of the given factor.
    227   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
    228     // 0/x == 0.
    229     if (C->isZero())
    230       return true;
    231     // Check for divisibility.
    232     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
    233       ConstantInt *CI =
    234         ConstantInt::get(SE.getContext(),
    235                          C->getValue()->getValue().sdiv(
    236                                                    FC->getValue()->getValue()));
    237       // If the quotient is zero and the remainder is non-zero, reject
    238       // the value at this scale. It will be considered for subsequent
    239       // smaller scales.
    240       if (!CI->isZero()) {
    241         const SCEV *Div = SE.getConstant(CI);
    242         S = Div;
    243         Remainder =
    244           SE.getAddExpr(Remainder,
    245                         SE.getConstant(C->getValue()->getValue().srem(
    246                                                   FC->getValue()->getValue())));
    247         return true;
    248       }
    249     }
    250   }
    251 
    252   // In a Mul, check if there is a constant operand which is a multiple
    253   // of the given factor.
    254   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
    255     if (TD) {
    256       // With DataLayout, the size is known. Check if there is a constant
    257       // operand which is a multiple of the given factor. If so, we can
    258       // factor it.
    259       const SCEVConstant *FC = cast<SCEVConstant>(Factor);
    260       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
    261         if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
    262           SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
    263           NewMulOps[0] =
    264             SE.getConstant(C->getValue()->getValue().sdiv(
    265                                                    FC->getValue()->getValue()));
    266           S = SE.getMulExpr(NewMulOps);
    267           return true;
    268         }
    269     } else {
    270       // Without DataLayout, check if Factor can be factored out of any of the
    271       // Mul's operands. If so, we can just remove it.
    272       for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
    273         const SCEV *SOp = M->getOperand(i);
    274         const SCEV *Remainder = SE.getConstant(SOp->getType(), 0);
    275         if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
    276             Remainder->isZero()) {
    277           SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
    278           NewMulOps[i] = SOp;
    279           S = SE.getMulExpr(NewMulOps);
    280           return true;
    281         }
    282       }
    283     }
    284   }
    285 
    286   // In an AddRec, check if both start and step are divisible.
    287   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
    288     const SCEV *Step = A->getStepRecurrence(SE);
    289     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
    290     if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
    291       return false;
    292     if (!StepRem->isZero())
    293       return false;
    294     const SCEV *Start = A->getStart();
    295     if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
    296       return false;
    297     S = SE.getAddRecExpr(Start, Step, A->getLoop(),
    298                          A->getNoWrapFlags(SCEV::FlagNW));
    299     return true;
    300   }
    301 
    302   return false;
    303 }
    304 
    305 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
    306 /// is the number of SCEVAddRecExprs present, which are kept at the end of
    307 /// the list.
    308 ///
    309 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
    310                                 Type *Ty,
    311                                 ScalarEvolution &SE) {
    312   unsigned NumAddRecs = 0;
    313   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
    314     ++NumAddRecs;
    315   // Group Ops into non-addrecs and addrecs.
    316   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
    317   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
    318   // Let ScalarEvolution sort and simplify the non-addrecs list.
    319   const SCEV *Sum = NoAddRecs.empty() ?
    320                     SE.getConstant(Ty, 0) :
    321                     SE.getAddExpr(NoAddRecs);
    322   // If it returned an add, use the operands. Otherwise it simplified
    323   // the sum into a single value, so just use that.
    324   Ops.clear();
    325   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
    326     Ops.append(Add->op_begin(), Add->op_end());
    327   else if (!Sum->isZero())
    328     Ops.push_back(Sum);
    329   // Then append the addrecs.
    330   Ops.append(AddRecs.begin(), AddRecs.end());
    331 }
    332 
    333 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
    334 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
    335 /// This helps expose more opportunities for folding parts of the expressions
    336 /// into GEP indices.
    337 ///
    338 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
    339                          Type *Ty,
    340                          ScalarEvolution &SE) {
    341   // Find the addrecs.
    342   SmallVector<const SCEV *, 8> AddRecs;
    343   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    344     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
    345       const SCEV *Start = A->getStart();
    346       if (Start->isZero()) break;
    347       const SCEV *Zero = SE.getConstant(Ty, 0);
    348       AddRecs.push_back(SE.getAddRecExpr(Zero,
    349                                          A->getStepRecurrence(SE),
    350                                          A->getLoop(),
    351                                          A->getNoWrapFlags(SCEV::FlagNW)));
    352       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
    353         Ops[i] = Zero;
    354         Ops.append(Add->op_begin(), Add->op_end());
    355         e += Add->getNumOperands();
    356       } else {
    357         Ops[i] = Start;
    358       }
    359     }
    360   if (!AddRecs.empty()) {
    361     // Add the addrecs onto the end of the list.
    362     Ops.append(AddRecs.begin(), AddRecs.end());
    363     // Resort the operand list, moving any constants to the front.
    364     SimplifyAddOperands(Ops, Ty, SE);
    365   }
    366 }
    367 
    368 /// expandAddToGEP - Expand an addition expression with a pointer type into
    369 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
    370 /// BasicAliasAnalysis and other passes analyze the result. See the rules
    371 /// for getelementptr vs. inttoptr in
    372 /// http://llvm.org/docs/LangRef.html#pointeraliasing
    373 /// for details.
    374 ///
    375 /// Design note: The correctness of using getelementptr here depends on
    376 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
    377 /// they may introduce pointer arithmetic which may not be safely converted
    378 /// into getelementptr.
    379 ///
    380 /// Design note: It might seem desirable for this function to be more
    381 /// loop-aware. If some of the indices are loop-invariant while others
    382 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
    383 /// loop-invariant portions of the overall computation outside the loop.
    384 /// However, there are a few reasons this is not done here. Hoisting simple
    385 /// arithmetic is a low-level optimization that often isn't very
    386 /// important until late in the optimization process. In fact, passes
    387 /// like InstructionCombining will combine GEPs, even if it means
    388 /// pushing loop-invariant computation down into loops, so even if the
    389 /// GEPs were split here, the work would quickly be undone. The
    390 /// LoopStrengthReduction pass, which is usually run quite late (and
    391 /// after the last InstructionCombining pass), takes care of hoisting
    392 /// loop-invariant portions of expressions, after considering what
    393 /// can be folded using target addressing modes.
    394 ///
    395 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
    396                                     const SCEV *const *op_end,
    397                                     PointerType *PTy,
    398                                     Type *Ty,
    399                                     Value *V) {
    400   Type *ElTy = PTy->getElementType();
    401   SmallVector<Value *, 4> GepIndices;
    402   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
    403   bool AnyNonZeroIndices = false;
    404 
    405   // Split AddRecs up into parts as either of the parts may be usable
    406   // without the other.
    407   SplitAddRecs(Ops, Ty, SE);
    408 
    409   // Descend down the pointer's type and attempt to convert the other
    410   // operands into GEP indices, at each level. The first index in a GEP
    411   // indexes into the array implied by the pointer operand; the rest of
    412   // the indices index into the element or field type selected by the
    413   // preceding index.
    414   for (;;) {
    415     // If the scale size is not 0, attempt to factor out a scale for
    416     // array indexing.
    417     SmallVector<const SCEV *, 8> ScaledOps;
    418     if (ElTy->isSized()) {
    419       const SCEV *ElSize = SE.getSizeOfExpr(ElTy);
    420       if (!ElSize->isZero()) {
    421         SmallVector<const SCEV *, 8> NewOps;
    422         for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
    423           const SCEV *Op = Ops[i];
    424           const SCEV *Remainder = SE.getConstant(Ty, 0);
    425           if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
    426             // Op now has ElSize factored out.
    427             ScaledOps.push_back(Op);
    428             if (!Remainder->isZero())
    429               NewOps.push_back(Remainder);
    430             AnyNonZeroIndices = true;
    431           } else {
    432             // The operand was not divisible, so add it to the list of operands
    433             // we'll scan next iteration.
    434             NewOps.push_back(Ops[i]);
    435           }
    436         }
    437         // If we made any changes, update Ops.
    438         if (!ScaledOps.empty()) {
    439           Ops = NewOps;
    440           SimplifyAddOperands(Ops, Ty, SE);
    441         }
    442       }
    443     }
    444 
    445     // Record the scaled array index for this level of the type. If
    446     // we didn't find any operands that could be factored, tentatively
    447     // assume that element zero was selected (since the zero offset
    448     // would obviously be folded away).
    449     Value *Scaled = ScaledOps.empty() ?
    450                     Constant::getNullValue(Ty) :
    451                     expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
    452     GepIndices.push_back(Scaled);
    453 
    454     // Collect struct field index operands.
    455     while (StructType *STy = dyn_cast<StructType>(ElTy)) {
    456       bool FoundFieldNo = false;
    457       // An empty struct has no fields.
    458       if (STy->getNumElements() == 0) break;
    459       if (SE.TD) {
    460         // With DataLayout, field offsets are known. See if a constant offset
    461         // falls within any of the struct fields.
    462         if (Ops.empty()) break;
    463         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
    464           if (SE.getTypeSizeInBits(C->getType()) <= 64) {
    465             const StructLayout &SL = *SE.TD->getStructLayout(STy);
    466             uint64_t FullOffset = C->getValue()->getZExtValue();
    467             if (FullOffset < SL.getSizeInBytes()) {
    468               unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
    469               GepIndices.push_back(
    470                   ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
    471               ElTy = STy->getTypeAtIndex(ElIdx);
    472               Ops[0] =
    473                 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
    474               AnyNonZeroIndices = true;
    475               FoundFieldNo = true;
    476             }
    477           }
    478       } else {
    479         // Without DataLayout, just check for an offsetof expression of the
    480         // appropriate struct type.
    481         for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    482           if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
    483             Type *CTy;
    484             Constant *FieldNo;
    485             if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) {
    486               GepIndices.push_back(FieldNo);
    487               ElTy =
    488                 STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue());
    489               Ops[i] = SE.getConstant(Ty, 0);
    490               AnyNonZeroIndices = true;
    491               FoundFieldNo = true;
    492               break;
    493             }
    494           }
    495       }
    496       // If no struct field offsets were found, tentatively assume that
    497       // field zero was selected (since the zero offset would obviously
    498       // be folded away).
    499       if (!FoundFieldNo) {
    500         ElTy = STy->getTypeAtIndex(0u);
    501         GepIndices.push_back(
    502           Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
    503       }
    504     }
    505 
    506     if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
    507       ElTy = ATy->getElementType();
    508     else
    509       break;
    510   }
    511 
    512   // If none of the operands were convertible to proper GEP indices, cast
    513   // the base to i8* and do an ugly getelementptr with that. It's still
    514   // better than ptrtoint+arithmetic+inttoptr at least.
    515   if (!AnyNonZeroIndices) {
    516     // Cast the base to i8*.
    517     V = InsertNoopCastOfTo(V,
    518        Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
    519 
    520     assert(!isa<Instruction>(V) ||
    521            SE.DT->dominates(cast<Instruction>(V), Builder.GetInsertPoint()));
    522 
    523     // Expand the operands for a plain byte offset.
    524     Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
    525 
    526     // Fold a GEP with constant operands.
    527     if (Constant *CLHS = dyn_cast<Constant>(V))
    528       if (Constant *CRHS = dyn_cast<Constant>(Idx))
    529         return ConstantExpr::getGetElementPtr(CLHS, CRHS);
    530 
    531     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
    532     unsigned ScanLimit = 6;
    533     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
    534     // Scanning starts from the last instruction before the insertion point.
    535     BasicBlock::iterator IP = Builder.GetInsertPoint();
    536     if (IP != BlockBegin) {
    537       --IP;
    538       for (; ScanLimit; --IP, --ScanLimit) {
    539         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
    540         // generated code.
    541         if (isa<DbgInfoIntrinsic>(IP))
    542           ScanLimit++;
    543         if (IP->getOpcode() == Instruction::GetElementPtr &&
    544             IP->getOperand(0) == V && IP->getOperand(1) == Idx)
    545           return IP;
    546         if (IP == BlockBegin) break;
    547       }
    548     }
    549 
    550     // Save the original insertion point so we can restore it when we're done.
    551     BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
    552     BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
    553 
    554     // Move the insertion point out of as many loops as we can.
    555     while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
    556       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
    557       BasicBlock *Preheader = L->getLoopPreheader();
    558       if (!Preheader) break;
    559 
    560       // Ok, move up a level.
    561       Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
    562     }
    563 
    564     // Emit a GEP.
    565     Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
    566     rememberInstruction(GEP);
    567 
    568     // Restore the original insert point.
    569     if (SaveInsertBB)
    570       restoreInsertPoint(SaveInsertBB, SaveInsertPt);
    571 
    572     return GEP;
    573   }
    574 
    575   // Save the original insertion point so we can restore it when we're done.
    576   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
    577   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
    578 
    579   // Move the insertion point out of as many loops as we can.
    580   while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
    581     if (!L->isLoopInvariant(V)) break;
    582 
    583     bool AnyIndexNotLoopInvariant = false;
    584     for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
    585          E = GepIndices.end(); I != E; ++I)
    586       if (!L->isLoopInvariant(*I)) {
    587         AnyIndexNotLoopInvariant = true;
    588         break;
    589       }
    590     if (AnyIndexNotLoopInvariant)
    591       break;
    592 
    593     BasicBlock *Preheader = L->getLoopPreheader();
    594     if (!Preheader) break;
    595 
    596     // Ok, move up a level.
    597     Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
    598   }
    599 
    600   // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
    601   // because ScalarEvolution may have changed the address arithmetic to
    602   // compute a value which is beyond the end of the allocated object.
    603   Value *Casted = V;
    604   if (V->getType() != PTy)
    605     Casted = InsertNoopCastOfTo(Casted, PTy);
    606   Value *GEP = Builder.CreateGEP(Casted,
    607                                  GepIndices,
    608                                  "scevgep");
    609   Ops.push_back(SE.getUnknown(GEP));
    610   rememberInstruction(GEP);
    611 
    612   // Restore the original insert point.
    613   if (SaveInsertBB)
    614     restoreInsertPoint(SaveInsertBB, SaveInsertPt);
    615 
    616   return expand(SE.getAddExpr(Ops));
    617 }
    618 
    619 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
    620 /// SCEV expansion. If they are nested, this is the most nested. If they are
    621 /// neighboring, pick the later.
    622 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
    623                                         DominatorTree &DT) {
    624   if (!A) return B;
    625   if (!B) return A;
    626   if (A->contains(B)) return B;
    627   if (B->contains(A)) return A;
    628   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
    629   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
    630   return A; // Arbitrarily break the tie.
    631 }
    632 
    633 /// getRelevantLoop - Get the most relevant loop associated with the given
    634 /// expression, according to PickMostRelevantLoop.
    635 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
    636   // Test whether we've already computed the most relevant loop for this SCEV.
    637   std::pair<DenseMap<const SCEV *, const Loop *>::iterator, bool> Pair =
    638     RelevantLoops.insert(std::make_pair(S, static_cast<const Loop *>(0)));
    639   if (!Pair.second)
    640     return Pair.first->second;
    641 
    642   if (isa<SCEVConstant>(S))
    643     // A constant has no relevant loops.
    644     return 0;
    645   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
    646     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
    647       return Pair.first->second = SE.LI->getLoopFor(I->getParent());
    648     // A non-instruction has no relevant loops.
    649     return 0;
    650   }
    651   if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
    652     const Loop *L = 0;
    653     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
    654       L = AR->getLoop();
    655     for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
    656          I != E; ++I)
    657       L = PickMostRelevantLoop(L, getRelevantLoop(*I), *SE.DT);
    658     return RelevantLoops[N] = L;
    659   }
    660   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
    661     const Loop *Result = getRelevantLoop(C->getOperand());
    662     return RelevantLoops[C] = Result;
    663   }
    664   if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
    665     const Loop *Result =
    666       PickMostRelevantLoop(getRelevantLoop(D->getLHS()),
    667                            getRelevantLoop(D->getRHS()),
    668                            *SE.DT);
    669     return RelevantLoops[D] = Result;
    670   }
    671   llvm_unreachable("Unexpected SCEV type!");
    672 }
    673 
    674 namespace {
    675 
    676 /// LoopCompare - Compare loops by PickMostRelevantLoop.
    677 class LoopCompare {
    678   DominatorTree &DT;
    679 public:
    680   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
    681 
    682   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
    683                   std::pair<const Loop *, const SCEV *> RHS) const {
    684     // Keep pointer operands sorted at the end.
    685     if (LHS.second->getType()->isPointerTy() !=
    686         RHS.second->getType()->isPointerTy())
    687       return LHS.second->getType()->isPointerTy();
    688 
    689     // Compare loops with PickMostRelevantLoop.
    690     if (LHS.first != RHS.first)
    691       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
    692 
    693     // If one operand is a non-constant negative and the other is not,
    694     // put the non-constant negative on the right so that a sub can
    695     // be used instead of a negate and add.
    696     if (LHS.second->isNonConstantNegative()) {
    697       if (!RHS.second->isNonConstantNegative())
    698         return false;
    699     } else if (RHS.second->isNonConstantNegative())
    700       return true;
    701 
    702     // Otherwise they are equivalent according to this comparison.
    703     return false;
    704   }
    705 };
    706 
    707 }
    708 
    709 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
    710   Type *Ty = SE.getEffectiveSCEVType(S->getType());
    711 
    712   // Collect all the add operands in a loop, along with their associated loops.
    713   // Iterate in reverse so that constants are emitted last, all else equal, and
    714   // so that pointer operands are inserted first, which the code below relies on
    715   // to form more involved GEPs.
    716   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
    717   for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
    718        E(S->op_begin()); I != E; ++I)
    719     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
    720 
    721   // Sort by loop. Use a stable sort so that constants follow non-constants and
    722   // pointer operands precede non-pointer operands.
    723   std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
    724 
    725   // Emit instructions to add all the operands. Hoist as much as possible
    726   // out of loops, and form meaningful getelementptrs where possible.
    727   Value *Sum = 0;
    728   for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
    729        I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
    730     const Loop *CurLoop = I->first;
    731     const SCEV *Op = I->second;
    732     if (!Sum) {
    733       // This is the first operand. Just expand it.
    734       Sum = expand(Op);
    735       ++I;
    736     } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
    737       // The running sum expression is a pointer. Try to form a getelementptr
    738       // at this level with that as the base.
    739       SmallVector<const SCEV *, 4> NewOps;
    740       for (; I != E && I->first == CurLoop; ++I) {
    741         // If the operand is SCEVUnknown and not instructions, peek through
    742         // it, to enable more of it to be folded into the GEP.
    743         const SCEV *X = I->second;
    744         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
    745           if (!isa<Instruction>(U->getValue()))
    746             X = SE.getSCEV(U->getValue());
    747         NewOps.push_back(X);
    748       }
    749       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
    750     } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
    751       // The running sum is an integer, and there's a pointer at this level.
    752       // Try to form a getelementptr. If the running sum is instructions,
    753       // use a SCEVUnknown to avoid re-analyzing them.
    754       SmallVector<const SCEV *, 4> NewOps;
    755       NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
    756                                                SE.getSCEV(Sum));
    757       for (++I; I != E && I->first == CurLoop; ++I)
    758         NewOps.push_back(I->second);
    759       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
    760     } else if (Op->isNonConstantNegative()) {
    761       // Instead of doing a negate and add, just do a subtract.
    762       Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
    763       Sum = InsertNoopCastOfTo(Sum, Ty);
    764       Sum = InsertBinop(Instruction::Sub, Sum, W);
    765       ++I;
    766     } else {
    767       // A simple add.
    768       Value *W = expandCodeFor(Op, Ty);
    769       Sum = InsertNoopCastOfTo(Sum, Ty);
    770       // Canonicalize a constant to the RHS.
    771       if (isa<Constant>(Sum)) std::swap(Sum, W);
    772       Sum = InsertBinop(Instruction::Add, Sum, W);
    773       ++I;
    774     }
    775   }
    776 
    777   return Sum;
    778 }
    779 
    780 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
    781   Type *Ty = SE.getEffectiveSCEVType(S->getType());
    782 
    783   // Collect all the mul operands in a loop, along with their associated loops.
    784   // Iterate in reverse so that constants are emitted last, all else equal.
    785   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
    786   for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
    787        E(S->op_begin()); I != E; ++I)
    788     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
    789 
    790   // Sort by loop. Use a stable sort so that constants follow non-constants.
    791   std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
    792 
    793   // Emit instructions to mul all the operands. Hoist as much as possible
    794   // out of loops.
    795   Value *Prod = 0;
    796   for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
    797        I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
    798     const SCEV *Op = I->second;
    799     if (!Prod) {
    800       // This is the first operand. Just expand it.
    801       Prod = expand(Op);
    802       ++I;
    803     } else if (Op->isAllOnesValue()) {
    804       // Instead of doing a multiply by negative one, just do a negate.
    805       Prod = InsertNoopCastOfTo(Prod, Ty);
    806       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
    807       ++I;
    808     } else {
    809       // A simple mul.
    810       Value *W = expandCodeFor(Op, Ty);
    811       Prod = InsertNoopCastOfTo(Prod, Ty);
    812       // Canonicalize a constant to the RHS.
    813       if (isa<Constant>(Prod)) std::swap(Prod, W);
    814       Prod = InsertBinop(Instruction::Mul, Prod, W);
    815       ++I;
    816     }
    817   }
    818 
    819   return Prod;
    820 }
    821 
    822 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
    823   Type *Ty = SE.getEffectiveSCEVType(S->getType());
    824 
    825   Value *LHS = expandCodeFor(S->getLHS(), Ty);
    826   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
    827     const APInt &RHS = SC->getValue()->getValue();
    828     if (RHS.isPowerOf2())
    829       return InsertBinop(Instruction::LShr, LHS,
    830                          ConstantInt::get(Ty, RHS.logBase2()));
    831   }
    832 
    833   Value *RHS = expandCodeFor(S->getRHS(), Ty);
    834   return InsertBinop(Instruction::UDiv, LHS, RHS);
    835 }
    836 
    837 /// Move parts of Base into Rest to leave Base with the minimal
    838 /// expression that provides a pointer operand suitable for a
    839 /// GEP expansion.
    840 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
    841                               ScalarEvolution &SE) {
    842   while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
    843     Base = A->getStart();
    844     Rest = SE.getAddExpr(Rest,
    845                          SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
    846                                           A->getStepRecurrence(SE),
    847                                           A->getLoop(),
    848                                           A->getNoWrapFlags(SCEV::FlagNW)));
    849   }
    850   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
    851     Base = A->getOperand(A->getNumOperands()-1);
    852     SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
    853     NewAddOps.back() = Rest;
    854     Rest = SE.getAddExpr(NewAddOps);
    855     ExposePointerBase(Base, Rest, SE);
    856   }
    857 }
    858 
    859 /// Determine if this is a well-behaved chain of instructions leading back to
    860 /// the PHI. If so, it may be reused by expanded expressions.
    861 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
    862                                          const Loop *L) {
    863   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
    864       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
    865     return false;
    866   // If any of the operands don't dominate the insert position, bail.
    867   // Addrec operands are always loop-invariant, so this can only happen
    868   // if there are instructions which haven't been hoisted.
    869   if (L == IVIncInsertLoop) {
    870     for (User::op_iterator OI = IncV->op_begin()+1,
    871            OE = IncV->op_end(); OI != OE; ++OI)
    872       if (Instruction *OInst = dyn_cast<Instruction>(OI))
    873         if (!SE.DT->dominates(OInst, IVIncInsertPos))
    874           return false;
    875   }
    876   // Advance to the next instruction.
    877   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
    878   if (!IncV)
    879     return false;
    880 
    881   if (IncV->mayHaveSideEffects())
    882     return false;
    883 
    884   if (IncV != PN)
    885     return true;
    886 
    887   return isNormalAddRecExprPHI(PN, IncV, L);
    888 }
    889 
    890 /// getIVIncOperand returns an induction variable increment's induction
    891 /// variable operand.
    892 ///
    893 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
    894 /// operands dominate InsertPos.
    895 ///
    896 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
    897 /// simple patterns generated by getAddRecExprPHILiterally and
    898 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
    899 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
    900                                            Instruction *InsertPos,
    901                                            bool allowScale) {
    902   if (IncV == InsertPos)
    903     return NULL;
    904 
    905   switch (IncV->getOpcode()) {
    906   default:
    907     return NULL;
    908   // Check for a simple Add/Sub or GEP of a loop invariant step.
    909   case Instruction::Add:
    910   case Instruction::Sub: {
    911     Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
    912     if (!OInst || SE.DT->dominates(OInst, InsertPos))
    913       return dyn_cast<Instruction>(IncV->getOperand(0));
    914     return NULL;
    915   }
    916   case Instruction::BitCast:
    917     return dyn_cast<Instruction>(IncV->getOperand(0));
    918   case Instruction::GetElementPtr:
    919     for (Instruction::op_iterator I = IncV->op_begin()+1, E = IncV->op_end();
    920          I != E; ++I) {
    921       if (isa<Constant>(*I))
    922         continue;
    923       if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
    924         if (!SE.DT->dominates(OInst, InsertPos))
    925           return NULL;
    926       }
    927       if (allowScale) {
    928         // allow any kind of GEP as long as it can be hoisted.
    929         continue;
    930       }
    931       // This must be a pointer addition of constants (pretty), which is already
    932       // handled, or some number of address-size elements (ugly). Ugly geps
    933       // have 2 operands. i1* is used by the expander to represent an
    934       // address-size element.
    935       if (IncV->getNumOperands() != 2)
    936         return NULL;
    937       unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
    938       if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
    939           && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
    940         return NULL;
    941       break;
    942     }
    943     return dyn_cast<Instruction>(IncV->getOperand(0));
    944   }
    945 }
    946 
    947 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
    948 /// it available to other uses in this loop. Recursively hoist any operands,
    949 /// until we reach a value that dominates InsertPos.
    950 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
    951   if (SE.DT->dominates(IncV, InsertPos))
    952       return true;
    953 
    954   // InsertPos must itself dominate IncV so that IncV's new position satisfies
    955   // its existing users.
    956   if (isa<PHINode>(InsertPos)
    957       || !SE.DT->dominates(InsertPos->getParent(), IncV->getParent()))
    958     return false;
    959 
    960   // Check that the chain of IV operands leading back to Phi can be hoisted.
    961   SmallVector<Instruction*, 4> IVIncs;
    962   for(;;) {
    963     Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
    964     if (!Oper)
    965       return false;
    966     // IncV is safe to hoist.
    967     IVIncs.push_back(IncV);
    968     IncV = Oper;
    969     if (SE.DT->dominates(IncV, InsertPos))
    970       break;
    971   }
    972   for (SmallVectorImpl<Instruction*>::reverse_iterator I = IVIncs.rbegin(),
    973          E = IVIncs.rend(); I != E; ++I) {
    974     (*I)->moveBefore(InsertPos);
    975   }
    976   return true;
    977 }
    978 
    979 /// Determine if this cyclic phi is in a form that would have been generated by
    980 /// LSR. We don't care if the phi was actually expanded in this pass, as long
    981 /// as it is in a low-cost form, for example, no implied multiplication. This
    982 /// should match any patterns generated by getAddRecExprPHILiterally and
    983 /// expandAddtoGEP.
    984 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
    985                                            const Loop *L) {
    986   for(Instruction *IVOper = IncV;
    987       (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
    988                                 /*allowScale=*/false));) {
    989     if (IVOper == PN)
    990       return true;
    991   }
    992   return false;
    993 }
    994 
    995 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
    996 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
    997 /// need to materialize IV increments elsewhere to handle difficult situations.
    998 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
    999                                  Type *ExpandTy, Type *IntTy,
   1000                                  bool useSubtract) {
   1001   Value *IncV;
   1002   // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
   1003   if (ExpandTy->isPointerTy()) {
   1004     PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
   1005     // If the step isn't constant, don't use an implicitly scaled GEP, because
   1006     // that would require a multiply inside the loop.
   1007     if (!isa<ConstantInt>(StepV))
   1008       GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
   1009                                   GEPPtrTy->getAddressSpace());
   1010     const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
   1011     IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
   1012     if (IncV->getType() != PN->getType()) {
   1013       IncV = Builder.CreateBitCast(IncV, PN->getType());
   1014       rememberInstruction(IncV);
   1015     }
   1016   } else {
   1017     IncV = useSubtract ?
   1018       Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
   1019       Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
   1020     rememberInstruction(IncV);
   1021   }
   1022   return IncV;
   1023 }
   1024 
   1025 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
   1026 /// the base addrec, which is the addrec without any non-loop-dominating
   1027 /// values, and return the PHI.
   1028 PHINode *
   1029 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
   1030                                         const Loop *L,
   1031                                         Type *ExpandTy,
   1032                                         Type *IntTy) {
   1033   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
   1034 
   1035   // Reuse a previously-inserted PHI, if present.
   1036   BasicBlock *LatchBlock = L->getLoopLatch();
   1037   if (LatchBlock) {
   1038     for (BasicBlock::iterator I = L->getHeader()->begin();
   1039          PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   1040       if (!SE.isSCEVable(PN->getType()) ||
   1041           (SE.getEffectiveSCEVType(PN->getType()) !=
   1042            SE.getEffectiveSCEVType(Normalized->getType())) ||
   1043           SE.getSCEV(PN) != Normalized)
   1044         continue;
   1045 
   1046       Instruction *IncV =
   1047         cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
   1048 
   1049       if (LSRMode) {
   1050         if (!isExpandedAddRecExprPHI(PN, IncV, L))
   1051           continue;
   1052         if (L == IVIncInsertLoop && !hoistIVInc(IncV, IVIncInsertPos))
   1053           continue;
   1054       }
   1055       else {
   1056         if (!isNormalAddRecExprPHI(PN, IncV, L))
   1057           continue;
   1058         if (L == IVIncInsertLoop)
   1059           do {
   1060             if (SE.DT->dominates(IncV, IVIncInsertPos))
   1061               break;
   1062             // Make sure the increment is where we want it. But don't move it
   1063             // down past a potential existing post-inc user.
   1064             IncV->moveBefore(IVIncInsertPos);
   1065             IVIncInsertPos = IncV;
   1066             IncV = cast<Instruction>(IncV->getOperand(0));
   1067           } while (IncV != PN);
   1068       }
   1069       // Ok, the add recurrence looks usable.
   1070       // Remember this PHI, even in post-inc mode.
   1071       InsertedValues.insert(PN);
   1072       // Remember the increment.
   1073       rememberInstruction(IncV);
   1074       return PN;
   1075     }
   1076   }
   1077 
   1078   // Save the original insertion point so we can restore it when we're done.
   1079   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
   1080   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
   1081 
   1082   // Another AddRec may need to be recursively expanded below. For example, if
   1083   // this AddRec is quadratic, the StepV may itself be an AddRec in this
   1084   // loop. Remove this loop from the PostIncLoops set before expanding such
   1085   // AddRecs. Otherwise, we cannot find a valid position for the step
   1086   // (i.e. StepV can never dominate its loop header).  Ideally, we could do
   1087   // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
   1088   // so it's not worth implementing SmallPtrSet::swap.
   1089   PostIncLoopSet SavedPostIncLoops = PostIncLoops;
   1090   PostIncLoops.clear();
   1091 
   1092   // Expand code for the start value.
   1093   Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
   1094                                 L->getHeader()->begin());
   1095 
   1096   // StartV must be hoisted into L's preheader to dominate the new phi.
   1097   assert(!isa<Instruction>(StartV) ||
   1098          SE.DT->properlyDominates(cast<Instruction>(StartV)->getParent(),
   1099                                   L->getHeader()));
   1100 
   1101   // Expand code for the step value. Do this before creating the PHI so that PHI
   1102   // reuse code doesn't see an incomplete PHI.
   1103   const SCEV *Step = Normalized->getStepRecurrence(SE);
   1104   // If the stride is negative, insert a sub instead of an add for the increment
   1105   // (unless it's a constant, because subtracts of constants are canonicalized
   1106   // to adds).
   1107   bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
   1108   if (useSubtract)
   1109     Step = SE.getNegativeSCEV(Step);
   1110   // Expand the step somewhere that dominates the loop header.
   1111   Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
   1112 
   1113   // Create the PHI.
   1114   BasicBlock *Header = L->getHeader();
   1115   Builder.SetInsertPoint(Header, Header->begin());
   1116   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
   1117   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
   1118                                   Twine(IVName) + ".iv");
   1119   rememberInstruction(PN);
   1120 
   1121   // Create the step instructions and populate the PHI.
   1122   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
   1123     BasicBlock *Pred = *HPI;
   1124 
   1125     // Add a start value.
   1126     if (!L->contains(Pred)) {
   1127       PN->addIncoming(StartV, Pred);
   1128       continue;
   1129     }
   1130 
   1131     // Create a step value and add it to the PHI.
   1132     // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
   1133     // instructions at IVIncInsertPos.
   1134     Instruction *InsertPos = L == IVIncInsertLoop ?
   1135       IVIncInsertPos : Pred->getTerminator();
   1136     Builder.SetInsertPoint(InsertPos);
   1137     Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
   1138     if (isa<OverflowingBinaryOperator>(IncV)) {
   1139       if (Normalized->getNoWrapFlags(SCEV::FlagNUW))
   1140         cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
   1141       if (Normalized->getNoWrapFlags(SCEV::FlagNSW))
   1142         cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
   1143     }
   1144     PN->addIncoming(IncV, Pred);
   1145   }
   1146 
   1147   // Restore the original insert point.
   1148   if (SaveInsertBB)
   1149     restoreInsertPoint(SaveInsertBB, SaveInsertPt);
   1150 
   1151   // After expanding subexpressions, restore the PostIncLoops set so the caller
   1152   // can ensure that IVIncrement dominates the current uses.
   1153   PostIncLoops = SavedPostIncLoops;
   1154 
   1155   // Remember this PHI, even in post-inc mode.
   1156   InsertedValues.insert(PN);
   1157 
   1158   return PN;
   1159 }
   1160 
   1161 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
   1162   Type *STy = S->getType();
   1163   Type *IntTy = SE.getEffectiveSCEVType(STy);
   1164   const Loop *L = S->getLoop();
   1165 
   1166   // Determine a normalized form of this expression, which is the expression
   1167   // before any post-inc adjustment is made.
   1168   const SCEVAddRecExpr *Normalized = S;
   1169   if (PostIncLoops.count(L)) {
   1170     PostIncLoopSet Loops;
   1171     Loops.insert(L);
   1172     Normalized =
   1173       cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, 0, 0,
   1174                                                   Loops, SE, *SE.DT));
   1175   }
   1176 
   1177   // Strip off any non-loop-dominating component from the addrec start.
   1178   const SCEV *Start = Normalized->getStart();
   1179   const SCEV *PostLoopOffset = 0;
   1180   if (!SE.properlyDominates(Start, L->getHeader())) {
   1181     PostLoopOffset = Start;
   1182     Start = SE.getConstant(Normalized->getType(), 0);
   1183     Normalized = cast<SCEVAddRecExpr>(
   1184       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
   1185                        Normalized->getLoop(),
   1186                        Normalized->getNoWrapFlags(SCEV::FlagNW)));
   1187   }
   1188 
   1189   // Strip off any non-loop-dominating component from the addrec step.
   1190   const SCEV *Step = Normalized->getStepRecurrence(SE);
   1191   const SCEV *PostLoopScale = 0;
   1192   if (!SE.dominates(Step, L->getHeader())) {
   1193     PostLoopScale = Step;
   1194     Step = SE.getConstant(Normalized->getType(), 1);
   1195     Normalized =
   1196       cast<SCEVAddRecExpr>(SE.getAddRecExpr(
   1197                              Start, Step, Normalized->getLoop(),
   1198                              Normalized->getNoWrapFlags(SCEV::FlagNW)));
   1199   }
   1200 
   1201   // Expand the core addrec. If we need post-loop scaling, force it to
   1202   // expand to an integer type to avoid the need for additional casting.
   1203   Type *ExpandTy = PostLoopScale ? IntTy : STy;
   1204   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy);
   1205 
   1206   // Accommodate post-inc mode, if necessary.
   1207   Value *Result;
   1208   if (!PostIncLoops.count(L))
   1209     Result = PN;
   1210   else {
   1211     // In PostInc mode, use the post-incremented value.
   1212     BasicBlock *LatchBlock = L->getLoopLatch();
   1213     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
   1214     Result = PN->getIncomingValueForBlock(LatchBlock);
   1215 
   1216     // For an expansion to use the postinc form, the client must call
   1217     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
   1218     // or dominated by IVIncInsertPos.
   1219     if (isa<Instruction>(Result)
   1220         && !SE.DT->dominates(cast<Instruction>(Result),
   1221                              Builder.GetInsertPoint())) {
   1222       // The induction variable's postinc expansion does not dominate this use.
   1223       // IVUsers tries to prevent this case, so it is rare. However, it can
   1224       // happen when an IVUser outside the loop is not dominated by the latch
   1225       // block. Adjusting IVIncInsertPos before expansion begins cannot handle
   1226       // all cases. Consider a phi outide whose operand is replaced during
   1227       // expansion with the value of the postinc user. Without fundamentally
   1228       // changing the way postinc users are tracked, the only remedy is
   1229       // inserting an extra IV increment. StepV might fold into PostLoopOffset,
   1230       // but hopefully expandCodeFor handles that.
   1231       bool useSubtract =
   1232         !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
   1233       if (useSubtract)
   1234         Step = SE.getNegativeSCEV(Step);
   1235       // Expand the step somewhere that dominates the loop header.
   1236       BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
   1237       BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
   1238       Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
   1239       // Restore the insertion point to the place where the caller has
   1240       // determined dominates all uses.
   1241       restoreInsertPoint(SaveInsertBB, SaveInsertPt);
   1242       Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
   1243     }
   1244   }
   1245 
   1246   // Re-apply any non-loop-dominating scale.
   1247   if (PostLoopScale) {
   1248     Result = InsertNoopCastOfTo(Result, IntTy);
   1249     Result = Builder.CreateMul(Result,
   1250                                expandCodeFor(PostLoopScale, IntTy));
   1251     rememberInstruction(Result);
   1252   }
   1253 
   1254   // Re-apply any non-loop-dominating offset.
   1255   if (PostLoopOffset) {
   1256     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
   1257       const SCEV *const OffsetArray[1] = { PostLoopOffset };
   1258       Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
   1259     } else {
   1260       Result = InsertNoopCastOfTo(Result, IntTy);
   1261       Result = Builder.CreateAdd(Result,
   1262                                  expandCodeFor(PostLoopOffset, IntTy));
   1263       rememberInstruction(Result);
   1264     }
   1265   }
   1266 
   1267   return Result;
   1268 }
   1269 
   1270 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
   1271   if (!CanonicalMode) return expandAddRecExprLiterally(S);
   1272 
   1273   Type *Ty = SE.getEffectiveSCEVType(S->getType());
   1274   const Loop *L = S->getLoop();
   1275 
   1276   // First check for an existing canonical IV in a suitable type.
   1277   PHINode *CanonicalIV = 0;
   1278   if (PHINode *PN = L->getCanonicalInductionVariable())
   1279     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
   1280       CanonicalIV = PN;
   1281 
   1282   // Rewrite an AddRec in terms of the canonical induction variable, if
   1283   // its type is more narrow.
   1284   if (CanonicalIV &&
   1285       SE.getTypeSizeInBits(CanonicalIV->getType()) >
   1286       SE.getTypeSizeInBits(Ty)) {
   1287     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
   1288     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
   1289       NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
   1290     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
   1291                                        S->getNoWrapFlags(SCEV::FlagNW)));
   1292     BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
   1293     BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
   1294     BasicBlock::iterator NewInsertPt =
   1295       llvm::next(BasicBlock::iterator(cast<Instruction>(V)));
   1296     while (isa<PHINode>(NewInsertPt) || isa<DbgInfoIntrinsic>(NewInsertPt) ||
   1297            isa<LandingPadInst>(NewInsertPt))
   1298       ++NewInsertPt;
   1299     V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
   1300                       NewInsertPt);
   1301     restoreInsertPoint(SaveInsertBB, SaveInsertPt);
   1302     return V;
   1303   }
   1304 
   1305   // {X,+,F} --> X + {0,+,F}
   1306   if (!S->getStart()->isZero()) {
   1307     SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
   1308     NewOps[0] = SE.getConstant(Ty, 0);
   1309     const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
   1310                                         S->getNoWrapFlags(SCEV::FlagNW));
   1311 
   1312     // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
   1313     // comments on expandAddToGEP for details.
   1314     const SCEV *Base = S->getStart();
   1315     const SCEV *RestArray[1] = { Rest };
   1316     // Dig into the expression to find the pointer base for a GEP.
   1317     ExposePointerBase(Base, RestArray[0], SE);
   1318     // If we found a pointer, expand the AddRec with a GEP.
   1319     if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
   1320       // Make sure the Base isn't something exotic, such as a multiplied
   1321       // or divided pointer value. In those cases, the result type isn't
   1322       // actually a pointer type.
   1323       if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
   1324         Value *StartV = expand(Base);
   1325         assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
   1326         return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
   1327       }
   1328     }
   1329 
   1330     // Just do a normal add. Pre-expand the operands to suppress folding.
   1331     return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
   1332                                 SE.getUnknown(expand(Rest))));
   1333   }
   1334 
   1335   // If we don't yet have a canonical IV, create one.
   1336   if (!CanonicalIV) {
   1337     // Create and insert the PHI node for the induction variable in the
   1338     // specified loop.
   1339     BasicBlock *Header = L->getHeader();
   1340     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
   1341     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
   1342                                   Header->begin());
   1343     rememberInstruction(CanonicalIV);
   1344 
   1345     Constant *One = ConstantInt::get(Ty, 1);
   1346     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
   1347       BasicBlock *HP = *HPI;
   1348       if (L->contains(HP)) {
   1349         // Insert a unit add instruction right before the terminator
   1350         // corresponding to the back-edge.
   1351         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
   1352                                                      "indvar.next",
   1353                                                      HP->getTerminator());
   1354         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
   1355         rememberInstruction(Add);
   1356         CanonicalIV->addIncoming(Add, HP);
   1357       } else {
   1358         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
   1359       }
   1360     }
   1361   }
   1362 
   1363   // {0,+,1} --> Insert a canonical induction variable into the loop!
   1364   if (S->isAffine() && S->getOperand(1)->isOne()) {
   1365     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
   1366            "IVs with types different from the canonical IV should "
   1367            "already have been handled!");
   1368     return CanonicalIV;
   1369   }
   1370 
   1371   // {0,+,F} --> {0,+,1} * F
   1372 
   1373   // If this is a simple linear addrec, emit it now as a special case.
   1374   if (S->isAffine())    // {0,+,F} --> i*F
   1375     return
   1376       expand(SE.getTruncateOrNoop(
   1377         SE.getMulExpr(SE.getUnknown(CanonicalIV),
   1378                       SE.getNoopOrAnyExtend(S->getOperand(1),
   1379                                             CanonicalIV->getType())),
   1380         Ty));
   1381 
   1382   // If this is a chain of recurrences, turn it into a closed form, using the
   1383   // folders, then expandCodeFor the closed form.  This allows the folders to
   1384   // simplify the expression without having to build a bunch of special code
   1385   // into this folder.
   1386   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
   1387 
   1388   // Promote S up to the canonical IV type, if the cast is foldable.
   1389   const SCEV *NewS = S;
   1390   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
   1391   if (isa<SCEVAddRecExpr>(Ext))
   1392     NewS = Ext;
   1393 
   1394   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
   1395   //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
   1396 
   1397   // Truncate the result down to the original type, if needed.
   1398   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
   1399   return expand(T);
   1400 }
   1401 
   1402 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
   1403   Type *Ty = SE.getEffectiveSCEVType(S->getType());
   1404   Value *V = expandCodeFor(S->getOperand(),
   1405                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
   1406   Value *I = Builder.CreateTrunc(V, Ty);
   1407   rememberInstruction(I);
   1408   return I;
   1409 }
   1410 
   1411 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
   1412   Type *Ty = SE.getEffectiveSCEVType(S->getType());
   1413   Value *V = expandCodeFor(S->getOperand(),
   1414                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
   1415   Value *I = Builder.CreateZExt(V, Ty);
   1416   rememberInstruction(I);
   1417   return I;
   1418 }
   1419 
   1420 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
   1421   Type *Ty = SE.getEffectiveSCEVType(S->getType());
   1422   Value *V = expandCodeFor(S->getOperand(),
   1423                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
   1424   Value *I = Builder.CreateSExt(V, Ty);
   1425   rememberInstruction(I);
   1426   return I;
   1427 }
   1428 
   1429 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
   1430   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
   1431   Type *Ty = LHS->getType();
   1432   for (int i = S->getNumOperands()-2; i >= 0; --i) {
   1433     // In the case of mixed integer and pointer types, do the
   1434     // rest of the comparisons as integer.
   1435     if (S->getOperand(i)->getType() != Ty) {
   1436       Ty = SE.getEffectiveSCEVType(Ty);
   1437       LHS = InsertNoopCastOfTo(LHS, Ty);
   1438     }
   1439     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
   1440     Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
   1441     rememberInstruction(ICmp);
   1442     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
   1443     rememberInstruction(Sel);
   1444     LHS = Sel;
   1445   }
   1446   // In the case of mixed integer and pointer types, cast the
   1447   // final result back to the pointer type.
   1448   if (LHS->getType() != S->getType())
   1449     LHS = InsertNoopCastOfTo(LHS, S->getType());
   1450   return LHS;
   1451 }
   1452 
   1453 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
   1454   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
   1455   Type *Ty = LHS->getType();
   1456   for (int i = S->getNumOperands()-2; i >= 0; --i) {
   1457     // In the case of mixed integer and pointer types, do the
   1458     // rest of the comparisons as integer.
   1459     if (S->getOperand(i)->getType() != Ty) {
   1460       Ty = SE.getEffectiveSCEVType(Ty);
   1461       LHS = InsertNoopCastOfTo(LHS, Ty);
   1462     }
   1463     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
   1464     Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
   1465     rememberInstruction(ICmp);
   1466     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
   1467     rememberInstruction(Sel);
   1468     LHS = Sel;
   1469   }
   1470   // In the case of mixed integer and pointer types, cast the
   1471   // final result back to the pointer type.
   1472   if (LHS->getType() != S->getType())
   1473     LHS = InsertNoopCastOfTo(LHS, S->getType());
   1474   return LHS;
   1475 }
   1476 
   1477 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
   1478                                    Instruction *IP) {
   1479   Builder.SetInsertPoint(IP->getParent(), IP);
   1480   return expandCodeFor(SH, Ty);
   1481 }
   1482 
   1483 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
   1484   // Expand the code for this SCEV.
   1485   Value *V = expand(SH);
   1486   if (Ty) {
   1487     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
   1488            "non-trivial casts should be done with the SCEVs directly!");
   1489     V = InsertNoopCastOfTo(V, Ty);
   1490   }
   1491   return V;
   1492 }
   1493 
   1494 Value *SCEVExpander::expand(const SCEV *S) {
   1495   // Compute an insertion point for this SCEV object. Hoist the instructions
   1496   // as far out in the loop nest as possible.
   1497   Instruction *InsertPt = Builder.GetInsertPoint();
   1498   for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
   1499        L = L->getParentLoop())
   1500     if (SE.isLoopInvariant(S, L)) {
   1501       if (!L) break;
   1502       if (BasicBlock *Preheader = L->getLoopPreheader())
   1503         InsertPt = Preheader->getTerminator();
   1504       else {
   1505         // LSR sets the insertion point for AddRec start/step values to the
   1506         // block start to simplify value reuse, even though it's an invalid
   1507         // position. SCEVExpander must correct for this in all cases.
   1508         InsertPt = L->getHeader()->getFirstInsertionPt();
   1509       }
   1510     } else {
   1511       // If the SCEV is computable at this level, insert it into the header
   1512       // after the PHIs (and after any other instructions that we've inserted
   1513       // there) so that it is guaranteed to dominate any user inside the loop.
   1514       if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
   1515         InsertPt = L->getHeader()->getFirstInsertionPt();
   1516       while (InsertPt != Builder.GetInsertPoint()
   1517              && (isInsertedInstruction(InsertPt)
   1518                  || isa<DbgInfoIntrinsic>(InsertPt))) {
   1519         InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
   1520       }
   1521       break;
   1522     }
   1523 
   1524   // Check to see if we already expanded this here.
   1525   std::map<std::pair<const SCEV *, Instruction *>, TrackingVH<Value> >::iterator
   1526     I = InsertedExpressions.find(std::make_pair(S, InsertPt));
   1527   if (I != InsertedExpressions.end())
   1528     return I->second;
   1529 
   1530   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
   1531   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
   1532   Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
   1533 
   1534   // Expand the expression into instructions.
   1535   Value *V = visit(S);
   1536 
   1537   // Remember the expanded value for this SCEV at this location.
   1538   //
   1539   // This is independent of PostIncLoops. The mapped value simply materializes
   1540   // the expression at this insertion point. If the mapped value happened to be
   1541   // a postinc expansion, it could be reused by a non postinc user, but only if
   1542   // its insertion point was already at the head of the loop.
   1543   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
   1544 
   1545   restoreInsertPoint(SaveInsertBB, SaveInsertPt);
   1546   return V;
   1547 }
   1548 
   1549 void SCEVExpander::rememberInstruction(Value *I) {
   1550   if (!PostIncLoops.empty())
   1551     InsertedPostIncValues.insert(I);
   1552   else
   1553     InsertedValues.insert(I);
   1554 }
   1555 
   1556 void SCEVExpander::restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I) {
   1557   Builder.SetInsertPoint(BB, I);
   1558 }
   1559 
   1560 /// getOrInsertCanonicalInductionVariable - This method returns the
   1561 /// canonical induction variable of the specified type for the specified
   1562 /// loop (inserting one if there is none).  A canonical induction variable
   1563 /// starts at zero and steps by one on each iteration.
   1564 PHINode *
   1565 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
   1566                                                     Type *Ty) {
   1567   assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
   1568 
   1569   // Build a SCEV for {0,+,1}<L>.
   1570   // Conservatively use FlagAnyWrap for now.
   1571   const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
   1572                                    SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
   1573 
   1574   // Emit code for it.
   1575   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
   1576   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
   1577   PHINode *V = cast<PHINode>(expandCodeFor(H, 0, L->getHeader()->begin()));
   1578   if (SaveInsertBB)
   1579     restoreInsertPoint(SaveInsertBB, SaveInsertPt);
   1580 
   1581   return V;
   1582 }
   1583 
   1584 /// Sort values by integer width for replaceCongruentIVs.
   1585 static bool width_descending(Value *lhs, Value *rhs) {
   1586   // Put pointers at the back and make sure pointer < pointer = false.
   1587   if (!lhs->getType()->isIntegerTy() || !rhs->getType()->isIntegerTy())
   1588     return rhs->getType()->isIntegerTy() && !lhs->getType()->isIntegerTy();
   1589   return rhs->getType()->getPrimitiveSizeInBits()
   1590     < lhs->getType()->getPrimitiveSizeInBits();
   1591 }
   1592 
   1593 /// replaceCongruentIVs - Check for congruent phis in this loop header and
   1594 /// replace them with their most canonical representative. Return the number of
   1595 /// phis eliminated.
   1596 ///
   1597 /// This does not depend on any SCEVExpander state but should be used in
   1598 /// the same context that SCEVExpander is used.
   1599 unsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
   1600                                            SmallVectorImpl<WeakVH> &DeadInsts,
   1601                                            const TargetTransformInfo *TTI) {
   1602   // Find integer phis in order of increasing width.
   1603   SmallVector<PHINode*, 8> Phis;
   1604   for (BasicBlock::iterator I = L->getHeader()->begin();
   1605        PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
   1606     Phis.push_back(Phi);
   1607   }
   1608   if (TTI)
   1609     std::sort(Phis.begin(), Phis.end(), width_descending);
   1610 
   1611   unsigned NumElim = 0;
   1612   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
   1613   // Process phis from wide to narrow. Mapping wide phis to the their truncation
   1614   // so narrow phis can reuse them.
   1615   for (SmallVectorImpl<PHINode*>::const_iterator PIter = Phis.begin(),
   1616          PEnd = Phis.end(); PIter != PEnd; ++PIter) {
   1617     PHINode *Phi = *PIter;
   1618 
   1619     // Fold constant phis. They may be congruent to other constant phis and
   1620     // would confuse the logic below that expects proper IVs.
   1621     if (Value *V = Phi->hasConstantValue()) {
   1622       Phi->replaceAllUsesWith(V);
   1623       DeadInsts.push_back(Phi);
   1624       ++NumElim;
   1625       DEBUG_WITH_TYPE(DebugType, dbgs()
   1626                       << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
   1627       continue;
   1628     }
   1629 
   1630     if (!SE.isSCEVable(Phi->getType()))
   1631       continue;
   1632 
   1633     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
   1634     if (!OrigPhiRef) {
   1635       OrigPhiRef = Phi;
   1636       if (Phi->getType()->isIntegerTy() && TTI
   1637           && TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
   1638         // This phi can be freely truncated to the narrowest phi type. Map the
   1639         // truncated expression to it so it will be reused for narrow types.
   1640         const SCEV *TruncExpr =
   1641           SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
   1642         ExprToIVMap[TruncExpr] = Phi;
   1643       }
   1644       continue;
   1645     }
   1646 
   1647     // Replacing a pointer phi with an integer phi or vice-versa doesn't make
   1648     // sense.
   1649     if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
   1650       continue;
   1651 
   1652     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
   1653       Instruction *OrigInc =
   1654         cast<Instruction>(OrigPhiRef->getIncomingValueForBlock(LatchBlock));
   1655       Instruction *IsomorphicInc =
   1656         cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
   1657 
   1658       // If this phi has the same width but is more canonical, replace the
   1659       // original with it. As part of the "more canonical" determination,
   1660       // respect a prior decision to use an IV chain.
   1661       if (OrigPhiRef->getType() == Phi->getType()
   1662           && !(ChainedPhis.count(Phi)
   1663                || isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L))
   1664           && (ChainedPhis.count(Phi)
   1665               || isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
   1666         std::swap(OrigPhiRef, Phi);
   1667         std::swap(OrigInc, IsomorphicInc);
   1668       }
   1669       // Replacing the congruent phi is sufficient because acyclic redundancy
   1670       // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
   1671       // that a phi is congruent, it's often the head of an IV user cycle that
   1672       // is isomorphic with the original phi. It's worth eagerly cleaning up the
   1673       // common case of a single IV increment so that DeleteDeadPHIs can remove
   1674       // cycles that had postinc uses.
   1675       const SCEV *TruncExpr = SE.getTruncateOrNoop(SE.getSCEV(OrigInc),
   1676                                                    IsomorphicInc->getType());
   1677       if (OrigInc != IsomorphicInc
   1678           && TruncExpr == SE.getSCEV(IsomorphicInc)
   1679           && ((isa<PHINode>(OrigInc) && isa<PHINode>(IsomorphicInc))
   1680               || hoistIVInc(OrigInc, IsomorphicInc))) {
   1681         DEBUG_WITH_TYPE(DebugType, dbgs()
   1682                         << "INDVARS: Eliminated congruent iv.inc: "
   1683                         << *IsomorphicInc << '\n');
   1684         Value *NewInc = OrigInc;
   1685         if (OrigInc->getType() != IsomorphicInc->getType()) {
   1686           Instruction *IP = isa<PHINode>(OrigInc)
   1687             ? (Instruction*)L->getHeader()->getFirstInsertionPt()
   1688             : OrigInc->getNextNode();
   1689           IRBuilder<> Builder(IP);
   1690           Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
   1691           NewInc = Builder.
   1692             CreateTruncOrBitCast(OrigInc, IsomorphicInc->getType(), IVName);
   1693         }
   1694         IsomorphicInc->replaceAllUsesWith(NewInc);
   1695         DeadInsts.push_back(IsomorphicInc);
   1696       }
   1697     }
   1698     DEBUG_WITH_TYPE(DebugType, dbgs()
   1699                     << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
   1700     ++NumElim;
   1701     Value *NewIV = OrigPhiRef;
   1702     if (OrigPhiRef->getType() != Phi->getType()) {
   1703       IRBuilder<> Builder(L->getHeader()->getFirstInsertionPt());
   1704       Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
   1705       NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
   1706     }
   1707     Phi->replaceAllUsesWith(NewIV);
   1708     DeadInsts.push_back(Phi);
   1709   }
   1710   return NumElim;
   1711 }
   1712 
   1713 namespace {
   1714 // Search for a SCEV subexpression that is not safe to expand.  Any expression
   1715 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
   1716 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
   1717 // instruction, but the important thing is that we prove the denominator is
   1718 // nonzero before expansion.
   1719 //
   1720 // IVUsers already checks that IV-derived expressions are safe. So this check is
   1721 // only needed when the expression includes some subexpression that is not IV
   1722 // derived.
   1723 //
   1724 // Currently, we only allow division by a nonzero constant here. If this is
   1725 // inadequate, we could easily allow division by SCEVUnknown by using
   1726 // ValueTracking to check isKnownNonZero().
   1727 struct SCEVFindUnsafe {
   1728   bool IsUnsafe;
   1729 
   1730   SCEVFindUnsafe(): IsUnsafe(false) {}
   1731 
   1732   bool follow(const SCEV *S) {
   1733     const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S);
   1734     if (!D)
   1735       return true;
   1736     const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
   1737     if (SC && !SC->getValue()->isZero())
   1738       return true;
   1739     IsUnsafe = true;
   1740     return false;
   1741   }
   1742   bool isDone() const { return IsUnsafe; }
   1743 };
   1744 }
   1745 
   1746 namespace llvm {
   1747 bool isSafeToExpand(const SCEV *S) {
   1748   SCEVFindUnsafe Search;
   1749   visitAll(S, Search);
   1750   return !Search.IsUnsafe;
   1751 }
   1752 }
   1753