1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution expander, 11 // which is used to generate the code corresponding to a given scalar evolution 12 // expression. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/ScalarEvolutionExpander.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/Analysis/LoopInfo.h" 19 #include "llvm/Analysis/TargetTransformInfo.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/IR/LLVMContext.h" 23 #include "llvm/Support/Debug.h" 24 25 using namespace llvm; 26 27 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP, 28 /// reusing an existing cast if a suitable one exists, moving an existing 29 /// cast if a suitable one exists but isn't in the right place, or 30 /// creating a new one. 31 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty, 32 Instruction::CastOps Op, 33 BasicBlock::iterator IP) { 34 // This function must be called with the builder having a valid insertion 35 // point. It doesn't need to be the actual IP where the uses of the returned 36 // cast will be added, but it must dominate such IP. 37 // We use this precondition to produce a cast that will dominate all its 38 // uses. In particular, this is crucial for the case where the builder's 39 // insertion point *is* the point where we were asked to put the cast. 40 // Since we don't know the builder's insertion point is actually 41 // where the uses will be added (only that it dominates it), we are 42 // not allowed to move it. 43 BasicBlock::iterator BIP = Builder.GetInsertPoint(); 44 45 Instruction *Ret = NULL; 46 47 // Check to see if there is already a cast! 48 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); 49 UI != E; ++UI) { 50 User *U = *UI; 51 if (U->getType() == Ty) 52 if (CastInst *CI = dyn_cast<CastInst>(U)) 53 if (CI->getOpcode() == Op) { 54 // If the cast isn't where we want it, create a new cast at IP. 55 // Likewise, do not reuse a cast at BIP because it must dominate 56 // instructions that might be inserted before BIP. 57 if (BasicBlock::iterator(CI) != IP || BIP == IP) { 58 // Create a new cast, and leave the old cast in place in case 59 // it is being used as an insert point. Clear its operand 60 // so that it doesn't hold anything live. 61 Ret = CastInst::Create(Op, V, Ty, "", IP); 62 Ret->takeName(CI); 63 CI->replaceAllUsesWith(Ret); 64 CI->setOperand(0, UndefValue::get(V->getType())); 65 break; 66 } 67 Ret = CI; 68 break; 69 } 70 } 71 72 // Create a new cast. 73 if (!Ret) 74 Ret = CastInst::Create(Op, V, Ty, V->getName(), IP); 75 76 // We assert at the end of the function since IP might point to an 77 // instruction with different dominance properties than a cast 78 // (an invoke for example) and not dominate BIP (but the cast does). 79 assert(SE.DT->dominates(Ret, BIP)); 80 81 rememberInstruction(Ret); 82 return Ret; 83 } 84 85 /// InsertNoopCastOfTo - Insert a cast of V to the specified type, 86 /// which must be possible with a noop cast, doing what we can to share 87 /// the casts. 88 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) { 89 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false); 90 assert((Op == Instruction::BitCast || 91 Op == Instruction::PtrToInt || 92 Op == Instruction::IntToPtr) && 93 "InsertNoopCastOfTo cannot perform non-noop casts!"); 94 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) && 95 "InsertNoopCastOfTo cannot change sizes!"); 96 97 // Short-circuit unnecessary bitcasts. 98 if (Op == Instruction::BitCast) { 99 if (V->getType() == Ty) 100 return V; 101 if (CastInst *CI = dyn_cast<CastInst>(V)) { 102 if (CI->getOperand(0)->getType() == Ty) 103 return CI->getOperand(0); 104 } 105 } 106 // Short-circuit unnecessary inttoptr<->ptrtoint casts. 107 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) && 108 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) { 109 if (CastInst *CI = dyn_cast<CastInst>(V)) 110 if ((CI->getOpcode() == Instruction::PtrToInt || 111 CI->getOpcode() == Instruction::IntToPtr) && 112 SE.getTypeSizeInBits(CI->getType()) == 113 SE.getTypeSizeInBits(CI->getOperand(0)->getType())) 114 return CI->getOperand(0); 115 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 116 if ((CE->getOpcode() == Instruction::PtrToInt || 117 CE->getOpcode() == Instruction::IntToPtr) && 118 SE.getTypeSizeInBits(CE->getType()) == 119 SE.getTypeSizeInBits(CE->getOperand(0)->getType())) 120 return CE->getOperand(0); 121 } 122 123 // Fold a cast of a constant. 124 if (Constant *C = dyn_cast<Constant>(V)) 125 return ConstantExpr::getCast(Op, C, Ty); 126 127 // Cast the argument at the beginning of the entry block, after 128 // any bitcasts of other arguments. 129 if (Argument *A = dyn_cast<Argument>(V)) { 130 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin(); 131 while ((isa<BitCastInst>(IP) && 132 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) && 133 cast<BitCastInst>(IP)->getOperand(0) != A) || 134 isa<DbgInfoIntrinsic>(IP) || 135 isa<LandingPadInst>(IP)) 136 ++IP; 137 return ReuseOrCreateCast(A, Ty, Op, IP); 138 } 139 140 // Cast the instruction immediately after the instruction. 141 Instruction *I = cast<Instruction>(V); 142 BasicBlock::iterator IP = I; ++IP; 143 if (InvokeInst *II = dyn_cast<InvokeInst>(I)) 144 IP = II->getNormalDest()->begin(); 145 while (isa<PHINode>(IP) || isa<LandingPadInst>(IP)) 146 ++IP; 147 return ReuseOrCreateCast(I, Ty, Op, IP); 148 } 149 150 /// InsertBinop - Insert the specified binary operator, doing a small amount 151 /// of work to avoid inserting an obviously redundant operation. 152 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode, 153 Value *LHS, Value *RHS) { 154 // Fold a binop with constant operands. 155 if (Constant *CLHS = dyn_cast<Constant>(LHS)) 156 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 157 return ConstantExpr::get(Opcode, CLHS, CRHS); 158 159 // Do a quick scan to see if we have this binop nearby. If so, reuse it. 160 unsigned ScanLimit = 6; 161 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 162 // Scanning starts from the last instruction before the insertion point. 163 BasicBlock::iterator IP = Builder.GetInsertPoint(); 164 if (IP != BlockBegin) { 165 --IP; 166 for (; ScanLimit; --IP, --ScanLimit) { 167 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 168 // generated code. 169 if (isa<DbgInfoIntrinsic>(IP)) 170 ScanLimit++; 171 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS && 172 IP->getOperand(1) == RHS) 173 return IP; 174 if (IP == BlockBegin) break; 175 } 176 } 177 178 // Save the original insertion point so we can restore it when we're done. 179 BasicBlock *SaveInsertBB = Builder.GetInsertBlock(); 180 BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint(); 181 182 // Move the insertion point out of as many loops as we can. 183 while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) { 184 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break; 185 BasicBlock *Preheader = L->getLoopPreheader(); 186 if (!Preheader) break; 187 188 // Ok, move up a level. 189 Builder.SetInsertPoint(Preheader, Preheader->getTerminator()); 190 } 191 192 // If we haven't found this binop, insert it. 193 Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS)); 194 BO->setDebugLoc(SaveInsertPt->getDebugLoc()); 195 rememberInstruction(BO); 196 197 // Restore the original insert point. 198 if (SaveInsertBB) 199 restoreInsertPoint(SaveInsertBB, SaveInsertPt); 200 201 return BO; 202 } 203 204 /// FactorOutConstant - Test if S is divisible by Factor, using signed 205 /// division. If so, update S with Factor divided out and return true. 206 /// S need not be evenly divisible if a reasonable remainder can be 207 /// computed. 208 /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made 209 /// unnecessary; in its place, just signed-divide Ops[i] by the scale and 210 /// check to see if the divide was folded. 211 static bool FactorOutConstant(const SCEV *&S, 212 const SCEV *&Remainder, 213 const SCEV *Factor, 214 ScalarEvolution &SE, 215 const DataLayout *TD) { 216 // Everything is divisible by one. 217 if (Factor->isOne()) 218 return true; 219 220 // x/x == 1. 221 if (S == Factor) { 222 S = SE.getConstant(S->getType(), 1); 223 return true; 224 } 225 226 // For a Constant, check for a multiple of the given factor. 227 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 228 // 0/x == 0. 229 if (C->isZero()) 230 return true; 231 // Check for divisibility. 232 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) { 233 ConstantInt *CI = 234 ConstantInt::get(SE.getContext(), 235 C->getValue()->getValue().sdiv( 236 FC->getValue()->getValue())); 237 // If the quotient is zero and the remainder is non-zero, reject 238 // the value at this scale. It will be considered for subsequent 239 // smaller scales. 240 if (!CI->isZero()) { 241 const SCEV *Div = SE.getConstant(CI); 242 S = Div; 243 Remainder = 244 SE.getAddExpr(Remainder, 245 SE.getConstant(C->getValue()->getValue().srem( 246 FC->getValue()->getValue()))); 247 return true; 248 } 249 } 250 } 251 252 // In a Mul, check if there is a constant operand which is a multiple 253 // of the given factor. 254 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 255 if (TD) { 256 // With DataLayout, the size is known. Check if there is a constant 257 // operand which is a multiple of the given factor. If so, we can 258 // factor it. 259 const SCEVConstant *FC = cast<SCEVConstant>(Factor); 260 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0))) 261 if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) { 262 SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end()); 263 NewMulOps[0] = 264 SE.getConstant(C->getValue()->getValue().sdiv( 265 FC->getValue()->getValue())); 266 S = SE.getMulExpr(NewMulOps); 267 return true; 268 } 269 } else { 270 // Without DataLayout, check if Factor can be factored out of any of the 271 // Mul's operands. If so, we can just remove it. 272 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 273 const SCEV *SOp = M->getOperand(i); 274 const SCEV *Remainder = SE.getConstant(SOp->getType(), 0); 275 if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) && 276 Remainder->isZero()) { 277 SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end()); 278 NewMulOps[i] = SOp; 279 S = SE.getMulExpr(NewMulOps); 280 return true; 281 } 282 } 283 } 284 } 285 286 // In an AddRec, check if both start and step are divisible. 287 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 288 const SCEV *Step = A->getStepRecurrence(SE); 289 const SCEV *StepRem = SE.getConstant(Step->getType(), 0); 290 if (!FactorOutConstant(Step, StepRem, Factor, SE, TD)) 291 return false; 292 if (!StepRem->isZero()) 293 return false; 294 const SCEV *Start = A->getStart(); 295 if (!FactorOutConstant(Start, Remainder, Factor, SE, TD)) 296 return false; 297 S = SE.getAddRecExpr(Start, Step, A->getLoop(), 298 A->getNoWrapFlags(SCEV::FlagNW)); 299 return true; 300 } 301 302 return false; 303 } 304 305 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs 306 /// is the number of SCEVAddRecExprs present, which are kept at the end of 307 /// the list. 308 /// 309 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops, 310 Type *Ty, 311 ScalarEvolution &SE) { 312 unsigned NumAddRecs = 0; 313 for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i) 314 ++NumAddRecs; 315 // Group Ops into non-addrecs and addrecs. 316 SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs); 317 SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end()); 318 // Let ScalarEvolution sort and simplify the non-addrecs list. 319 const SCEV *Sum = NoAddRecs.empty() ? 320 SE.getConstant(Ty, 0) : 321 SE.getAddExpr(NoAddRecs); 322 // If it returned an add, use the operands. Otherwise it simplified 323 // the sum into a single value, so just use that. 324 Ops.clear(); 325 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum)) 326 Ops.append(Add->op_begin(), Add->op_end()); 327 else if (!Sum->isZero()) 328 Ops.push_back(Sum); 329 // Then append the addrecs. 330 Ops.append(AddRecs.begin(), AddRecs.end()); 331 } 332 333 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values 334 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}. 335 /// This helps expose more opportunities for folding parts of the expressions 336 /// into GEP indices. 337 /// 338 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops, 339 Type *Ty, 340 ScalarEvolution &SE) { 341 // Find the addrecs. 342 SmallVector<const SCEV *, 8> AddRecs; 343 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 344 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) { 345 const SCEV *Start = A->getStart(); 346 if (Start->isZero()) break; 347 const SCEV *Zero = SE.getConstant(Ty, 0); 348 AddRecs.push_back(SE.getAddRecExpr(Zero, 349 A->getStepRecurrence(SE), 350 A->getLoop(), 351 A->getNoWrapFlags(SCEV::FlagNW))); 352 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) { 353 Ops[i] = Zero; 354 Ops.append(Add->op_begin(), Add->op_end()); 355 e += Add->getNumOperands(); 356 } else { 357 Ops[i] = Start; 358 } 359 } 360 if (!AddRecs.empty()) { 361 // Add the addrecs onto the end of the list. 362 Ops.append(AddRecs.begin(), AddRecs.end()); 363 // Resort the operand list, moving any constants to the front. 364 SimplifyAddOperands(Ops, Ty, SE); 365 } 366 } 367 368 /// expandAddToGEP - Expand an addition expression with a pointer type into 369 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps 370 /// BasicAliasAnalysis and other passes analyze the result. See the rules 371 /// for getelementptr vs. inttoptr in 372 /// http://llvm.org/docs/LangRef.html#pointeraliasing 373 /// for details. 374 /// 375 /// Design note: The correctness of using getelementptr here depends on 376 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as 377 /// they may introduce pointer arithmetic which may not be safely converted 378 /// into getelementptr. 379 /// 380 /// Design note: It might seem desirable for this function to be more 381 /// loop-aware. If some of the indices are loop-invariant while others 382 /// aren't, it might seem desirable to emit multiple GEPs, keeping the 383 /// loop-invariant portions of the overall computation outside the loop. 384 /// However, there are a few reasons this is not done here. Hoisting simple 385 /// arithmetic is a low-level optimization that often isn't very 386 /// important until late in the optimization process. In fact, passes 387 /// like InstructionCombining will combine GEPs, even if it means 388 /// pushing loop-invariant computation down into loops, so even if the 389 /// GEPs were split here, the work would quickly be undone. The 390 /// LoopStrengthReduction pass, which is usually run quite late (and 391 /// after the last InstructionCombining pass), takes care of hoisting 392 /// loop-invariant portions of expressions, after considering what 393 /// can be folded using target addressing modes. 394 /// 395 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin, 396 const SCEV *const *op_end, 397 PointerType *PTy, 398 Type *Ty, 399 Value *V) { 400 Type *ElTy = PTy->getElementType(); 401 SmallVector<Value *, 4> GepIndices; 402 SmallVector<const SCEV *, 8> Ops(op_begin, op_end); 403 bool AnyNonZeroIndices = false; 404 405 // Split AddRecs up into parts as either of the parts may be usable 406 // without the other. 407 SplitAddRecs(Ops, Ty, SE); 408 409 // Descend down the pointer's type and attempt to convert the other 410 // operands into GEP indices, at each level. The first index in a GEP 411 // indexes into the array implied by the pointer operand; the rest of 412 // the indices index into the element or field type selected by the 413 // preceding index. 414 for (;;) { 415 // If the scale size is not 0, attempt to factor out a scale for 416 // array indexing. 417 SmallVector<const SCEV *, 8> ScaledOps; 418 if (ElTy->isSized()) { 419 const SCEV *ElSize = SE.getSizeOfExpr(ElTy); 420 if (!ElSize->isZero()) { 421 SmallVector<const SCEV *, 8> NewOps; 422 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 423 const SCEV *Op = Ops[i]; 424 const SCEV *Remainder = SE.getConstant(Ty, 0); 425 if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) { 426 // Op now has ElSize factored out. 427 ScaledOps.push_back(Op); 428 if (!Remainder->isZero()) 429 NewOps.push_back(Remainder); 430 AnyNonZeroIndices = true; 431 } else { 432 // The operand was not divisible, so add it to the list of operands 433 // we'll scan next iteration. 434 NewOps.push_back(Ops[i]); 435 } 436 } 437 // If we made any changes, update Ops. 438 if (!ScaledOps.empty()) { 439 Ops = NewOps; 440 SimplifyAddOperands(Ops, Ty, SE); 441 } 442 } 443 } 444 445 // Record the scaled array index for this level of the type. If 446 // we didn't find any operands that could be factored, tentatively 447 // assume that element zero was selected (since the zero offset 448 // would obviously be folded away). 449 Value *Scaled = ScaledOps.empty() ? 450 Constant::getNullValue(Ty) : 451 expandCodeFor(SE.getAddExpr(ScaledOps), Ty); 452 GepIndices.push_back(Scaled); 453 454 // Collect struct field index operands. 455 while (StructType *STy = dyn_cast<StructType>(ElTy)) { 456 bool FoundFieldNo = false; 457 // An empty struct has no fields. 458 if (STy->getNumElements() == 0) break; 459 if (SE.TD) { 460 // With DataLayout, field offsets are known. See if a constant offset 461 // falls within any of the struct fields. 462 if (Ops.empty()) break; 463 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0])) 464 if (SE.getTypeSizeInBits(C->getType()) <= 64) { 465 const StructLayout &SL = *SE.TD->getStructLayout(STy); 466 uint64_t FullOffset = C->getValue()->getZExtValue(); 467 if (FullOffset < SL.getSizeInBytes()) { 468 unsigned ElIdx = SL.getElementContainingOffset(FullOffset); 469 GepIndices.push_back( 470 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx)); 471 ElTy = STy->getTypeAtIndex(ElIdx); 472 Ops[0] = 473 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx)); 474 AnyNonZeroIndices = true; 475 FoundFieldNo = true; 476 } 477 } 478 } else { 479 // Without DataLayout, just check for an offsetof expression of the 480 // appropriate struct type. 481 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 482 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) { 483 Type *CTy; 484 Constant *FieldNo; 485 if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) { 486 GepIndices.push_back(FieldNo); 487 ElTy = 488 STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue()); 489 Ops[i] = SE.getConstant(Ty, 0); 490 AnyNonZeroIndices = true; 491 FoundFieldNo = true; 492 break; 493 } 494 } 495 } 496 // If no struct field offsets were found, tentatively assume that 497 // field zero was selected (since the zero offset would obviously 498 // be folded away). 499 if (!FoundFieldNo) { 500 ElTy = STy->getTypeAtIndex(0u); 501 GepIndices.push_back( 502 Constant::getNullValue(Type::getInt32Ty(Ty->getContext()))); 503 } 504 } 505 506 if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy)) 507 ElTy = ATy->getElementType(); 508 else 509 break; 510 } 511 512 // If none of the operands were convertible to proper GEP indices, cast 513 // the base to i8* and do an ugly getelementptr with that. It's still 514 // better than ptrtoint+arithmetic+inttoptr at least. 515 if (!AnyNonZeroIndices) { 516 // Cast the base to i8*. 517 V = InsertNoopCastOfTo(V, 518 Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace())); 519 520 assert(!isa<Instruction>(V) || 521 SE.DT->dominates(cast<Instruction>(V), Builder.GetInsertPoint())); 522 523 // Expand the operands for a plain byte offset. 524 Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty); 525 526 // Fold a GEP with constant operands. 527 if (Constant *CLHS = dyn_cast<Constant>(V)) 528 if (Constant *CRHS = dyn_cast<Constant>(Idx)) 529 return ConstantExpr::getGetElementPtr(CLHS, CRHS); 530 531 // Do a quick scan to see if we have this GEP nearby. If so, reuse it. 532 unsigned ScanLimit = 6; 533 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin(); 534 // Scanning starts from the last instruction before the insertion point. 535 BasicBlock::iterator IP = Builder.GetInsertPoint(); 536 if (IP != BlockBegin) { 537 --IP; 538 for (; ScanLimit; --IP, --ScanLimit) { 539 // Don't count dbg.value against the ScanLimit, to avoid perturbing the 540 // generated code. 541 if (isa<DbgInfoIntrinsic>(IP)) 542 ScanLimit++; 543 if (IP->getOpcode() == Instruction::GetElementPtr && 544 IP->getOperand(0) == V && IP->getOperand(1) == Idx) 545 return IP; 546 if (IP == BlockBegin) break; 547 } 548 } 549 550 // Save the original insertion point so we can restore it when we're done. 551 BasicBlock *SaveInsertBB = Builder.GetInsertBlock(); 552 BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint(); 553 554 // Move the insertion point out of as many loops as we can. 555 while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) { 556 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break; 557 BasicBlock *Preheader = L->getLoopPreheader(); 558 if (!Preheader) break; 559 560 // Ok, move up a level. 561 Builder.SetInsertPoint(Preheader, Preheader->getTerminator()); 562 } 563 564 // Emit a GEP. 565 Value *GEP = Builder.CreateGEP(V, Idx, "uglygep"); 566 rememberInstruction(GEP); 567 568 // Restore the original insert point. 569 if (SaveInsertBB) 570 restoreInsertPoint(SaveInsertBB, SaveInsertPt); 571 572 return GEP; 573 } 574 575 // Save the original insertion point so we can restore it when we're done. 576 BasicBlock *SaveInsertBB = Builder.GetInsertBlock(); 577 BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint(); 578 579 // Move the insertion point out of as many loops as we can. 580 while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) { 581 if (!L->isLoopInvariant(V)) break; 582 583 bool AnyIndexNotLoopInvariant = false; 584 for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(), 585 E = GepIndices.end(); I != E; ++I) 586 if (!L->isLoopInvariant(*I)) { 587 AnyIndexNotLoopInvariant = true; 588 break; 589 } 590 if (AnyIndexNotLoopInvariant) 591 break; 592 593 BasicBlock *Preheader = L->getLoopPreheader(); 594 if (!Preheader) break; 595 596 // Ok, move up a level. 597 Builder.SetInsertPoint(Preheader, Preheader->getTerminator()); 598 } 599 600 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds, 601 // because ScalarEvolution may have changed the address arithmetic to 602 // compute a value which is beyond the end of the allocated object. 603 Value *Casted = V; 604 if (V->getType() != PTy) 605 Casted = InsertNoopCastOfTo(Casted, PTy); 606 Value *GEP = Builder.CreateGEP(Casted, 607 GepIndices, 608 "scevgep"); 609 Ops.push_back(SE.getUnknown(GEP)); 610 rememberInstruction(GEP); 611 612 // Restore the original insert point. 613 if (SaveInsertBB) 614 restoreInsertPoint(SaveInsertBB, SaveInsertPt); 615 616 return expand(SE.getAddExpr(Ops)); 617 } 618 619 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for 620 /// SCEV expansion. If they are nested, this is the most nested. If they are 621 /// neighboring, pick the later. 622 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B, 623 DominatorTree &DT) { 624 if (!A) return B; 625 if (!B) return A; 626 if (A->contains(B)) return B; 627 if (B->contains(A)) return A; 628 if (DT.dominates(A->getHeader(), B->getHeader())) return B; 629 if (DT.dominates(B->getHeader(), A->getHeader())) return A; 630 return A; // Arbitrarily break the tie. 631 } 632 633 /// getRelevantLoop - Get the most relevant loop associated with the given 634 /// expression, according to PickMostRelevantLoop. 635 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) { 636 // Test whether we've already computed the most relevant loop for this SCEV. 637 std::pair<DenseMap<const SCEV *, const Loop *>::iterator, bool> Pair = 638 RelevantLoops.insert(std::make_pair(S, static_cast<const Loop *>(0))); 639 if (!Pair.second) 640 return Pair.first->second; 641 642 if (isa<SCEVConstant>(S)) 643 // A constant has no relevant loops. 644 return 0; 645 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 646 if (const Instruction *I = dyn_cast<Instruction>(U->getValue())) 647 return Pair.first->second = SE.LI->getLoopFor(I->getParent()); 648 // A non-instruction has no relevant loops. 649 return 0; 650 } 651 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) { 652 const Loop *L = 0; 653 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 654 L = AR->getLoop(); 655 for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end(); 656 I != E; ++I) 657 L = PickMostRelevantLoop(L, getRelevantLoop(*I), *SE.DT); 658 return RelevantLoops[N] = L; 659 } 660 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) { 661 const Loop *Result = getRelevantLoop(C->getOperand()); 662 return RelevantLoops[C] = Result; 663 } 664 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) { 665 const Loop *Result = 666 PickMostRelevantLoop(getRelevantLoop(D->getLHS()), 667 getRelevantLoop(D->getRHS()), 668 *SE.DT); 669 return RelevantLoops[D] = Result; 670 } 671 llvm_unreachable("Unexpected SCEV type!"); 672 } 673 674 namespace { 675 676 /// LoopCompare - Compare loops by PickMostRelevantLoop. 677 class LoopCompare { 678 DominatorTree &DT; 679 public: 680 explicit LoopCompare(DominatorTree &dt) : DT(dt) {} 681 682 bool operator()(std::pair<const Loop *, const SCEV *> LHS, 683 std::pair<const Loop *, const SCEV *> RHS) const { 684 // Keep pointer operands sorted at the end. 685 if (LHS.second->getType()->isPointerTy() != 686 RHS.second->getType()->isPointerTy()) 687 return LHS.second->getType()->isPointerTy(); 688 689 // Compare loops with PickMostRelevantLoop. 690 if (LHS.first != RHS.first) 691 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first; 692 693 // If one operand is a non-constant negative and the other is not, 694 // put the non-constant negative on the right so that a sub can 695 // be used instead of a negate and add. 696 if (LHS.second->isNonConstantNegative()) { 697 if (!RHS.second->isNonConstantNegative()) 698 return false; 699 } else if (RHS.second->isNonConstantNegative()) 700 return true; 701 702 // Otherwise they are equivalent according to this comparison. 703 return false; 704 } 705 }; 706 707 } 708 709 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) { 710 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 711 712 // Collect all the add operands in a loop, along with their associated loops. 713 // Iterate in reverse so that constants are emitted last, all else equal, and 714 // so that pointer operands are inserted first, which the code below relies on 715 // to form more involved GEPs. 716 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 717 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()), 718 E(S->op_begin()); I != E; ++I) 719 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); 720 721 // Sort by loop. Use a stable sort so that constants follow non-constants and 722 // pointer operands precede non-pointer operands. 723 std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT)); 724 725 // Emit instructions to add all the operands. Hoist as much as possible 726 // out of loops, and form meaningful getelementptrs where possible. 727 Value *Sum = 0; 728 for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator 729 I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) { 730 const Loop *CurLoop = I->first; 731 const SCEV *Op = I->second; 732 if (!Sum) { 733 // This is the first operand. Just expand it. 734 Sum = expand(Op); 735 ++I; 736 } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) { 737 // The running sum expression is a pointer. Try to form a getelementptr 738 // at this level with that as the base. 739 SmallVector<const SCEV *, 4> NewOps; 740 for (; I != E && I->first == CurLoop; ++I) { 741 // If the operand is SCEVUnknown and not instructions, peek through 742 // it, to enable more of it to be folded into the GEP. 743 const SCEV *X = I->second; 744 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X)) 745 if (!isa<Instruction>(U->getValue())) 746 X = SE.getSCEV(U->getValue()); 747 NewOps.push_back(X); 748 } 749 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum); 750 } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) { 751 // The running sum is an integer, and there's a pointer at this level. 752 // Try to form a getelementptr. If the running sum is instructions, 753 // use a SCEVUnknown to avoid re-analyzing them. 754 SmallVector<const SCEV *, 4> NewOps; 755 NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) : 756 SE.getSCEV(Sum)); 757 for (++I; I != E && I->first == CurLoop; ++I) 758 NewOps.push_back(I->second); 759 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op)); 760 } else if (Op->isNonConstantNegative()) { 761 // Instead of doing a negate and add, just do a subtract. 762 Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty); 763 Sum = InsertNoopCastOfTo(Sum, Ty); 764 Sum = InsertBinop(Instruction::Sub, Sum, W); 765 ++I; 766 } else { 767 // A simple add. 768 Value *W = expandCodeFor(Op, Ty); 769 Sum = InsertNoopCastOfTo(Sum, Ty); 770 // Canonicalize a constant to the RHS. 771 if (isa<Constant>(Sum)) std::swap(Sum, W); 772 Sum = InsertBinop(Instruction::Add, Sum, W); 773 ++I; 774 } 775 } 776 777 return Sum; 778 } 779 780 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) { 781 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 782 783 // Collect all the mul operands in a loop, along with their associated loops. 784 // Iterate in reverse so that constants are emitted last, all else equal. 785 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops; 786 for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()), 787 E(S->op_begin()); I != E; ++I) 788 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I)); 789 790 // Sort by loop. Use a stable sort so that constants follow non-constants. 791 std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT)); 792 793 // Emit instructions to mul all the operands. Hoist as much as possible 794 // out of loops. 795 Value *Prod = 0; 796 for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator 797 I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) { 798 const SCEV *Op = I->second; 799 if (!Prod) { 800 // This is the first operand. Just expand it. 801 Prod = expand(Op); 802 ++I; 803 } else if (Op->isAllOnesValue()) { 804 // Instead of doing a multiply by negative one, just do a negate. 805 Prod = InsertNoopCastOfTo(Prod, Ty); 806 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod); 807 ++I; 808 } else { 809 // A simple mul. 810 Value *W = expandCodeFor(Op, Ty); 811 Prod = InsertNoopCastOfTo(Prod, Ty); 812 // Canonicalize a constant to the RHS. 813 if (isa<Constant>(Prod)) std::swap(Prod, W); 814 Prod = InsertBinop(Instruction::Mul, Prod, W); 815 ++I; 816 } 817 } 818 819 return Prod; 820 } 821 822 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) { 823 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 824 825 Value *LHS = expandCodeFor(S->getLHS(), Ty); 826 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) { 827 const APInt &RHS = SC->getValue()->getValue(); 828 if (RHS.isPowerOf2()) 829 return InsertBinop(Instruction::LShr, LHS, 830 ConstantInt::get(Ty, RHS.logBase2())); 831 } 832 833 Value *RHS = expandCodeFor(S->getRHS(), Ty); 834 return InsertBinop(Instruction::UDiv, LHS, RHS); 835 } 836 837 /// Move parts of Base into Rest to leave Base with the minimal 838 /// expression that provides a pointer operand suitable for a 839 /// GEP expansion. 840 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest, 841 ScalarEvolution &SE) { 842 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) { 843 Base = A->getStart(); 844 Rest = SE.getAddExpr(Rest, 845 SE.getAddRecExpr(SE.getConstant(A->getType(), 0), 846 A->getStepRecurrence(SE), 847 A->getLoop(), 848 A->getNoWrapFlags(SCEV::FlagNW))); 849 } 850 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) { 851 Base = A->getOperand(A->getNumOperands()-1); 852 SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end()); 853 NewAddOps.back() = Rest; 854 Rest = SE.getAddExpr(NewAddOps); 855 ExposePointerBase(Base, Rest, SE); 856 } 857 } 858 859 /// Determine if this is a well-behaved chain of instructions leading back to 860 /// the PHI. If so, it may be reused by expanded expressions. 861 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV, 862 const Loop *L) { 863 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) || 864 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV))) 865 return false; 866 // If any of the operands don't dominate the insert position, bail. 867 // Addrec operands are always loop-invariant, so this can only happen 868 // if there are instructions which haven't been hoisted. 869 if (L == IVIncInsertLoop) { 870 for (User::op_iterator OI = IncV->op_begin()+1, 871 OE = IncV->op_end(); OI != OE; ++OI) 872 if (Instruction *OInst = dyn_cast<Instruction>(OI)) 873 if (!SE.DT->dominates(OInst, IVIncInsertPos)) 874 return false; 875 } 876 // Advance to the next instruction. 877 IncV = dyn_cast<Instruction>(IncV->getOperand(0)); 878 if (!IncV) 879 return false; 880 881 if (IncV->mayHaveSideEffects()) 882 return false; 883 884 if (IncV != PN) 885 return true; 886 887 return isNormalAddRecExprPHI(PN, IncV, L); 888 } 889 890 /// getIVIncOperand returns an induction variable increment's induction 891 /// variable operand. 892 /// 893 /// If allowScale is set, any type of GEP is allowed as long as the nonIV 894 /// operands dominate InsertPos. 895 /// 896 /// If allowScale is not set, ensure that a GEP increment conforms to one of the 897 /// simple patterns generated by getAddRecExprPHILiterally and 898 /// expandAddtoGEP. If the pattern isn't recognized, return NULL. 899 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV, 900 Instruction *InsertPos, 901 bool allowScale) { 902 if (IncV == InsertPos) 903 return NULL; 904 905 switch (IncV->getOpcode()) { 906 default: 907 return NULL; 908 // Check for a simple Add/Sub or GEP of a loop invariant step. 909 case Instruction::Add: 910 case Instruction::Sub: { 911 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1)); 912 if (!OInst || SE.DT->dominates(OInst, InsertPos)) 913 return dyn_cast<Instruction>(IncV->getOperand(0)); 914 return NULL; 915 } 916 case Instruction::BitCast: 917 return dyn_cast<Instruction>(IncV->getOperand(0)); 918 case Instruction::GetElementPtr: 919 for (Instruction::op_iterator I = IncV->op_begin()+1, E = IncV->op_end(); 920 I != E; ++I) { 921 if (isa<Constant>(*I)) 922 continue; 923 if (Instruction *OInst = dyn_cast<Instruction>(*I)) { 924 if (!SE.DT->dominates(OInst, InsertPos)) 925 return NULL; 926 } 927 if (allowScale) { 928 // allow any kind of GEP as long as it can be hoisted. 929 continue; 930 } 931 // This must be a pointer addition of constants (pretty), which is already 932 // handled, or some number of address-size elements (ugly). Ugly geps 933 // have 2 operands. i1* is used by the expander to represent an 934 // address-size element. 935 if (IncV->getNumOperands() != 2) 936 return NULL; 937 unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace(); 938 if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS) 939 && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS)) 940 return NULL; 941 break; 942 } 943 return dyn_cast<Instruction>(IncV->getOperand(0)); 944 } 945 } 946 947 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make 948 /// it available to other uses in this loop. Recursively hoist any operands, 949 /// until we reach a value that dominates InsertPos. 950 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) { 951 if (SE.DT->dominates(IncV, InsertPos)) 952 return true; 953 954 // InsertPos must itself dominate IncV so that IncV's new position satisfies 955 // its existing users. 956 if (isa<PHINode>(InsertPos) 957 || !SE.DT->dominates(InsertPos->getParent(), IncV->getParent())) 958 return false; 959 960 // Check that the chain of IV operands leading back to Phi can be hoisted. 961 SmallVector<Instruction*, 4> IVIncs; 962 for(;;) { 963 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true); 964 if (!Oper) 965 return false; 966 // IncV is safe to hoist. 967 IVIncs.push_back(IncV); 968 IncV = Oper; 969 if (SE.DT->dominates(IncV, InsertPos)) 970 break; 971 } 972 for (SmallVectorImpl<Instruction*>::reverse_iterator I = IVIncs.rbegin(), 973 E = IVIncs.rend(); I != E; ++I) { 974 (*I)->moveBefore(InsertPos); 975 } 976 return true; 977 } 978 979 /// Determine if this cyclic phi is in a form that would have been generated by 980 /// LSR. We don't care if the phi was actually expanded in this pass, as long 981 /// as it is in a low-cost form, for example, no implied multiplication. This 982 /// should match any patterns generated by getAddRecExprPHILiterally and 983 /// expandAddtoGEP. 984 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV, 985 const Loop *L) { 986 for(Instruction *IVOper = IncV; 987 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(), 988 /*allowScale=*/false));) { 989 if (IVOper == PN) 990 return true; 991 } 992 return false; 993 } 994 995 /// expandIVInc - Expand an IV increment at Builder's current InsertPos. 996 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may 997 /// need to materialize IV increments elsewhere to handle difficult situations. 998 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L, 999 Type *ExpandTy, Type *IntTy, 1000 bool useSubtract) { 1001 Value *IncV; 1002 // If the PHI is a pointer, use a GEP, otherwise use an add or sub. 1003 if (ExpandTy->isPointerTy()) { 1004 PointerType *GEPPtrTy = cast<PointerType>(ExpandTy); 1005 // If the step isn't constant, don't use an implicitly scaled GEP, because 1006 // that would require a multiply inside the loop. 1007 if (!isa<ConstantInt>(StepV)) 1008 GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()), 1009 GEPPtrTy->getAddressSpace()); 1010 const SCEV *const StepArray[1] = { SE.getSCEV(StepV) }; 1011 IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN); 1012 if (IncV->getType() != PN->getType()) { 1013 IncV = Builder.CreateBitCast(IncV, PN->getType()); 1014 rememberInstruction(IncV); 1015 } 1016 } else { 1017 IncV = useSubtract ? 1018 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") : 1019 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next"); 1020 rememberInstruction(IncV); 1021 } 1022 return IncV; 1023 } 1024 1025 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand 1026 /// the base addrec, which is the addrec without any non-loop-dominating 1027 /// values, and return the PHI. 1028 PHINode * 1029 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized, 1030 const Loop *L, 1031 Type *ExpandTy, 1032 Type *IntTy) { 1033 assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position"); 1034 1035 // Reuse a previously-inserted PHI, if present. 1036 BasicBlock *LatchBlock = L->getLoopLatch(); 1037 if (LatchBlock) { 1038 for (BasicBlock::iterator I = L->getHeader()->begin(); 1039 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1040 if (!SE.isSCEVable(PN->getType()) || 1041 (SE.getEffectiveSCEVType(PN->getType()) != 1042 SE.getEffectiveSCEVType(Normalized->getType())) || 1043 SE.getSCEV(PN) != Normalized) 1044 continue; 1045 1046 Instruction *IncV = 1047 cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)); 1048 1049 if (LSRMode) { 1050 if (!isExpandedAddRecExprPHI(PN, IncV, L)) 1051 continue; 1052 if (L == IVIncInsertLoop && !hoistIVInc(IncV, IVIncInsertPos)) 1053 continue; 1054 } 1055 else { 1056 if (!isNormalAddRecExprPHI(PN, IncV, L)) 1057 continue; 1058 if (L == IVIncInsertLoop) 1059 do { 1060 if (SE.DT->dominates(IncV, IVIncInsertPos)) 1061 break; 1062 // Make sure the increment is where we want it. But don't move it 1063 // down past a potential existing post-inc user. 1064 IncV->moveBefore(IVIncInsertPos); 1065 IVIncInsertPos = IncV; 1066 IncV = cast<Instruction>(IncV->getOperand(0)); 1067 } while (IncV != PN); 1068 } 1069 // Ok, the add recurrence looks usable. 1070 // Remember this PHI, even in post-inc mode. 1071 InsertedValues.insert(PN); 1072 // Remember the increment. 1073 rememberInstruction(IncV); 1074 return PN; 1075 } 1076 } 1077 1078 // Save the original insertion point so we can restore it when we're done. 1079 BasicBlock *SaveInsertBB = Builder.GetInsertBlock(); 1080 BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint(); 1081 1082 // Another AddRec may need to be recursively expanded below. For example, if 1083 // this AddRec is quadratic, the StepV may itself be an AddRec in this 1084 // loop. Remove this loop from the PostIncLoops set before expanding such 1085 // AddRecs. Otherwise, we cannot find a valid position for the step 1086 // (i.e. StepV can never dominate its loop header). Ideally, we could do 1087 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element, 1088 // so it's not worth implementing SmallPtrSet::swap. 1089 PostIncLoopSet SavedPostIncLoops = PostIncLoops; 1090 PostIncLoops.clear(); 1091 1092 // Expand code for the start value. 1093 Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy, 1094 L->getHeader()->begin()); 1095 1096 // StartV must be hoisted into L's preheader to dominate the new phi. 1097 assert(!isa<Instruction>(StartV) || 1098 SE.DT->properlyDominates(cast<Instruction>(StartV)->getParent(), 1099 L->getHeader())); 1100 1101 // Expand code for the step value. Do this before creating the PHI so that PHI 1102 // reuse code doesn't see an incomplete PHI. 1103 const SCEV *Step = Normalized->getStepRecurrence(SE); 1104 // If the stride is negative, insert a sub instead of an add for the increment 1105 // (unless it's a constant, because subtracts of constants are canonicalized 1106 // to adds). 1107 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1108 if (useSubtract) 1109 Step = SE.getNegativeSCEV(Step); 1110 // Expand the step somewhere that dominates the loop header. 1111 Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin()); 1112 1113 // Create the PHI. 1114 BasicBlock *Header = L->getHeader(); 1115 Builder.SetInsertPoint(Header, Header->begin()); 1116 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1117 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE), 1118 Twine(IVName) + ".iv"); 1119 rememberInstruction(PN); 1120 1121 // Create the step instructions and populate the PHI. 1122 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1123 BasicBlock *Pred = *HPI; 1124 1125 // Add a start value. 1126 if (!L->contains(Pred)) { 1127 PN->addIncoming(StartV, Pred); 1128 continue; 1129 } 1130 1131 // Create a step value and add it to the PHI. 1132 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the 1133 // instructions at IVIncInsertPos. 1134 Instruction *InsertPos = L == IVIncInsertLoop ? 1135 IVIncInsertPos : Pred->getTerminator(); 1136 Builder.SetInsertPoint(InsertPos); 1137 Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1138 if (isa<OverflowingBinaryOperator>(IncV)) { 1139 if (Normalized->getNoWrapFlags(SCEV::FlagNUW)) 1140 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap(); 1141 if (Normalized->getNoWrapFlags(SCEV::FlagNSW)) 1142 cast<BinaryOperator>(IncV)->setHasNoSignedWrap(); 1143 } 1144 PN->addIncoming(IncV, Pred); 1145 } 1146 1147 // Restore the original insert point. 1148 if (SaveInsertBB) 1149 restoreInsertPoint(SaveInsertBB, SaveInsertPt); 1150 1151 // After expanding subexpressions, restore the PostIncLoops set so the caller 1152 // can ensure that IVIncrement dominates the current uses. 1153 PostIncLoops = SavedPostIncLoops; 1154 1155 // Remember this PHI, even in post-inc mode. 1156 InsertedValues.insert(PN); 1157 1158 return PN; 1159 } 1160 1161 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) { 1162 Type *STy = S->getType(); 1163 Type *IntTy = SE.getEffectiveSCEVType(STy); 1164 const Loop *L = S->getLoop(); 1165 1166 // Determine a normalized form of this expression, which is the expression 1167 // before any post-inc adjustment is made. 1168 const SCEVAddRecExpr *Normalized = S; 1169 if (PostIncLoops.count(L)) { 1170 PostIncLoopSet Loops; 1171 Loops.insert(L); 1172 Normalized = 1173 cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, 0, 0, 1174 Loops, SE, *SE.DT)); 1175 } 1176 1177 // Strip off any non-loop-dominating component from the addrec start. 1178 const SCEV *Start = Normalized->getStart(); 1179 const SCEV *PostLoopOffset = 0; 1180 if (!SE.properlyDominates(Start, L->getHeader())) { 1181 PostLoopOffset = Start; 1182 Start = SE.getConstant(Normalized->getType(), 0); 1183 Normalized = cast<SCEVAddRecExpr>( 1184 SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE), 1185 Normalized->getLoop(), 1186 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1187 } 1188 1189 // Strip off any non-loop-dominating component from the addrec step. 1190 const SCEV *Step = Normalized->getStepRecurrence(SE); 1191 const SCEV *PostLoopScale = 0; 1192 if (!SE.dominates(Step, L->getHeader())) { 1193 PostLoopScale = Step; 1194 Step = SE.getConstant(Normalized->getType(), 1); 1195 Normalized = 1196 cast<SCEVAddRecExpr>(SE.getAddRecExpr( 1197 Start, Step, Normalized->getLoop(), 1198 Normalized->getNoWrapFlags(SCEV::FlagNW))); 1199 } 1200 1201 // Expand the core addrec. If we need post-loop scaling, force it to 1202 // expand to an integer type to avoid the need for additional casting. 1203 Type *ExpandTy = PostLoopScale ? IntTy : STy; 1204 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy); 1205 1206 // Accommodate post-inc mode, if necessary. 1207 Value *Result; 1208 if (!PostIncLoops.count(L)) 1209 Result = PN; 1210 else { 1211 // In PostInc mode, use the post-incremented value. 1212 BasicBlock *LatchBlock = L->getLoopLatch(); 1213 assert(LatchBlock && "PostInc mode requires a unique loop latch!"); 1214 Result = PN->getIncomingValueForBlock(LatchBlock); 1215 1216 // For an expansion to use the postinc form, the client must call 1217 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop 1218 // or dominated by IVIncInsertPos. 1219 if (isa<Instruction>(Result) 1220 && !SE.DT->dominates(cast<Instruction>(Result), 1221 Builder.GetInsertPoint())) { 1222 // The induction variable's postinc expansion does not dominate this use. 1223 // IVUsers tries to prevent this case, so it is rare. However, it can 1224 // happen when an IVUser outside the loop is not dominated by the latch 1225 // block. Adjusting IVIncInsertPos before expansion begins cannot handle 1226 // all cases. Consider a phi outide whose operand is replaced during 1227 // expansion with the value of the postinc user. Without fundamentally 1228 // changing the way postinc users are tracked, the only remedy is 1229 // inserting an extra IV increment. StepV might fold into PostLoopOffset, 1230 // but hopefully expandCodeFor handles that. 1231 bool useSubtract = 1232 !ExpandTy->isPointerTy() && Step->isNonConstantNegative(); 1233 if (useSubtract) 1234 Step = SE.getNegativeSCEV(Step); 1235 // Expand the step somewhere that dominates the loop header. 1236 BasicBlock *SaveInsertBB = Builder.GetInsertBlock(); 1237 BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint(); 1238 Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin()); 1239 // Restore the insertion point to the place where the caller has 1240 // determined dominates all uses. 1241 restoreInsertPoint(SaveInsertBB, SaveInsertPt); 1242 Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract); 1243 } 1244 } 1245 1246 // Re-apply any non-loop-dominating scale. 1247 if (PostLoopScale) { 1248 Result = InsertNoopCastOfTo(Result, IntTy); 1249 Result = Builder.CreateMul(Result, 1250 expandCodeFor(PostLoopScale, IntTy)); 1251 rememberInstruction(Result); 1252 } 1253 1254 // Re-apply any non-loop-dominating offset. 1255 if (PostLoopOffset) { 1256 if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) { 1257 const SCEV *const OffsetArray[1] = { PostLoopOffset }; 1258 Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result); 1259 } else { 1260 Result = InsertNoopCastOfTo(Result, IntTy); 1261 Result = Builder.CreateAdd(Result, 1262 expandCodeFor(PostLoopOffset, IntTy)); 1263 rememberInstruction(Result); 1264 } 1265 } 1266 1267 return Result; 1268 } 1269 1270 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) { 1271 if (!CanonicalMode) return expandAddRecExprLiterally(S); 1272 1273 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1274 const Loop *L = S->getLoop(); 1275 1276 // First check for an existing canonical IV in a suitable type. 1277 PHINode *CanonicalIV = 0; 1278 if (PHINode *PN = L->getCanonicalInductionVariable()) 1279 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty)) 1280 CanonicalIV = PN; 1281 1282 // Rewrite an AddRec in terms of the canonical induction variable, if 1283 // its type is more narrow. 1284 if (CanonicalIV && 1285 SE.getTypeSizeInBits(CanonicalIV->getType()) > 1286 SE.getTypeSizeInBits(Ty)) { 1287 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands()); 1288 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i) 1289 NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType()); 1290 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(), 1291 S->getNoWrapFlags(SCEV::FlagNW))); 1292 BasicBlock *SaveInsertBB = Builder.GetInsertBlock(); 1293 BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint(); 1294 BasicBlock::iterator NewInsertPt = 1295 llvm::next(BasicBlock::iterator(cast<Instruction>(V))); 1296 while (isa<PHINode>(NewInsertPt) || isa<DbgInfoIntrinsic>(NewInsertPt) || 1297 isa<LandingPadInst>(NewInsertPt)) 1298 ++NewInsertPt; 1299 V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0, 1300 NewInsertPt); 1301 restoreInsertPoint(SaveInsertBB, SaveInsertPt); 1302 return V; 1303 } 1304 1305 // {X,+,F} --> X + {0,+,F} 1306 if (!S->getStart()->isZero()) { 1307 SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end()); 1308 NewOps[0] = SE.getConstant(Ty, 0); 1309 const SCEV *Rest = SE.getAddRecExpr(NewOps, L, 1310 S->getNoWrapFlags(SCEV::FlagNW)); 1311 1312 // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the 1313 // comments on expandAddToGEP for details. 1314 const SCEV *Base = S->getStart(); 1315 const SCEV *RestArray[1] = { Rest }; 1316 // Dig into the expression to find the pointer base for a GEP. 1317 ExposePointerBase(Base, RestArray[0], SE); 1318 // If we found a pointer, expand the AddRec with a GEP. 1319 if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) { 1320 // Make sure the Base isn't something exotic, such as a multiplied 1321 // or divided pointer value. In those cases, the result type isn't 1322 // actually a pointer type. 1323 if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) { 1324 Value *StartV = expand(Base); 1325 assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!"); 1326 return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV); 1327 } 1328 } 1329 1330 // Just do a normal add. Pre-expand the operands to suppress folding. 1331 return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())), 1332 SE.getUnknown(expand(Rest)))); 1333 } 1334 1335 // If we don't yet have a canonical IV, create one. 1336 if (!CanonicalIV) { 1337 // Create and insert the PHI node for the induction variable in the 1338 // specified loop. 1339 BasicBlock *Header = L->getHeader(); 1340 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header); 1341 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar", 1342 Header->begin()); 1343 rememberInstruction(CanonicalIV); 1344 1345 Constant *One = ConstantInt::get(Ty, 1); 1346 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) { 1347 BasicBlock *HP = *HPI; 1348 if (L->contains(HP)) { 1349 // Insert a unit add instruction right before the terminator 1350 // corresponding to the back-edge. 1351 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One, 1352 "indvar.next", 1353 HP->getTerminator()); 1354 Add->setDebugLoc(HP->getTerminator()->getDebugLoc()); 1355 rememberInstruction(Add); 1356 CanonicalIV->addIncoming(Add, HP); 1357 } else { 1358 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP); 1359 } 1360 } 1361 } 1362 1363 // {0,+,1} --> Insert a canonical induction variable into the loop! 1364 if (S->isAffine() && S->getOperand(1)->isOne()) { 1365 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) && 1366 "IVs with types different from the canonical IV should " 1367 "already have been handled!"); 1368 return CanonicalIV; 1369 } 1370 1371 // {0,+,F} --> {0,+,1} * F 1372 1373 // If this is a simple linear addrec, emit it now as a special case. 1374 if (S->isAffine()) // {0,+,F} --> i*F 1375 return 1376 expand(SE.getTruncateOrNoop( 1377 SE.getMulExpr(SE.getUnknown(CanonicalIV), 1378 SE.getNoopOrAnyExtend(S->getOperand(1), 1379 CanonicalIV->getType())), 1380 Ty)); 1381 1382 // If this is a chain of recurrences, turn it into a closed form, using the 1383 // folders, then expandCodeFor the closed form. This allows the folders to 1384 // simplify the expression without having to build a bunch of special code 1385 // into this folder. 1386 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV. 1387 1388 // Promote S up to the canonical IV type, if the cast is foldable. 1389 const SCEV *NewS = S; 1390 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType()); 1391 if (isa<SCEVAddRecExpr>(Ext)) 1392 NewS = Ext; 1393 1394 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE); 1395 //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n"; 1396 1397 // Truncate the result down to the original type, if needed. 1398 const SCEV *T = SE.getTruncateOrNoop(V, Ty); 1399 return expand(T); 1400 } 1401 1402 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) { 1403 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1404 Value *V = expandCodeFor(S->getOperand(), 1405 SE.getEffectiveSCEVType(S->getOperand()->getType())); 1406 Value *I = Builder.CreateTrunc(V, Ty); 1407 rememberInstruction(I); 1408 return I; 1409 } 1410 1411 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) { 1412 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1413 Value *V = expandCodeFor(S->getOperand(), 1414 SE.getEffectiveSCEVType(S->getOperand()->getType())); 1415 Value *I = Builder.CreateZExt(V, Ty); 1416 rememberInstruction(I); 1417 return I; 1418 } 1419 1420 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) { 1421 Type *Ty = SE.getEffectiveSCEVType(S->getType()); 1422 Value *V = expandCodeFor(S->getOperand(), 1423 SE.getEffectiveSCEVType(S->getOperand()->getType())); 1424 Value *I = Builder.CreateSExt(V, Ty); 1425 rememberInstruction(I); 1426 return I; 1427 } 1428 1429 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) { 1430 Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); 1431 Type *Ty = LHS->getType(); 1432 for (int i = S->getNumOperands()-2; i >= 0; --i) { 1433 // In the case of mixed integer and pointer types, do the 1434 // rest of the comparisons as integer. 1435 if (S->getOperand(i)->getType() != Ty) { 1436 Ty = SE.getEffectiveSCEVType(Ty); 1437 LHS = InsertNoopCastOfTo(LHS, Ty); 1438 } 1439 Value *RHS = expandCodeFor(S->getOperand(i), Ty); 1440 Value *ICmp = Builder.CreateICmpSGT(LHS, RHS); 1441 rememberInstruction(ICmp); 1442 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax"); 1443 rememberInstruction(Sel); 1444 LHS = Sel; 1445 } 1446 // In the case of mixed integer and pointer types, cast the 1447 // final result back to the pointer type. 1448 if (LHS->getType() != S->getType()) 1449 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1450 return LHS; 1451 } 1452 1453 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) { 1454 Value *LHS = expand(S->getOperand(S->getNumOperands()-1)); 1455 Type *Ty = LHS->getType(); 1456 for (int i = S->getNumOperands()-2; i >= 0; --i) { 1457 // In the case of mixed integer and pointer types, do the 1458 // rest of the comparisons as integer. 1459 if (S->getOperand(i)->getType() != Ty) { 1460 Ty = SE.getEffectiveSCEVType(Ty); 1461 LHS = InsertNoopCastOfTo(LHS, Ty); 1462 } 1463 Value *RHS = expandCodeFor(S->getOperand(i), Ty); 1464 Value *ICmp = Builder.CreateICmpUGT(LHS, RHS); 1465 rememberInstruction(ICmp); 1466 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax"); 1467 rememberInstruction(Sel); 1468 LHS = Sel; 1469 } 1470 // In the case of mixed integer and pointer types, cast the 1471 // final result back to the pointer type. 1472 if (LHS->getType() != S->getType()) 1473 LHS = InsertNoopCastOfTo(LHS, S->getType()); 1474 return LHS; 1475 } 1476 1477 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty, 1478 Instruction *IP) { 1479 Builder.SetInsertPoint(IP->getParent(), IP); 1480 return expandCodeFor(SH, Ty); 1481 } 1482 1483 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) { 1484 // Expand the code for this SCEV. 1485 Value *V = expand(SH); 1486 if (Ty) { 1487 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) && 1488 "non-trivial casts should be done with the SCEVs directly!"); 1489 V = InsertNoopCastOfTo(V, Ty); 1490 } 1491 return V; 1492 } 1493 1494 Value *SCEVExpander::expand(const SCEV *S) { 1495 // Compute an insertion point for this SCEV object. Hoist the instructions 1496 // as far out in the loop nest as possible. 1497 Instruction *InsertPt = Builder.GetInsertPoint(); 1498 for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ; 1499 L = L->getParentLoop()) 1500 if (SE.isLoopInvariant(S, L)) { 1501 if (!L) break; 1502 if (BasicBlock *Preheader = L->getLoopPreheader()) 1503 InsertPt = Preheader->getTerminator(); 1504 else { 1505 // LSR sets the insertion point for AddRec start/step values to the 1506 // block start to simplify value reuse, even though it's an invalid 1507 // position. SCEVExpander must correct for this in all cases. 1508 InsertPt = L->getHeader()->getFirstInsertionPt(); 1509 } 1510 } else { 1511 // If the SCEV is computable at this level, insert it into the header 1512 // after the PHIs (and after any other instructions that we've inserted 1513 // there) so that it is guaranteed to dominate any user inside the loop. 1514 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L)) 1515 InsertPt = L->getHeader()->getFirstInsertionPt(); 1516 while (InsertPt != Builder.GetInsertPoint() 1517 && (isInsertedInstruction(InsertPt) 1518 || isa<DbgInfoIntrinsic>(InsertPt))) { 1519 InsertPt = llvm::next(BasicBlock::iterator(InsertPt)); 1520 } 1521 break; 1522 } 1523 1524 // Check to see if we already expanded this here. 1525 std::map<std::pair<const SCEV *, Instruction *>, TrackingVH<Value> >::iterator 1526 I = InsertedExpressions.find(std::make_pair(S, InsertPt)); 1527 if (I != InsertedExpressions.end()) 1528 return I->second; 1529 1530 BasicBlock *SaveInsertBB = Builder.GetInsertBlock(); 1531 BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint(); 1532 Builder.SetInsertPoint(InsertPt->getParent(), InsertPt); 1533 1534 // Expand the expression into instructions. 1535 Value *V = visit(S); 1536 1537 // Remember the expanded value for this SCEV at this location. 1538 // 1539 // This is independent of PostIncLoops. The mapped value simply materializes 1540 // the expression at this insertion point. If the mapped value happened to be 1541 // a postinc expansion, it could be reused by a non postinc user, but only if 1542 // its insertion point was already at the head of the loop. 1543 InsertedExpressions[std::make_pair(S, InsertPt)] = V; 1544 1545 restoreInsertPoint(SaveInsertBB, SaveInsertPt); 1546 return V; 1547 } 1548 1549 void SCEVExpander::rememberInstruction(Value *I) { 1550 if (!PostIncLoops.empty()) 1551 InsertedPostIncValues.insert(I); 1552 else 1553 InsertedValues.insert(I); 1554 } 1555 1556 void SCEVExpander::restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I) { 1557 Builder.SetInsertPoint(BB, I); 1558 } 1559 1560 /// getOrInsertCanonicalInductionVariable - This method returns the 1561 /// canonical induction variable of the specified type for the specified 1562 /// loop (inserting one if there is none). A canonical induction variable 1563 /// starts at zero and steps by one on each iteration. 1564 PHINode * 1565 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L, 1566 Type *Ty) { 1567 assert(Ty->isIntegerTy() && "Can only insert integer induction variables!"); 1568 1569 // Build a SCEV for {0,+,1}<L>. 1570 // Conservatively use FlagAnyWrap for now. 1571 const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0), 1572 SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap); 1573 1574 // Emit code for it. 1575 BasicBlock *SaveInsertBB = Builder.GetInsertBlock(); 1576 BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint(); 1577 PHINode *V = cast<PHINode>(expandCodeFor(H, 0, L->getHeader()->begin())); 1578 if (SaveInsertBB) 1579 restoreInsertPoint(SaveInsertBB, SaveInsertPt); 1580 1581 return V; 1582 } 1583 1584 /// Sort values by integer width for replaceCongruentIVs. 1585 static bool width_descending(Value *lhs, Value *rhs) { 1586 // Put pointers at the back and make sure pointer < pointer = false. 1587 if (!lhs->getType()->isIntegerTy() || !rhs->getType()->isIntegerTy()) 1588 return rhs->getType()->isIntegerTy() && !lhs->getType()->isIntegerTy(); 1589 return rhs->getType()->getPrimitiveSizeInBits() 1590 < lhs->getType()->getPrimitiveSizeInBits(); 1591 } 1592 1593 /// replaceCongruentIVs - Check for congruent phis in this loop header and 1594 /// replace them with their most canonical representative. Return the number of 1595 /// phis eliminated. 1596 /// 1597 /// This does not depend on any SCEVExpander state but should be used in 1598 /// the same context that SCEVExpander is used. 1599 unsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT, 1600 SmallVectorImpl<WeakVH> &DeadInsts, 1601 const TargetTransformInfo *TTI) { 1602 // Find integer phis in order of increasing width. 1603 SmallVector<PHINode*, 8> Phis; 1604 for (BasicBlock::iterator I = L->getHeader()->begin(); 1605 PHINode *Phi = dyn_cast<PHINode>(I); ++I) { 1606 Phis.push_back(Phi); 1607 } 1608 if (TTI) 1609 std::sort(Phis.begin(), Phis.end(), width_descending); 1610 1611 unsigned NumElim = 0; 1612 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 1613 // Process phis from wide to narrow. Mapping wide phis to the their truncation 1614 // so narrow phis can reuse them. 1615 for (SmallVectorImpl<PHINode*>::const_iterator PIter = Phis.begin(), 1616 PEnd = Phis.end(); PIter != PEnd; ++PIter) { 1617 PHINode *Phi = *PIter; 1618 1619 // Fold constant phis. They may be congruent to other constant phis and 1620 // would confuse the logic below that expects proper IVs. 1621 if (Value *V = Phi->hasConstantValue()) { 1622 Phi->replaceAllUsesWith(V); 1623 DeadInsts.push_back(Phi); 1624 ++NumElim; 1625 DEBUG_WITH_TYPE(DebugType, dbgs() 1626 << "INDVARS: Eliminated constant iv: " << *Phi << '\n'); 1627 continue; 1628 } 1629 1630 if (!SE.isSCEVable(Phi->getType())) 1631 continue; 1632 1633 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)]; 1634 if (!OrigPhiRef) { 1635 OrigPhiRef = Phi; 1636 if (Phi->getType()->isIntegerTy() && TTI 1637 && TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) { 1638 // This phi can be freely truncated to the narrowest phi type. Map the 1639 // truncated expression to it so it will be reused for narrow types. 1640 const SCEV *TruncExpr = 1641 SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType()); 1642 ExprToIVMap[TruncExpr] = Phi; 1643 } 1644 continue; 1645 } 1646 1647 // Replacing a pointer phi with an integer phi or vice-versa doesn't make 1648 // sense. 1649 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy()) 1650 continue; 1651 1652 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1653 Instruction *OrigInc = 1654 cast<Instruction>(OrigPhiRef->getIncomingValueForBlock(LatchBlock)); 1655 Instruction *IsomorphicInc = 1656 cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 1657 1658 // If this phi has the same width but is more canonical, replace the 1659 // original with it. As part of the "more canonical" determination, 1660 // respect a prior decision to use an IV chain. 1661 if (OrigPhiRef->getType() == Phi->getType() 1662 && !(ChainedPhis.count(Phi) 1663 || isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) 1664 && (ChainedPhis.count(Phi) 1665 || isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) { 1666 std::swap(OrigPhiRef, Phi); 1667 std::swap(OrigInc, IsomorphicInc); 1668 } 1669 // Replacing the congruent phi is sufficient because acyclic redundancy 1670 // elimination, CSE/GVN, should handle the rest. However, once SCEV proves 1671 // that a phi is congruent, it's often the head of an IV user cycle that 1672 // is isomorphic with the original phi. It's worth eagerly cleaning up the 1673 // common case of a single IV increment so that DeleteDeadPHIs can remove 1674 // cycles that had postinc uses. 1675 const SCEV *TruncExpr = SE.getTruncateOrNoop(SE.getSCEV(OrigInc), 1676 IsomorphicInc->getType()); 1677 if (OrigInc != IsomorphicInc 1678 && TruncExpr == SE.getSCEV(IsomorphicInc) 1679 && ((isa<PHINode>(OrigInc) && isa<PHINode>(IsomorphicInc)) 1680 || hoistIVInc(OrigInc, IsomorphicInc))) { 1681 DEBUG_WITH_TYPE(DebugType, dbgs() 1682 << "INDVARS: Eliminated congruent iv.inc: " 1683 << *IsomorphicInc << '\n'); 1684 Value *NewInc = OrigInc; 1685 if (OrigInc->getType() != IsomorphicInc->getType()) { 1686 Instruction *IP = isa<PHINode>(OrigInc) 1687 ? (Instruction*)L->getHeader()->getFirstInsertionPt() 1688 : OrigInc->getNextNode(); 1689 IRBuilder<> Builder(IP); 1690 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc()); 1691 NewInc = Builder. 1692 CreateTruncOrBitCast(OrigInc, IsomorphicInc->getType(), IVName); 1693 } 1694 IsomorphicInc->replaceAllUsesWith(NewInc); 1695 DeadInsts.push_back(IsomorphicInc); 1696 } 1697 } 1698 DEBUG_WITH_TYPE(DebugType, dbgs() 1699 << "INDVARS: Eliminated congruent iv: " << *Phi << '\n'); 1700 ++NumElim; 1701 Value *NewIV = OrigPhiRef; 1702 if (OrigPhiRef->getType() != Phi->getType()) { 1703 IRBuilder<> Builder(L->getHeader()->getFirstInsertionPt()); 1704 Builder.SetCurrentDebugLocation(Phi->getDebugLoc()); 1705 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName); 1706 } 1707 Phi->replaceAllUsesWith(NewIV); 1708 DeadInsts.push_back(Phi); 1709 } 1710 return NumElim; 1711 } 1712 1713 namespace { 1714 // Search for a SCEV subexpression that is not safe to expand. Any expression 1715 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely 1716 // UDiv expressions. We don't know if the UDiv is derived from an IR divide 1717 // instruction, but the important thing is that we prove the denominator is 1718 // nonzero before expansion. 1719 // 1720 // IVUsers already checks that IV-derived expressions are safe. So this check is 1721 // only needed when the expression includes some subexpression that is not IV 1722 // derived. 1723 // 1724 // Currently, we only allow division by a nonzero constant here. If this is 1725 // inadequate, we could easily allow division by SCEVUnknown by using 1726 // ValueTracking to check isKnownNonZero(). 1727 struct SCEVFindUnsafe { 1728 bool IsUnsafe; 1729 1730 SCEVFindUnsafe(): IsUnsafe(false) {} 1731 1732 bool follow(const SCEV *S) { 1733 const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S); 1734 if (!D) 1735 return true; 1736 const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS()); 1737 if (SC && !SC->getValue()->isZero()) 1738 return true; 1739 IsUnsafe = true; 1740 return false; 1741 } 1742 bool isDone() const { return IsUnsafe; } 1743 }; 1744 } 1745 1746 namespace llvm { 1747 bool isSafeToExpand(const SCEV *S) { 1748 SCEVFindUnsafe Search; 1749 visitAll(S, Search); 1750 return !Search.IsUnsafe; 1751 } 1752 } 1753