Home | History | Annotate | Download | only in TableGen
      1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This tablegen backend emits a target specifier matcher for converting parsed
     11 // assembly operands in the MCInst structures. It also emits a matcher for
     12 // custom operand parsing.
     13 //
     14 // Converting assembly operands into MCInst structures
     15 // ---------------------------------------------------
     16 //
     17 // The input to the target specific matcher is a list of literal tokens and
     18 // operands. The target specific parser should generally eliminate any syntax
     19 // which is not relevant for matching; for example, comma tokens should have
     20 // already been consumed and eliminated by the parser. Most instructions will
     21 // end up with a single literal token (the instruction name) and some number of
     22 // operands.
     23 //
     24 // Some example inputs, for X86:
     25 //   'addl' (immediate ...) (register ...)
     26 //   'add' (immediate ...) (memory ...)
     27 //   'call' '*' %epc
     28 //
     29 // The assembly matcher is responsible for converting this input into a precise
     30 // machine instruction (i.e., an instruction with a well defined encoding). This
     31 // mapping has several properties which complicate matching:
     32 //
     33 //  - It may be ambiguous; many architectures can legally encode particular
     34 //    variants of an instruction in different ways (for example, using a smaller
     35 //    encoding for small immediates). Such ambiguities should never be
     36 //    arbitrarily resolved by the assembler, the assembler is always responsible
     37 //    for choosing the "best" available instruction.
     38 //
     39 //  - It may depend on the subtarget or the assembler context. Instructions
     40 //    which are invalid for the current mode, but otherwise unambiguous (e.g.,
     41 //    an SSE instruction in a file being assembled for i486) should be accepted
     42 //    and rejected by the assembler front end. However, if the proper encoding
     43 //    for an instruction is dependent on the assembler context then the matcher
     44 //    is responsible for selecting the correct machine instruction for the
     45 //    current mode.
     46 //
     47 // The core matching algorithm attempts to exploit the regularity in most
     48 // instruction sets to quickly determine the set of possibly matching
     49 // instructions, and the simplify the generated code. Additionally, this helps
     50 // to ensure that the ambiguities are intentionally resolved by the user.
     51 //
     52 // The matching is divided into two distinct phases:
     53 //
     54 //   1. Classification: Each operand is mapped to the unique set which (a)
     55 //      contains it, and (b) is the largest such subset for which a single
     56 //      instruction could match all members.
     57 //
     58 //      For register classes, we can generate these subgroups automatically. For
     59 //      arbitrary operands, we expect the user to define the classes and their
     60 //      relations to one another (for example, 8-bit signed immediates as a
     61 //      subset of 32-bit immediates).
     62 //
     63 //      By partitioning the operands in this way, we guarantee that for any
     64 //      tuple of classes, any single instruction must match either all or none
     65 //      of the sets of operands which could classify to that tuple.
     66 //
     67 //      In addition, the subset relation amongst classes induces a partial order
     68 //      on such tuples, which we use to resolve ambiguities.
     69 //
     70 //   2. The input can now be treated as a tuple of classes (static tokens are
     71 //      simple singleton sets). Each such tuple should generally map to a single
     72 //      instruction (we currently ignore cases where this isn't true, whee!!!),
     73 //      which we can emit a simple matcher for.
     74 //
     75 // Custom Operand Parsing
     76 // ----------------------
     77 //
     78 //  Some targets need a custom way to parse operands, some specific instructions
     79 //  can contain arguments that can represent processor flags and other kinds of
     80 //  identifiers that need to be mapped to specific values in the final encoded
     81 //  instructions. The target specific custom operand parsing works in the
     82 //  following way:
     83 //
     84 //   1. A operand match table is built, each entry contains a mnemonic, an
     85 //      operand class, a mask for all operand positions for that same
     86 //      class/mnemonic and target features to be checked while trying to match.
     87 //
     88 //   2. The operand matcher will try every possible entry with the same
     89 //      mnemonic and will check if the target feature for this mnemonic also
     90 //      matches. After that, if the operand to be matched has its index
     91 //      present in the mask, a successful match occurs. Otherwise, fallback
     92 //      to the regular operand parsing.
     93 //
     94 //   3. For a match success, each operand class that has a 'ParserMethod'
     95 //      becomes part of a switch from where the custom method is called.
     96 //
     97 //===----------------------------------------------------------------------===//
     98 
     99 #include "CodeGenTarget.h"
    100 #include "StringToOffsetTable.h"
    101 #include "llvm/ADT/OwningPtr.h"
    102 #include "llvm/ADT/PointerUnion.h"
    103 #include "llvm/ADT/STLExtras.h"
    104 #include "llvm/ADT/SmallPtrSet.h"
    105 #include "llvm/ADT/SmallVector.h"
    106 #include "llvm/ADT/StringExtras.h"
    107 #include "llvm/Support/CommandLine.h"
    108 #include "llvm/Support/Debug.h"
    109 #include "llvm/Support/ErrorHandling.h"
    110 #include "llvm/TableGen/Error.h"
    111 #include "llvm/TableGen/Record.h"
    112 #include "llvm/TableGen/StringMatcher.h"
    113 #include "llvm/TableGen/TableGenBackend.h"
    114 #include <cassert>
    115 #include <map>
    116 #include <set>
    117 #include <sstream>
    118 using namespace llvm;
    119 
    120 static cl::opt<std::string>
    121 MatchPrefix("match-prefix", cl::init(""),
    122             cl::desc("Only match instructions with the given prefix"));
    123 
    124 namespace {
    125 class AsmMatcherInfo;
    126 struct SubtargetFeatureInfo;
    127 
    128 class AsmMatcherEmitter {
    129   RecordKeeper &Records;
    130 public:
    131   AsmMatcherEmitter(RecordKeeper &R) : Records(R) {}
    132 
    133   void run(raw_ostream &o);
    134 };
    135 
    136 /// ClassInfo - Helper class for storing the information about a particular
    137 /// class of operands which can be matched.
    138 struct ClassInfo {
    139   enum ClassInfoKind {
    140     /// Invalid kind, for use as a sentinel value.
    141     Invalid = 0,
    142 
    143     /// The class for a particular token.
    144     Token,
    145 
    146     /// The (first) register class, subsequent register classes are
    147     /// RegisterClass0+1, and so on.
    148     RegisterClass0,
    149 
    150     /// The (first) user defined class, subsequent user defined classes are
    151     /// UserClass0+1, and so on.
    152     UserClass0 = 1<<16
    153   };
    154 
    155   /// Kind - The class kind, which is either a predefined kind, or (UserClass0 +
    156   /// N) for the Nth user defined class.
    157   unsigned Kind;
    158 
    159   /// SuperClasses - The super classes of this class. Note that for simplicities
    160   /// sake user operands only record their immediate super class, while register
    161   /// operands include all superclasses.
    162   std::vector<ClassInfo*> SuperClasses;
    163 
    164   /// Name - The full class name, suitable for use in an enum.
    165   std::string Name;
    166 
    167   /// ClassName - The unadorned generic name for this class (e.g., Token).
    168   std::string ClassName;
    169 
    170   /// ValueName - The name of the value this class represents; for a token this
    171   /// is the literal token string, for an operand it is the TableGen class (or
    172   /// empty if this is a derived class).
    173   std::string ValueName;
    174 
    175   /// PredicateMethod - The name of the operand method to test whether the
    176   /// operand matches this class; this is not valid for Token or register kinds.
    177   std::string PredicateMethod;
    178 
    179   /// RenderMethod - The name of the operand method to add this operand to an
    180   /// MCInst; this is not valid for Token or register kinds.
    181   std::string RenderMethod;
    182 
    183   /// ParserMethod - The name of the operand method to do a target specific
    184   /// parsing on the operand.
    185   std::string ParserMethod;
    186 
    187   /// For register classes, the records for all the registers in this class.
    188   std::set<Record*> Registers;
    189 
    190   /// For custom match classes, he diagnostic kind for when the predicate fails.
    191   std::string DiagnosticType;
    192 public:
    193   /// isRegisterClass() - Check if this is a register class.
    194   bool isRegisterClass() const {
    195     return Kind >= RegisterClass0 && Kind < UserClass0;
    196   }
    197 
    198   /// isUserClass() - Check if this is a user defined class.
    199   bool isUserClass() const {
    200     return Kind >= UserClass0;
    201   }
    202 
    203   /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes
    204   /// are related if they are in the same class hierarchy.
    205   bool isRelatedTo(const ClassInfo &RHS) const {
    206     // Tokens are only related to tokens.
    207     if (Kind == Token || RHS.Kind == Token)
    208       return Kind == Token && RHS.Kind == Token;
    209 
    210     // Registers classes are only related to registers classes, and only if
    211     // their intersection is non-empty.
    212     if (isRegisterClass() || RHS.isRegisterClass()) {
    213       if (!isRegisterClass() || !RHS.isRegisterClass())
    214         return false;
    215 
    216       std::set<Record*> Tmp;
    217       std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin());
    218       std::set_intersection(Registers.begin(), Registers.end(),
    219                             RHS.Registers.begin(), RHS.Registers.end(),
    220                             II);
    221 
    222       return !Tmp.empty();
    223     }
    224 
    225     // Otherwise we have two users operands; they are related if they are in the
    226     // same class hierarchy.
    227     //
    228     // FIXME: This is an oversimplification, they should only be related if they
    229     // intersect, however we don't have that information.
    230     assert(isUserClass() && RHS.isUserClass() && "Unexpected class!");
    231     const ClassInfo *Root = this;
    232     while (!Root->SuperClasses.empty())
    233       Root = Root->SuperClasses.front();
    234 
    235     const ClassInfo *RHSRoot = &RHS;
    236     while (!RHSRoot->SuperClasses.empty())
    237       RHSRoot = RHSRoot->SuperClasses.front();
    238 
    239     return Root == RHSRoot;
    240   }
    241 
    242   /// isSubsetOf - Test whether this class is a subset of \p RHS.
    243   bool isSubsetOf(const ClassInfo &RHS) const {
    244     // This is a subset of RHS if it is the same class...
    245     if (this == &RHS)
    246       return true;
    247 
    248     // ... or if any of its super classes are a subset of RHS.
    249     for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(),
    250            ie = SuperClasses.end(); it != ie; ++it)
    251       if ((*it)->isSubsetOf(RHS))
    252         return true;
    253 
    254     return false;
    255   }
    256 
    257   /// operator< - Compare two classes.
    258   bool operator<(const ClassInfo &RHS) const {
    259     if (this == &RHS)
    260       return false;
    261 
    262     // Unrelated classes can be ordered by kind.
    263     if (!isRelatedTo(RHS))
    264       return Kind < RHS.Kind;
    265 
    266     switch (Kind) {
    267     case Invalid:
    268       llvm_unreachable("Invalid kind!");
    269 
    270     default:
    271       // This class precedes the RHS if it is a proper subset of the RHS.
    272       if (isSubsetOf(RHS))
    273         return true;
    274       if (RHS.isSubsetOf(*this))
    275         return false;
    276 
    277       // Otherwise, order by name to ensure we have a total ordering.
    278       return ValueName < RHS.ValueName;
    279     }
    280   }
    281 };
    282 
    283 namespace {
    284 /// Sort ClassInfo pointers independently of pointer value.
    285 struct LessClassInfoPtr {
    286   bool operator()(const ClassInfo *LHS, const ClassInfo *RHS) const {
    287     return *LHS < *RHS;
    288   }
    289 };
    290 }
    291 
    292 /// MatchableInfo - Helper class for storing the necessary information for an
    293 /// instruction or alias which is capable of being matched.
    294 struct MatchableInfo {
    295   struct AsmOperand {
    296     /// Token - This is the token that the operand came from.
    297     StringRef Token;
    298 
    299     /// The unique class instance this operand should match.
    300     ClassInfo *Class;
    301 
    302     /// The operand name this is, if anything.
    303     StringRef SrcOpName;
    304 
    305     /// The suboperand index within SrcOpName, or -1 for the entire operand.
    306     int SubOpIdx;
    307 
    308     /// Register record if this token is singleton register.
    309     Record *SingletonReg;
    310 
    311     explicit AsmOperand(StringRef T) : Token(T), Class(0), SubOpIdx(-1),
    312                                        SingletonReg(0) {}
    313   };
    314 
    315   /// ResOperand - This represents a single operand in the result instruction
    316   /// generated by the match.  In cases (like addressing modes) where a single
    317   /// assembler operand expands to multiple MCOperands, this represents the
    318   /// single assembler operand, not the MCOperand.
    319   struct ResOperand {
    320     enum {
    321       /// RenderAsmOperand - This represents an operand result that is
    322       /// generated by calling the render method on the assembly operand.  The
    323       /// corresponding AsmOperand is specified by AsmOperandNum.
    324       RenderAsmOperand,
    325 
    326       /// TiedOperand - This represents a result operand that is a duplicate of
    327       /// a previous result operand.
    328       TiedOperand,
    329 
    330       /// ImmOperand - This represents an immediate value that is dumped into
    331       /// the operand.
    332       ImmOperand,
    333 
    334       /// RegOperand - This represents a fixed register that is dumped in.
    335       RegOperand
    336     } Kind;
    337 
    338     union {
    339       /// This is the operand # in the AsmOperands list that this should be
    340       /// copied from.
    341       unsigned AsmOperandNum;
    342 
    343       /// TiedOperandNum - This is the (earlier) result operand that should be
    344       /// copied from.
    345       unsigned TiedOperandNum;
    346 
    347       /// ImmVal - This is the immediate value added to the instruction.
    348       int64_t ImmVal;
    349 
    350       /// Register - This is the register record.
    351       Record *Register;
    352     };
    353 
    354     /// MINumOperands - The number of MCInst operands populated by this
    355     /// operand.
    356     unsigned MINumOperands;
    357 
    358     static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) {
    359       ResOperand X;
    360       X.Kind = RenderAsmOperand;
    361       X.AsmOperandNum = AsmOpNum;
    362       X.MINumOperands = NumOperands;
    363       return X;
    364     }
    365 
    366     static ResOperand getTiedOp(unsigned TiedOperandNum) {
    367       ResOperand X;
    368       X.Kind = TiedOperand;
    369       X.TiedOperandNum = TiedOperandNum;
    370       X.MINumOperands = 1;
    371       return X;
    372     }
    373 
    374     static ResOperand getImmOp(int64_t Val) {
    375       ResOperand X;
    376       X.Kind = ImmOperand;
    377       X.ImmVal = Val;
    378       X.MINumOperands = 1;
    379       return X;
    380     }
    381 
    382     static ResOperand getRegOp(Record *Reg) {
    383       ResOperand X;
    384       X.Kind = RegOperand;
    385       X.Register = Reg;
    386       X.MINumOperands = 1;
    387       return X;
    388     }
    389   };
    390 
    391   /// AsmVariantID - Target's assembly syntax variant no.
    392   int AsmVariantID;
    393 
    394   /// TheDef - This is the definition of the instruction or InstAlias that this
    395   /// matchable came from.
    396   Record *const TheDef;
    397 
    398   /// DefRec - This is the definition that it came from.
    399   PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec;
    400 
    401   const CodeGenInstruction *getResultInst() const {
    402     if (DefRec.is<const CodeGenInstruction*>())
    403       return DefRec.get<const CodeGenInstruction*>();
    404     return DefRec.get<const CodeGenInstAlias*>()->ResultInst;
    405   }
    406 
    407   /// ResOperands - This is the operand list that should be built for the result
    408   /// MCInst.
    409   SmallVector<ResOperand, 8> ResOperands;
    410 
    411   /// AsmString - The assembly string for this instruction (with variants
    412   /// removed), e.g. "movsx $src, $dst".
    413   std::string AsmString;
    414 
    415   /// Mnemonic - This is the first token of the matched instruction, its
    416   /// mnemonic.
    417   StringRef Mnemonic;
    418 
    419   /// AsmOperands - The textual operands that this instruction matches,
    420   /// annotated with a class and where in the OperandList they were defined.
    421   /// This directly corresponds to the tokenized AsmString after the mnemonic is
    422   /// removed.
    423   SmallVector<AsmOperand, 8> AsmOperands;
    424 
    425   /// Predicates - The required subtarget features to match this instruction.
    426   SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures;
    427 
    428   /// ConversionFnKind - The enum value which is passed to the generated
    429   /// convertToMCInst to convert parsed operands into an MCInst for this
    430   /// function.
    431   std::string ConversionFnKind;
    432 
    433   MatchableInfo(const CodeGenInstruction &CGI)
    434     : AsmVariantID(0), TheDef(CGI.TheDef), DefRec(&CGI),
    435       AsmString(CGI.AsmString) {
    436   }
    437 
    438   MatchableInfo(const CodeGenInstAlias *Alias)
    439     : AsmVariantID(0), TheDef(Alias->TheDef), DefRec(Alias),
    440       AsmString(Alias->AsmString) {
    441   }
    442 
    443   // Two-operand aliases clone from the main matchable, but mark the second
    444   // operand as a tied operand of the first for purposes of the assembler.
    445   void formTwoOperandAlias(StringRef Constraint);
    446 
    447   void initialize(const AsmMatcherInfo &Info,
    448                   SmallPtrSet<Record*, 16> &SingletonRegisters,
    449                   int AsmVariantNo, std::string &RegisterPrefix);
    450 
    451   /// validate - Return true if this matchable is a valid thing to match against
    452   /// and perform a bunch of validity checking.
    453   bool validate(StringRef CommentDelimiter, bool Hack) const;
    454 
    455   /// extractSingletonRegisterForAsmOperand - Extract singleton register,
    456   /// if present, from specified token.
    457   void
    458   extractSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info,
    459                                         std::string &RegisterPrefix);
    460 
    461   /// findAsmOperand - Find the AsmOperand with the specified name and
    462   /// suboperand index.
    463   int findAsmOperand(StringRef N, int SubOpIdx) const {
    464     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
    465       if (N == AsmOperands[i].SrcOpName &&
    466           SubOpIdx == AsmOperands[i].SubOpIdx)
    467         return i;
    468     return -1;
    469   }
    470 
    471   /// findAsmOperandNamed - Find the first AsmOperand with the specified name.
    472   /// This does not check the suboperand index.
    473   int findAsmOperandNamed(StringRef N) const {
    474     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
    475       if (N == AsmOperands[i].SrcOpName)
    476         return i;
    477     return -1;
    478   }
    479 
    480   void buildInstructionResultOperands();
    481   void buildAliasResultOperands();
    482 
    483   /// operator< - Compare two matchables.
    484   bool operator<(const MatchableInfo &RHS) const {
    485     // The primary comparator is the instruction mnemonic.
    486     if (Mnemonic != RHS.Mnemonic)
    487       return Mnemonic < RHS.Mnemonic;
    488 
    489     if (AsmOperands.size() != RHS.AsmOperands.size())
    490       return AsmOperands.size() < RHS.AsmOperands.size();
    491 
    492     // Compare lexicographically by operand. The matcher validates that other
    493     // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith().
    494     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    495       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
    496         return true;
    497       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
    498         return false;
    499     }
    500 
    501     // Give matches that require more features higher precedence. This is useful
    502     // because we cannot define AssemblerPredicates with the negation of
    503     // processor features. For example, ARM v6 "nop" may be either a HINT or
    504     // MOV. With v6, we want to match HINT. The assembler has no way to
    505     // predicate MOV under "NoV6", but HINT will always match first because it
    506     // requires V6 while MOV does not.
    507     if (RequiredFeatures.size() != RHS.RequiredFeatures.size())
    508       return RequiredFeatures.size() > RHS.RequiredFeatures.size();
    509 
    510     return false;
    511   }
    512 
    513   /// couldMatchAmbiguouslyWith - Check whether this matchable could
    514   /// ambiguously match the same set of operands as \p RHS (without being a
    515   /// strictly superior match).
    516   bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) {
    517     // The primary comparator is the instruction mnemonic.
    518     if (Mnemonic != RHS.Mnemonic)
    519       return false;
    520 
    521     // The number of operands is unambiguous.
    522     if (AsmOperands.size() != RHS.AsmOperands.size())
    523       return false;
    524 
    525     // Otherwise, make sure the ordering of the two instructions is unambiguous
    526     // by checking that either (a) a token or operand kind discriminates them,
    527     // or (b) the ordering among equivalent kinds is consistent.
    528 
    529     // Tokens and operand kinds are unambiguous (assuming a correct target
    530     // specific parser).
    531     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i)
    532       if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind ||
    533           AsmOperands[i].Class->Kind == ClassInfo::Token)
    534         if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class ||
    535             *RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
    536           return false;
    537 
    538     // Otherwise, this operand could commute if all operands are equivalent, or
    539     // there is a pair of operands that compare less than and a pair that
    540     // compare greater than.
    541     bool HasLT = false, HasGT = false;
    542     for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    543       if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class)
    544         HasLT = true;
    545       if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class)
    546         HasGT = true;
    547     }
    548 
    549     return !(HasLT ^ HasGT);
    550   }
    551 
    552   void dump();
    553 
    554 private:
    555   void tokenizeAsmString(const AsmMatcherInfo &Info);
    556 };
    557 
    558 /// SubtargetFeatureInfo - Helper class for storing information on a subtarget
    559 /// feature which participates in instruction matching.
    560 struct SubtargetFeatureInfo {
    561   /// \brief The predicate record for this feature.
    562   Record *TheDef;
    563 
    564   /// \brief An unique index assigned to represent this feature.
    565   unsigned Index;
    566 
    567   SubtargetFeatureInfo(Record *D, unsigned Idx) : TheDef(D), Index(Idx) {}
    568 
    569   /// \brief The name of the enumerated constant identifying this feature.
    570   std::string getEnumName() const {
    571     return "Feature_" + TheDef->getName();
    572   }
    573 };
    574 
    575 struct OperandMatchEntry {
    576   unsigned OperandMask;
    577   MatchableInfo* MI;
    578   ClassInfo *CI;
    579 
    580   static OperandMatchEntry create(MatchableInfo* mi, ClassInfo *ci,
    581                                   unsigned opMask) {
    582     OperandMatchEntry X;
    583     X.OperandMask = opMask;
    584     X.CI = ci;
    585     X.MI = mi;
    586     return X;
    587   }
    588 };
    589 
    590 
    591 class AsmMatcherInfo {
    592 public:
    593   /// Tracked Records
    594   RecordKeeper &Records;
    595 
    596   /// The tablegen AsmParser record.
    597   Record *AsmParser;
    598 
    599   /// Target - The target information.
    600   CodeGenTarget &Target;
    601 
    602   /// The classes which are needed for matching.
    603   std::vector<ClassInfo*> Classes;
    604 
    605   /// The information on the matchables to match.
    606   std::vector<MatchableInfo*> Matchables;
    607 
    608   /// Info for custom matching operands by user defined methods.
    609   std::vector<OperandMatchEntry> OperandMatchInfo;
    610 
    611   /// Map of Register records to their class information.
    612   typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy;
    613   RegisterClassesTy RegisterClasses;
    614 
    615   /// Map of Predicate records to their subtarget information.
    616   std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures;
    617 
    618   /// Map of AsmOperandClass records to their class information.
    619   std::map<Record*, ClassInfo*> AsmOperandClasses;
    620 
    621 private:
    622   /// Map of token to class information which has already been constructed.
    623   std::map<std::string, ClassInfo*> TokenClasses;
    624 
    625   /// Map of RegisterClass records to their class information.
    626   std::map<Record*, ClassInfo*> RegisterClassClasses;
    627 
    628 private:
    629   /// getTokenClass - Lookup or create the class for the given token.
    630   ClassInfo *getTokenClass(StringRef Token);
    631 
    632   /// getOperandClass - Lookup or create the class for the given operand.
    633   ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI,
    634                              int SubOpIdx);
    635   ClassInfo *getOperandClass(Record *Rec, int SubOpIdx);
    636 
    637   /// buildRegisterClasses - Build the ClassInfo* instances for register
    638   /// classes.
    639   void buildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters);
    640 
    641   /// buildOperandClasses - Build the ClassInfo* instances for user defined
    642   /// operand classes.
    643   void buildOperandClasses();
    644 
    645   void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName,
    646                                         unsigned AsmOpIdx);
    647   void buildAliasOperandReference(MatchableInfo *II, StringRef OpName,
    648                                   MatchableInfo::AsmOperand &Op);
    649 
    650 public:
    651   AsmMatcherInfo(Record *AsmParser,
    652                  CodeGenTarget &Target,
    653                  RecordKeeper &Records);
    654 
    655   /// buildInfo - Construct the various tables used during matching.
    656   void buildInfo();
    657 
    658   /// buildOperandMatchInfo - Build the necessary information to handle user
    659   /// defined operand parsing methods.
    660   void buildOperandMatchInfo();
    661 
    662   /// getSubtargetFeature - Lookup or create the subtarget feature info for the
    663   /// given operand.
    664   SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const {
    665     assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!");
    666     std::map<Record*, SubtargetFeatureInfo*>::const_iterator I =
    667       SubtargetFeatures.find(Def);
    668     return I == SubtargetFeatures.end() ? 0 : I->second;
    669   }
    670 
    671   RecordKeeper &getRecords() const {
    672     return Records;
    673   }
    674 };
    675 
    676 } // End anonymous namespace
    677 
    678 void MatchableInfo::dump() {
    679   errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n";
    680 
    681   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    682     AsmOperand &Op = AsmOperands[i];
    683     errs() << "  op[" << i << "] = " << Op.Class->ClassName << " - ";
    684     errs() << '\"' << Op.Token << "\"\n";
    685   }
    686 }
    687 
    688 static std::pair<StringRef, StringRef>
    689 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) {
    690   // Split via the '='.
    691   std::pair<StringRef, StringRef> Ops = S.split('=');
    692   if (Ops.second == "")
    693     PrintFatalError(Loc, "missing '=' in two-operand alias constraint");
    694   // Trim whitespace and the leading '$' on the operand names.
    695   size_t start = Ops.first.find_first_of('$');
    696   if (start == std::string::npos)
    697     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
    698   Ops.first = Ops.first.slice(start + 1, std::string::npos);
    699   size_t end = Ops.first.find_last_of(" \t");
    700   Ops.first = Ops.first.slice(0, end);
    701   // Now the second operand.
    702   start = Ops.second.find_first_of('$');
    703   if (start == std::string::npos)
    704     PrintFatalError(Loc, "expected '$' prefix on asm operand name");
    705   Ops.second = Ops.second.slice(start + 1, std::string::npos);
    706   end = Ops.second.find_last_of(" \t");
    707   Ops.first = Ops.first.slice(0, end);
    708   return Ops;
    709 }
    710 
    711 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) {
    712   // Figure out which operands are aliased and mark them as tied.
    713   std::pair<StringRef, StringRef> Ops =
    714     parseTwoOperandConstraint(Constraint, TheDef->getLoc());
    715 
    716   // Find the AsmOperands that refer to the operands we're aliasing.
    717   int SrcAsmOperand = findAsmOperandNamed(Ops.first);
    718   int DstAsmOperand = findAsmOperandNamed(Ops.second);
    719   if (SrcAsmOperand == -1)
    720     PrintFatalError(TheDef->getLoc(),
    721                   "unknown source two-operand alias operand '" +
    722                   Ops.first.str() + "'.");
    723   if (DstAsmOperand == -1)
    724     PrintFatalError(TheDef->getLoc(),
    725                   "unknown destination two-operand alias operand '" +
    726                   Ops.second.str() + "'.");
    727 
    728   // Find the ResOperand that refers to the operand we're aliasing away
    729   // and update it to refer to the combined operand instead.
    730   for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
    731     ResOperand &Op = ResOperands[i];
    732     if (Op.Kind == ResOperand::RenderAsmOperand &&
    733         Op.AsmOperandNum == (unsigned)SrcAsmOperand) {
    734       Op.AsmOperandNum = DstAsmOperand;
    735       break;
    736     }
    737   }
    738   // Remove the AsmOperand for the alias operand.
    739   AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand);
    740   // Adjust the ResOperand references to any AsmOperands that followed
    741   // the one we just deleted.
    742   for (unsigned i = 0, e = ResOperands.size(); i != e; ++i) {
    743     ResOperand &Op = ResOperands[i];
    744     switch(Op.Kind) {
    745     default:
    746       // Nothing to do for operands that don't reference AsmOperands.
    747       break;
    748     case ResOperand::RenderAsmOperand:
    749       if (Op.AsmOperandNum > (unsigned)SrcAsmOperand)
    750         --Op.AsmOperandNum;
    751       break;
    752     case ResOperand::TiedOperand:
    753       if (Op.TiedOperandNum > (unsigned)SrcAsmOperand)
    754         --Op.TiedOperandNum;
    755       break;
    756     }
    757   }
    758 }
    759 
    760 void MatchableInfo::initialize(const AsmMatcherInfo &Info,
    761                                SmallPtrSet<Record*, 16> &SingletonRegisters,
    762                                int AsmVariantNo, std::string &RegisterPrefix) {
    763   AsmVariantID = AsmVariantNo;
    764   AsmString =
    765     CodeGenInstruction::FlattenAsmStringVariants(AsmString, AsmVariantNo);
    766 
    767   tokenizeAsmString(Info);
    768 
    769   // Compute the require features.
    770   std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates");
    771   for (unsigned i = 0, e = Predicates.size(); i != e; ++i)
    772     if (SubtargetFeatureInfo *Feature =
    773         Info.getSubtargetFeature(Predicates[i]))
    774       RequiredFeatures.push_back(Feature);
    775 
    776   // Collect singleton registers, if used.
    777   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    778     extractSingletonRegisterForAsmOperand(i, Info, RegisterPrefix);
    779     if (Record *Reg = AsmOperands[i].SingletonReg)
    780       SingletonRegisters.insert(Reg);
    781   }
    782 }
    783 
    784 /// tokenizeAsmString - Tokenize a simplified assembly string.
    785 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info) {
    786   StringRef String = AsmString;
    787   unsigned Prev = 0;
    788   bool InTok = true;
    789   for (unsigned i = 0, e = String.size(); i != e; ++i) {
    790     switch (String[i]) {
    791     case '[':
    792     case ']':
    793     case '*':
    794     case '!':
    795     case ' ':
    796     case '\t':
    797     case ',':
    798       if (InTok) {
    799         AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
    800         InTok = false;
    801       }
    802       if (!isspace(String[i]) && String[i] != ',')
    803         AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
    804       Prev = i + 1;
    805       break;
    806 
    807     case '\\':
    808       if (InTok) {
    809         AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
    810         InTok = false;
    811       }
    812       ++i;
    813       assert(i != String.size() && "Invalid quoted character");
    814       AsmOperands.push_back(AsmOperand(String.substr(i, 1)));
    815       Prev = i + 1;
    816       break;
    817 
    818     case '$': {
    819       if (InTok) {
    820         AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
    821         InTok = false;
    822       }
    823 
    824       // If this isn't "${", treat like a normal token.
    825       if (i + 1 == String.size() || String[i + 1] != '{') {
    826         Prev = i;
    827         break;
    828       }
    829 
    830       StringRef::iterator End = std::find(String.begin() + i, String.end(),'}');
    831       assert(End != String.end() && "Missing brace in operand reference!");
    832       size_t EndPos = End - String.begin();
    833       AsmOperands.push_back(AsmOperand(String.slice(i, EndPos+1)));
    834       Prev = EndPos + 1;
    835       i = EndPos;
    836       break;
    837     }
    838 
    839     case '.':
    840       if (!Info.AsmParser->getValueAsBit("MnemonicContainsDot")) {
    841         if (InTok)
    842           AsmOperands.push_back(AsmOperand(String.slice(Prev, i)));
    843         Prev = i;
    844       }
    845       InTok = true;
    846       break;
    847 
    848     default:
    849       InTok = true;
    850     }
    851   }
    852   if (InTok && Prev != String.size())
    853     AsmOperands.push_back(AsmOperand(String.substr(Prev)));
    854 
    855   // The first token of the instruction is the mnemonic, which must be a
    856   // simple string, not a $foo variable or a singleton register.
    857   if (AsmOperands.empty())
    858     PrintFatalError(TheDef->getLoc(),
    859                   "Instruction '" + TheDef->getName() + "' has no tokens");
    860   Mnemonic = AsmOperands[0].Token;
    861   if (Mnemonic.empty())
    862     PrintFatalError(TheDef->getLoc(),
    863                   "Missing instruction mnemonic");
    864   // FIXME : Check and raise an error if it is a register.
    865   if (Mnemonic[0] == '$')
    866     PrintFatalError(TheDef->getLoc(),
    867                   "Invalid instruction mnemonic '" + Mnemonic.str() + "'!");
    868 
    869   // Remove the first operand, it is tracked in the mnemonic field.
    870   AsmOperands.erase(AsmOperands.begin());
    871 }
    872 
    873 bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const {
    874   // Reject matchables with no .s string.
    875   if (AsmString.empty())
    876     PrintFatalError(TheDef->getLoc(), "instruction with empty asm string");
    877 
    878   // Reject any matchables with a newline in them, they should be marked
    879   // isCodeGenOnly if they are pseudo instructions.
    880   if (AsmString.find('\n') != std::string::npos)
    881     PrintFatalError(TheDef->getLoc(),
    882                   "multiline instruction is not valid for the asmparser, "
    883                   "mark it isCodeGenOnly");
    884 
    885   // Remove comments from the asm string.  We know that the asmstring only
    886   // has one line.
    887   if (!CommentDelimiter.empty() &&
    888       StringRef(AsmString).find(CommentDelimiter) != StringRef::npos)
    889     PrintFatalError(TheDef->getLoc(),
    890                   "asmstring for instruction has comment character in it, "
    891                   "mark it isCodeGenOnly");
    892 
    893   // Reject matchables with operand modifiers, these aren't something we can
    894   // handle, the target should be refactored to use operands instead of
    895   // modifiers.
    896   //
    897   // Also, check for instructions which reference the operand multiple times;
    898   // this implies a constraint we would not honor.
    899   std::set<std::string> OperandNames;
    900   for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) {
    901     StringRef Tok = AsmOperands[i].Token;
    902     if (Tok[0] == '$' && Tok.find(':') != StringRef::npos)
    903       PrintFatalError(TheDef->getLoc(),
    904                     "matchable with operand modifier '" + Tok.str() +
    905                     "' not supported by asm matcher.  Mark isCodeGenOnly!");
    906 
    907     // Verify that any operand is only mentioned once.
    908     // We reject aliases and ignore instructions for now.
    909     if (Tok[0] == '$' && !OperandNames.insert(Tok).second) {
    910       if (!Hack)
    911         PrintFatalError(TheDef->getLoc(),
    912                       "ERROR: matchable with tied operand '" + Tok.str() +
    913                       "' can never be matched!");
    914       // FIXME: Should reject these.  The ARM backend hits this with $lane in a
    915       // bunch of instructions.  It is unclear what the right answer is.
    916       DEBUG({
    917         errs() << "warning: '" << TheDef->getName() << "': "
    918                << "ignoring instruction with tied operand '"
    919                << Tok.str() << "'\n";
    920       });
    921       return false;
    922     }
    923   }
    924 
    925   return true;
    926 }
    927 
    928 /// extractSingletonRegisterForAsmOperand - Extract singleton register,
    929 /// if present, from specified token.
    930 void MatchableInfo::
    931 extractSingletonRegisterForAsmOperand(unsigned OperandNo,
    932                                       const AsmMatcherInfo &Info,
    933                                       std::string &RegisterPrefix) {
    934   StringRef Tok = AsmOperands[OperandNo].Token;
    935   if (RegisterPrefix.empty()) {
    936     std::string LoweredTok = Tok.lower();
    937     if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok))
    938       AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
    939     return;
    940   }
    941 
    942   if (!Tok.startswith(RegisterPrefix))
    943     return;
    944 
    945   StringRef RegName = Tok.substr(RegisterPrefix.size());
    946   if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName))
    947     AsmOperands[OperandNo].SingletonReg = Reg->TheDef;
    948 
    949   // If there is no register prefix (i.e. "%" in "%eax"), then this may
    950   // be some random non-register token, just ignore it.
    951   return;
    952 }
    953 
    954 static std::string getEnumNameForToken(StringRef Str) {
    955   std::string Res;
    956 
    957   for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) {
    958     switch (*it) {
    959     case '*': Res += "_STAR_"; break;
    960     case '%': Res += "_PCT_"; break;
    961     case ':': Res += "_COLON_"; break;
    962     case '!': Res += "_EXCLAIM_"; break;
    963     case '.': Res += "_DOT_"; break;
    964     case '<': Res += "_LT_"; break;
    965     case '>': Res += "_GT_"; break;
    966     default:
    967       if ((*it >= 'A' && *it <= 'Z') ||
    968           (*it >= 'a' && *it <= 'z') ||
    969           (*it >= '0' && *it <= '9'))
    970         Res += *it;
    971       else
    972         Res += "_" + utostr((unsigned) *it) + "_";
    973     }
    974   }
    975 
    976   return Res;
    977 }
    978 
    979 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) {
    980   ClassInfo *&Entry = TokenClasses[Token];
    981 
    982   if (!Entry) {
    983     Entry = new ClassInfo();
    984     Entry->Kind = ClassInfo::Token;
    985     Entry->ClassName = "Token";
    986     Entry->Name = "MCK_" + getEnumNameForToken(Token);
    987     Entry->ValueName = Token;
    988     Entry->PredicateMethod = "<invalid>";
    989     Entry->RenderMethod = "<invalid>";
    990     Entry->ParserMethod = "";
    991     Entry->DiagnosticType = "";
    992     Classes.push_back(Entry);
    993   }
    994 
    995   return Entry;
    996 }
    997 
    998 ClassInfo *
    999 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI,
   1000                                 int SubOpIdx) {
   1001   Record *Rec = OI.Rec;
   1002   if (SubOpIdx != -1)
   1003     Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef();
   1004   return getOperandClass(Rec, SubOpIdx);
   1005 }
   1006 
   1007 ClassInfo *
   1008 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) {
   1009   if (Rec->isSubClassOf("RegisterOperand")) {
   1010     // RegisterOperand may have an associated ParserMatchClass. If it does,
   1011     // use it, else just fall back to the underlying register class.
   1012     const RecordVal *R = Rec->getValue("ParserMatchClass");
   1013     if (R == 0 || R->getValue() == 0)
   1014       PrintFatalError("Record `" + Rec->getName() +
   1015         "' does not have a ParserMatchClass!\n");
   1016 
   1017     if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) {
   1018       Record *MatchClass = DI->getDef();
   1019       if (ClassInfo *CI = AsmOperandClasses[MatchClass])
   1020         return CI;
   1021     }
   1022 
   1023     // No custom match class. Just use the register class.
   1024     Record *ClassRec = Rec->getValueAsDef("RegClass");
   1025     if (!ClassRec)
   1026       PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() +
   1027                     "' has no associated register class!\n");
   1028     if (ClassInfo *CI = RegisterClassClasses[ClassRec])
   1029       return CI;
   1030     PrintFatalError(Rec->getLoc(), "register class has no class info!");
   1031   }
   1032 
   1033 
   1034   if (Rec->isSubClassOf("RegisterClass")) {
   1035     if (ClassInfo *CI = RegisterClassClasses[Rec])
   1036       return CI;
   1037     PrintFatalError(Rec->getLoc(), "register class has no class info!");
   1038   }
   1039 
   1040   if (!Rec->isSubClassOf("Operand"))
   1041     PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() +
   1042                   "' does not derive from class Operand!\n");
   1043   Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
   1044   if (ClassInfo *CI = AsmOperandClasses[MatchClass])
   1045     return CI;
   1046 
   1047   PrintFatalError(Rec->getLoc(), "operand has no match class!");
   1048 }
   1049 
   1050 void AsmMatcherInfo::
   1051 buildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters) {
   1052   const std::vector<CodeGenRegister*> &Registers =
   1053     Target.getRegBank().getRegisters();
   1054   ArrayRef<CodeGenRegisterClass*> RegClassList =
   1055     Target.getRegBank().getRegClasses();
   1056 
   1057   // The register sets used for matching.
   1058   std::set< std::set<Record*> > RegisterSets;
   1059 
   1060   // Gather the defined sets.
   1061   for (ArrayRef<CodeGenRegisterClass*>::const_iterator it =
   1062        RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it)
   1063     RegisterSets.insert(std::set<Record*>(
   1064         (*it)->getOrder().begin(), (*it)->getOrder().end()));
   1065 
   1066   // Add any required singleton sets.
   1067   for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
   1068        ie = SingletonRegisters.end(); it != ie; ++it) {
   1069     Record *Rec = *it;
   1070     RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1));
   1071   }
   1072 
   1073   // Introduce derived sets where necessary (when a register does not determine
   1074   // a unique register set class), and build the mapping of registers to the set
   1075   // they should classify to.
   1076   std::map<Record*, std::set<Record*> > RegisterMap;
   1077   for (std::vector<CodeGenRegister*>::const_iterator it = Registers.begin(),
   1078          ie = Registers.end(); it != ie; ++it) {
   1079     const CodeGenRegister &CGR = **it;
   1080     // Compute the intersection of all sets containing this register.
   1081     std::set<Record*> ContainingSet;
   1082 
   1083     for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
   1084            ie = RegisterSets.end(); it != ie; ++it) {
   1085       if (!it->count(CGR.TheDef))
   1086         continue;
   1087 
   1088       if (ContainingSet.empty()) {
   1089         ContainingSet = *it;
   1090         continue;
   1091       }
   1092 
   1093       std::set<Record*> Tmp;
   1094       std::swap(Tmp, ContainingSet);
   1095       std::insert_iterator< std::set<Record*> > II(ContainingSet,
   1096                                                    ContainingSet.begin());
   1097       std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(), II);
   1098     }
   1099 
   1100     if (!ContainingSet.empty()) {
   1101       RegisterSets.insert(ContainingSet);
   1102       RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet));
   1103     }
   1104   }
   1105 
   1106   // Construct the register classes.
   1107   std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses;
   1108   unsigned Index = 0;
   1109   for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
   1110          ie = RegisterSets.end(); it != ie; ++it, ++Index) {
   1111     ClassInfo *CI = new ClassInfo();
   1112     CI->Kind = ClassInfo::RegisterClass0 + Index;
   1113     CI->ClassName = "Reg" + utostr(Index);
   1114     CI->Name = "MCK_Reg" + utostr(Index);
   1115     CI->ValueName = "";
   1116     CI->PredicateMethod = ""; // unused
   1117     CI->RenderMethod = "addRegOperands";
   1118     CI->Registers = *it;
   1119     // FIXME: diagnostic type.
   1120     CI->DiagnosticType = "";
   1121     Classes.push_back(CI);
   1122     RegisterSetClasses.insert(std::make_pair(*it, CI));
   1123   }
   1124 
   1125   // Find the superclasses; we could compute only the subgroup lattice edges,
   1126   // but there isn't really a point.
   1127   for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(),
   1128          ie = RegisterSets.end(); it != ie; ++it) {
   1129     ClassInfo *CI = RegisterSetClasses[*it];
   1130     for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(),
   1131            ie2 = RegisterSets.end(); it2 != ie2; ++it2)
   1132       if (*it != *it2 &&
   1133           std::includes(it2->begin(), it2->end(), it->begin(), it->end()))
   1134         CI->SuperClasses.push_back(RegisterSetClasses[*it2]);
   1135   }
   1136 
   1137   // Name the register classes which correspond to a user defined RegisterClass.
   1138   for (ArrayRef<CodeGenRegisterClass*>::const_iterator
   1139        it = RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it) {
   1140     const CodeGenRegisterClass &RC = **it;
   1141     // Def will be NULL for non-user defined register classes.
   1142     Record *Def = RC.getDef();
   1143     if (!Def)
   1144       continue;
   1145     ClassInfo *CI = RegisterSetClasses[std::set<Record*>(RC.getOrder().begin(),
   1146                                                          RC.getOrder().end())];
   1147     if (CI->ValueName.empty()) {
   1148       CI->ClassName = RC.getName();
   1149       CI->Name = "MCK_" + RC.getName();
   1150       CI->ValueName = RC.getName();
   1151     } else
   1152       CI->ValueName = CI->ValueName + "," + RC.getName();
   1153 
   1154     RegisterClassClasses.insert(std::make_pair(Def, CI));
   1155   }
   1156 
   1157   // Populate the map for individual registers.
   1158   for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(),
   1159          ie = RegisterMap.end(); it != ie; ++it)
   1160     RegisterClasses[it->first] = RegisterSetClasses[it->second];
   1161 
   1162   // Name the register classes which correspond to singleton registers.
   1163   for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(),
   1164          ie = SingletonRegisters.end(); it != ie; ++it) {
   1165     Record *Rec = *it;
   1166     ClassInfo *CI = RegisterClasses[Rec];
   1167     assert(CI && "Missing singleton register class info!");
   1168 
   1169     if (CI->ValueName.empty()) {
   1170       CI->ClassName = Rec->getName();
   1171       CI->Name = "MCK_" + Rec->getName();
   1172       CI->ValueName = Rec->getName();
   1173     } else
   1174       CI->ValueName = CI->ValueName + "," + Rec->getName();
   1175   }
   1176 }
   1177 
   1178 void AsmMatcherInfo::buildOperandClasses() {
   1179   std::vector<Record*> AsmOperands =
   1180     Records.getAllDerivedDefinitions("AsmOperandClass");
   1181 
   1182   // Pre-populate AsmOperandClasses map.
   1183   for (std::vector<Record*>::iterator it = AsmOperands.begin(),
   1184          ie = AsmOperands.end(); it != ie; ++it)
   1185     AsmOperandClasses[*it] = new ClassInfo();
   1186 
   1187   unsigned Index = 0;
   1188   for (std::vector<Record*>::iterator it = AsmOperands.begin(),
   1189          ie = AsmOperands.end(); it != ie; ++it, ++Index) {
   1190     ClassInfo *CI = AsmOperandClasses[*it];
   1191     CI->Kind = ClassInfo::UserClass0 + Index;
   1192 
   1193     ListInit *Supers = (*it)->getValueAsListInit("SuperClasses");
   1194     for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) {
   1195       DefInit *DI = dyn_cast<DefInit>(Supers->getElement(i));
   1196       if (!DI) {
   1197         PrintError((*it)->getLoc(), "Invalid super class reference!");
   1198         continue;
   1199       }
   1200 
   1201       ClassInfo *SC = AsmOperandClasses[DI->getDef()];
   1202       if (!SC)
   1203         PrintError((*it)->getLoc(), "Invalid super class reference!");
   1204       else
   1205         CI->SuperClasses.push_back(SC);
   1206     }
   1207     CI->ClassName = (*it)->getValueAsString("Name");
   1208     CI->Name = "MCK_" + CI->ClassName;
   1209     CI->ValueName = (*it)->getName();
   1210 
   1211     // Get or construct the predicate method name.
   1212     Init *PMName = (*it)->getValueInit("PredicateMethod");
   1213     if (StringInit *SI = dyn_cast<StringInit>(PMName)) {
   1214       CI->PredicateMethod = SI->getValue();
   1215     } else {
   1216       assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!");
   1217       CI->PredicateMethod = "is" + CI->ClassName;
   1218     }
   1219 
   1220     // Get or construct the render method name.
   1221     Init *RMName = (*it)->getValueInit("RenderMethod");
   1222     if (StringInit *SI = dyn_cast<StringInit>(RMName)) {
   1223       CI->RenderMethod = SI->getValue();
   1224     } else {
   1225       assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!");
   1226       CI->RenderMethod = "add" + CI->ClassName + "Operands";
   1227     }
   1228 
   1229     // Get the parse method name or leave it as empty.
   1230     Init *PRMName = (*it)->getValueInit("ParserMethod");
   1231     if (StringInit *SI = dyn_cast<StringInit>(PRMName))
   1232       CI->ParserMethod = SI->getValue();
   1233 
   1234     // Get the diagnostic type or leave it as empty.
   1235     // Get the parse method name or leave it as empty.
   1236     Init *DiagnosticType = (*it)->getValueInit("DiagnosticType");
   1237     if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType))
   1238       CI->DiagnosticType = SI->getValue();
   1239 
   1240     AsmOperandClasses[*it] = CI;
   1241     Classes.push_back(CI);
   1242   }
   1243 }
   1244 
   1245 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser,
   1246                                CodeGenTarget &target,
   1247                                RecordKeeper &records)
   1248   : Records(records), AsmParser(asmParser), Target(target) {
   1249 }
   1250 
   1251 /// buildOperandMatchInfo - Build the necessary information to handle user
   1252 /// defined operand parsing methods.
   1253 void AsmMatcherInfo::buildOperandMatchInfo() {
   1254 
   1255   /// Map containing a mask with all operands indices that can be found for
   1256   /// that class inside a instruction.
   1257   typedef std::map<ClassInfo*, unsigned, LessClassInfoPtr> OpClassMaskTy;
   1258   OpClassMaskTy OpClassMask;
   1259 
   1260   for (std::vector<MatchableInfo*>::const_iterator it =
   1261        Matchables.begin(), ie = Matchables.end();
   1262        it != ie; ++it) {
   1263     MatchableInfo &II = **it;
   1264     OpClassMask.clear();
   1265 
   1266     // Keep track of all operands of this instructions which belong to the
   1267     // same class.
   1268     for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
   1269       MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
   1270       if (Op.Class->ParserMethod.empty())
   1271         continue;
   1272       unsigned &OperandMask = OpClassMask[Op.Class];
   1273       OperandMask |= (1 << i);
   1274     }
   1275 
   1276     // Generate operand match info for each mnemonic/operand class pair.
   1277     for (OpClassMaskTy::iterator iit = OpClassMask.begin(),
   1278          iie = OpClassMask.end(); iit != iie; ++iit) {
   1279       unsigned OpMask = iit->second;
   1280       ClassInfo *CI = iit->first;
   1281       OperandMatchInfo.push_back(OperandMatchEntry::create(&II, CI, OpMask));
   1282     }
   1283   }
   1284 }
   1285 
   1286 void AsmMatcherInfo::buildInfo() {
   1287   // Build information about all of the AssemblerPredicates.
   1288   std::vector<Record*> AllPredicates =
   1289     Records.getAllDerivedDefinitions("Predicate");
   1290   for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) {
   1291     Record *Pred = AllPredicates[i];
   1292     // Ignore predicates that are not intended for the assembler.
   1293     if (!Pred->getValueAsBit("AssemblerMatcherPredicate"))
   1294       continue;
   1295 
   1296     if (Pred->getName().empty())
   1297       PrintFatalError(Pred->getLoc(), "Predicate has no name!");
   1298 
   1299     unsigned FeatureNo = SubtargetFeatures.size();
   1300     SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo);
   1301     assert(FeatureNo < 32 && "Too many subtarget features!");
   1302   }
   1303 
   1304   // Parse the instructions; we need to do this first so that we can gather the
   1305   // singleton register classes.
   1306   SmallPtrSet<Record*, 16> SingletonRegisters;
   1307   unsigned VariantCount = Target.getAsmParserVariantCount();
   1308   for (unsigned VC = 0; VC != VariantCount; ++VC) {
   1309     Record *AsmVariant = Target.getAsmParserVariant(VC);
   1310     std::string CommentDelimiter =
   1311       AsmVariant->getValueAsString("CommentDelimiter");
   1312     std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
   1313     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
   1314 
   1315     for (CodeGenTarget::inst_iterator I = Target.inst_begin(),
   1316            E = Target.inst_end(); I != E; ++I) {
   1317       const CodeGenInstruction &CGI = **I;
   1318 
   1319       // If the tblgen -match-prefix option is specified (for tblgen hackers),
   1320       // filter the set of instructions we consider.
   1321       if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix))
   1322         continue;
   1323 
   1324       // Ignore "codegen only" instructions.
   1325       if (CGI.TheDef->getValueAsBit("isCodeGenOnly"))
   1326         continue;
   1327 
   1328       OwningPtr<MatchableInfo> II(new MatchableInfo(CGI));
   1329 
   1330       II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
   1331 
   1332       // Ignore instructions which shouldn't be matched and diagnose invalid
   1333       // instruction definitions with an error.
   1334       if (!II->validate(CommentDelimiter, true))
   1335         continue;
   1336 
   1337       // Ignore "Int_*" and "*_Int" instructions, which are internal aliases.
   1338       //
   1339       // FIXME: This is a total hack.
   1340       if (StringRef(II->TheDef->getName()).startswith("Int_") ||
   1341           StringRef(II->TheDef->getName()).endswith("_Int"))
   1342         continue;
   1343 
   1344       Matchables.push_back(II.take());
   1345     }
   1346 
   1347     // Parse all of the InstAlias definitions and stick them in the list of
   1348     // matchables.
   1349     std::vector<Record*> AllInstAliases =
   1350       Records.getAllDerivedDefinitions("InstAlias");
   1351     for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) {
   1352       CodeGenInstAlias *Alias = new CodeGenInstAlias(AllInstAliases[i], Target);
   1353 
   1354       // If the tblgen -match-prefix option is specified (for tblgen hackers),
   1355       // filter the set of instruction aliases we consider, based on the target
   1356       // instruction.
   1357       if (!StringRef(Alias->ResultInst->TheDef->getName())
   1358             .startswith( MatchPrefix))
   1359         continue;
   1360 
   1361       OwningPtr<MatchableInfo> II(new MatchableInfo(Alias));
   1362 
   1363       II->initialize(*this, SingletonRegisters, AsmVariantNo, RegisterPrefix);
   1364 
   1365       // Validate the alias definitions.
   1366       II->validate(CommentDelimiter, false);
   1367 
   1368       Matchables.push_back(II.take());
   1369     }
   1370   }
   1371 
   1372   // Build info for the register classes.
   1373   buildRegisterClasses(SingletonRegisters);
   1374 
   1375   // Build info for the user defined assembly operand classes.
   1376   buildOperandClasses();
   1377 
   1378   // Build the information about matchables, now that we have fully formed
   1379   // classes.
   1380   std::vector<MatchableInfo*> NewMatchables;
   1381   for (std::vector<MatchableInfo*>::iterator it = Matchables.begin(),
   1382          ie = Matchables.end(); it != ie; ++it) {
   1383     MatchableInfo *II = *it;
   1384 
   1385     // Parse the tokens after the mnemonic.
   1386     // Note: buildInstructionOperandReference may insert new AsmOperands, so
   1387     // don't precompute the loop bound.
   1388     for (unsigned i = 0; i != II->AsmOperands.size(); ++i) {
   1389       MatchableInfo::AsmOperand &Op = II->AsmOperands[i];
   1390       StringRef Token = Op.Token;
   1391 
   1392       // Check for singleton registers.
   1393       if (Record *RegRecord = II->AsmOperands[i].SingletonReg) {
   1394         Op.Class = RegisterClasses[RegRecord];
   1395         assert(Op.Class && Op.Class->Registers.size() == 1 &&
   1396                "Unexpected class for singleton register");
   1397         continue;
   1398       }
   1399 
   1400       // Check for simple tokens.
   1401       if (Token[0] != '$') {
   1402         Op.Class = getTokenClass(Token);
   1403         continue;
   1404       }
   1405 
   1406       if (Token.size() > 1 && isdigit(Token[1])) {
   1407         Op.Class = getTokenClass(Token);
   1408         continue;
   1409       }
   1410 
   1411       // Otherwise this is an operand reference.
   1412       StringRef OperandName;
   1413       if (Token[1] == '{')
   1414         OperandName = Token.substr(2, Token.size() - 3);
   1415       else
   1416         OperandName = Token.substr(1);
   1417 
   1418       if (II->DefRec.is<const CodeGenInstruction*>())
   1419         buildInstructionOperandReference(II, OperandName, i);
   1420       else
   1421         buildAliasOperandReference(II, OperandName, Op);
   1422     }
   1423 
   1424     if (II->DefRec.is<const CodeGenInstruction*>()) {
   1425       II->buildInstructionResultOperands();
   1426       // If the instruction has a two-operand alias, build up the
   1427       // matchable here. We'll add them in bulk at the end to avoid
   1428       // confusing this loop.
   1429       std::string Constraint =
   1430         II->TheDef->getValueAsString("TwoOperandAliasConstraint");
   1431       if (Constraint != "") {
   1432         // Start by making a copy of the original matchable.
   1433         OwningPtr<MatchableInfo> AliasII(new MatchableInfo(*II));
   1434 
   1435         // Adjust it to be a two-operand alias.
   1436         AliasII->formTwoOperandAlias(Constraint);
   1437 
   1438         // Add the alias to the matchables list.
   1439         NewMatchables.push_back(AliasII.take());
   1440       }
   1441     } else
   1442       II->buildAliasResultOperands();
   1443   }
   1444   if (!NewMatchables.empty())
   1445     Matchables.insert(Matchables.end(), NewMatchables.begin(),
   1446                       NewMatchables.end());
   1447 
   1448   // Process token alias definitions and set up the associated superclass
   1449   // information.
   1450   std::vector<Record*> AllTokenAliases =
   1451     Records.getAllDerivedDefinitions("TokenAlias");
   1452   for (unsigned i = 0, e = AllTokenAliases.size(); i != e; ++i) {
   1453     Record *Rec = AllTokenAliases[i];
   1454     ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken"));
   1455     ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken"));
   1456     if (FromClass == ToClass)
   1457       PrintFatalError(Rec->getLoc(),
   1458                     "error: Destination value identical to source value.");
   1459     FromClass->SuperClasses.push_back(ToClass);
   1460   }
   1461 
   1462   // Reorder classes so that classes precede super classes.
   1463   std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>());
   1464 }
   1465 
   1466 /// buildInstructionOperandReference - The specified operand is a reference to a
   1467 /// named operand such as $src.  Resolve the Class and OperandInfo pointers.
   1468 void AsmMatcherInfo::
   1469 buildInstructionOperandReference(MatchableInfo *II,
   1470                                  StringRef OperandName,
   1471                                  unsigned AsmOpIdx) {
   1472   const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>();
   1473   const CGIOperandList &Operands = CGI.Operands;
   1474   MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx];
   1475 
   1476   // Map this token to an operand.
   1477   unsigned Idx;
   1478   if (!Operands.hasOperandNamed(OperandName, Idx))
   1479     PrintFatalError(II->TheDef->getLoc(), "error: unable to find operand: '" +
   1480                   OperandName.str() + "'");
   1481 
   1482   // If the instruction operand has multiple suboperands, but the parser
   1483   // match class for the asm operand is still the default "ImmAsmOperand",
   1484   // then handle each suboperand separately.
   1485   if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) {
   1486     Record *Rec = Operands[Idx].Rec;
   1487     assert(Rec->isSubClassOf("Operand") && "Unexpected operand!");
   1488     Record *MatchClass = Rec->getValueAsDef("ParserMatchClass");
   1489     if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") {
   1490       // Insert remaining suboperands after AsmOpIdx in II->AsmOperands.
   1491       StringRef Token = Op->Token; // save this in case Op gets moved
   1492       for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) {
   1493         MatchableInfo::AsmOperand NewAsmOp(Token);
   1494         NewAsmOp.SubOpIdx = SI;
   1495         II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp);
   1496       }
   1497       // Replace Op with first suboperand.
   1498       Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved
   1499       Op->SubOpIdx = 0;
   1500     }
   1501   }
   1502 
   1503   // Set up the operand class.
   1504   Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx);
   1505 
   1506   // If the named operand is tied, canonicalize it to the untied operand.
   1507   // For example, something like:
   1508   //   (outs GPR:$dst), (ins GPR:$src)
   1509   // with an asmstring of
   1510   //   "inc $src"
   1511   // we want to canonicalize to:
   1512   //   "inc $dst"
   1513   // so that we know how to provide the $dst operand when filling in the result.
   1514   int OITied = -1;
   1515   if (Operands[Idx].MINumOperands == 1)
   1516     OITied = Operands[Idx].getTiedRegister();
   1517   if (OITied != -1) {
   1518     // The tied operand index is an MIOperand index, find the operand that
   1519     // contains it.
   1520     std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied);
   1521     OperandName = Operands[Idx.first].Name;
   1522     Op->SubOpIdx = Idx.second;
   1523   }
   1524 
   1525   Op->SrcOpName = OperandName;
   1526 }
   1527 
   1528 /// buildAliasOperandReference - When parsing an operand reference out of the
   1529 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the
   1530 /// operand reference is by looking it up in the result pattern definition.
   1531 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II,
   1532                                                 StringRef OperandName,
   1533                                                 MatchableInfo::AsmOperand &Op) {
   1534   const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>();
   1535 
   1536   // Set up the operand class.
   1537   for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i)
   1538     if (CGA.ResultOperands[i].isRecord() &&
   1539         CGA.ResultOperands[i].getName() == OperandName) {
   1540       // It's safe to go with the first one we find, because CodeGenInstAlias
   1541       // validates that all operands with the same name have the same record.
   1542       Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second;
   1543       // Use the match class from the Alias definition, not the
   1544       // destination instruction, as we may have an immediate that's
   1545       // being munged by the match class.
   1546       Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(),
   1547                                  Op.SubOpIdx);
   1548       Op.SrcOpName = OperandName;
   1549       return;
   1550     }
   1551 
   1552   PrintFatalError(II->TheDef->getLoc(), "error: unable to find operand: '" +
   1553                 OperandName.str() + "'");
   1554 }
   1555 
   1556 void MatchableInfo::buildInstructionResultOperands() {
   1557   const CodeGenInstruction *ResultInst = getResultInst();
   1558 
   1559   // Loop over all operands of the result instruction, determining how to
   1560   // populate them.
   1561   for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
   1562     const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i];
   1563 
   1564     // If this is a tied operand, just copy from the previously handled operand.
   1565     int TiedOp = -1;
   1566     if (OpInfo.MINumOperands == 1)
   1567       TiedOp = OpInfo.getTiedRegister();
   1568     if (TiedOp != -1) {
   1569       ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
   1570       continue;
   1571     }
   1572 
   1573     // Find out what operand from the asmparser this MCInst operand comes from.
   1574     int SrcOperand = findAsmOperandNamed(OpInfo.Name);
   1575     if (OpInfo.Name.empty() || SrcOperand == -1) {
   1576       // This may happen for operands that are tied to a suboperand of a
   1577       // complex operand.  Simply use a dummy value here; nobody should
   1578       // use this operand slot.
   1579       // FIXME: The long term goal is for the MCOperand list to not contain
   1580       // tied operands at all.
   1581       ResOperands.push_back(ResOperand::getImmOp(0));
   1582       continue;
   1583     }
   1584 
   1585     // Check if the one AsmOperand populates the entire operand.
   1586     unsigned NumOperands = OpInfo.MINumOperands;
   1587     if (AsmOperands[SrcOperand].SubOpIdx == -1) {
   1588       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands));
   1589       continue;
   1590     }
   1591 
   1592     // Add a separate ResOperand for each suboperand.
   1593     for (unsigned AI = 0; AI < NumOperands; ++AI) {
   1594       assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI &&
   1595              AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name &&
   1596              "unexpected AsmOperands for suboperands");
   1597       ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1));
   1598     }
   1599   }
   1600 }
   1601 
   1602 void MatchableInfo::buildAliasResultOperands() {
   1603   const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>();
   1604   const CodeGenInstruction *ResultInst = getResultInst();
   1605 
   1606   // Loop over all operands of the result instruction, determining how to
   1607   // populate them.
   1608   unsigned AliasOpNo = 0;
   1609   unsigned LastOpNo = CGA.ResultInstOperandIndex.size();
   1610   for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) {
   1611     const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i];
   1612 
   1613     // If this is a tied operand, just copy from the previously handled operand.
   1614     int TiedOp = -1;
   1615     if (OpInfo->MINumOperands == 1)
   1616       TiedOp = OpInfo->getTiedRegister();
   1617     if (TiedOp != -1) {
   1618       ResOperands.push_back(ResOperand::getTiedOp(TiedOp));
   1619       continue;
   1620     }
   1621 
   1622     // Handle all the suboperands for this operand.
   1623     const std::string &OpName = OpInfo->Name;
   1624     for ( ; AliasOpNo <  LastOpNo &&
   1625             CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) {
   1626       int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second;
   1627 
   1628       // Find out what operand from the asmparser that this MCInst operand
   1629       // comes from.
   1630       switch (CGA.ResultOperands[AliasOpNo].Kind) {
   1631       case CodeGenInstAlias::ResultOperand::K_Record: {
   1632         StringRef Name = CGA.ResultOperands[AliasOpNo].getName();
   1633         int SrcOperand = findAsmOperand(Name, SubIdx);
   1634         if (SrcOperand == -1)
   1635           PrintFatalError(TheDef->getLoc(), "Instruction '" +
   1636                         TheDef->getName() + "' has operand '" + OpName +
   1637                         "' that doesn't appear in asm string!");
   1638         unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1);
   1639         ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand,
   1640                                                         NumOperands));
   1641         break;
   1642       }
   1643       case CodeGenInstAlias::ResultOperand::K_Imm: {
   1644         int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm();
   1645         ResOperands.push_back(ResOperand::getImmOp(ImmVal));
   1646         break;
   1647       }
   1648       case CodeGenInstAlias::ResultOperand::K_Reg: {
   1649         Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister();
   1650         ResOperands.push_back(ResOperand::getRegOp(Reg));
   1651         break;
   1652       }
   1653       }
   1654     }
   1655   }
   1656 }
   1657 
   1658 static unsigned getConverterOperandID(const std::string &Name,
   1659                                       SetVector<std::string> &Table,
   1660                                       bool &IsNew) {
   1661   IsNew = Table.insert(Name);
   1662 
   1663   unsigned ID = IsNew ? Table.size() - 1 :
   1664     std::find(Table.begin(), Table.end(), Name) - Table.begin();
   1665 
   1666   assert(ID < Table.size());
   1667 
   1668   return ID;
   1669 }
   1670 
   1671 
   1672 static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName,
   1673                              std::vector<MatchableInfo*> &Infos,
   1674                              raw_ostream &OS) {
   1675   SetVector<std::string> OperandConversionKinds;
   1676   SetVector<std::string> InstructionConversionKinds;
   1677   std::vector<std::vector<uint8_t> > ConversionTable;
   1678   size_t MaxRowLength = 2; // minimum is custom converter plus terminator.
   1679 
   1680   // TargetOperandClass - This is the target's operand class, like X86Operand.
   1681   std::string TargetOperandClass = Target.getName() + "Operand";
   1682 
   1683   // Write the convert function to a separate stream, so we can drop it after
   1684   // the enum. We'll build up the conversion handlers for the individual
   1685   // operand types opportunistically as we encounter them.
   1686   std::string ConvertFnBody;
   1687   raw_string_ostream CvtOS(ConvertFnBody);
   1688   // Start the unified conversion function.
   1689   CvtOS << "void " << Target.getName() << ClassName << "::\n"
   1690         << "convertToMCInst(unsigned Kind, MCInst &Inst, "
   1691         << "unsigned Opcode,\n"
   1692         << "                const SmallVectorImpl<MCParsedAsmOperand*"
   1693         << "> &Operands) {\n"
   1694         << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
   1695         << "  const uint8_t *Converter = ConversionTable[Kind];\n"
   1696         << "  Inst.setOpcode(Opcode);\n"
   1697         << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
   1698         << "    switch (*p) {\n"
   1699         << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
   1700         << "    case CVT_Reg:\n"
   1701         << "      static_cast<" << TargetOperandClass
   1702         << "*>(Operands[*(p + 1)])->addRegOperands(Inst, 1);\n"
   1703         << "      break;\n"
   1704         << "    case CVT_Tied:\n"
   1705         << "      Inst.addOperand(Inst.getOperand(*(p + 1)));\n"
   1706         << "      break;\n";
   1707 
   1708   std::string OperandFnBody;
   1709   raw_string_ostream OpOS(OperandFnBody);
   1710   // Start the operand number lookup function.
   1711   OpOS << "void " << Target.getName() << ClassName << "::\n"
   1712        << "convertToMapAndConstraints(unsigned Kind,\n";
   1713   OpOS.indent(27);
   1714   OpOS << "const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {\n"
   1715        << "  assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"
   1716        << "  unsigned NumMCOperands = 0;\n"
   1717        << "  const uint8_t *Converter = ConversionTable[Kind];\n"
   1718        << "  for (const uint8_t *p = Converter; *p; p+= 2) {\n"
   1719        << "    switch (*p) {\n"
   1720        << "    default: llvm_unreachable(\"invalid conversion entry!\");\n"
   1721        << "    case CVT_Reg:\n"
   1722        << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
   1723        << "      Operands[*(p + 1)]->setConstraint(\"r\");\n"
   1724        << "      ++NumMCOperands;\n"
   1725        << "      break;\n"
   1726        << "    case CVT_Tied:\n"
   1727        << "      ++NumMCOperands;\n"
   1728        << "      break;\n";
   1729 
   1730   // Pre-populate the operand conversion kinds with the standard always
   1731   // available entries.
   1732   OperandConversionKinds.insert("CVT_Done");
   1733   OperandConversionKinds.insert("CVT_Reg");
   1734   OperandConversionKinds.insert("CVT_Tied");
   1735   enum { CVT_Done, CVT_Reg, CVT_Tied };
   1736 
   1737   for (std::vector<MatchableInfo*>::const_iterator it = Infos.begin(),
   1738          ie = Infos.end(); it != ie; ++it) {
   1739     MatchableInfo &II = **it;
   1740 
   1741     // Check if we have a custom match function.
   1742     std::string AsmMatchConverter =
   1743       II.getResultInst()->TheDef->getValueAsString("AsmMatchConverter");
   1744     if (!AsmMatchConverter.empty()) {
   1745       std::string Signature = "ConvertCustom_" + AsmMatchConverter;
   1746       II.ConversionFnKind = Signature;
   1747 
   1748       // Check if we have already generated this signature.
   1749       if (!InstructionConversionKinds.insert(Signature))
   1750         continue;
   1751 
   1752       // Remember this converter for the kind enum.
   1753       unsigned KindID = OperandConversionKinds.size();
   1754       OperandConversionKinds.insert("CVT_" +
   1755                                     getEnumNameForToken(AsmMatchConverter));
   1756 
   1757       // Add the converter row for this instruction.
   1758       ConversionTable.push_back(std::vector<uint8_t>());
   1759       ConversionTable.back().push_back(KindID);
   1760       ConversionTable.back().push_back(CVT_Done);
   1761 
   1762       // Add the handler to the conversion driver function.
   1763       CvtOS << "    case CVT_"
   1764             << getEnumNameForToken(AsmMatchConverter) << ":\n"
   1765             << "      " << AsmMatchConverter << "(Inst, Operands);\n"
   1766             << "      break;\n";
   1767 
   1768       // FIXME: Handle the operand number lookup for custom match functions.
   1769       continue;
   1770     }
   1771 
   1772     // Build the conversion function signature.
   1773     std::string Signature = "Convert";
   1774 
   1775     std::vector<uint8_t> ConversionRow;
   1776 
   1777     // Compute the convert enum and the case body.
   1778     MaxRowLength = std::max(MaxRowLength, II.ResOperands.size()*2 + 1 );
   1779 
   1780     for (unsigned i = 0, e = II.ResOperands.size(); i != e; ++i) {
   1781       const MatchableInfo::ResOperand &OpInfo = II.ResOperands[i];
   1782 
   1783       // Generate code to populate each result operand.
   1784       switch (OpInfo.Kind) {
   1785       case MatchableInfo::ResOperand::RenderAsmOperand: {
   1786         // This comes from something we parsed.
   1787         MatchableInfo::AsmOperand &Op = II.AsmOperands[OpInfo.AsmOperandNum];
   1788 
   1789         // Registers are always converted the same, don't duplicate the
   1790         // conversion function based on them.
   1791         Signature += "__";
   1792         std::string Class;
   1793         Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName;
   1794         Signature += Class;
   1795         Signature += utostr(OpInfo.MINumOperands);
   1796         Signature += "_" + itostr(OpInfo.AsmOperandNum);
   1797 
   1798         // Add the conversion kind, if necessary, and get the associated ID
   1799         // the index of its entry in the vector).
   1800         std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" :
   1801                                      Op.Class->RenderMethod);
   1802         Name = getEnumNameForToken(Name);
   1803 
   1804         bool IsNewConverter = false;
   1805         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
   1806                                             IsNewConverter);
   1807 
   1808         // Add the operand entry to the instruction kind conversion row.
   1809         ConversionRow.push_back(ID);
   1810         ConversionRow.push_back(OpInfo.AsmOperandNum + 1);
   1811 
   1812         if (!IsNewConverter)
   1813           break;
   1814 
   1815         // This is a new operand kind. Add a handler for it to the
   1816         // converter driver.
   1817         CvtOS << "    case " << Name << ":\n"
   1818               << "      static_cast<" << TargetOperandClass
   1819               << "*>(Operands[*(p + 1)])->"
   1820               << Op.Class->RenderMethod << "(Inst, " << OpInfo.MINumOperands
   1821               << ");\n"
   1822               << "      break;\n";
   1823 
   1824         // Add a handler for the operand number lookup.
   1825         OpOS << "    case " << Name << ":\n"
   1826              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n";
   1827 
   1828         if (Op.Class->isRegisterClass())
   1829           OpOS << "      Operands[*(p + 1)]->setConstraint(\"r\");\n";
   1830         else
   1831           OpOS << "      Operands[*(p + 1)]->setConstraint(\"m\");\n";
   1832         OpOS << "      NumMCOperands += " << OpInfo.MINumOperands << ";\n"
   1833              << "      break;\n";
   1834         break;
   1835       }
   1836       case MatchableInfo::ResOperand::TiedOperand: {
   1837         // If this operand is tied to a previous one, just copy the MCInst
   1838         // operand from the earlier one.We can only tie single MCOperand values.
   1839         assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand");
   1840         unsigned TiedOp = OpInfo.TiedOperandNum;
   1841         assert(i > TiedOp && "Tied operand precedes its target!");
   1842         Signature += "__Tie" + utostr(TiedOp);
   1843         ConversionRow.push_back(CVT_Tied);
   1844         ConversionRow.push_back(TiedOp);
   1845         break;
   1846       }
   1847       case MatchableInfo::ResOperand::ImmOperand: {
   1848         int64_t Val = OpInfo.ImmVal;
   1849         std::string Ty = "imm_" + itostr(Val);
   1850         Signature += "__" + Ty;
   1851 
   1852         std::string Name = "CVT_" + Ty;
   1853         bool IsNewConverter = false;
   1854         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
   1855                                             IsNewConverter);
   1856         // Add the operand entry to the instruction kind conversion row.
   1857         ConversionRow.push_back(ID);
   1858         ConversionRow.push_back(0);
   1859 
   1860         if (!IsNewConverter)
   1861           break;
   1862 
   1863         CvtOS << "    case " << Name << ":\n"
   1864               << "      Inst.addOperand(MCOperand::CreateImm(" << Val << "));\n"
   1865               << "      break;\n";
   1866 
   1867         OpOS << "    case " << Name << ":\n"
   1868              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
   1869              << "      Operands[*(p + 1)]->setConstraint(\"\");\n"
   1870              << "      ++NumMCOperands;\n"
   1871              << "      break;\n";
   1872         break;
   1873       }
   1874       case MatchableInfo::ResOperand::RegOperand: {
   1875         std::string Reg, Name;
   1876         if (OpInfo.Register == 0) {
   1877           Name = "reg0";
   1878           Reg = "0";
   1879         } else {
   1880           Reg = getQualifiedName(OpInfo.Register);
   1881           Name = "reg" + OpInfo.Register->getName();
   1882         }
   1883         Signature += "__" + Name;
   1884         Name = "CVT_" + Name;
   1885         bool IsNewConverter = false;
   1886         unsigned ID = getConverterOperandID(Name, OperandConversionKinds,
   1887                                             IsNewConverter);
   1888         // Add the operand entry to the instruction kind conversion row.
   1889         ConversionRow.push_back(ID);
   1890         ConversionRow.push_back(0);
   1891 
   1892         if (!IsNewConverter)
   1893           break;
   1894         CvtOS << "    case " << Name << ":\n"
   1895               << "      Inst.addOperand(MCOperand::CreateReg(" << Reg << "));\n"
   1896               << "      break;\n";
   1897 
   1898         OpOS << "    case " << Name << ":\n"
   1899              << "      Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"
   1900              << "      Operands[*(p + 1)]->setConstraint(\"m\");\n"
   1901              << "      ++NumMCOperands;\n"
   1902              << "      break;\n";
   1903       }
   1904       }
   1905     }
   1906 
   1907     // If there were no operands, add to the signature to that effect
   1908     if (Signature == "Convert")
   1909       Signature += "_NoOperands";
   1910 
   1911     II.ConversionFnKind = Signature;
   1912 
   1913     // Save the signature. If we already have it, don't add a new row
   1914     // to the table.
   1915     if (!InstructionConversionKinds.insert(Signature))
   1916       continue;
   1917 
   1918     // Add the row to the table.
   1919     ConversionTable.push_back(ConversionRow);
   1920   }
   1921 
   1922   // Finish up the converter driver function.
   1923   CvtOS << "    }\n  }\n}\n\n";
   1924 
   1925   // Finish up the operand number lookup function.
   1926   OpOS << "    }\n  }\n}\n\n";
   1927 
   1928   OS << "namespace {\n";
   1929 
   1930   // Output the operand conversion kind enum.
   1931   OS << "enum OperatorConversionKind {\n";
   1932   for (unsigned i = 0, e = OperandConversionKinds.size(); i != e; ++i)
   1933     OS << "  " << OperandConversionKinds[i] << ",\n";
   1934   OS << "  CVT_NUM_CONVERTERS\n";
   1935   OS << "};\n\n";
   1936 
   1937   // Output the instruction conversion kind enum.
   1938   OS << "enum InstructionConversionKind {\n";
   1939   for (SetVector<std::string>::const_iterator
   1940          i = InstructionConversionKinds.begin(),
   1941          e = InstructionConversionKinds.end(); i != e; ++i)
   1942     OS << "  " << *i << ",\n";
   1943   OS << "  CVT_NUM_SIGNATURES\n";
   1944   OS << "};\n\n";
   1945 
   1946 
   1947   OS << "} // end anonymous namespace\n\n";
   1948 
   1949   // Output the conversion table.
   1950   OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES]["
   1951      << MaxRowLength << "] = {\n";
   1952 
   1953   for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) {
   1954     assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!");
   1955     OS << "  // " << InstructionConversionKinds[Row] << "\n";
   1956     OS << "  { ";
   1957     for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2)
   1958       OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "
   1959          << (unsigned)(ConversionTable[Row][i + 1]) << ", ";
   1960     OS << "CVT_Done },\n";
   1961   }
   1962 
   1963   OS << "};\n\n";
   1964 
   1965   // Spit out the conversion driver function.
   1966   OS << CvtOS.str();
   1967 
   1968   // Spit out the operand number lookup function.
   1969   OS << OpOS.str();
   1970 }
   1971 
   1972 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds.
   1973 static void emitMatchClassEnumeration(CodeGenTarget &Target,
   1974                                       std::vector<ClassInfo*> &Infos,
   1975                                       raw_ostream &OS) {
   1976   OS << "namespace {\n\n";
   1977 
   1978   OS << "/// MatchClassKind - The kinds of classes which participate in\n"
   1979      << "/// instruction matching.\n";
   1980   OS << "enum MatchClassKind {\n";
   1981   OS << "  InvalidMatchClass = 0,\n";
   1982   for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
   1983          ie = Infos.end(); it != ie; ++it) {
   1984     ClassInfo &CI = **it;
   1985     OS << "  " << CI.Name << ", // ";
   1986     if (CI.Kind == ClassInfo::Token) {
   1987       OS << "'" << CI.ValueName << "'\n";
   1988     } else if (CI.isRegisterClass()) {
   1989       if (!CI.ValueName.empty())
   1990         OS << "register class '" << CI.ValueName << "'\n";
   1991       else
   1992         OS << "derived register class\n";
   1993     } else {
   1994       OS << "user defined class '" << CI.ValueName << "'\n";
   1995     }
   1996   }
   1997   OS << "  NumMatchClassKinds\n";
   1998   OS << "};\n\n";
   1999 
   2000   OS << "}\n\n";
   2001 }
   2002 
   2003 /// emitValidateOperandClass - Emit the function to validate an operand class.
   2004 static void emitValidateOperandClass(AsmMatcherInfo &Info,
   2005                                      raw_ostream &OS) {
   2006   OS << "static unsigned validateOperandClass(MCParsedAsmOperand *GOp, "
   2007      << "MatchClassKind Kind) {\n";
   2008   OS << "  " << Info.Target.getName() << "Operand &Operand = *("
   2009      << Info.Target.getName() << "Operand*)GOp;\n";
   2010 
   2011   // The InvalidMatchClass is not to match any operand.
   2012   OS << "  if (Kind == InvalidMatchClass)\n";
   2013   OS << "    return MCTargetAsmParser::Match_InvalidOperand;\n\n";
   2014 
   2015   // Check for Token operands first.
   2016   // FIXME: Use a more specific diagnostic type.
   2017   OS << "  if (Operand.isToken())\n";
   2018   OS << "    return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n"
   2019      << "             MCTargetAsmParser::Match_Success :\n"
   2020      << "             MCTargetAsmParser::Match_InvalidOperand;\n\n";
   2021 
   2022   // Check the user classes. We don't care what order since we're only
   2023   // actually matching against one of them.
   2024   for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(),
   2025          ie = Info.Classes.end(); it != ie; ++it) {
   2026     ClassInfo &CI = **it;
   2027 
   2028     if (!CI.isUserClass())
   2029       continue;
   2030 
   2031     OS << "  // '" << CI.ClassName << "' class\n";
   2032     OS << "  if (Kind == " << CI.Name << ") {\n";
   2033     OS << "    if (Operand." << CI.PredicateMethod << "())\n";
   2034     OS << "      return MCTargetAsmParser::Match_Success;\n";
   2035     if (!CI.DiagnosticType.empty())
   2036       OS << "    return " << Info.Target.getName() << "AsmParser::Match_"
   2037          << CI.DiagnosticType << ";\n";
   2038     OS << "  }\n\n";
   2039   }
   2040 
   2041   // Check for register operands, including sub-classes.
   2042   OS << "  if (Operand.isReg()) {\n";
   2043   OS << "    MatchClassKind OpKind;\n";
   2044   OS << "    switch (Operand.getReg()) {\n";
   2045   OS << "    default: OpKind = InvalidMatchClass; break;\n";
   2046   for (AsmMatcherInfo::RegisterClassesTy::iterator
   2047          it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end();
   2048        it != ie; ++it)
   2049     OS << "    case " << Info.Target.getName() << "::"
   2050        << it->first->getName() << ": OpKind = " << it->second->Name
   2051        << "; break;\n";
   2052   OS << "    }\n";
   2053   OS << "    return isSubclass(OpKind, Kind) ? "
   2054      << "MCTargetAsmParser::Match_Success :\n                             "
   2055      << "         MCTargetAsmParser::Match_InvalidOperand;\n  }\n\n";
   2056 
   2057   // Generic fallthrough match failure case for operands that don't have
   2058   // specialized diagnostic types.
   2059   OS << "  return MCTargetAsmParser::Match_InvalidOperand;\n";
   2060   OS << "}\n\n";
   2061 }
   2062 
   2063 /// emitIsSubclass - Emit the subclass predicate function.
   2064 static void emitIsSubclass(CodeGenTarget &Target,
   2065                            std::vector<ClassInfo*> &Infos,
   2066                            raw_ostream &OS) {
   2067   OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n";
   2068   OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n";
   2069   OS << "  if (A == B)\n";
   2070   OS << "    return true;\n\n";
   2071 
   2072   std::string OStr;
   2073   raw_string_ostream SS(OStr);
   2074   unsigned Count = 0;
   2075   SS << "  switch (A) {\n";
   2076   SS << "  default:\n";
   2077   SS << "    return false;\n";
   2078   for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
   2079          ie = Infos.end(); it != ie; ++it) {
   2080     ClassInfo &A = **it;
   2081 
   2082     std::vector<StringRef> SuperClasses;
   2083     for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
   2084          ie = Infos.end(); it != ie; ++it) {
   2085       ClassInfo &B = **it;
   2086 
   2087       if (&A != &B && A.isSubsetOf(B))
   2088         SuperClasses.push_back(B.Name);
   2089     }
   2090 
   2091     if (SuperClasses.empty())
   2092       continue;
   2093     ++Count;
   2094 
   2095     SS << "\n  case " << A.Name << ":\n";
   2096 
   2097     if (SuperClasses.size() == 1) {
   2098       SS << "    return B == " << SuperClasses.back().str() << ";\n";
   2099       continue;
   2100     }
   2101 
   2102     if (!SuperClasses.empty()) {
   2103       SS << "    switch (B) {\n";
   2104       SS << "    default: return false;\n";
   2105       for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i)
   2106         SS << "    case " << SuperClasses[i].str() << ": return true;\n";
   2107       SS << "    }\n";
   2108     } else {
   2109       // No case statement to emit
   2110       SS << "    return false;\n";
   2111     }
   2112   }
   2113   SS << "  }\n";
   2114 
   2115   // If there were case statements emitted into the string stream, write them
   2116   // to the output stream, otherwise write the default.
   2117   if (Count)
   2118     OS << SS.str();
   2119   else
   2120     OS << "  return false;\n";
   2121 
   2122   OS << "}\n\n";
   2123 }
   2124 
   2125 /// emitMatchTokenString - Emit the function to match a token string to the
   2126 /// appropriate match class value.
   2127 static void emitMatchTokenString(CodeGenTarget &Target,
   2128                                  std::vector<ClassInfo*> &Infos,
   2129                                  raw_ostream &OS) {
   2130   // Construct the match list.
   2131   std::vector<StringMatcher::StringPair> Matches;
   2132   for (std::vector<ClassInfo*>::iterator it = Infos.begin(),
   2133          ie = Infos.end(); it != ie; ++it) {
   2134     ClassInfo &CI = **it;
   2135 
   2136     if (CI.Kind == ClassInfo::Token)
   2137       Matches.push_back(StringMatcher::StringPair(CI.ValueName,
   2138                                                   "return " + CI.Name + ";"));
   2139   }
   2140 
   2141   OS << "static MatchClassKind matchTokenString(StringRef Name) {\n";
   2142 
   2143   StringMatcher("Name", Matches, OS).Emit();
   2144 
   2145   OS << "  return InvalidMatchClass;\n";
   2146   OS << "}\n\n";
   2147 }
   2148 
   2149 /// emitMatchRegisterName - Emit the function to match a string to the target
   2150 /// specific register enum.
   2151 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser,
   2152                                   raw_ostream &OS) {
   2153   // Construct the match list.
   2154   std::vector<StringMatcher::StringPair> Matches;
   2155   const std::vector<CodeGenRegister*> &Regs =
   2156     Target.getRegBank().getRegisters();
   2157   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
   2158     const CodeGenRegister *Reg = Regs[i];
   2159     if (Reg->TheDef->getValueAsString("AsmName").empty())
   2160       continue;
   2161 
   2162     Matches.push_back(StringMatcher::StringPair(
   2163                                      Reg->TheDef->getValueAsString("AsmName"),
   2164                                      "return " + utostr(Reg->EnumValue) + ";"));
   2165   }
   2166 
   2167   OS << "static unsigned MatchRegisterName(StringRef Name) {\n";
   2168 
   2169   StringMatcher("Name", Matches, OS).Emit();
   2170 
   2171   OS << "  return 0;\n";
   2172   OS << "}\n\n";
   2173 }
   2174 
   2175 /// emitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag
   2176 /// definitions.
   2177 static void emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info,
   2178                                                 raw_ostream &OS) {
   2179   OS << "// Flags for subtarget features that participate in "
   2180      << "instruction matching.\n";
   2181   OS << "enum SubtargetFeatureFlag {\n";
   2182   for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
   2183          it = Info.SubtargetFeatures.begin(),
   2184          ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
   2185     SubtargetFeatureInfo &SFI = *it->second;
   2186     OS << "  " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n";
   2187   }
   2188   OS << "  Feature_None = 0\n";
   2189   OS << "};\n\n";
   2190 }
   2191 
   2192 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types.
   2193 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) {
   2194   // Get the set of diagnostic types from all of the operand classes.
   2195   std::set<StringRef> Types;
   2196   for (std::map<Record*, ClassInfo*>::const_iterator
   2197        I = Info.AsmOperandClasses.begin(),
   2198        E = Info.AsmOperandClasses.end(); I != E; ++I) {
   2199     if (!I->second->DiagnosticType.empty())
   2200       Types.insert(I->second->DiagnosticType);
   2201   }
   2202 
   2203   if (Types.empty()) return;
   2204 
   2205   // Now emit the enum entries.
   2206   for (std::set<StringRef>::const_iterator I = Types.begin(), E = Types.end();
   2207        I != E; ++I)
   2208     OS << "  Match_" << *I << ",\n";
   2209   OS << "  END_OPERAND_DIAGNOSTIC_TYPES\n";
   2210 }
   2211 
   2212 /// emitGetSubtargetFeatureName - Emit the helper function to get the
   2213 /// user-level name for a subtarget feature.
   2214 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) {
   2215   OS << "// User-level names for subtarget features that participate in\n"
   2216      << "// instruction matching.\n"
   2217      << "static const char *getSubtargetFeatureName(unsigned Val) {\n";
   2218   if (!Info.SubtargetFeatures.empty()) {
   2219     OS << "  switch(Val) {\n";
   2220     for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
   2221            it = Info.SubtargetFeatures.begin(),
   2222            ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
   2223       SubtargetFeatureInfo &SFI = *it->second;
   2224       // FIXME: Totally just a placeholder name to get the algorithm working.
   2225       OS << "  case " << SFI.getEnumName() << ": return \""
   2226          << SFI.TheDef->getValueAsString("PredicateName") << "\";\n";
   2227     }
   2228     OS << "  default: return \"(unknown)\";\n";
   2229     OS << "  }\n";
   2230   } else {
   2231     // Nothing to emit, so skip the switch
   2232     OS << "  return \"(unknown)\";\n";
   2233   }
   2234   OS << "}\n\n";
   2235 }
   2236 
   2237 /// emitComputeAvailableFeatures - Emit the function to compute the list of
   2238 /// available features given a subtarget.
   2239 static void emitComputeAvailableFeatures(AsmMatcherInfo &Info,
   2240                                          raw_ostream &OS) {
   2241   std::string ClassName =
   2242     Info.AsmParser->getValueAsString("AsmParserClassName");
   2243 
   2244   OS << "unsigned " << Info.Target.getName() << ClassName << "::\n"
   2245      << "ComputeAvailableFeatures(uint64_t FB) const {\n";
   2246   OS << "  unsigned Features = 0;\n";
   2247   for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator
   2248          it = Info.SubtargetFeatures.begin(),
   2249          ie = Info.SubtargetFeatures.end(); it != ie; ++it) {
   2250     SubtargetFeatureInfo &SFI = *it->second;
   2251 
   2252     OS << "  if (";
   2253     std::string CondStorage =
   2254       SFI.TheDef->getValueAsString("AssemblerCondString");
   2255     StringRef Conds = CondStorage;
   2256     std::pair<StringRef,StringRef> Comma = Conds.split(',');
   2257     bool First = true;
   2258     do {
   2259       if (!First)
   2260         OS << " && ";
   2261 
   2262       bool Neg = false;
   2263       StringRef Cond = Comma.first;
   2264       if (Cond[0] == '!') {
   2265         Neg = true;
   2266         Cond = Cond.substr(1);
   2267       }
   2268 
   2269       OS << "((FB & " << Info.Target.getName() << "::" << Cond << ")";
   2270       if (Neg)
   2271         OS << " == 0";
   2272       else
   2273         OS << " != 0";
   2274       OS << ")";
   2275 
   2276       if (Comma.second.empty())
   2277         break;
   2278 
   2279       First = false;
   2280       Comma = Comma.second.split(',');
   2281     } while (true);
   2282 
   2283     OS << ")\n";
   2284     OS << "    Features |= " << SFI.getEnumName() << ";\n";
   2285   }
   2286   OS << "  return Features;\n";
   2287   OS << "}\n\n";
   2288 }
   2289 
   2290 static std::string GetAliasRequiredFeatures(Record *R,
   2291                                             const AsmMatcherInfo &Info) {
   2292   std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates");
   2293   std::string Result;
   2294   unsigned NumFeatures = 0;
   2295   for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) {
   2296     SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]);
   2297 
   2298     if (F == 0)
   2299       PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() +
   2300                     "' is not marked as an AssemblerPredicate!");
   2301 
   2302     if (NumFeatures)
   2303       Result += '|';
   2304 
   2305     Result += F->getEnumName();
   2306     ++NumFeatures;
   2307   }
   2308 
   2309   if (NumFeatures > 1)
   2310     Result = '(' + Result + ')';
   2311   return Result;
   2312 }
   2313 
   2314 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info,
   2315                                      std::vector<Record*> &Aliases,
   2316                                      unsigned Indent = 0,
   2317                                   StringRef AsmParserVariantName = StringRef()){
   2318   // Keep track of all the aliases from a mnemonic.  Use an std::map so that the
   2319   // iteration order of the map is stable.
   2320   std::map<std::string, std::vector<Record*> > AliasesFromMnemonic;
   2321 
   2322   for (unsigned i = 0, e = Aliases.size(); i != e; ++i) {
   2323     Record *R = Aliases[i];
   2324     // FIXME: Allow AssemblerVariantName to be a comma separated list.
   2325     std::string AsmVariantName = R->getValueAsString("AsmVariantName");
   2326     if (AsmVariantName != AsmParserVariantName)
   2327       continue;
   2328     AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R);
   2329   }
   2330   if (AliasesFromMnemonic.empty())
   2331     return;
   2332 
   2333   // Process each alias a "from" mnemonic at a time, building the code executed
   2334   // by the string remapper.
   2335   std::vector<StringMatcher::StringPair> Cases;
   2336   for (std::map<std::string, std::vector<Record*> >::iterator
   2337        I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end();
   2338        I != E; ++I) {
   2339     const std::vector<Record*> &ToVec = I->second;
   2340 
   2341     // Loop through each alias and emit code that handles each case.  If there
   2342     // are two instructions without predicates, emit an error.  If there is one,
   2343     // emit it last.
   2344     std::string MatchCode;
   2345     int AliasWithNoPredicate = -1;
   2346 
   2347     for (unsigned i = 0, e = ToVec.size(); i != e; ++i) {
   2348       Record *R = ToVec[i];
   2349       std::string FeatureMask = GetAliasRequiredFeatures(R, Info);
   2350 
   2351       // If this unconditionally matches, remember it for later and diagnose
   2352       // duplicates.
   2353       if (FeatureMask.empty()) {
   2354         if (AliasWithNoPredicate != -1) {
   2355           // We can't have two aliases from the same mnemonic with no predicate.
   2356           PrintError(ToVec[AliasWithNoPredicate]->getLoc(),
   2357                      "two MnemonicAliases with the same 'from' mnemonic!");
   2358           PrintFatalError(R->getLoc(), "this is the other MnemonicAlias.");
   2359         }
   2360 
   2361         AliasWithNoPredicate = i;
   2362         continue;
   2363       }
   2364       if (R->getValueAsString("ToMnemonic") == I->first)
   2365         PrintFatalError(R->getLoc(), "MnemonicAlias to the same string");
   2366 
   2367       if (!MatchCode.empty())
   2368         MatchCode += "else ";
   2369       MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n";
   2370       MatchCode += "  Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n";
   2371     }
   2372 
   2373     if (AliasWithNoPredicate != -1) {
   2374       Record *R = ToVec[AliasWithNoPredicate];
   2375       if (!MatchCode.empty())
   2376         MatchCode += "else\n  ";
   2377       MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n";
   2378     }
   2379 
   2380     MatchCode += "return;";
   2381 
   2382     Cases.push_back(std::make_pair(I->first, MatchCode));
   2383   }
   2384   StringMatcher("Mnemonic", Cases, OS).Emit(Indent);
   2385 }
   2386 
   2387 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions,
   2388 /// emit a function for them and return true, otherwise return false.
   2389 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info,
   2390                                 CodeGenTarget &Target) {
   2391   // Ignore aliases when match-prefix is set.
   2392   if (!MatchPrefix.empty())
   2393     return false;
   2394 
   2395   std::vector<Record*> Aliases =
   2396     Info.getRecords().getAllDerivedDefinitions("MnemonicAlias");
   2397   if (Aliases.empty()) return false;
   2398 
   2399   OS << "static void applyMnemonicAliases(StringRef &Mnemonic, "
   2400     "unsigned Features, unsigned VariantID) {\n";
   2401   OS << "  switch (VariantID) {\n";
   2402   unsigned VariantCount = Target.getAsmParserVariantCount();
   2403   for (unsigned VC = 0; VC != VariantCount; ++VC) {
   2404     Record *AsmVariant = Target.getAsmParserVariant(VC);
   2405     int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant");
   2406     std::string AsmParserVariantName = AsmVariant->getValueAsString("Name");
   2407     OS << "    case " << AsmParserVariantNo << ":\n";
   2408     emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2,
   2409                              AsmParserVariantName);
   2410     OS << "    break;\n";
   2411   }
   2412   OS << "  }\n";
   2413 
   2414   // Emit aliases that apply to all variants.
   2415   emitMnemonicAliasVariant(OS, Info, Aliases);
   2416 
   2417   OS << "}\n\n";
   2418 
   2419   return true;
   2420 }
   2421 
   2422 static const char *getMinimalTypeForRange(uint64_t Range) {
   2423   assert(Range < 0xFFFFFFFFULL && "Enum too large");
   2424   if (Range > 0xFFFF)
   2425     return "uint32_t";
   2426   if (Range > 0xFF)
   2427     return "uint16_t";
   2428   return "uint8_t";
   2429 }
   2430 
   2431 static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target,
   2432                               const AsmMatcherInfo &Info, StringRef ClassName,
   2433                               StringToOffsetTable &StringTable,
   2434                               unsigned MaxMnemonicIndex) {
   2435   unsigned MaxMask = 0;
   2436   for (std::vector<OperandMatchEntry>::const_iterator it =
   2437        Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
   2438        it != ie; ++it) {
   2439     MaxMask |= it->OperandMask;
   2440   }
   2441 
   2442   // Emit the static custom operand parsing table;
   2443   OS << "namespace {\n";
   2444   OS << "  struct OperandMatchEntry {\n";
   2445   OS << "    " << getMinimalTypeForRange(1ULL << Info.SubtargetFeatures.size())
   2446                << " RequiredFeatures;\n";
   2447   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
   2448                << " Mnemonic;\n";
   2449   OS << "    " << getMinimalTypeForRange(Info.Classes.size())
   2450                << " Class;\n";
   2451   OS << "    " << getMinimalTypeForRange(MaxMask)
   2452                << " OperandMask;\n\n";
   2453   OS << "    StringRef getMnemonic() const {\n";
   2454   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
   2455   OS << "                       MnemonicTable[Mnemonic]);\n";
   2456   OS << "    }\n";
   2457   OS << "  };\n\n";
   2458 
   2459   OS << "  // Predicate for searching for an opcode.\n";
   2460   OS << "  struct LessOpcodeOperand {\n";
   2461   OS << "    bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n";
   2462   OS << "      return LHS.getMnemonic()  < RHS;\n";
   2463   OS << "    }\n";
   2464   OS << "    bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n";
   2465   OS << "      return LHS < RHS.getMnemonic();\n";
   2466   OS << "    }\n";
   2467   OS << "    bool operator()(const OperandMatchEntry &LHS,";
   2468   OS << " const OperandMatchEntry &RHS) {\n";
   2469   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
   2470   OS << "    }\n";
   2471   OS << "  };\n";
   2472 
   2473   OS << "} // end anonymous namespace.\n\n";
   2474 
   2475   OS << "static const OperandMatchEntry OperandMatchTable["
   2476      << Info.OperandMatchInfo.size() << "] = {\n";
   2477 
   2478   OS << "  /* Operand List Mask, Mnemonic, Operand Class, Features */\n";
   2479   for (std::vector<OperandMatchEntry>::const_iterator it =
   2480        Info.OperandMatchInfo.begin(), ie = Info.OperandMatchInfo.end();
   2481        it != ie; ++it) {
   2482     const OperandMatchEntry &OMI = *it;
   2483     const MatchableInfo &II = *OMI.MI;
   2484 
   2485     OS << "  { ";
   2486 
   2487     // Write the required features mask.
   2488     if (!II.RequiredFeatures.empty()) {
   2489       for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
   2490         if (i) OS << "|";
   2491         OS << II.RequiredFeatures[i]->getEnumName();
   2492       }
   2493     } else
   2494       OS << "0";
   2495 
   2496     // Store a pascal-style length byte in the mnemonic.
   2497     std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
   2498     OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
   2499        << " /* " << II.Mnemonic << " */, ";
   2500 
   2501     OS << OMI.CI->Name;
   2502 
   2503     OS << ", " << OMI.OperandMask;
   2504     OS << " /* ";
   2505     bool printComma = false;
   2506     for (int i = 0, e = 31; i !=e; ++i)
   2507       if (OMI.OperandMask & (1 << i)) {
   2508         if (printComma)
   2509           OS << ", ";
   2510         OS << i;
   2511         printComma = true;
   2512       }
   2513     OS << " */";
   2514 
   2515     OS << " },\n";
   2516   }
   2517   OS << "};\n\n";
   2518 
   2519   // Emit the operand class switch to call the correct custom parser for
   2520   // the found operand class.
   2521   OS << Target.getName() << ClassName << "::OperandMatchResultTy "
   2522      << Target.getName() << ClassName << "::\n"
   2523      << "tryCustomParseOperand(SmallVectorImpl<MCParsedAsmOperand*>"
   2524      << " &Operands,\n                      unsigned MCK) {\n\n"
   2525      << "  switch(MCK) {\n";
   2526 
   2527   for (std::vector<ClassInfo*>::const_iterator it = Info.Classes.begin(),
   2528        ie = Info.Classes.end(); it != ie; ++it) {
   2529     ClassInfo *CI = *it;
   2530     if (CI->ParserMethod.empty())
   2531       continue;
   2532     OS << "  case " << CI->Name << ":\n"
   2533        << "    return " << CI->ParserMethod << "(Operands);\n";
   2534   }
   2535 
   2536   OS << "  default:\n";
   2537   OS << "    return MatchOperand_NoMatch;\n";
   2538   OS << "  }\n";
   2539   OS << "  return MatchOperand_NoMatch;\n";
   2540   OS << "}\n\n";
   2541 
   2542   // Emit the static custom operand parser. This code is very similar with
   2543   // the other matcher. Also use MatchResultTy here just in case we go for
   2544   // a better error handling.
   2545   OS << Target.getName() << ClassName << "::OperandMatchResultTy "
   2546      << Target.getName() << ClassName << "::\n"
   2547      << "MatchOperandParserImpl(SmallVectorImpl<MCParsedAsmOperand*>"
   2548      << " &Operands,\n                       StringRef Mnemonic) {\n";
   2549 
   2550   // Emit code to get the available features.
   2551   OS << "  // Get the current feature set.\n";
   2552   OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
   2553 
   2554   OS << "  // Get the next operand index.\n";
   2555   OS << "  unsigned NextOpNum = Operands.size()-1;\n";
   2556 
   2557   // Emit code to search the table.
   2558   OS << "  // Search the table.\n";
   2559   OS << "  std::pair<const OperandMatchEntry*, const OperandMatchEntry*>";
   2560   OS << " MnemonicRange =\n";
   2561   OS << "    std::equal_range(OperandMatchTable, OperandMatchTable+"
   2562      << Info.OperandMatchInfo.size() << ", Mnemonic,\n"
   2563      << "                     LessOpcodeOperand());\n\n";
   2564 
   2565   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
   2566   OS << "    return MatchOperand_NoMatch;\n\n";
   2567 
   2568   OS << "  for (const OperandMatchEntry *it = MnemonicRange.first,\n"
   2569      << "       *ie = MnemonicRange.second; it != ie; ++it) {\n";
   2570 
   2571   OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
   2572   OS << "    assert(Mnemonic == it->getMnemonic());\n\n";
   2573 
   2574   // Emit check that the required features are available.
   2575   OS << "    // check if the available features match\n";
   2576   OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
   2577      << "!= it->RequiredFeatures) {\n";
   2578   OS << "      continue;\n";
   2579   OS << "    }\n\n";
   2580 
   2581   // Emit check to ensure the operand number matches.
   2582   OS << "    // check if the operand in question has a custom parser.\n";
   2583   OS << "    if (!(it->OperandMask & (1 << NextOpNum)))\n";
   2584   OS << "      continue;\n\n";
   2585 
   2586   // Emit call to the custom parser method
   2587   OS << "    // call custom parse method to handle the operand\n";
   2588   OS << "    OperandMatchResultTy Result = ";
   2589   OS << "tryCustomParseOperand(Operands, it->Class);\n";
   2590   OS << "    if (Result != MatchOperand_NoMatch)\n";
   2591   OS << "      return Result;\n";
   2592   OS << "  }\n\n";
   2593 
   2594   OS << "  // Okay, we had no match.\n";
   2595   OS << "  return MatchOperand_NoMatch;\n";
   2596   OS << "}\n\n";
   2597 }
   2598 
   2599 void AsmMatcherEmitter::run(raw_ostream &OS) {
   2600   CodeGenTarget Target(Records);
   2601   Record *AsmParser = Target.getAsmParser();
   2602   std::string ClassName = AsmParser->getValueAsString("AsmParserClassName");
   2603 
   2604   // Compute the information on the instructions to match.
   2605   AsmMatcherInfo Info(AsmParser, Target, Records);
   2606   Info.buildInfo();
   2607 
   2608   // Sort the instruction table using the partial order on classes. We use
   2609   // stable_sort to ensure that ambiguous instructions are still
   2610   // deterministically ordered.
   2611   std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(),
   2612                    less_ptr<MatchableInfo>());
   2613 
   2614   DEBUG_WITH_TYPE("instruction_info", {
   2615       for (std::vector<MatchableInfo*>::iterator
   2616              it = Info.Matchables.begin(), ie = Info.Matchables.end();
   2617            it != ie; ++it)
   2618         (*it)->dump();
   2619     });
   2620 
   2621   // Check for ambiguous matchables.
   2622   DEBUG_WITH_TYPE("ambiguous_instrs", {
   2623     unsigned NumAmbiguous = 0;
   2624     for (unsigned i = 0, e = Info.Matchables.size(); i != e; ++i) {
   2625       for (unsigned j = i + 1; j != e; ++j) {
   2626         MatchableInfo &A = *Info.Matchables[i];
   2627         MatchableInfo &B = *Info.Matchables[j];
   2628 
   2629         if (A.couldMatchAmbiguouslyWith(B)) {
   2630           errs() << "warning: ambiguous matchables:\n";
   2631           A.dump();
   2632           errs() << "\nis incomparable with:\n";
   2633           B.dump();
   2634           errs() << "\n\n";
   2635           ++NumAmbiguous;
   2636         }
   2637       }
   2638     }
   2639     if (NumAmbiguous)
   2640       errs() << "warning: " << NumAmbiguous
   2641              << " ambiguous matchables!\n";
   2642   });
   2643 
   2644   // Compute the information on the custom operand parsing.
   2645   Info.buildOperandMatchInfo();
   2646 
   2647   // Write the output.
   2648 
   2649   // Information for the class declaration.
   2650   OS << "\n#ifdef GET_ASSEMBLER_HEADER\n";
   2651   OS << "#undef GET_ASSEMBLER_HEADER\n";
   2652   OS << "  // This should be included into the middle of the declaration of\n";
   2653   OS << "  // your subclasses implementation of MCTargetAsmParser.\n";
   2654   OS << "  unsigned ComputeAvailableFeatures(uint64_t FeatureBits) const;\n";
   2655   OS << "  void convertToMCInst(unsigned Kind, MCInst &Inst, "
   2656      << "unsigned Opcode,\n"
   2657      << "                       const SmallVectorImpl<MCParsedAsmOperand*> "
   2658      << "&Operands);\n";
   2659   OS << "  void convertToMapAndConstraints(unsigned Kind,\n                ";
   2660   OS << "           const SmallVectorImpl<MCParsedAsmOperand*> &Operands);\n";
   2661   OS << "  bool mnemonicIsValid(StringRef Mnemonic, unsigned VariantID);\n";
   2662   OS << "  unsigned MatchInstructionImpl(\n";
   2663   OS.indent(27);
   2664   OS << "const SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n"
   2665      << "                                MCInst &Inst,\n"
   2666      << "                                unsigned &ErrorInfo,"
   2667      << " bool matchingInlineAsm,\n"
   2668      << "                                unsigned VariantID = 0);\n";
   2669 
   2670   if (Info.OperandMatchInfo.size()) {
   2671     OS << "\n  enum OperandMatchResultTy {\n";
   2672     OS << "    MatchOperand_Success,    // operand matched successfully\n";
   2673     OS << "    MatchOperand_NoMatch,    // operand did not match\n";
   2674     OS << "    MatchOperand_ParseFail   // operand matched but had errors\n";
   2675     OS << "  };\n";
   2676     OS << "  OperandMatchResultTy MatchOperandParserImpl(\n";
   2677     OS << "    SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
   2678     OS << "    StringRef Mnemonic);\n";
   2679 
   2680     OS << "  OperandMatchResultTy tryCustomParseOperand(\n";
   2681     OS << "    SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n";
   2682     OS << "    unsigned MCK);\n\n";
   2683   }
   2684 
   2685   OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n";
   2686 
   2687   // Emit the operand match diagnostic enum names.
   2688   OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n";
   2689   OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
   2690   emitOperandDiagnosticTypes(Info, OS);
   2691   OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n";
   2692 
   2693 
   2694   OS << "\n#ifdef GET_REGISTER_MATCHER\n";
   2695   OS << "#undef GET_REGISTER_MATCHER\n\n";
   2696 
   2697   // Emit the subtarget feature enumeration.
   2698   emitSubtargetFeatureFlagEnumeration(Info, OS);
   2699 
   2700   // Emit the function to match a register name to number.
   2701   // This should be omitted for Mips target
   2702   if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName"))
   2703     emitMatchRegisterName(Target, AsmParser, OS);
   2704 
   2705   OS << "#endif // GET_REGISTER_MATCHER\n\n";
   2706 
   2707   OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n";
   2708   OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n";
   2709 
   2710   // Generate the helper function to get the names for subtarget features.
   2711   emitGetSubtargetFeatureName(Info, OS);
   2712 
   2713   OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n";
   2714 
   2715   OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n";
   2716   OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n";
   2717 
   2718   // Generate the function that remaps for mnemonic aliases.
   2719   bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target);
   2720 
   2721   // Generate the convertToMCInst function to convert operands into an MCInst.
   2722   // Also, generate the convertToMapAndConstraints function for MS-style inline
   2723   // assembly.  The latter doesn't actually generate a MCInst.
   2724   emitConvertFuncs(Target, ClassName, Info.Matchables, OS);
   2725 
   2726   // Emit the enumeration for classes which participate in matching.
   2727   emitMatchClassEnumeration(Target, Info.Classes, OS);
   2728 
   2729   // Emit the routine to match token strings to their match class.
   2730   emitMatchTokenString(Target, Info.Classes, OS);
   2731 
   2732   // Emit the subclass predicate routine.
   2733   emitIsSubclass(Target, Info.Classes, OS);
   2734 
   2735   // Emit the routine to validate an operand against a match class.
   2736   emitValidateOperandClass(Info, OS);
   2737 
   2738   // Emit the available features compute function.
   2739   emitComputeAvailableFeatures(Info, OS);
   2740 
   2741 
   2742   StringToOffsetTable StringTable;
   2743 
   2744   size_t MaxNumOperands = 0;
   2745   unsigned MaxMnemonicIndex = 0;
   2746   for (std::vector<MatchableInfo*>::const_iterator it =
   2747          Info.Matchables.begin(), ie = Info.Matchables.end();
   2748        it != ie; ++it) {
   2749     MatchableInfo &II = **it;
   2750     MaxNumOperands = std::max(MaxNumOperands, II.AsmOperands.size());
   2751 
   2752     // Store a pascal-style length byte in the mnemonic.
   2753     std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
   2754     MaxMnemonicIndex = std::max(MaxMnemonicIndex,
   2755                         StringTable.GetOrAddStringOffset(LenMnemonic, false));
   2756   }
   2757 
   2758   OS << "static const char *const MnemonicTable =\n";
   2759   StringTable.EmitString(OS);
   2760   OS << ";\n\n";
   2761 
   2762   // Emit the static match table; unused classes get initalized to 0 which is
   2763   // guaranteed to be InvalidMatchClass.
   2764   //
   2765   // FIXME: We can reduce the size of this table very easily. First, we change
   2766   // it so that store the kinds in separate bit-fields for each index, which
   2767   // only needs to be the max width used for classes at that index (we also need
   2768   // to reject based on this during classification). If we then make sure to
   2769   // order the match kinds appropriately (putting mnemonics last), then we
   2770   // should only end up using a few bits for each class, especially the ones
   2771   // following the mnemonic.
   2772   OS << "namespace {\n";
   2773   OS << "  struct MatchEntry {\n";
   2774   OS << "    " << getMinimalTypeForRange(MaxMnemonicIndex)
   2775                << " Mnemonic;\n";
   2776   OS << "    uint16_t Opcode;\n";
   2777   OS << "    " << getMinimalTypeForRange(Info.Matchables.size())
   2778                << " ConvertFn;\n";
   2779   OS << "    " << getMinimalTypeForRange(1ULL << Info.SubtargetFeatures.size())
   2780                << " RequiredFeatures;\n";
   2781   OS << "    " << getMinimalTypeForRange(Info.Classes.size())
   2782                << " Classes[" << MaxNumOperands << "];\n";
   2783   OS << "    StringRef getMnemonic() const {\n";
   2784   OS << "      return StringRef(MnemonicTable + Mnemonic + 1,\n";
   2785   OS << "                       MnemonicTable[Mnemonic]);\n";
   2786   OS << "    }\n";
   2787   OS << "  };\n\n";
   2788 
   2789   OS << "  // Predicate for searching for an opcode.\n";
   2790   OS << "  struct LessOpcode {\n";
   2791   OS << "    bool operator()(const MatchEntry &LHS, StringRef RHS) {\n";
   2792   OS << "      return LHS.getMnemonic() < RHS;\n";
   2793   OS << "    }\n";
   2794   OS << "    bool operator()(StringRef LHS, const MatchEntry &RHS) {\n";
   2795   OS << "      return LHS < RHS.getMnemonic();\n";
   2796   OS << "    }\n";
   2797   OS << "    bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n";
   2798   OS << "      return LHS.getMnemonic() < RHS.getMnemonic();\n";
   2799   OS << "    }\n";
   2800   OS << "  };\n";
   2801 
   2802   OS << "} // end anonymous namespace.\n\n";
   2803 
   2804   unsigned VariantCount = Target.getAsmParserVariantCount();
   2805   for (unsigned VC = 0; VC != VariantCount; ++VC) {
   2806     Record *AsmVariant = Target.getAsmParserVariant(VC);
   2807     std::string CommentDelimiter =
   2808       AsmVariant->getValueAsString("CommentDelimiter");
   2809     std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
   2810     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
   2811 
   2812     OS << "static const MatchEntry MatchTable" << VC << "[] = {\n";
   2813 
   2814     for (std::vector<MatchableInfo*>::const_iterator it =
   2815          Info.Matchables.begin(), ie = Info.Matchables.end();
   2816          it != ie; ++it) {
   2817       MatchableInfo &II = **it;
   2818       if (II.AsmVariantID != AsmVariantNo)
   2819         continue;
   2820 
   2821       // Store a pascal-style length byte in the mnemonic.
   2822       std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str();
   2823       OS << "  { " << StringTable.GetOrAddStringOffset(LenMnemonic, false)
   2824          << " /* " << II.Mnemonic << " */, "
   2825          << Target.getName() << "::"
   2826          << II.getResultInst()->TheDef->getName() << ", "
   2827          << II.ConversionFnKind << ", ";
   2828 
   2829       // Write the required features mask.
   2830       if (!II.RequiredFeatures.empty()) {
   2831         for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) {
   2832           if (i) OS << "|";
   2833           OS << II.RequiredFeatures[i]->getEnumName();
   2834         }
   2835       } else
   2836         OS << "0";
   2837 
   2838       OS << ", { ";
   2839       for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) {
   2840         MatchableInfo::AsmOperand &Op = II.AsmOperands[i];
   2841 
   2842         if (i) OS << ", ";
   2843         OS << Op.Class->Name;
   2844       }
   2845       OS << " }, },\n";
   2846     }
   2847 
   2848     OS << "};\n\n";
   2849   }
   2850 
   2851   // A method to determine if a mnemonic is in the list.
   2852   OS << "bool " << Target.getName() << ClassName << "::\n"
   2853      << "mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) {\n";
   2854   OS << "  // Find the appropriate table for this asm variant.\n";
   2855   OS << "  const MatchEntry *Start, *End;\n";
   2856   OS << "  switch (VariantID) {\n";
   2857   OS << "  default: // unreachable\n";
   2858   for (unsigned VC = 0; VC != VariantCount; ++VC) {
   2859     Record *AsmVariant = Target.getAsmParserVariant(VC);
   2860     std::string CommentDelimiter =
   2861       AsmVariant->getValueAsString("CommentDelimiter");
   2862     std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
   2863     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
   2864     OS << "  case " << AsmVariantNo << ": Start = MatchTable" << VC
   2865        << "; End = array_endof(MatchTable" << VC << "); break;\n";
   2866   }
   2867   OS << "  }\n";
   2868   OS << "  // Search the table.\n";
   2869   OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
   2870   OS << "    std::equal_range(Start, End, Mnemonic, LessOpcode());\n";
   2871   OS << "  return MnemonicRange.first != MnemonicRange.second;\n";
   2872   OS << "}\n\n";
   2873 
   2874   // Finally, build the match function.
   2875   OS << "unsigned "
   2876      << Target.getName() << ClassName << "::\n"
   2877      << "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>"
   2878      << " &Operands,\n";
   2879   OS << "                     MCInst &Inst,\n"
   2880      << "unsigned &ErrorInfo, bool matchingInlineAsm, unsigned VariantID) {\n";
   2881 
   2882   OS << "  // Eliminate obvious mismatches.\n";
   2883   OS << "  if (Operands.size() > " << (MaxNumOperands+1) << ") {\n";
   2884   OS << "    ErrorInfo = " << (MaxNumOperands+1) << ";\n";
   2885   OS << "    return Match_InvalidOperand;\n";
   2886   OS << "  }\n\n";
   2887 
   2888   // Emit code to get the available features.
   2889   OS << "  // Get the current feature set.\n";
   2890   OS << "  unsigned AvailableFeatures = getAvailableFeatures();\n\n";
   2891 
   2892   OS << "  // Get the instruction mnemonic, which is the first token.\n";
   2893   OS << "  StringRef Mnemonic = ((" << Target.getName()
   2894      << "Operand*)Operands[0])->getToken();\n\n";
   2895 
   2896   if (HasMnemonicAliases) {
   2897     OS << "  // Process all MnemonicAliases to remap the mnemonic.\n";
   2898     OS << "  applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n";
   2899   }
   2900 
   2901   // Emit code to compute the class list for this operand vector.
   2902   OS << "  // Some state to try to produce better error messages.\n";
   2903   OS << "  bool HadMatchOtherThanFeatures = false;\n";
   2904   OS << "  bool HadMatchOtherThanPredicate = false;\n";
   2905   OS << "  unsigned RetCode = Match_InvalidOperand;\n";
   2906   OS << "  unsigned MissingFeatures = ~0U;\n";
   2907   OS << "  // Set ErrorInfo to the operand that mismatches if it is\n";
   2908   OS << "  // wrong for all instances of the instruction.\n";
   2909   OS << "  ErrorInfo = ~0U;\n";
   2910 
   2911   // Emit code to search the table.
   2912   OS << "  // Find the appropriate table for this asm variant.\n";
   2913   OS << "  const MatchEntry *Start, *End;\n";
   2914   OS << "  switch (VariantID) {\n";
   2915   OS << "  default: // unreachable\n";
   2916   for (unsigned VC = 0; VC != VariantCount; ++VC) {
   2917     Record *AsmVariant = Target.getAsmParserVariant(VC);
   2918     std::string CommentDelimiter =
   2919       AsmVariant->getValueAsString("CommentDelimiter");
   2920     std::string RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix");
   2921     int AsmVariantNo = AsmVariant->getValueAsInt("Variant");
   2922     OS << "  case " << AsmVariantNo << ": Start = MatchTable" << VC
   2923        << "; End = array_endof(MatchTable" << VC << "); break;\n";
   2924   }
   2925   OS << "  }\n";
   2926   OS << "  // Search the table.\n";
   2927   OS << "  std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n";
   2928   OS << "    std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n";
   2929 
   2930   OS << "  // Return a more specific error code if no mnemonics match.\n";
   2931   OS << "  if (MnemonicRange.first == MnemonicRange.second)\n";
   2932   OS << "    return Match_MnemonicFail;\n\n";
   2933 
   2934   OS << "  for (const MatchEntry *it = MnemonicRange.first, "
   2935      << "*ie = MnemonicRange.second;\n";
   2936   OS << "       it != ie; ++it) {\n";
   2937 
   2938   OS << "    // equal_range guarantees that instruction mnemonic matches.\n";
   2939   OS << "    assert(Mnemonic == it->getMnemonic());\n";
   2940 
   2941   // Emit check that the subclasses match.
   2942   OS << "    bool OperandsValid = true;\n";
   2943   OS << "    for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n";
   2944   OS << "      if (i + 1 >= Operands.size()) {\n";
   2945   OS << "        OperandsValid = (it->Classes[i] == " <<"InvalidMatchClass);\n";
   2946   OS << "        if (!OperandsValid) ErrorInfo = i + 1;\n";
   2947   OS << "        break;\n";
   2948   OS << "      }\n";
   2949   OS << "      unsigned Diag = validateOperandClass(Operands[i+1],\n";
   2950   OS.indent(43);
   2951   OS << "(MatchClassKind)it->Classes[i]);\n";
   2952   OS << "      if (Diag == Match_Success)\n";
   2953   OS << "        continue;\n";
   2954   OS << "      // If the generic handler indicates an invalid operand\n";
   2955   OS << "      // failure, check for a special case.\n";
   2956   OS << "      if (Diag == Match_InvalidOperand) {\n";
   2957   OS << "        Diag = validateTargetOperandClass(Operands[i+1],\n";
   2958   OS.indent(43);
   2959   OS << "(MatchClassKind)it->Classes[i]);\n";
   2960   OS << "        if (Diag == Match_Success)\n";
   2961   OS << "          continue;\n";
   2962   OS << "      }\n";
   2963   OS << "      // If this operand is broken for all of the instances of this\n";
   2964   OS << "      // mnemonic, keep track of it so we can report loc info.\n";
   2965   OS << "      // If we already had a match that only failed due to a\n";
   2966   OS << "      // target predicate, that diagnostic is preferred.\n";
   2967   OS << "      if (!HadMatchOtherThanPredicate &&\n";
   2968   OS << "          (it == MnemonicRange.first || ErrorInfo <= i+1)) {\n";
   2969   OS << "        ErrorInfo = i+1;\n";
   2970   OS << "        // InvalidOperand is the default. Prefer specificity.\n";
   2971   OS << "        if (Diag != Match_InvalidOperand)\n";
   2972   OS << "          RetCode = Diag;\n";
   2973   OS << "      }\n";
   2974   OS << "      // Otherwise, just reject this instance of the mnemonic.\n";
   2975   OS << "      OperandsValid = false;\n";
   2976   OS << "      break;\n";
   2977   OS << "    }\n\n";
   2978 
   2979   OS << "    if (!OperandsValid) continue;\n";
   2980 
   2981   // Emit check that the required features are available.
   2982   OS << "    if ((AvailableFeatures & it->RequiredFeatures) "
   2983      << "!= it->RequiredFeatures) {\n";
   2984   OS << "      HadMatchOtherThanFeatures = true;\n";
   2985   OS << "      unsigned NewMissingFeatures = it->RequiredFeatures & "
   2986         "~AvailableFeatures;\n";
   2987   OS << "      if (CountPopulation_32(NewMissingFeatures) <=\n"
   2988         "          CountPopulation_32(MissingFeatures))\n";
   2989   OS << "        MissingFeatures = NewMissingFeatures;\n";
   2990   OS << "      continue;\n";
   2991   OS << "    }\n";
   2992   OS << "\n";
   2993   OS << "    if (matchingInlineAsm) {\n";
   2994   OS << "      Inst.setOpcode(it->Opcode);\n";
   2995   OS << "      convertToMapAndConstraints(it->ConvertFn, Operands);\n";
   2996   OS << "      return Match_Success;\n";
   2997   OS << "    }\n\n";
   2998   OS << "    // We have selected a definite instruction, convert the parsed\n"
   2999      << "    // operands into the appropriate MCInst.\n";
   3000   OS << "    convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n";
   3001   OS << "\n";
   3002 
   3003   // Verify the instruction with the target-specific match predicate function.
   3004   OS << "    // We have a potential match. Check the target predicate to\n"
   3005      << "    // handle any context sensitive constraints.\n"
   3006      << "    unsigned MatchResult;\n"
   3007      << "    if ((MatchResult = checkTargetMatchPredicate(Inst)) !="
   3008      << " Match_Success) {\n"
   3009      << "      Inst.clear();\n"
   3010      << "      RetCode = MatchResult;\n"
   3011      << "      HadMatchOtherThanPredicate = true;\n"
   3012      << "      continue;\n"
   3013      << "    }\n\n";
   3014 
   3015   // Call the post-processing function, if used.
   3016   std::string InsnCleanupFn =
   3017     AsmParser->getValueAsString("AsmParserInstCleanup");
   3018   if (!InsnCleanupFn.empty())
   3019     OS << "    " << InsnCleanupFn << "(Inst);\n";
   3020 
   3021   OS << "    return Match_Success;\n";
   3022   OS << "  }\n\n";
   3023 
   3024   OS << "  // Okay, we had no match.  Try to return a useful error code.\n";
   3025   OS << "  if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n";
   3026   OS << "    return RetCode;\n\n";
   3027   OS << "  // Missing feature matches return which features were missing\n";
   3028   OS << "  ErrorInfo = MissingFeatures;\n";
   3029   OS << "  return Match_MissingFeature;\n";
   3030   OS << "}\n\n";
   3031 
   3032   if (Info.OperandMatchInfo.size())
   3033     emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable,
   3034                              MaxMnemonicIndex);
   3035 
   3036   OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n";
   3037 }
   3038 
   3039 namespace llvm {
   3040 
   3041 void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) {
   3042   emitSourceFileHeader("Assembly Matcher Source Fragment", OS);
   3043   AsmMatcherEmitter(RK).run(OS);
   3044 }
   3045 
   3046 } // End llvm namespace
   3047