Home | History | Annotate | Download | only in Linker
      1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the LLVM module linker.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Linker.h"
     15 #include "llvm-c/Linker.h"
     16 #include "llvm/ADT/Optional.h"
     17 #include "llvm/ADT/SetVector.h"
     18 #include "llvm/ADT/SmallString.h"
     19 #include "llvm/IR/Constants.h"
     20 #include "llvm/IR/Module.h"
     21 #include "llvm/IR/TypeFinder.h"
     22 #include "llvm/Support/Debug.h"
     23 #include "llvm/Support/raw_ostream.h"
     24 #include "llvm/Transforms/Utils/Cloning.h"
     25 
     26 #include <ctype.h>
     27 using namespace llvm;
     28 
     29 //===----------------------------------------------------------------------===//
     30 // TypeMap implementation.
     31 //===----------------------------------------------------------------------===//
     32 
     33 namespace {
     34   typedef SmallPtrSet<StructType*, 32> TypeSet;
     35 
     36 class TypeMapTy : public ValueMapTypeRemapper {
     37   /// MappedTypes - This is a mapping from a source type to a destination type
     38   /// to use.
     39   DenseMap<Type*, Type*> MappedTypes;
     40 
     41   /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
     42   /// we speculatively add types to MappedTypes, but keep track of them here in
     43   /// case we need to roll back.
     44   SmallVector<Type*, 16> SpeculativeTypes;
     45 
     46   /// SrcDefinitionsToResolve - This is a list of non-opaque structs in the
     47   /// source module that are mapped to an opaque struct in the destination
     48   /// module.
     49   SmallVector<StructType*, 16> SrcDefinitionsToResolve;
     50 
     51   /// DstResolvedOpaqueTypes - This is the set of opaque types in the
     52   /// destination modules who are getting a body from the source module.
     53   SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
     54 
     55 public:
     56   TypeMapTy(TypeSet &Set) : DstStructTypesSet(Set) {}
     57 
     58   TypeSet &DstStructTypesSet;
     59   /// addTypeMapping - Indicate that the specified type in the destination
     60   /// module is conceptually equivalent to the specified type in the source
     61   /// module.
     62   void addTypeMapping(Type *DstTy, Type *SrcTy);
     63 
     64   /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
     65   /// module from a type definition in the source module.
     66   void linkDefinedTypeBodies();
     67 
     68   /// get - Return the mapped type to use for the specified input type from the
     69   /// source module.
     70   Type *get(Type *SrcTy);
     71 
     72   FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
     73 
     74   /// dump - Dump out the type map for debugging purposes.
     75   void dump() const {
     76     for (DenseMap<Type*, Type*>::const_iterator
     77            I = MappedTypes.begin(), E = MappedTypes.end(); I != E; ++I) {
     78       dbgs() << "TypeMap: ";
     79       I->first->dump();
     80       dbgs() << " => ";
     81       I->second->dump();
     82       dbgs() << '\n';
     83     }
     84   }
     85 
     86 private:
     87   Type *getImpl(Type *T);
     88   /// remapType - Implement the ValueMapTypeRemapper interface.
     89   Type *remapType(Type *SrcTy) {
     90     return get(SrcTy);
     91   }
     92 
     93   bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
     94 };
     95 }
     96 
     97 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
     98   Type *&Entry = MappedTypes[SrcTy];
     99   if (Entry) return;
    100 
    101   if (DstTy == SrcTy) {
    102     Entry = DstTy;
    103     return;
    104   }
    105 
    106   // Check to see if these types are recursively isomorphic and establish a
    107   // mapping between them if so.
    108   if (!areTypesIsomorphic(DstTy, SrcTy)) {
    109     // Oops, they aren't isomorphic.  Just discard this request by rolling out
    110     // any speculative mappings we've established.
    111     for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
    112       MappedTypes.erase(SpeculativeTypes[i]);
    113   }
    114   SpeculativeTypes.clear();
    115 }
    116 
    117 /// areTypesIsomorphic - Recursively walk this pair of types, returning true
    118 /// if they are isomorphic, false if they are not.
    119 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
    120   // Two types with differing kinds are clearly not isomorphic.
    121   if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
    122 
    123   // If we have an entry in the MappedTypes table, then we have our answer.
    124   Type *&Entry = MappedTypes[SrcTy];
    125   if (Entry)
    126     return Entry == DstTy;
    127 
    128   // Two identical types are clearly isomorphic.  Remember this
    129   // non-speculatively.
    130   if (DstTy == SrcTy) {
    131     Entry = DstTy;
    132     return true;
    133   }
    134 
    135   // Okay, we have two types with identical kinds that we haven't seen before.
    136 
    137   // If this is an opaque struct type, special case it.
    138   if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
    139     // Mapping an opaque type to any struct, just keep the dest struct.
    140     if (SSTy->isOpaque()) {
    141       Entry = DstTy;
    142       SpeculativeTypes.push_back(SrcTy);
    143       return true;
    144     }
    145 
    146     // Mapping a non-opaque source type to an opaque dest.  If this is the first
    147     // type that we're mapping onto this destination type then we succeed.  Keep
    148     // the dest, but fill it in later.  This doesn't need to be speculative.  If
    149     // this is the second (different) type that we're trying to map onto the
    150     // same opaque type then we fail.
    151     if (cast<StructType>(DstTy)->isOpaque()) {
    152       // We can only map one source type onto the opaque destination type.
    153       if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)))
    154         return false;
    155       SrcDefinitionsToResolve.push_back(SSTy);
    156       Entry = DstTy;
    157       return true;
    158     }
    159   }
    160 
    161   // If the number of subtypes disagree between the two types, then we fail.
    162   if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
    163     return false;
    164 
    165   // Fail if any of the extra properties (e.g. array size) of the type disagree.
    166   if (isa<IntegerType>(DstTy))
    167     return false;  // bitwidth disagrees.
    168   if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
    169     if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
    170       return false;
    171 
    172   } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
    173     if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
    174       return false;
    175   } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
    176     StructType *SSTy = cast<StructType>(SrcTy);
    177     if (DSTy->isLiteral() != SSTy->isLiteral() ||
    178         DSTy->isPacked() != SSTy->isPacked())
    179       return false;
    180   } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
    181     if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
    182       return false;
    183   } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
    184     if (DVTy->getNumElements() != cast<VectorType>(SrcTy)->getNumElements())
    185       return false;
    186   }
    187 
    188   // Otherwise, we speculate that these two types will line up and recursively
    189   // check the subelements.
    190   Entry = DstTy;
    191   SpeculativeTypes.push_back(SrcTy);
    192 
    193   for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
    194     if (!areTypesIsomorphic(DstTy->getContainedType(i),
    195                             SrcTy->getContainedType(i)))
    196       return false;
    197 
    198   // If everything seems to have lined up, then everything is great.
    199   return true;
    200 }
    201 
    202 /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
    203 /// module from a type definition in the source module.
    204 void TypeMapTy::linkDefinedTypeBodies() {
    205   SmallVector<Type*, 16> Elements;
    206   SmallString<16> TmpName;
    207 
    208   // Note that processing entries in this loop (calling 'get') can add new
    209   // entries to the SrcDefinitionsToResolve vector.
    210   while (!SrcDefinitionsToResolve.empty()) {
    211     StructType *SrcSTy = SrcDefinitionsToResolve.pop_back_val();
    212     StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
    213 
    214     // TypeMap is a many-to-one mapping, if there were multiple types that
    215     // provide a body for DstSTy then previous iterations of this loop may have
    216     // already handled it.  Just ignore this case.
    217     if (!DstSTy->isOpaque()) continue;
    218     assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
    219 
    220     // Map the body of the source type over to a new body for the dest type.
    221     Elements.resize(SrcSTy->getNumElements());
    222     for (unsigned i = 0, e = Elements.size(); i != e; ++i)
    223       Elements[i] = getImpl(SrcSTy->getElementType(i));
    224 
    225     DstSTy->setBody(Elements, SrcSTy->isPacked());
    226 
    227     // If DstSTy has no name or has a longer name than STy, then viciously steal
    228     // STy's name.
    229     if (!SrcSTy->hasName()) continue;
    230     StringRef SrcName = SrcSTy->getName();
    231 
    232     if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
    233       TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
    234       SrcSTy->setName("");
    235       DstSTy->setName(TmpName.str());
    236       TmpName.clear();
    237     }
    238   }
    239 
    240   DstResolvedOpaqueTypes.clear();
    241 }
    242 
    243 /// get - Return the mapped type to use for the specified input type from the
    244 /// source module.
    245 Type *TypeMapTy::get(Type *Ty) {
    246   Type *Result = getImpl(Ty);
    247 
    248   // If this caused a reference to any struct type, resolve it before returning.
    249   if (!SrcDefinitionsToResolve.empty())
    250     linkDefinedTypeBodies();
    251   return Result;
    252 }
    253 
    254 /// getImpl - This is the recursive version of get().
    255 Type *TypeMapTy::getImpl(Type *Ty) {
    256   // If we already have an entry for this type, return it.
    257   Type **Entry = &MappedTypes[Ty];
    258   if (*Entry) return *Entry;
    259 
    260   // If this is not a named struct type, then just map all of the elements and
    261   // then rebuild the type from inside out.
    262   if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
    263     // If there are no element types to map, then the type is itself.  This is
    264     // true for the anonymous {} struct, things like 'float', integers, etc.
    265     if (Ty->getNumContainedTypes() == 0)
    266       return *Entry = Ty;
    267 
    268     // Remap all of the elements, keeping track of whether any of them change.
    269     bool AnyChange = false;
    270     SmallVector<Type*, 4> ElementTypes;
    271     ElementTypes.resize(Ty->getNumContainedTypes());
    272     for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
    273       ElementTypes[i] = getImpl(Ty->getContainedType(i));
    274       AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
    275     }
    276 
    277     // If we found our type while recursively processing stuff, just use it.
    278     Entry = &MappedTypes[Ty];
    279     if (*Entry) return *Entry;
    280 
    281     // If all of the element types mapped directly over, then the type is usable
    282     // as-is.
    283     if (!AnyChange)
    284       return *Entry = Ty;
    285 
    286     // Otherwise, rebuild a modified type.
    287     switch (Ty->getTypeID()) {
    288     default: llvm_unreachable("unknown derived type to remap");
    289     case Type::ArrayTyID:
    290       return *Entry = ArrayType::get(ElementTypes[0],
    291                                      cast<ArrayType>(Ty)->getNumElements());
    292     case Type::VectorTyID:
    293       return *Entry = VectorType::get(ElementTypes[0],
    294                                       cast<VectorType>(Ty)->getNumElements());
    295     case Type::PointerTyID:
    296       return *Entry = PointerType::get(ElementTypes[0],
    297                                       cast<PointerType>(Ty)->getAddressSpace());
    298     case Type::FunctionTyID:
    299       return *Entry = FunctionType::get(ElementTypes[0],
    300                                         makeArrayRef(ElementTypes).slice(1),
    301                                         cast<FunctionType>(Ty)->isVarArg());
    302     case Type::StructTyID:
    303       // Note that this is only reached for anonymous structs.
    304       return *Entry = StructType::get(Ty->getContext(), ElementTypes,
    305                                       cast<StructType>(Ty)->isPacked());
    306     }
    307   }
    308 
    309   // Otherwise, this is an unmapped named struct.  If the struct can be directly
    310   // mapped over, just use it as-is.  This happens in a case when the linked-in
    311   // module has something like:
    312   //   %T = type {%T*, i32}
    313   //   @GV = global %T* null
    314   // where T does not exist at all in the destination module.
    315   //
    316   // The other case we watch for is when the type is not in the destination
    317   // module, but that it has to be rebuilt because it refers to something that
    318   // is already mapped.  For example, if the destination module has:
    319   //  %A = type { i32 }
    320   // and the source module has something like
    321   //  %A' = type { i32 }
    322   //  %B = type { %A'* }
    323   //  @GV = global %B* null
    324   // then we want to create a new type: "%B = type { %A*}" and have it take the
    325   // pristine "%B" name from the source module.
    326   //
    327   // To determine which case this is, we have to recursively walk the type graph
    328   // speculating that we'll be able to reuse it unmodified.  Only if this is
    329   // safe would we map the entire thing over.  Because this is an optimization,
    330   // and is not required for the prettiness of the linked module, we just skip
    331   // it and always rebuild a type here.
    332   StructType *STy = cast<StructType>(Ty);
    333 
    334   // If the type is opaque, we can just use it directly.
    335   if (STy->isOpaque()) {
    336     // A named structure type from src module is used. Add it to the Set of
    337     // identified structs in the destination module.
    338     DstStructTypesSet.insert(STy);
    339     return *Entry = STy;
    340   }
    341 
    342   // Otherwise we create a new type and resolve its body later.  This will be
    343   // resolved by the top level of get().
    344   SrcDefinitionsToResolve.push_back(STy);
    345   StructType *DTy = StructType::create(STy->getContext());
    346   // A new identified structure type was created. Add it to the set of
    347   // identified structs in the destination module.
    348   DstStructTypesSet.insert(DTy);
    349   DstResolvedOpaqueTypes.insert(DTy);
    350   return *Entry = DTy;
    351 }
    352 
    353 //===----------------------------------------------------------------------===//
    354 // ModuleLinker implementation.
    355 //===----------------------------------------------------------------------===//
    356 
    357 namespace {
    358   class ModuleLinker;
    359 
    360   /// ValueMaterializerTy - Creates prototypes for functions that are lazily
    361   /// linked on the fly. This speeds up linking for modules with many
    362   /// lazily linked functions of which few get used.
    363   class ValueMaterializerTy : public ValueMaterializer {
    364     TypeMapTy &TypeMap;
    365     Module *DstM;
    366     std::vector<Function*> &LazilyLinkFunctions;
    367   public:
    368     ValueMaterializerTy(TypeMapTy &TypeMap, Module *DstM,
    369                         std::vector<Function*> &LazilyLinkFunctions) :
    370       ValueMaterializer(), TypeMap(TypeMap), DstM(DstM),
    371       LazilyLinkFunctions(LazilyLinkFunctions) {
    372     }
    373 
    374     virtual Value *materializeValueFor(Value *V);
    375   };
    376 
    377   /// ModuleLinker - This is an implementation class for the LinkModules
    378   /// function, which is the entrypoint for this file.
    379   class ModuleLinker {
    380     Module *DstM, *SrcM;
    381 
    382     TypeMapTy TypeMap;
    383     ValueMaterializerTy ValMaterializer;
    384 
    385     /// ValueMap - Mapping of values from what they used to be in Src, to what
    386     /// they are now in DstM.  ValueToValueMapTy is a ValueMap, which involves
    387     /// some overhead due to the use of Value handles which the Linker doesn't
    388     /// actually need, but this allows us to reuse the ValueMapper code.
    389     ValueToValueMapTy ValueMap;
    390 
    391     struct AppendingVarInfo {
    392       GlobalVariable *NewGV;  // New aggregate global in dest module.
    393       Constant *DstInit;      // Old initializer from dest module.
    394       Constant *SrcInit;      // Old initializer from src module.
    395     };
    396 
    397     std::vector<AppendingVarInfo> AppendingVars;
    398 
    399     unsigned Mode; // Mode to treat source module.
    400 
    401     // Set of items not to link in from source.
    402     SmallPtrSet<const Value*, 16> DoNotLinkFromSource;
    403 
    404     // Vector of functions to lazily link in.
    405     std::vector<Function*> LazilyLinkFunctions;
    406 
    407   public:
    408     std::string ErrorMsg;
    409 
    410     ModuleLinker(Module *dstM, TypeSet &Set, Module *srcM, unsigned mode)
    411       : DstM(dstM), SrcM(srcM), TypeMap(Set),
    412         ValMaterializer(TypeMap, DstM, LazilyLinkFunctions),
    413         Mode(mode) { }
    414 
    415     bool run();
    416 
    417   private:
    418     /// emitError - Helper method for setting a message and returning an error
    419     /// code.
    420     bool emitError(const Twine &Message) {
    421       ErrorMsg = Message.str();
    422       return true;
    423     }
    424 
    425     /// getLinkageResult - This analyzes the two global values and determines
    426     /// what the result will look like in the destination module.
    427     bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
    428                           GlobalValue::LinkageTypes &LT,
    429                           GlobalValue::VisibilityTypes &Vis,
    430                           bool &LinkFromSrc);
    431 
    432     /// getLinkedToGlobal - Given a global in the source module, return the
    433     /// global in the destination module that is being linked to, if any.
    434     GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
    435       // If the source has no name it can't link.  If it has local linkage,
    436       // there is no name match-up going on.
    437       if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
    438         return 0;
    439 
    440       // Otherwise see if we have a match in the destination module's symtab.
    441       GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
    442       if (DGV == 0) return 0;
    443 
    444       // If we found a global with the same name in the dest module, but it has
    445       // internal linkage, we are really not doing any linkage here.
    446       if (DGV->hasLocalLinkage())
    447         return 0;
    448 
    449       // Otherwise, we do in fact link to the destination global.
    450       return DGV;
    451     }
    452 
    453     void computeTypeMapping();
    454 
    455     bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
    456     bool linkGlobalProto(GlobalVariable *SrcGV);
    457     bool linkFunctionProto(Function *SrcF);
    458     bool linkAliasProto(GlobalAlias *SrcA);
    459     bool linkModuleFlagsMetadata();
    460 
    461     void linkAppendingVarInit(const AppendingVarInfo &AVI);
    462     void linkGlobalInits();
    463     void linkFunctionBody(Function *Dst, Function *Src);
    464     void linkAliasBodies();
    465     void linkNamedMDNodes();
    466   };
    467 }
    468 
    469 /// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
    470 /// in the symbol table.  This is good for all clients except for us.  Go
    471 /// through the trouble to force this back.
    472 static void forceRenaming(GlobalValue *GV, StringRef Name) {
    473   // If the global doesn't force its name or if it already has the right name,
    474   // there is nothing for us to do.
    475   if (GV->hasLocalLinkage() || GV->getName() == Name)
    476     return;
    477 
    478   Module *M = GV->getParent();
    479 
    480   // If there is a conflict, rename the conflict.
    481   if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
    482     GV->takeName(ConflictGV);
    483     ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
    484     assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
    485   } else {
    486     GV->setName(Name);              // Force the name back
    487   }
    488 }
    489 
    490 /// copyGVAttributes - copy additional attributes (those not needed to construct
    491 /// a GlobalValue) from the SrcGV to the DestGV.
    492 static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
    493   // Use the maximum alignment, rather than just copying the alignment of SrcGV.
    494   unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
    495   DestGV->copyAttributesFrom(SrcGV);
    496   DestGV->setAlignment(Alignment);
    497 
    498   forceRenaming(DestGV, SrcGV->getName());
    499 }
    500 
    501 static bool isLessConstraining(GlobalValue::VisibilityTypes a,
    502                                GlobalValue::VisibilityTypes b) {
    503   if (a == GlobalValue::HiddenVisibility)
    504     return false;
    505   if (b == GlobalValue::HiddenVisibility)
    506     return true;
    507   if (a == GlobalValue::ProtectedVisibility)
    508     return false;
    509   if (b == GlobalValue::ProtectedVisibility)
    510     return true;
    511   return false;
    512 }
    513 
    514 Value *ValueMaterializerTy::materializeValueFor(Value *V) {
    515   Function *SF = dyn_cast<Function>(V);
    516   if (!SF)
    517     return NULL;
    518 
    519   Function *DF = Function::Create(TypeMap.get(SF->getFunctionType()),
    520                                   SF->getLinkage(), SF->getName(), DstM);
    521   copyGVAttributes(DF, SF);
    522 
    523   LazilyLinkFunctions.push_back(SF);
    524   return DF;
    525 }
    526 
    527 
    528 /// getLinkageResult - This analyzes the two global values and determines what
    529 /// the result will look like in the destination module.  In particular, it
    530 /// computes the resultant linkage type and visibility, computes whether the
    531 /// global in the source should be copied over to the destination (replacing
    532 /// the existing one), and computes whether this linkage is an error or not.
    533 bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
    534                                     GlobalValue::LinkageTypes &LT,
    535                                     GlobalValue::VisibilityTypes &Vis,
    536                                     bool &LinkFromSrc) {
    537   assert(Dest && "Must have two globals being queried");
    538   assert(!Src->hasLocalLinkage() &&
    539          "If Src has internal linkage, Dest shouldn't be set!");
    540 
    541   bool SrcIsDeclaration = Src->isDeclaration() && !Src->isMaterializable();
    542   bool DestIsDeclaration = Dest->isDeclaration();
    543 
    544   if (SrcIsDeclaration) {
    545     // If Src is external or if both Src & Dest are external..  Just link the
    546     // external globals, we aren't adding anything.
    547     if (Src->hasDLLImportLinkage()) {
    548       // If one of GVs has DLLImport linkage, result should be dllimport'ed.
    549       if (DestIsDeclaration) {
    550         LinkFromSrc = true;
    551         LT = Src->getLinkage();
    552       }
    553     } else if (Dest->hasExternalWeakLinkage()) {
    554       // If the Dest is weak, use the source linkage.
    555       LinkFromSrc = true;
    556       LT = Src->getLinkage();
    557     } else {
    558       LinkFromSrc = false;
    559       LT = Dest->getLinkage();
    560     }
    561   } else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) {
    562     // If Dest is external but Src is not:
    563     LinkFromSrc = true;
    564     LT = Src->getLinkage();
    565   } else if (Src->isWeakForLinker()) {
    566     // At this point we know that Dest has LinkOnce, External*, Weak, Common,
    567     // or DLL* linkage.
    568     if (Dest->hasExternalWeakLinkage() ||
    569         Dest->hasAvailableExternallyLinkage() ||
    570         (Dest->hasLinkOnceLinkage() &&
    571          (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
    572       LinkFromSrc = true;
    573       LT = Src->getLinkage();
    574     } else {
    575       LinkFromSrc = false;
    576       LT = Dest->getLinkage();
    577     }
    578   } else if (Dest->isWeakForLinker()) {
    579     // At this point we know that Src has External* or DLL* linkage.
    580     if (Src->hasExternalWeakLinkage()) {
    581       LinkFromSrc = false;
    582       LT = Dest->getLinkage();
    583     } else {
    584       LinkFromSrc = true;
    585       LT = GlobalValue::ExternalLinkage;
    586     }
    587   } else {
    588     assert((Dest->hasExternalLinkage()  || Dest->hasDLLImportLinkage() ||
    589             Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) &&
    590            (Src->hasExternalLinkage()   || Src->hasDLLImportLinkage() ||
    591             Src->hasDLLExportLinkage()  || Src->hasExternalWeakLinkage()) &&
    592            "Unexpected linkage type!");
    593     return emitError("Linking globals named '" + Src->getName() +
    594                  "': symbol multiply defined!");
    595   }
    596 
    597   // Compute the visibility. We follow the rules in the System V Application
    598   // Binary Interface.
    599   Vis = isLessConstraining(Src->getVisibility(), Dest->getVisibility()) ?
    600     Dest->getVisibility() : Src->getVisibility();
    601   return false;
    602 }
    603 
    604 /// computeTypeMapping - Loop over all of the linked values to compute type
    605 /// mappings.  For example, if we link "extern Foo *x" and "Foo *x = NULL", then
    606 /// we have two struct types 'Foo' but one got renamed when the module was
    607 /// loaded into the same LLVMContext.
    608 void ModuleLinker::computeTypeMapping() {
    609   // Incorporate globals.
    610   for (Module::global_iterator I = SrcM->global_begin(),
    611        E = SrcM->global_end(); I != E; ++I) {
    612     GlobalValue *DGV = getLinkedToGlobal(I);
    613     if (DGV == 0) continue;
    614 
    615     if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
    616       TypeMap.addTypeMapping(DGV->getType(), I->getType());
    617       continue;
    618     }
    619 
    620     // Unify the element type of appending arrays.
    621     ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
    622     ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
    623     TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
    624   }
    625 
    626   // Incorporate functions.
    627   for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
    628     if (GlobalValue *DGV = getLinkedToGlobal(I))
    629       TypeMap.addTypeMapping(DGV->getType(), I->getType());
    630   }
    631 
    632   // Incorporate types by name, scanning all the types in the source module.
    633   // At this point, the destination module may have a type "%foo = { i32 }" for
    634   // example.  When the source module got loaded into the same LLVMContext, if
    635   // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
    636   TypeFinder SrcStructTypes;
    637   SrcStructTypes.run(*SrcM, true);
    638   SmallPtrSet<StructType*, 32> SrcStructTypesSet(SrcStructTypes.begin(),
    639                                                  SrcStructTypes.end());
    640 
    641   for (unsigned i = 0, e = SrcStructTypes.size(); i != e; ++i) {
    642     StructType *ST = SrcStructTypes[i];
    643     if (!ST->hasName()) continue;
    644 
    645     // Check to see if there is a dot in the name followed by a digit.
    646     size_t DotPos = ST->getName().rfind('.');
    647     if (DotPos == 0 || DotPos == StringRef::npos ||
    648         ST->getName().back() == '.' ||
    649         !isdigit(static_cast<unsigned char>(ST->getName()[DotPos+1])))
    650       continue;
    651 
    652     // Check to see if the destination module has a struct with the prefix name.
    653     if (StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos)))
    654       // Don't use it if this actually came from the source module. They're in
    655       // the same LLVMContext after all. Also don't use it unless the type is
    656       // actually used in the destination module. This can happen in situations
    657       // like this:
    658       //
    659       //      Module A                         Module B
    660       //      --------                         --------
    661       //   %Z = type { %A }                %B = type { %C.1 }
    662       //   %A = type { %B.1, [7 x i8] }    %C.1 = type { i8* }
    663       //   %B.1 = type { %C }              %A.2 = type { %B.3, [5 x i8] }
    664       //   %C = type { i8* }               %B.3 = type { %C.1 }
    665       //
    666       // When we link Module B with Module A, the '%B' in Module B is
    667       // used. However, that would then use '%C.1'. But when we process '%C.1',
    668       // we prefer to take the '%C' version. So we are then left with both
    669       // '%C.1' and '%C' being used for the same types. This leads to some
    670       // variables using one type and some using the other.
    671       if (!SrcStructTypesSet.count(DST) && TypeMap.DstStructTypesSet.count(DST))
    672         TypeMap.addTypeMapping(DST, ST);
    673   }
    674 
    675   // Don't bother incorporating aliases, they aren't generally typed well.
    676 
    677   // Now that we have discovered all of the type equivalences, get a body for
    678   // any 'opaque' types in the dest module that are now resolved.
    679   TypeMap.linkDefinedTypeBodies();
    680 }
    681 
    682 /// linkAppendingVarProto - If there were any appending global variables, link
    683 /// them together now.  Return true on error.
    684 bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
    685                                          GlobalVariable *SrcGV) {
    686 
    687   if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
    688     return emitError("Linking globals named '" + SrcGV->getName() +
    689            "': can only link appending global with another appending global!");
    690 
    691   ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
    692   ArrayType *SrcTy =
    693     cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
    694   Type *EltTy = DstTy->getElementType();
    695 
    696   // Check to see that they two arrays agree on type.
    697   if (EltTy != SrcTy->getElementType())
    698     return emitError("Appending variables with different element types!");
    699   if (DstGV->isConstant() != SrcGV->isConstant())
    700     return emitError("Appending variables linked with different const'ness!");
    701 
    702   if (DstGV->getAlignment() != SrcGV->getAlignment())
    703     return emitError(
    704              "Appending variables with different alignment need to be linked!");
    705 
    706   if (DstGV->getVisibility() != SrcGV->getVisibility())
    707     return emitError(
    708             "Appending variables with different visibility need to be linked!");
    709 
    710   if (DstGV->getSection() != SrcGV->getSection())
    711     return emitError(
    712           "Appending variables with different section name need to be linked!");
    713 
    714   uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
    715   ArrayType *NewType = ArrayType::get(EltTy, NewSize);
    716 
    717   // Create the new global variable.
    718   GlobalVariable *NG =
    719     new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
    720                        DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV,
    721                        DstGV->getThreadLocalMode(),
    722                        DstGV->getType()->getAddressSpace());
    723 
    724   // Propagate alignment, visibility and section info.
    725   copyGVAttributes(NG, DstGV);
    726 
    727   AppendingVarInfo AVI;
    728   AVI.NewGV = NG;
    729   AVI.DstInit = DstGV->getInitializer();
    730   AVI.SrcInit = SrcGV->getInitializer();
    731   AppendingVars.push_back(AVI);
    732 
    733   // Replace any uses of the two global variables with uses of the new
    734   // global.
    735   ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
    736 
    737   DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
    738   DstGV->eraseFromParent();
    739 
    740   // Track the source variable so we don't try to link it.
    741   DoNotLinkFromSource.insert(SrcGV);
    742 
    743   return false;
    744 }
    745 
    746 /// linkGlobalProto - Loop through the global variables in the src module and
    747 /// merge them into the dest module.
    748 bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
    749   GlobalValue *DGV = getLinkedToGlobal(SGV);
    750   llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
    751 
    752   if (DGV) {
    753     // Concatenation of appending linkage variables is magic and handled later.
    754     if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
    755       return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
    756 
    757     // Determine whether linkage of these two globals follows the source
    758     // module's definition or the destination module's definition.
    759     GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
    760     GlobalValue::VisibilityTypes NV;
    761     bool LinkFromSrc = false;
    762     if (getLinkageResult(DGV, SGV, NewLinkage, NV, LinkFromSrc))
    763       return true;
    764     NewVisibility = NV;
    765 
    766     // If we're not linking from the source, then keep the definition that we
    767     // have.
    768     if (!LinkFromSrc) {
    769       // Special case for const propagation.
    770       if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
    771         if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
    772           DGVar->setConstant(true);
    773 
    774       // Set calculated linkage and visibility.
    775       DGV->setLinkage(NewLinkage);
    776       DGV->setVisibility(*NewVisibility);
    777 
    778       // Make sure to remember this mapping.
    779       ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
    780 
    781       // Track the source global so that we don't attempt to copy it over when
    782       // processing global initializers.
    783       DoNotLinkFromSource.insert(SGV);
    784 
    785       return false;
    786     }
    787   }
    788 
    789   // No linking to be performed or linking from the source: simply create an
    790   // identical version of the symbol over in the dest module... the
    791   // initializer will be filled in later by LinkGlobalInits.
    792   GlobalVariable *NewDGV =
    793     new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
    794                        SGV->isConstant(), SGV->getLinkage(), /*init*/0,
    795                        SGV->getName(), /*insertbefore*/0,
    796                        SGV->getThreadLocalMode(),
    797                        SGV->getType()->getAddressSpace());
    798   // Propagate alignment, visibility and section info.
    799   copyGVAttributes(NewDGV, SGV);
    800   if (NewVisibility)
    801     NewDGV->setVisibility(*NewVisibility);
    802 
    803   if (DGV) {
    804     DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
    805     DGV->eraseFromParent();
    806   }
    807 
    808   // Make sure to remember this mapping.
    809   ValueMap[SGV] = NewDGV;
    810   return false;
    811 }
    812 
    813 /// linkFunctionProto - Link the function in the source module into the
    814 /// destination module if needed, setting up mapping information.
    815 bool ModuleLinker::linkFunctionProto(Function *SF) {
    816   GlobalValue *DGV = getLinkedToGlobal(SF);
    817   llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
    818 
    819   if (DGV) {
    820     GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
    821     bool LinkFromSrc = false;
    822     GlobalValue::VisibilityTypes NV;
    823     if (getLinkageResult(DGV, SF, NewLinkage, NV, LinkFromSrc))
    824       return true;
    825     NewVisibility = NV;
    826 
    827     if (!LinkFromSrc) {
    828       // Set calculated linkage
    829       DGV->setLinkage(NewLinkage);
    830       DGV->setVisibility(*NewVisibility);
    831 
    832       // Make sure to remember this mapping.
    833       ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
    834 
    835       // Track the function from the source module so we don't attempt to remap
    836       // it.
    837       DoNotLinkFromSource.insert(SF);
    838 
    839       return false;
    840     }
    841   }
    842 
    843   // If the function is to be lazily linked, don't create it just yet.
    844   // The ValueMaterializerTy will deal with creating it if it's used.
    845   if (!DGV && (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() ||
    846                SF->hasAvailableExternallyLinkage())) {
    847     DoNotLinkFromSource.insert(SF);
    848     return false;
    849   }
    850 
    851   // If there is no linkage to be performed or we are linking from the source,
    852   // bring SF over.
    853   Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
    854                                      SF->getLinkage(), SF->getName(), DstM);
    855   copyGVAttributes(NewDF, SF);
    856   if (NewVisibility)
    857     NewDF->setVisibility(*NewVisibility);
    858 
    859   if (DGV) {
    860     // Any uses of DF need to change to NewDF, with cast.
    861     DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
    862     DGV->eraseFromParent();
    863   }
    864 
    865   ValueMap[SF] = NewDF;
    866   return false;
    867 }
    868 
    869 /// LinkAliasProto - Set up prototypes for any aliases that come over from the
    870 /// source module.
    871 bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
    872   GlobalValue *DGV = getLinkedToGlobal(SGA);
    873   llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
    874 
    875   if (DGV) {
    876     GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
    877     GlobalValue::VisibilityTypes NV;
    878     bool LinkFromSrc = false;
    879     if (getLinkageResult(DGV, SGA, NewLinkage, NV, LinkFromSrc))
    880       return true;
    881     NewVisibility = NV;
    882 
    883     if (!LinkFromSrc) {
    884       // Set calculated linkage.
    885       DGV->setLinkage(NewLinkage);
    886       DGV->setVisibility(*NewVisibility);
    887 
    888       // Make sure to remember this mapping.
    889       ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
    890 
    891       // Track the alias from the source module so we don't attempt to remap it.
    892       DoNotLinkFromSource.insert(SGA);
    893 
    894       return false;
    895     }
    896   }
    897 
    898   // If there is no linkage to be performed or we're linking from the source,
    899   // bring over SGA.
    900   GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()),
    901                                        SGA->getLinkage(), SGA->getName(),
    902                                        /*aliasee*/0, DstM);
    903   copyGVAttributes(NewDA, SGA);
    904   if (NewVisibility)
    905     NewDA->setVisibility(*NewVisibility);
    906 
    907   if (DGV) {
    908     // Any uses of DGV need to change to NewDA, with cast.
    909     DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
    910     DGV->eraseFromParent();
    911   }
    912 
    913   ValueMap[SGA] = NewDA;
    914   return false;
    915 }
    916 
    917 static void getArrayElements(Constant *C, SmallVectorImpl<Constant*> &Dest) {
    918   unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
    919 
    920   for (unsigned i = 0; i != NumElements; ++i)
    921     Dest.push_back(C->getAggregateElement(i));
    922 }
    923 
    924 void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
    925   // Merge the initializer.
    926   SmallVector<Constant*, 16> Elements;
    927   getArrayElements(AVI.DstInit, Elements);
    928 
    929   Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap, &ValMaterializer);
    930   getArrayElements(SrcInit, Elements);
    931 
    932   ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
    933   AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
    934 }
    935 
    936 /// linkGlobalInits - Update the initializers in the Dest module now that all
    937 /// globals that may be referenced are in Dest.
    938 void ModuleLinker::linkGlobalInits() {
    939   // Loop over all of the globals in the src module, mapping them over as we go
    940   for (Module::const_global_iterator I = SrcM->global_begin(),
    941        E = SrcM->global_end(); I != E; ++I) {
    942 
    943     // Only process initialized GV's or ones not already in dest.
    944     if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;
    945 
    946     // Grab destination global variable.
    947     GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
    948     // Figure out what the initializer looks like in the dest module.
    949     DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
    950                                  RF_None, &TypeMap, &ValMaterializer));
    951   }
    952 }
    953 
    954 /// linkFunctionBody - Copy the source function over into the dest function and
    955 /// fix up references to values.  At this point we know that Dest is an external
    956 /// function, and that Src is not.
    957 void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
    958   assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
    959 
    960   // Go through and convert function arguments over, remembering the mapping.
    961   Function::arg_iterator DI = Dst->arg_begin();
    962   for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
    963        I != E; ++I, ++DI) {
    964     DI->setName(I->getName());  // Copy the name over.
    965 
    966     // Add a mapping to our mapping.
    967     ValueMap[I] = DI;
    968   }
    969 
    970   if (Mode == Linker::DestroySource) {
    971     // Splice the body of the source function into the dest function.
    972     Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
    973 
    974     // At this point, all of the instructions and values of the function are now
    975     // copied over.  The only problem is that they are still referencing values in
    976     // the Source function as operands.  Loop through all of the operands of the
    977     // functions and patch them up to point to the local versions.
    978     for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
    979       for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    980         RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries,
    981                          &TypeMap, &ValMaterializer);
    982 
    983   } else {
    984     // Clone the body of the function into the dest function.
    985     SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
    986     CloneFunctionInto(Dst, Src, ValueMap, false, Returns, "", NULL,
    987                       &TypeMap, &ValMaterializer);
    988   }
    989 
    990   // There is no need to map the arguments anymore.
    991   for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
    992        I != E; ++I)
    993     ValueMap.erase(I);
    994 
    995 }
    996 
    997 /// linkAliasBodies - Insert all of the aliases in Src into the Dest module.
    998 void ModuleLinker::linkAliasBodies() {
    999   for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
   1000        I != E; ++I) {
   1001     if (DoNotLinkFromSource.count(I))
   1002       continue;
   1003     if (Constant *Aliasee = I->getAliasee()) {
   1004       GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
   1005       DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None,
   1006                               &TypeMap, &ValMaterializer));
   1007     }
   1008   }
   1009 }
   1010 
   1011 /// linkNamedMDNodes - Insert all of the named MDNodes in Src into the Dest
   1012 /// module.
   1013 void ModuleLinker::linkNamedMDNodes() {
   1014   const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
   1015   for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
   1016        E = SrcM->named_metadata_end(); I != E; ++I) {
   1017     // Don't link module flags here. Do them separately.
   1018     if (&*I == SrcModFlags) continue;
   1019     NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
   1020     // Add Src elements into Dest node.
   1021     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
   1022       DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
   1023                                    RF_None, &TypeMap, &ValMaterializer));
   1024   }
   1025 }
   1026 
   1027 /// linkModuleFlagsMetadata - Merge the linker flags in Src into the Dest
   1028 /// module.
   1029 bool ModuleLinker::linkModuleFlagsMetadata() {
   1030   // If the source module has no module flags, we are done.
   1031   const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
   1032   if (!SrcModFlags) return false;
   1033 
   1034   // If the destination module doesn't have module flags yet, then just copy
   1035   // over the source module's flags.
   1036   NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
   1037   if (DstModFlags->getNumOperands() == 0) {
   1038     for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
   1039       DstModFlags->addOperand(SrcModFlags->getOperand(I));
   1040 
   1041     return false;
   1042   }
   1043 
   1044   // First build a map of the existing module flags and requirements.
   1045   DenseMap<MDString*, MDNode*> Flags;
   1046   SmallSetVector<MDNode*, 16> Requirements;
   1047   for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
   1048     MDNode *Op = DstModFlags->getOperand(I);
   1049     ConstantInt *Behavior = cast<ConstantInt>(Op->getOperand(0));
   1050     MDString *ID = cast<MDString>(Op->getOperand(1));
   1051 
   1052     if (Behavior->getZExtValue() == Module::Require) {
   1053       Requirements.insert(cast<MDNode>(Op->getOperand(2)));
   1054     } else {
   1055       Flags[ID] = Op;
   1056     }
   1057   }
   1058 
   1059   // Merge in the flags from the source module, and also collect its set of
   1060   // requirements.
   1061   bool HasErr = false;
   1062   for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
   1063     MDNode *SrcOp = SrcModFlags->getOperand(I);
   1064     ConstantInt *SrcBehavior = cast<ConstantInt>(SrcOp->getOperand(0));
   1065     MDString *ID = cast<MDString>(SrcOp->getOperand(1));
   1066     MDNode *DstOp = Flags.lookup(ID);
   1067     unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
   1068 
   1069     // If this is a requirement, add it and continue.
   1070     if (SrcBehaviorValue == Module::Require) {
   1071       // If the destination module does not already have this requirement, add
   1072       // it.
   1073       if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
   1074         DstModFlags->addOperand(SrcOp);
   1075       }
   1076       continue;
   1077     }
   1078 
   1079     // If there is no existing flag with this ID, just add it.
   1080     if (!DstOp) {
   1081       Flags[ID] = SrcOp;
   1082       DstModFlags->addOperand(SrcOp);
   1083       continue;
   1084     }
   1085 
   1086     // Otherwise, perform a merge.
   1087     ConstantInt *DstBehavior = cast<ConstantInt>(DstOp->getOperand(0));
   1088     unsigned DstBehaviorValue = DstBehavior->getZExtValue();
   1089 
   1090     // If either flag has override behavior, handle it first.
   1091     if (DstBehaviorValue == Module::Override) {
   1092       // Diagnose inconsistent flags which both have override behavior.
   1093       if (SrcBehaviorValue == Module::Override &&
   1094           SrcOp->getOperand(2) != DstOp->getOperand(2)) {
   1095         HasErr |= emitError("linking module flags '" + ID->getString() +
   1096                             "': IDs have conflicting override values");
   1097       }
   1098       continue;
   1099     } else if (SrcBehaviorValue == Module::Override) {
   1100       // Update the destination flag to that of the source.
   1101       DstOp->replaceOperandWith(0, SrcBehavior);
   1102       DstOp->replaceOperandWith(2, SrcOp->getOperand(2));
   1103       continue;
   1104     }
   1105 
   1106     // Diagnose inconsistent merge behavior types.
   1107     if (SrcBehaviorValue != DstBehaviorValue) {
   1108       HasErr |= emitError("linking module flags '" + ID->getString() +
   1109                           "': IDs have conflicting behaviors");
   1110       continue;
   1111     }
   1112 
   1113     // Perform the merge for standard behavior types.
   1114     switch (SrcBehaviorValue) {
   1115     case Module::Require:
   1116     case Module::Override: assert(0 && "not possible"); break;
   1117     case Module::Error: {
   1118       // Emit an error if the values differ.
   1119       if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
   1120         HasErr |= emitError("linking module flags '" + ID->getString() +
   1121                             "': IDs have conflicting values");
   1122       }
   1123       continue;
   1124     }
   1125     case Module::Warning: {
   1126       // Emit a warning if the values differ.
   1127       if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
   1128         errs() << "WARNING: linking module flags '" << ID->getString()
   1129                << "': IDs have conflicting values";
   1130       }
   1131       continue;
   1132     }
   1133     case Module::Append: {
   1134       MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
   1135       MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
   1136       unsigned NumOps = DstValue->getNumOperands() + SrcValue->getNumOperands();
   1137       Value **VP, **Values = VP = new Value*[NumOps];
   1138       for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i, ++VP)
   1139         *VP = DstValue->getOperand(i);
   1140       for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i, ++VP)
   1141         *VP = SrcValue->getOperand(i);
   1142       DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(),
   1143                                                ArrayRef<Value*>(Values,
   1144                                                                 NumOps)));
   1145       delete[] Values;
   1146       break;
   1147     }
   1148     case Module::AppendUnique: {
   1149       SmallSetVector<Value*, 16> Elts;
   1150       MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
   1151       MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
   1152       for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i)
   1153         Elts.insert(DstValue->getOperand(i));
   1154       for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i)
   1155         Elts.insert(SrcValue->getOperand(i));
   1156       DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(),
   1157                                                ArrayRef<Value*>(Elts.begin(),
   1158                                                                 Elts.end())));
   1159       break;
   1160     }
   1161     }
   1162   }
   1163 
   1164   // Check all of the requirements.
   1165   for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
   1166     MDNode *Requirement = Requirements[I];
   1167     MDString *Flag = cast<MDString>(Requirement->getOperand(0));
   1168     Value *ReqValue = Requirement->getOperand(1);
   1169 
   1170     MDNode *Op = Flags[Flag];
   1171     if (!Op || Op->getOperand(2) != ReqValue) {
   1172       HasErr |= emitError("linking module flags '" + Flag->getString() +
   1173                           "': does not have the required value");
   1174       continue;
   1175     }
   1176   }
   1177 
   1178   return HasErr;
   1179 }
   1180 
   1181 bool ModuleLinker::run() {
   1182   assert(DstM && "Null destination module");
   1183   assert(SrcM && "Null source module");
   1184 
   1185   // Inherit the target data from the source module if the destination module
   1186   // doesn't have one already.
   1187   if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty())
   1188     DstM->setDataLayout(SrcM->getDataLayout());
   1189 
   1190   // Copy the target triple from the source to dest if the dest's is empty.
   1191   if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
   1192     DstM->setTargetTriple(SrcM->getTargetTriple());
   1193 
   1194   if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() &&
   1195       SrcM->getDataLayout() != DstM->getDataLayout())
   1196     errs() << "WARNING: Linking two modules of different data layouts!\n";
   1197   if (!SrcM->getTargetTriple().empty() &&
   1198       DstM->getTargetTriple() != SrcM->getTargetTriple()) {
   1199     errs() << "WARNING: Linking two modules of different target triples: ";
   1200     if (!SrcM->getModuleIdentifier().empty())
   1201       errs() << SrcM->getModuleIdentifier() << ": ";
   1202     errs() << "'" << SrcM->getTargetTriple() << "' and '"
   1203            << DstM->getTargetTriple() << "'\n";
   1204   }
   1205 
   1206   // Append the module inline asm string.
   1207   if (!SrcM->getModuleInlineAsm().empty()) {
   1208     if (DstM->getModuleInlineAsm().empty())
   1209       DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
   1210     else
   1211       DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
   1212                                SrcM->getModuleInlineAsm());
   1213   }
   1214 
   1215   // Loop over all of the linked values to compute type mappings.
   1216   computeTypeMapping();
   1217 
   1218   // Insert all of the globals in src into the DstM module... without linking
   1219   // initializers (which could refer to functions not yet mapped over).
   1220   for (Module::global_iterator I = SrcM->global_begin(),
   1221        E = SrcM->global_end(); I != E; ++I)
   1222     if (linkGlobalProto(I))
   1223       return true;
   1224 
   1225   // Link the functions together between the two modules, without doing function
   1226   // bodies... this just adds external function prototypes to the DstM
   1227   // function...  We do this so that when we begin processing function bodies,
   1228   // all of the global values that may be referenced are available in our
   1229   // ValueMap.
   1230   for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
   1231     if (linkFunctionProto(I))
   1232       return true;
   1233 
   1234   // If there were any aliases, link them now.
   1235   for (Module::alias_iterator I = SrcM->alias_begin(),
   1236        E = SrcM->alias_end(); I != E; ++I)
   1237     if (linkAliasProto(I))
   1238       return true;
   1239 
   1240   for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
   1241     linkAppendingVarInit(AppendingVars[i]);
   1242 
   1243   // Update the initializers in the DstM module now that all globals that may
   1244   // be referenced are in DstM.
   1245   linkGlobalInits();
   1246 
   1247   // Link in the function bodies that are defined in the source module into
   1248   // DstM.
   1249   for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
   1250     // Skip if not linking from source.
   1251     if (DoNotLinkFromSource.count(SF)) continue;
   1252 
   1253     // Skip if no body (function is external) or materialize.
   1254     if (SF->isDeclaration()) {
   1255       if (!SF->isMaterializable())
   1256         continue;
   1257       if (SF->Materialize(&ErrorMsg))
   1258         return true;
   1259     }
   1260 
   1261     linkFunctionBody(cast<Function>(ValueMap[SF]), SF);
   1262     SF->Dematerialize();
   1263   }
   1264 
   1265   // Resolve all uses of aliases with aliasees.
   1266   linkAliasBodies();
   1267 
   1268   // Remap all of the named MDNodes in Src into the DstM module. We do this
   1269   // after linking GlobalValues so that MDNodes that reference GlobalValues
   1270   // are properly remapped.
   1271   linkNamedMDNodes();
   1272 
   1273   // Merge the module flags into the DstM module.
   1274   if (linkModuleFlagsMetadata())
   1275     return true;
   1276 
   1277   // Process vector of lazily linked in functions.
   1278   bool LinkedInAnyFunctions;
   1279   do {
   1280     LinkedInAnyFunctions = false;
   1281 
   1282     for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
   1283         E = LazilyLinkFunctions.end(); I != E; ++I) {
   1284       Function *SF = *I;
   1285       if (!SF)
   1286         continue;
   1287 
   1288       Function *DF = cast<Function>(ValueMap[SF]);
   1289 
   1290       // Materialize if necessary.
   1291       if (SF->isDeclaration()) {
   1292         if (!SF->isMaterializable())
   1293           continue;
   1294         if (SF->Materialize(&ErrorMsg))
   1295           return true;
   1296       }
   1297 
   1298       // Erase from vector *before* the function body is linked - linkFunctionBody could
   1299       // invalidate I.
   1300       LazilyLinkFunctions.erase(I);
   1301 
   1302       // Link in function body.
   1303       linkFunctionBody(DF, SF);
   1304       SF->Dematerialize();
   1305 
   1306       // Set flag to indicate we may have more functions to lazily link in
   1307       // since we linked in a function.
   1308       LinkedInAnyFunctions = true;
   1309       break;
   1310     }
   1311   } while (LinkedInAnyFunctions);
   1312 
   1313   // Now that all of the types from the source are used, resolve any structs
   1314   // copied over to the dest that didn't exist there.
   1315   TypeMap.linkDefinedTypeBodies();
   1316 
   1317   return false;
   1318 }
   1319 
   1320 Linker::Linker(Module *M) : Composite(M) {
   1321   TypeFinder StructTypes;
   1322   StructTypes.run(*M, true);
   1323   IdentifiedStructTypes.insert(StructTypes.begin(), StructTypes.end());
   1324 }
   1325 
   1326 Linker::~Linker() {
   1327 }
   1328 
   1329 bool Linker::linkInModule(Module *Src, unsigned Mode, std::string *ErrorMsg) {
   1330   ModuleLinker TheLinker(Composite, IdentifiedStructTypes, Src, Mode);
   1331   if (TheLinker.run()) {
   1332     if (ErrorMsg)
   1333       *ErrorMsg = TheLinker.ErrorMsg;
   1334     return true;
   1335   }
   1336   return false;
   1337 }
   1338 
   1339 //===----------------------------------------------------------------------===//
   1340 // LinkModules entrypoint.
   1341 //===----------------------------------------------------------------------===//
   1342 
   1343 /// LinkModules - This function links two modules together, with the resulting
   1344 /// Dest module modified to be the composite of the two input modules.  If an
   1345 /// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
   1346 /// the problem.  Upon failure, the Dest module could be in a modified state,
   1347 /// and shouldn't be relied on to be consistent.
   1348 bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode,
   1349                          std::string *ErrorMsg) {
   1350   Linker L(Dest);
   1351   return L.linkInModule(Src, Mode, ErrorMsg);
   1352 }
   1353 
   1354 //===----------------------------------------------------------------------===//
   1355 // C API.
   1356 //===----------------------------------------------------------------------===//
   1357 
   1358 LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src,
   1359                          LLVMLinkerMode Mode, char **OutMessages) {
   1360   std::string Messages;
   1361   LLVMBool Result = Linker::LinkModules(unwrap(Dest), unwrap(Src),
   1362                                         Mode, OutMessages? &Messages : 0);
   1363   if (OutMessages)
   1364     *OutMessages = strdup(Messages.c_str());
   1365   return Result;
   1366 }
   1367