Home | History | Annotate | Download | only in audioflinger
      1 /*
      2 **
      3 ** Copyright 2012, The Android Open Source Project
      4 **
      5 ** Licensed under the Apache License, Version 2.0 (the "License");
      6 ** you may not use this file except in compliance with the License.
      7 ** You may obtain a copy of the License at
      8 **
      9 **     http://www.apache.org/licenses/LICENSE-2.0
     10 **
     11 ** Unless required by applicable law or agreed to in writing, software
     12 ** distributed under the License is distributed on an "AS IS" BASIS,
     13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     14 ** See the License for the specific language governing permissions and
     15 ** limitations under the License.
     16 */
     17 
     18 
     19 #define LOG_TAG "AudioFlinger"
     20 //#define LOG_NDEBUG 0
     21 #define ATRACE_TAG ATRACE_TAG_AUDIO
     22 
     23 #include "Configuration.h"
     24 #include <math.h>
     25 #include <fcntl.h>
     26 #include <sys/stat.h>
     27 #include <cutils/properties.h>
     28 #include <media/AudioParameter.h>
     29 #include <utils/Log.h>
     30 #include <utils/Trace.h>
     31 
     32 #include <private/media/AudioTrackShared.h>
     33 #include <hardware/audio.h>
     34 #include <audio_effects/effect_ns.h>
     35 #include <audio_effects/effect_aec.h>
     36 #include <audio_utils/primitives.h>
     37 
     38 // NBAIO implementations
     39 #include <media/nbaio/AudioStreamOutSink.h>
     40 #include <media/nbaio/MonoPipe.h>
     41 #include <media/nbaio/MonoPipeReader.h>
     42 #include <media/nbaio/Pipe.h>
     43 #include <media/nbaio/PipeReader.h>
     44 #include <media/nbaio/SourceAudioBufferProvider.h>
     45 
     46 #include <powermanager/PowerManager.h>
     47 
     48 #include <common_time/cc_helper.h>
     49 #include <common_time/local_clock.h>
     50 
     51 #include "AudioFlinger.h"
     52 #include "AudioMixer.h"
     53 #include "FastMixer.h"
     54 #include "ServiceUtilities.h"
     55 #include "SchedulingPolicyService.h"
     56 
     57 #ifdef ADD_BATTERY_DATA
     58 #include <media/IMediaPlayerService.h>
     59 #include <media/IMediaDeathNotifier.h>
     60 #endif
     61 
     62 #ifdef DEBUG_CPU_USAGE
     63 #include <cpustats/CentralTendencyStatistics.h>
     64 #include <cpustats/ThreadCpuUsage.h>
     65 #endif
     66 
     67 // ----------------------------------------------------------------------------
     68 
     69 // Note: the following macro is used for extremely verbose logging message.  In
     70 // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
     71 // 0; but one side effect of this is to turn all LOGV's as well.  Some messages
     72 // are so verbose that we want to suppress them even when we have ALOG_ASSERT
     73 // turned on.  Do not uncomment the #def below unless you really know what you
     74 // are doing and want to see all of the extremely verbose messages.
     75 //#define VERY_VERY_VERBOSE_LOGGING
     76 #ifdef VERY_VERY_VERBOSE_LOGGING
     77 #define ALOGVV ALOGV
     78 #else
     79 #define ALOGVV(a...) do { } while(0)
     80 #endif
     81 
     82 namespace android {
     83 
     84 // retry counts for buffer fill timeout
     85 // 50 * ~20msecs = 1 second
     86 static const int8_t kMaxTrackRetries = 50;
     87 static const int8_t kMaxTrackStartupRetries = 50;
     88 // allow less retry attempts on direct output thread.
     89 // direct outputs can be a scarce resource in audio hardware and should
     90 // be released as quickly as possible.
     91 static const int8_t kMaxTrackRetriesDirect = 2;
     92 
     93 // don't warn about blocked writes or record buffer overflows more often than this
     94 static const nsecs_t kWarningThrottleNs = seconds(5);
     95 
     96 // RecordThread loop sleep time upon application overrun or audio HAL read error
     97 static const int kRecordThreadSleepUs = 5000;
     98 
     99 // maximum time to wait for setParameters to complete
    100 static const nsecs_t kSetParametersTimeoutNs = seconds(2);
    101 
    102 // minimum sleep time for the mixer thread loop when tracks are active but in underrun
    103 static const uint32_t kMinThreadSleepTimeUs = 5000;
    104 // maximum divider applied to the active sleep time in the mixer thread loop
    105 static const uint32_t kMaxThreadSleepTimeShift = 2;
    106 
    107 // minimum normal mix buffer size, expressed in milliseconds rather than frames
    108 static const uint32_t kMinNormalMixBufferSizeMs = 20;
    109 // maximum normal mix buffer size
    110 static const uint32_t kMaxNormalMixBufferSizeMs = 24;
    111 
    112 // Offloaded output thread standby delay: allows track transition without going to standby
    113 static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
    114 
    115 // Whether to use fast mixer
    116 static const enum {
    117     FastMixer_Never,    // never initialize or use: for debugging only
    118     FastMixer_Always,   // always initialize and use, even if not needed: for debugging only
    119                         // normal mixer multiplier is 1
    120     FastMixer_Static,   // initialize if needed, then use all the time if initialized,
    121                         // multiplier is calculated based on min & max normal mixer buffer size
    122     FastMixer_Dynamic,  // initialize if needed, then use dynamically depending on track load,
    123                         // multiplier is calculated based on min & max normal mixer buffer size
    124     // FIXME for FastMixer_Dynamic:
    125     //  Supporting this option will require fixing HALs that can't handle large writes.
    126     //  For example, one HAL implementation returns an error from a large write,
    127     //  and another HAL implementation corrupts memory, possibly in the sample rate converter.
    128     //  We could either fix the HAL implementations, or provide a wrapper that breaks
    129     //  up large writes into smaller ones, and the wrapper would need to deal with scheduler.
    130 } kUseFastMixer = FastMixer_Static;
    131 
    132 // Priorities for requestPriority
    133 static const int kPriorityAudioApp = 2;
    134 static const int kPriorityFastMixer = 3;
    135 
    136 // IAudioFlinger::createTrack() reports back to client the total size of shared memory area
    137 // for the track.  The client then sub-divides this into smaller buffers for its use.
    138 // Currently the client uses double-buffering by default, but doesn't tell us about that.
    139 // So for now we just assume that client is double-buffered.
    140 // FIXME It would be better for client to tell AudioFlinger whether it wants double-buffering or
    141 // N-buffering, so AudioFlinger could allocate the right amount of memory.
    142 // See the client's minBufCount and mNotificationFramesAct calculations for details.
    143 static const int kFastTrackMultiplier = 1;
    144 
    145 // ----------------------------------------------------------------------------
    146 
    147 #ifdef ADD_BATTERY_DATA
    148 // To collect the amplifier usage
    149 static void addBatteryData(uint32_t params) {
    150     sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
    151     if (service == NULL) {
    152         // it already logged
    153         return;
    154     }
    155 
    156     service->addBatteryData(params);
    157 }
    158 #endif
    159 
    160 
    161 // ----------------------------------------------------------------------------
    162 //      CPU Stats
    163 // ----------------------------------------------------------------------------
    164 
    165 class CpuStats {
    166 public:
    167     CpuStats();
    168     void sample(const String8 &title);
    169 #ifdef DEBUG_CPU_USAGE
    170 private:
    171     ThreadCpuUsage mCpuUsage;           // instantaneous thread CPU usage in wall clock ns
    172     CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
    173 
    174     CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
    175 
    176     int mCpuNum;                        // thread's current CPU number
    177     int mCpukHz;                        // frequency of thread's current CPU in kHz
    178 #endif
    179 };
    180 
    181 CpuStats::CpuStats()
    182 #ifdef DEBUG_CPU_USAGE
    183     : mCpuNum(-1), mCpukHz(-1)
    184 #endif
    185 {
    186 }
    187 
    188 void CpuStats::sample(const String8 &title) {
    189 #ifdef DEBUG_CPU_USAGE
    190     // get current thread's delta CPU time in wall clock ns
    191     double wcNs;
    192     bool valid = mCpuUsage.sampleAndEnable(wcNs);
    193 
    194     // record sample for wall clock statistics
    195     if (valid) {
    196         mWcStats.sample(wcNs);
    197     }
    198 
    199     // get the current CPU number
    200     int cpuNum = sched_getcpu();
    201 
    202     // get the current CPU frequency in kHz
    203     int cpukHz = mCpuUsage.getCpukHz(cpuNum);
    204 
    205     // check if either CPU number or frequency changed
    206     if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
    207         mCpuNum = cpuNum;
    208         mCpukHz = cpukHz;
    209         // ignore sample for purposes of cycles
    210         valid = false;
    211     }
    212 
    213     // if no change in CPU number or frequency, then record sample for cycle statistics
    214     if (valid && mCpukHz > 0) {
    215         double cycles = wcNs * cpukHz * 0.000001;
    216         mHzStats.sample(cycles);
    217     }
    218 
    219     unsigned n = mWcStats.n();
    220     // mCpuUsage.elapsed() is expensive, so don't call it every loop
    221     if ((n & 127) == 1) {
    222         long long elapsed = mCpuUsage.elapsed();
    223         if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
    224             double perLoop = elapsed / (double) n;
    225             double perLoop100 = perLoop * 0.01;
    226             double perLoop1k = perLoop * 0.001;
    227             double mean = mWcStats.mean();
    228             double stddev = mWcStats.stddev();
    229             double minimum = mWcStats.minimum();
    230             double maximum = mWcStats.maximum();
    231             double meanCycles = mHzStats.mean();
    232             double stddevCycles = mHzStats.stddev();
    233             double minCycles = mHzStats.minimum();
    234             double maxCycles = mHzStats.maximum();
    235             mCpuUsage.resetElapsed();
    236             mWcStats.reset();
    237             mHzStats.reset();
    238             ALOGD("CPU usage for %s over past %.1f secs\n"
    239                 "  (%u mixer loops at %.1f mean ms per loop):\n"
    240                 "  us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
    241                 "  %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
    242                 "  MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
    243                     title.string(),
    244                     elapsed * .000000001, n, perLoop * .000001,
    245                     mean * .001,
    246                     stddev * .001,
    247                     minimum * .001,
    248                     maximum * .001,
    249                     mean / perLoop100,
    250                     stddev / perLoop100,
    251                     minimum / perLoop100,
    252                     maximum / perLoop100,
    253                     meanCycles / perLoop1k,
    254                     stddevCycles / perLoop1k,
    255                     minCycles / perLoop1k,
    256                     maxCycles / perLoop1k);
    257 
    258         }
    259     }
    260 #endif
    261 };
    262 
    263 // ----------------------------------------------------------------------------
    264 //      ThreadBase
    265 // ----------------------------------------------------------------------------
    266 
    267 AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
    268         audio_devices_t outDevice, audio_devices_t inDevice, type_t type)
    269     :   Thread(false /*canCallJava*/),
    270         mType(type),
    271         mAudioFlinger(audioFlinger),
    272         // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, and mFormat are
    273         // set by PlaybackThread::readOutputParameters() or RecordThread::readInputParameters()
    274         mParamStatus(NO_ERROR),
    275         //FIXME: mStandby should be true here. Is this some kind of hack?
    276         mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
    277         mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
    278         // mName will be set by concrete (non-virtual) subclass
    279         mDeathRecipient(new PMDeathRecipient(this))
    280 {
    281 }
    282 
    283 AudioFlinger::ThreadBase::~ThreadBase()
    284 {
    285     // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
    286     for (size_t i = 0; i < mConfigEvents.size(); i++) {
    287         delete mConfigEvents[i];
    288     }
    289     mConfigEvents.clear();
    290 
    291     mParamCond.broadcast();
    292     // do not lock the mutex in destructor
    293     releaseWakeLock_l();
    294     if (mPowerManager != 0) {
    295         sp<IBinder> binder = mPowerManager->asBinder();
    296         binder->unlinkToDeath(mDeathRecipient);
    297     }
    298 }
    299 
    300 void AudioFlinger::ThreadBase::exit()
    301 {
    302     ALOGV("ThreadBase::exit");
    303     // do any cleanup required for exit to succeed
    304     preExit();
    305     {
    306         // This lock prevents the following race in thread (uniprocessor for illustration):
    307         //  if (!exitPending()) {
    308         //      // context switch from here to exit()
    309         //      // exit() calls requestExit(), what exitPending() observes
    310         //      // exit() calls signal(), which is dropped since no waiters
    311         //      // context switch back from exit() to here
    312         //      mWaitWorkCV.wait(...);
    313         //      // now thread is hung
    314         //  }
    315         AutoMutex lock(mLock);
    316         requestExit();
    317         mWaitWorkCV.broadcast();
    318     }
    319     // When Thread::requestExitAndWait is made virtual and this method is renamed to
    320     // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
    321     requestExitAndWait();
    322 }
    323 
    324 status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
    325 {
    326     status_t status;
    327 
    328     ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
    329     Mutex::Autolock _l(mLock);
    330 
    331     mNewParameters.add(keyValuePairs);
    332     mWaitWorkCV.signal();
    333     // wait condition with timeout in case the thread loop has exited
    334     // before the request could be processed
    335     if (mParamCond.waitRelative(mLock, kSetParametersTimeoutNs) == NO_ERROR) {
    336         status = mParamStatus;
    337         mWaitWorkCV.signal();
    338     } else {
    339         status = TIMED_OUT;
    340     }
    341     return status;
    342 }
    343 
    344 void AudioFlinger::ThreadBase::sendIoConfigEvent(int event, int param)
    345 {
    346     Mutex::Autolock _l(mLock);
    347     sendIoConfigEvent_l(event, param);
    348 }
    349 
    350 // sendIoConfigEvent_l() must be called with ThreadBase::mLock held
    351 void AudioFlinger::ThreadBase::sendIoConfigEvent_l(int event, int param)
    352 {
    353     IoConfigEvent *ioEvent = new IoConfigEvent(event, param);
    354     mConfigEvents.add(static_cast<ConfigEvent *>(ioEvent));
    355     ALOGV("sendIoConfigEvent() num events %d event %d, param %d", mConfigEvents.size(), event,
    356             param);
    357     mWaitWorkCV.signal();
    358 }
    359 
    360 // sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
    361 void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
    362 {
    363     PrioConfigEvent *prioEvent = new PrioConfigEvent(pid, tid, prio);
    364     mConfigEvents.add(static_cast<ConfigEvent *>(prioEvent));
    365     ALOGV("sendPrioConfigEvent_l() num events %d pid %d, tid %d prio %d",
    366           mConfigEvents.size(), pid, tid, prio);
    367     mWaitWorkCV.signal();
    368 }
    369 
    370 void AudioFlinger::ThreadBase::processConfigEvents()
    371 {
    372     mLock.lock();
    373     while (!mConfigEvents.isEmpty()) {
    374         ALOGV("processConfigEvents() remaining events %d", mConfigEvents.size());
    375         ConfigEvent *event = mConfigEvents[0];
    376         mConfigEvents.removeAt(0);
    377         // release mLock before locking AudioFlinger mLock: lock order is always
    378         // AudioFlinger then ThreadBase to avoid cross deadlock
    379         mLock.unlock();
    380         switch(event->type()) {
    381             case CFG_EVENT_PRIO: {
    382                 PrioConfigEvent *prioEvent = static_cast<PrioConfigEvent *>(event);
    383                 // FIXME Need to understand why this has be done asynchronously
    384                 int err = requestPriority(prioEvent->pid(), prioEvent->tid(), prioEvent->prio(),
    385                         true /*asynchronous*/);
    386                 if (err != 0) {
    387                     ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; "
    388                           "error %d",
    389                           prioEvent->prio(), prioEvent->pid(), prioEvent->tid(), err);
    390                 }
    391             } break;
    392             case CFG_EVENT_IO: {
    393                 IoConfigEvent *ioEvent = static_cast<IoConfigEvent *>(event);
    394                 mAudioFlinger->mLock.lock();
    395                 audioConfigChanged_l(ioEvent->event(), ioEvent->param());
    396                 mAudioFlinger->mLock.unlock();
    397             } break;
    398             default:
    399                 ALOGE("processConfigEvents() unknown event type %d", event->type());
    400                 break;
    401         }
    402         delete event;
    403         mLock.lock();
    404     }
    405     mLock.unlock();
    406 }
    407 
    408 void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args)
    409 {
    410     const size_t SIZE = 256;
    411     char buffer[SIZE];
    412     String8 result;
    413 
    414     bool locked = AudioFlinger::dumpTryLock(mLock);
    415     if (!locked) {
    416         snprintf(buffer, SIZE, "thread %p maybe dead locked\n", this);
    417         write(fd, buffer, strlen(buffer));
    418     }
    419 
    420     snprintf(buffer, SIZE, "io handle: %d\n", mId);
    421     result.append(buffer);
    422     snprintf(buffer, SIZE, "TID: %d\n", getTid());
    423     result.append(buffer);
    424     snprintf(buffer, SIZE, "standby: %d\n", mStandby);
    425     result.append(buffer);
    426     snprintf(buffer, SIZE, "Sample rate: %u\n", mSampleRate);
    427     result.append(buffer);
    428     snprintf(buffer, SIZE, "HAL frame count: %d\n", mFrameCount);
    429     result.append(buffer);
    430     snprintf(buffer, SIZE, "Channel Count: %u\n", mChannelCount);
    431     result.append(buffer);
    432     snprintf(buffer, SIZE, "Channel Mask: 0x%08x\n", mChannelMask);
    433     result.append(buffer);
    434     snprintf(buffer, SIZE, "Format: %d\n", mFormat);
    435     result.append(buffer);
    436     snprintf(buffer, SIZE, "Frame size: %u\n", mFrameSize);
    437     result.append(buffer);
    438 
    439     snprintf(buffer, SIZE, "\nPending setParameters commands: \n");
    440     result.append(buffer);
    441     result.append(" Index Command");
    442     for (size_t i = 0; i < mNewParameters.size(); ++i) {
    443         snprintf(buffer, SIZE, "\n %02d    ", i);
    444         result.append(buffer);
    445         result.append(mNewParameters[i]);
    446     }
    447 
    448     snprintf(buffer, SIZE, "\n\nPending config events: \n");
    449     result.append(buffer);
    450     for (size_t i = 0; i < mConfigEvents.size(); i++) {
    451         mConfigEvents[i]->dump(buffer, SIZE);
    452         result.append(buffer);
    453     }
    454     result.append("\n");
    455 
    456     write(fd, result.string(), result.size());
    457 
    458     if (locked) {
    459         mLock.unlock();
    460     }
    461 }
    462 
    463 void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
    464 {
    465     const size_t SIZE = 256;
    466     char buffer[SIZE];
    467     String8 result;
    468 
    469     snprintf(buffer, SIZE, "\n- %d Effect Chains:\n", mEffectChains.size());
    470     write(fd, buffer, strlen(buffer));
    471 
    472     for (size_t i = 0; i < mEffectChains.size(); ++i) {
    473         sp<EffectChain> chain = mEffectChains[i];
    474         if (chain != 0) {
    475             chain->dump(fd, args);
    476         }
    477     }
    478 }
    479 
    480 void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
    481 {
    482     Mutex::Autolock _l(mLock);
    483     acquireWakeLock_l(uid);
    484 }
    485 
    486 String16 AudioFlinger::ThreadBase::getWakeLockTag()
    487 {
    488     switch (mType) {
    489         case MIXER:
    490             return String16("AudioMix");
    491         case DIRECT:
    492             return String16("AudioDirectOut");
    493         case DUPLICATING:
    494             return String16("AudioDup");
    495         case RECORD:
    496             return String16("AudioIn");
    497         case OFFLOAD:
    498             return String16("AudioOffload");
    499         default:
    500             ALOG_ASSERT(false);
    501             return String16("AudioUnknown");
    502     }
    503 }
    504 
    505 void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
    506 {
    507     getPowerManager_l();
    508     if (mPowerManager != 0) {
    509         sp<IBinder> binder = new BBinder();
    510         status_t status;
    511         if (uid >= 0) {
    512             status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
    513                     binder,
    514                     getWakeLockTag(),
    515                     String16("media"),
    516                     uid);
    517         } else {
    518             status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
    519                     binder,
    520                     getWakeLockTag(),
    521                     String16("media"));
    522         }
    523         if (status == NO_ERROR) {
    524             mWakeLockToken = binder;
    525         }
    526         ALOGV("acquireWakeLock_l() %s status %d", mName, status);
    527     }
    528 }
    529 
    530 void AudioFlinger::ThreadBase::releaseWakeLock()
    531 {
    532     Mutex::Autolock _l(mLock);
    533     releaseWakeLock_l();
    534 }
    535 
    536 void AudioFlinger::ThreadBase::releaseWakeLock_l()
    537 {
    538     if (mWakeLockToken != 0) {
    539         ALOGV("releaseWakeLock_l() %s", mName);
    540         if (mPowerManager != 0) {
    541             mPowerManager->releaseWakeLock(mWakeLockToken, 0);
    542         }
    543         mWakeLockToken.clear();
    544     }
    545 }
    546 
    547 void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
    548     Mutex::Autolock _l(mLock);
    549     updateWakeLockUids_l(uids);
    550 }
    551 
    552 void AudioFlinger::ThreadBase::getPowerManager_l() {
    553 
    554     if (mPowerManager == 0) {
    555         // use checkService() to avoid blocking if power service is not up yet
    556         sp<IBinder> binder =
    557             defaultServiceManager()->checkService(String16("power"));
    558         if (binder == 0) {
    559             ALOGW("Thread %s cannot connect to the power manager service", mName);
    560         } else {
    561             mPowerManager = interface_cast<IPowerManager>(binder);
    562             binder->linkToDeath(mDeathRecipient);
    563         }
    564     }
    565 }
    566 
    567 void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
    568 
    569     getPowerManager_l();
    570     if (mWakeLockToken == NULL) {
    571         ALOGE("no wake lock to update!");
    572         return;
    573     }
    574     if (mPowerManager != 0) {
    575         sp<IBinder> binder = new BBinder();
    576         status_t status;
    577         status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array());
    578         ALOGV("acquireWakeLock_l() %s status %d", mName, status);
    579     }
    580 }
    581 
    582 void AudioFlinger::ThreadBase::clearPowerManager()
    583 {
    584     Mutex::Autolock _l(mLock);
    585     releaseWakeLock_l();
    586     mPowerManager.clear();
    587 }
    588 
    589 void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who)
    590 {
    591     sp<ThreadBase> thread = mThread.promote();
    592     if (thread != 0) {
    593         thread->clearPowerManager();
    594     }
    595     ALOGW("power manager service died !!!");
    596 }
    597 
    598 void AudioFlinger::ThreadBase::setEffectSuspended(
    599         const effect_uuid_t *type, bool suspend, int sessionId)
    600 {
    601     Mutex::Autolock _l(mLock);
    602     setEffectSuspended_l(type, suspend, sessionId);
    603 }
    604 
    605 void AudioFlinger::ThreadBase::setEffectSuspended_l(
    606         const effect_uuid_t *type, bool suspend, int sessionId)
    607 {
    608     sp<EffectChain> chain = getEffectChain_l(sessionId);
    609     if (chain != 0) {
    610         if (type != NULL) {
    611             chain->setEffectSuspended_l(type, suspend);
    612         } else {
    613             chain->setEffectSuspendedAll_l(suspend);
    614         }
    615     }
    616 
    617     updateSuspendedSessions_l(type, suspend, sessionId);
    618 }
    619 
    620 void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
    621 {
    622     ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
    623     if (index < 0) {
    624         return;
    625     }
    626 
    627     const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
    628             mSuspendedSessions.valueAt(index);
    629 
    630     for (size_t i = 0; i < sessionEffects.size(); i++) {
    631         sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
    632         for (int j = 0; j < desc->mRefCount; j++) {
    633             if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
    634                 chain->setEffectSuspendedAll_l(true);
    635             } else {
    636                 ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
    637                     desc->mType.timeLow);
    638                 chain->setEffectSuspended_l(&desc->mType, true);
    639             }
    640         }
    641     }
    642 }
    643 
    644 void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
    645                                                          bool suspend,
    646                                                          int sessionId)
    647 {
    648     ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
    649 
    650     KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
    651 
    652     if (suspend) {
    653         if (index >= 0) {
    654             sessionEffects = mSuspendedSessions.valueAt(index);
    655         } else {
    656             mSuspendedSessions.add(sessionId, sessionEffects);
    657         }
    658     } else {
    659         if (index < 0) {
    660             return;
    661         }
    662         sessionEffects = mSuspendedSessions.valueAt(index);
    663     }
    664 
    665 
    666     int key = EffectChain::kKeyForSuspendAll;
    667     if (type != NULL) {
    668         key = type->timeLow;
    669     }
    670     index = sessionEffects.indexOfKey(key);
    671 
    672     sp<SuspendedSessionDesc> desc;
    673     if (suspend) {
    674         if (index >= 0) {
    675             desc = sessionEffects.valueAt(index);
    676         } else {
    677             desc = new SuspendedSessionDesc();
    678             if (type != NULL) {
    679                 desc->mType = *type;
    680             }
    681             sessionEffects.add(key, desc);
    682             ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
    683         }
    684         desc->mRefCount++;
    685     } else {
    686         if (index < 0) {
    687             return;
    688         }
    689         desc = sessionEffects.valueAt(index);
    690         if (--desc->mRefCount == 0) {
    691             ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
    692             sessionEffects.removeItemsAt(index);
    693             if (sessionEffects.isEmpty()) {
    694                 ALOGV("updateSuspendedSessions_l() restore removing session %d",
    695                                  sessionId);
    696                 mSuspendedSessions.removeItem(sessionId);
    697             }
    698         }
    699     }
    700     if (!sessionEffects.isEmpty()) {
    701         mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
    702     }
    703 }
    704 
    705 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
    706                                                             bool enabled,
    707                                                             int sessionId)
    708 {
    709     Mutex::Autolock _l(mLock);
    710     checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
    711 }
    712 
    713 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
    714                                                             bool enabled,
    715                                                             int sessionId)
    716 {
    717     if (mType != RECORD) {
    718         // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
    719         // another session. This gives the priority to well behaved effect control panels
    720         // and applications not using global effects.
    721         // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
    722         // global effects
    723         if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
    724             setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
    725         }
    726     }
    727 
    728     sp<EffectChain> chain = getEffectChain_l(sessionId);
    729     if (chain != 0) {
    730         chain->checkSuspendOnEffectEnabled(effect, enabled);
    731     }
    732 }
    733 
    734 // ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
    735 sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
    736         const sp<AudioFlinger::Client>& client,
    737         const sp<IEffectClient>& effectClient,
    738         int32_t priority,
    739         int sessionId,
    740         effect_descriptor_t *desc,
    741         int *enabled,
    742         status_t *status
    743         )
    744 {
    745     sp<EffectModule> effect;
    746     sp<EffectHandle> handle;
    747     status_t lStatus;
    748     sp<EffectChain> chain;
    749     bool chainCreated = false;
    750     bool effectCreated = false;
    751     bool effectRegistered = false;
    752 
    753     lStatus = initCheck();
    754     if (lStatus != NO_ERROR) {
    755         ALOGW("createEffect_l() Audio driver not initialized.");
    756         goto Exit;
    757     }
    758 
    759     // Allow global effects only on offloaded and mixer threads
    760     if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
    761         switch (mType) {
    762         case MIXER:
    763         case OFFLOAD:
    764             break;
    765         case DIRECT:
    766         case DUPLICATING:
    767         case RECORD:
    768         default:
    769             ALOGW("createEffect_l() Cannot add global effect %s on thread %s", desc->name, mName);
    770             lStatus = BAD_VALUE;
    771             goto Exit;
    772         }
    773     }
    774 
    775     // Only Pre processor effects are allowed on input threads and only on input threads
    776     if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
    777         ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d",
    778                 desc->name, desc->flags, mType);
    779         lStatus = BAD_VALUE;
    780         goto Exit;
    781     }
    782 
    783     ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
    784 
    785     { // scope for mLock
    786         Mutex::Autolock _l(mLock);
    787 
    788         // check for existing effect chain with the requested audio session
    789         chain = getEffectChain_l(sessionId);
    790         if (chain == 0) {
    791             // create a new chain for this session
    792             ALOGV("createEffect_l() new effect chain for session %d", sessionId);
    793             chain = new EffectChain(this, sessionId);
    794             addEffectChain_l(chain);
    795             chain->setStrategy(getStrategyForSession_l(sessionId));
    796             chainCreated = true;
    797         } else {
    798             effect = chain->getEffectFromDesc_l(desc);
    799         }
    800 
    801         ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
    802 
    803         if (effect == 0) {
    804             int id = mAudioFlinger->nextUniqueId();
    805             // Check CPU and memory usage
    806             lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
    807             if (lStatus != NO_ERROR) {
    808                 goto Exit;
    809             }
    810             effectRegistered = true;
    811             // create a new effect module if none present in the chain
    812             effect = new EffectModule(this, chain, desc, id, sessionId);
    813             lStatus = effect->status();
    814             if (lStatus != NO_ERROR) {
    815                 goto Exit;
    816             }
    817             effect->setOffloaded(mType == OFFLOAD, mId);
    818 
    819             lStatus = chain->addEffect_l(effect);
    820             if (lStatus != NO_ERROR) {
    821                 goto Exit;
    822             }
    823             effectCreated = true;
    824 
    825             effect->setDevice(mOutDevice);
    826             effect->setDevice(mInDevice);
    827             effect->setMode(mAudioFlinger->getMode());
    828             effect->setAudioSource(mAudioSource);
    829         }
    830         // create effect handle and connect it to effect module
    831         handle = new EffectHandle(effect, client, effectClient, priority);
    832         lStatus = effect->addHandle(handle.get());
    833         if (enabled != NULL) {
    834             *enabled = (int)effect->isEnabled();
    835         }
    836     }
    837 
    838 Exit:
    839     if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
    840         Mutex::Autolock _l(mLock);
    841         if (effectCreated) {
    842             chain->removeEffect_l(effect);
    843         }
    844         if (effectRegistered) {
    845             AudioSystem::unregisterEffect(effect->id());
    846         }
    847         if (chainCreated) {
    848             removeEffectChain_l(chain);
    849         }
    850         handle.clear();
    851     }
    852 
    853     if (status != NULL) {
    854         *status = lStatus;
    855     }
    856     return handle;
    857 }
    858 
    859 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(int sessionId, int effectId)
    860 {
    861     Mutex::Autolock _l(mLock);
    862     return getEffect_l(sessionId, effectId);
    863 }
    864 
    865 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(int sessionId, int effectId)
    866 {
    867     sp<EffectChain> chain = getEffectChain_l(sessionId);
    868     return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
    869 }
    870 
    871 // PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
    872 // PlaybackThread::mLock held
    873 status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
    874 {
    875     // check for existing effect chain with the requested audio session
    876     int sessionId = effect->sessionId();
    877     sp<EffectChain> chain = getEffectChain_l(sessionId);
    878     bool chainCreated = false;
    879 
    880     ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
    881              "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
    882                     this, effect->desc().name, effect->desc().flags);
    883 
    884     if (chain == 0) {
    885         // create a new chain for this session
    886         ALOGV("addEffect_l() new effect chain for session %d", sessionId);
    887         chain = new EffectChain(this, sessionId);
    888         addEffectChain_l(chain);
    889         chain->setStrategy(getStrategyForSession_l(sessionId));
    890         chainCreated = true;
    891     }
    892     ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
    893 
    894     if (chain->getEffectFromId_l(effect->id()) != 0) {
    895         ALOGW("addEffect_l() %p effect %s already present in chain %p",
    896                 this, effect->desc().name, chain.get());
    897         return BAD_VALUE;
    898     }
    899 
    900     effect->setOffloaded(mType == OFFLOAD, mId);
    901 
    902     status_t status = chain->addEffect_l(effect);
    903     if (status != NO_ERROR) {
    904         if (chainCreated) {
    905             removeEffectChain_l(chain);
    906         }
    907         return status;
    908     }
    909 
    910     effect->setDevice(mOutDevice);
    911     effect->setDevice(mInDevice);
    912     effect->setMode(mAudioFlinger->getMode());
    913     effect->setAudioSource(mAudioSource);
    914     return NO_ERROR;
    915 }
    916 
    917 void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
    918 
    919     ALOGV("removeEffect_l() %p effect %p", this, effect.get());
    920     effect_descriptor_t desc = effect->desc();
    921     if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
    922         detachAuxEffect_l(effect->id());
    923     }
    924 
    925     sp<EffectChain> chain = effect->chain().promote();
    926     if (chain != 0) {
    927         // remove effect chain if removing last effect
    928         if (chain->removeEffect_l(effect) == 0) {
    929             removeEffectChain_l(chain);
    930         }
    931     } else {
    932         ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
    933     }
    934 }
    935 
    936 void AudioFlinger::ThreadBase::lockEffectChains_l(
    937         Vector< sp<AudioFlinger::EffectChain> >& effectChains)
    938 {
    939     effectChains = mEffectChains;
    940     for (size_t i = 0; i < mEffectChains.size(); i++) {
    941         mEffectChains[i]->lock();
    942     }
    943 }
    944 
    945 void AudioFlinger::ThreadBase::unlockEffectChains(
    946         const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
    947 {
    948     for (size_t i = 0; i < effectChains.size(); i++) {
    949         effectChains[i]->unlock();
    950     }
    951 }
    952 
    953 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(int sessionId)
    954 {
    955     Mutex::Autolock _l(mLock);
    956     return getEffectChain_l(sessionId);
    957 }
    958 
    959 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(int sessionId) const
    960 {
    961     size_t size = mEffectChains.size();
    962     for (size_t i = 0; i < size; i++) {
    963         if (mEffectChains[i]->sessionId() == sessionId) {
    964             return mEffectChains[i];
    965         }
    966     }
    967     return 0;
    968 }
    969 
    970 void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
    971 {
    972     Mutex::Autolock _l(mLock);
    973     size_t size = mEffectChains.size();
    974     for (size_t i = 0; i < size; i++) {
    975         mEffectChains[i]->setMode_l(mode);
    976     }
    977 }
    978 
    979 void AudioFlinger::ThreadBase::disconnectEffect(const sp<EffectModule>& effect,
    980                                                     EffectHandle *handle,
    981                                                     bool unpinIfLast) {
    982 
    983     Mutex::Autolock _l(mLock);
    984     ALOGV("disconnectEffect() %p effect %p", this, effect.get());
    985     // delete the effect module if removing last handle on it
    986     if (effect->removeHandle(handle) == 0) {
    987         if (!effect->isPinned() || unpinIfLast) {
    988             removeEffect_l(effect);
    989             AudioSystem::unregisterEffect(effect->id());
    990         }
    991     }
    992 }
    993 
    994 // ----------------------------------------------------------------------------
    995 //      Playback
    996 // ----------------------------------------------------------------------------
    997 
    998 AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
    999                                              AudioStreamOut* output,
   1000                                              audio_io_handle_t id,
   1001                                              audio_devices_t device,
   1002                                              type_t type)
   1003     :   ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type),
   1004         mNormalFrameCount(0), mMixBuffer(NULL),
   1005         mAllocMixBuffer(NULL), mSuspended(0), mBytesWritten(0),
   1006         mActiveTracksGeneration(0),
   1007         // mStreamTypes[] initialized in constructor body
   1008         mOutput(output),
   1009         mLastWriteTime(0), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
   1010         mMixerStatus(MIXER_IDLE),
   1011         mMixerStatusIgnoringFastTracks(MIXER_IDLE),
   1012         standbyDelay(AudioFlinger::mStandbyTimeInNsecs),
   1013         mBytesRemaining(0),
   1014         mCurrentWriteLength(0),
   1015         mUseAsyncWrite(false),
   1016         mWriteAckSequence(0),
   1017         mDrainSequence(0),
   1018         mSignalPending(false),
   1019         mScreenState(AudioFlinger::mScreenState),
   1020         // index 0 is reserved for normal mixer's submix
   1021         mFastTrackAvailMask(((1 << FastMixerState::kMaxFastTracks) - 1) & ~1),
   1022         // mLatchD, mLatchQ,
   1023         mLatchDValid(false), mLatchQValid(false)
   1024 {
   1025     snprintf(mName, kNameLength, "AudioOut_%X", id);
   1026     mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mName);
   1027 
   1028     // Assumes constructor is called by AudioFlinger with it's mLock held, but
   1029     // it would be safer to explicitly pass initial masterVolume/masterMute as
   1030     // parameter.
   1031     //
   1032     // If the HAL we are using has support for master volume or master mute,
   1033     // then do not attenuate or mute during mixing (just leave the volume at 1.0
   1034     // and the mute set to false).
   1035     mMasterVolume = audioFlinger->masterVolume_l();
   1036     mMasterMute = audioFlinger->masterMute_l();
   1037     if (mOutput && mOutput->audioHwDev) {
   1038         if (mOutput->audioHwDev->canSetMasterVolume()) {
   1039             mMasterVolume = 1.0;
   1040         }
   1041 
   1042         if (mOutput->audioHwDev->canSetMasterMute()) {
   1043             mMasterMute = false;
   1044         }
   1045     }
   1046 
   1047     readOutputParameters();
   1048 
   1049     // mStreamTypes[AUDIO_STREAM_CNT] is initialized by stream_type_t default constructor
   1050     // There is no AUDIO_STREAM_MIN, and ++ operator does not compile
   1051     for (audio_stream_type_t stream = (audio_stream_type_t) 0; stream < AUDIO_STREAM_CNT;
   1052             stream = (audio_stream_type_t) (stream + 1)) {
   1053         mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
   1054         mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
   1055     }
   1056     // mStreamTypes[AUDIO_STREAM_CNT] exists but isn't explicitly initialized here,
   1057     // because mAudioFlinger doesn't have one to copy from
   1058 }
   1059 
   1060 AudioFlinger::PlaybackThread::~PlaybackThread()
   1061 {
   1062     mAudioFlinger->unregisterWriter(mNBLogWriter);
   1063     delete [] mAllocMixBuffer;
   1064 }
   1065 
   1066 void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
   1067 {
   1068     dumpInternals(fd, args);
   1069     dumpTracks(fd, args);
   1070     dumpEffectChains(fd, args);
   1071 }
   1072 
   1073 void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args)
   1074 {
   1075     const size_t SIZE = 256;
   1076     char buffer[SIZE];
   1077     String8 result;
   1078 
   1079     result.appendFormat("Output thread %p stream volumes in dB:\n    ", this);
   1080     for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
   1081         const stream_type_t *st = &mStreamTypes[i];
   1082         if (i > 0) {
   1083             result.appendFormat(", ");
   1084         }
   1085         result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
   1086         if (st->mute) {
   1087             result.append("M");
   1088         }
   1089     }
   1090     result.append("\n");
   1091     write(fd, result.string(), result.length());
   1092     result.clear();
   1093 
   1094     snprintf(buffer, SIZE, "Output thread %p tracks\n", this);
   1095     result.append(buffer);
   1096     Track::appendDumpHeader(result);
   1097     for (size_t i = 0; i < mTracks.size(); ++i) {
   1098         sp<Track> track = mTracks[i];
   1099         if (track != 0) {
   1100             track->dump(buffer, SIZE);
   1101             result.append(buffer);
   1102         }
   1103     }
   1104 
   1105     snprintf(buffer, SIZE, "Output thread %p active tracks\n", this);
   1106     result.append(buffer);
   1107     Track::appendDumpHeader(result);
   1108     for (size_t i = 0; i < mActiveTracks.size(); ++i) {
   1109         sp<Track> track = mActiveTracks[i].promote();
   1110         if (track != 0) {
   1111             track->dump(buffer, SIZE);
   1112             result.append(buffer);
   1113         }
   1114     }
   1115     write(fd, result.string(), result.size());
   1116 
   1117     // These values are "raw"; they will wrap around.  See prepareTracks_l() for a better way.
   1118     FastTrackUnderruns underruns = getFastTrackUnderruns(0);
   1119     fdprintf(fd, "Normal mixer raw underrun counters: partial=%u empty=%u\n",
   1120             underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
   1121 }
   1122 
   1123 void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
   1124 {
   1125     const size_t SIZE = 256;
   1126     char buffer[SIZE];
   1127     String8 result;
   1128 
   1129     snprintf(buffer, SIZE, "\nOutput thread %p internals\n", this);
   1130     result.append(buffer);
   1131     snprintf(buffer, SIZE, "Normal frame count: %d\n", mNormalFrameCount);
   1132     result.append(buffer);
   1133     snprintf(buffer, SIZE, "last write occurred (msecs): %llu\n",
   1134             ns2ms(systemTime() - mLastWriteTime));
   1135     result.append(buffer);
   1136     snprintf(buffer, SIZE, "total writes: %d\n", mNumWrites);
   1137     result.append(buffer);
   1138     snprintf(buffer, SIZE, "delayed writes: %d\n", mNumDelayedWrites);
   1139     result.append(buffer);
   1140     snprintf(buffer, SIZE, "blocked in write: %d\n", mInWrite);
   1141     result.append(buffer);
   1142     snprintf(buffer, SIZE, "suspend count: %d\n", mSuspended);
   1143     result.append(buffer);
   1144     snprintf(buffer, SIZE, "mix buffer : %p\n", mMixBuffer);
   1145     result.append(buffer);
   1146     write(fd, result.string(), result.size());
   1147     fdprintf(fd, "Fast track availMask=%#x\n", mFastTrackAvailMask);
   1148 
   1149     dumpBase(fd, args);
   1150 }
   1151 
   1152 // Thread virtuals
   1153 status_t AudioFlinger::PlaybackThread::readyToRun()
   1154 {
   1155     status_t status = initCheck();
   1156     if (status == NO_ERROR) {
   1157         ALOGI("AudioFlinger's thread %p ready to run", this);
   1158     } else {
   1159         ALOGE("No working audio driver found.");
   1160     }
   1161     return status;
   1162 }
   1163 
   1164 void AudioFlinger::PlaybackThread::onFirstRef()
   1165 {
   1166     run(mName, ANDROID_PRIORITY_URGENT_AUDIO);
   1167 }
   1168 
   1169 // ThreadBase virtuals
   1170 void AudioFlinger::PlaybackThread::preExit()
   1171 {
   1172     ALOGV("  preExit()");
   1173     // FIXME this is using hard-coded strings but in the future, this functionality will be
   1174     //       converted to use audio HAL extensions required to support tunneling
   1175     mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
   1176 }
   1177 
   1178 // PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
   1179 sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
   1180         const sp<AudioFlinger::Client>& client,
   1181         audio_stream_type_t streamType,
   1182         uint32_t sampleRate,
   1183         audio_format_t format,
   1184         audio_channel_mask_t channelMask,
   1185         size_t frameCount,
   1186         const sp<IMemory>& sharedBuffer,
   1187         int sessionId,
   1188         IAudioFlinger::track_flags_t *flags,
   1189         pid_t tid,
   1190         int uid,
   1191         status_t *status)
   1192 {
   1193     sp<Track> track;
   1194     status_t lStatus;
   1195 
   1196     bool isTimed = (*flags & IAudioFlinger::TRACK_TIMED) != 0;
   1197 
   1198     // client expresses a preference for FAST, but we get the final say
   1199     if (*flags & IAudioFlinger::TRACK_FAST) {
   1200       if (
   1201             // not timed
   1202             (!isTimed) &&
   1203             // either of these use cases:
   1204             (
   1205               // use case 1: shared buffer with any frame count
   1206               (
   1207                 (sharedBuffer != 0)
   1208               ) ||
   1209               // use case 2: callback handler and frame count is default or at least as large as HAL
   1210               (
   1211                 (tid != -1) &&
   1212                 ((frameCount == 0) ||
   1213                 (frameCount >= (mFrameCount * kFastTrackMultiplier)))
   1214               )
   1215             ) &&
   1216             // PCM data
   1217             audio_is_linear_pcm(format) &&
   1218             // mono or stereo
   1219             ( (channelMask == AUDIO_CHANNEL_OUT_MONO) ||
   1220               (channelMask == AUDIO_CHANNEL_OUT_STEREO) ) &&
   1221 #ifndef FAST_TRACKS_AT_NON_NATIVE_SAMPLE_RATE
   1222             // hardware sample rate
   1223             (sampleRate == mSampleRate) &&
   1224 #endif
   1225             // normal mixer has an associated fast mixer
   1226             hasFastMixer() &&
   1227             // there are sufficient fast track slots available
   1228             (mFastTrackAvailMask != 0)
   1229             // FIXME test that MixerThread for this fast track has a capable output HAL
   1230             // FIXME add a permission test also?
   1231         ) {
   1232         // if frameCount not specified, then it defaults to fast mixer (HAL) frame count
   1233         if (frameCount == 0) {
   1234             frameCount = mFrameCount * kFastTrackMultiplier;
   1235         }
   1236         ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%d mFrameCount=%d",
   1237                 frameCount, mFrameCount);
   1238       } else {
   1239         ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: isTimed=%d sharedBuffer=%p frameCount=%d "
   1240                 "mFrameCount=%d format=%d isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
   1241                 "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
   1242                 isTimed, sharedBuffer.get(), frameCount, mFrameCount, format,
   1243                 audio_is_linear_pcm(format),
   1244                 channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
   1245         *flags &= ~IAudioFlinger::TRACK_FAST;
   1246         // For compatibility with AudioTrack calculation, buffer depth is forced
   1247         // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
   1248         // This is probably too conservative, but legacy application code may depend on it.
   1249         // If you change this calculation, also review the start threshold which is related.
   1250         uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
   1251         uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
   1252         if (minBufCount < 2) {
   1253             minBufCount = 2;
   1254         }
   1255         size_t minFrameCount = mNormalFrameCount * minBufCount;
   1256         if (frameCount < minFrameCount) {
   1257             frameCount = minFrameCount;
   1258         }
   1259       }
   1260     }
   1261 
   1262     if (mType == DIRECT) {
   1263         if ((format & AUDIO_FORMAT_MAIN_MASK) == AUDIO_FORMAT_PCM) {
   1264             if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
   1265                 ALOGE("createTrack_l() Bad parameter: sampleRate %u format %d, channelMask 0x%08x "
   1266                         "for output %p with format %d",
   1267                         sampleRate, format, channelMask, mOutput, mFormat);
   1268                 lStatus = BAD_VALUE;
   1269                 goto Exit;
   1270             }
   1271         }
   1272     } else if (mType == OFFLOAD) {
   1273         if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
   1274             ALOGE("createTrack_l() Bad parameter: sampleRate %d format %d, channelMask 0x%08x \""
   1275                     "for output %p with format %d",
   1276                     sampleRate, format, channelMask, mOutput, mFormat);
   1277             lStatus = BAD_VALUE;
   1278             goto Exit;
   1279         }
   1280     } else {
   1281         if ((format & AUDIO_FORMAT_MAIN_MASK) != AUDIO_FORMAT_PCM) {
   1282                 ALOGE("createTrack_l() Bad parameter: format %d \""
   1283                         "for output %p with format %d",
   1284                         format, mOutput, mFormat);
   1285                 lStatus = BAD_VALUE;
   1286                 goto Exit;
   1287         }
   1288         // Resampler implementation limits input sampling rate to 2 x output sampling rate.
   1289         if (sampleRate > mSampleRate*2) {
   1290             ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
   1291             lStatus = BAD_VALUE;
   1292             goto Exit;
   1293         }
   1294     }
   1295 
   1296     lStatus = initCheck();
   1297     if (lStatus != NO_ERROR) {
   1298         ALOGE("Audio driver not initialized.");
   1299         goto Exit;
   1300     }
   1301 
   1302     { // scope for mLock
   1303         Mutex::Autolock _l(mLock);
   1304 
   1305         // all tracks in same audio session must share the same routing strategy otherwise
   1306         // conflicts will happen when tracks are moved from one output to another by audio policy
   1307         // manager
   1308         uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
   1309         for (size_t i = 0; i < mTracks.size(); ++i) {
   1310             sp<Track> t = mTracks[i];
   1311             if (t != 0 && !t->isOutputTrack()) {
   1312                 uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
   1313                 if (sessionId == t->sessionId() && strategy != actual) {
   1314                     ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
   1315                             strategy, actual);
   1316                     lStatus = BAD_VALUE;
   1317                     goto Exit;
   1318                 }
   1319             }
   1320         }
   1321 
   1322         if (!isTimed) {
   1323             track = new Track(this, client, streamType, sampleRate, format,
   1324                     channelMask, frameCount, sharedBuffer, sessionId, uid, *flags);
   1325         } else {
   1326             track = TimedTrack::create(this, client, streamType, sampleRate, format,
   1327                     channelMask, frameCount, sharedBuffer, sessionId, uid);
   1328         }
   1329         if (track == 0 || track->getCblk() == NULL || track->name() < 0) {
   1330             lStatus = NO_MEMORY;
   1331             goto Exit;
   1332         }
   1333 
   1334         mTracks.add(track);
   1335 
   1336         sp<EffectChain> chain = getEffectChain_l(sessionId);
   1337         if (chain != 0) {
   1338             ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
   1339             track->setMainBuffer(chain->inBuffer());
   1340             chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
   1341             chain->incTrackCnt();
   1342         }
   1343 
   1344         if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
   1345             pid_t callingPid = IPCThreadState::self()->getCallingPid();
   1346             // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
   1347             // so ask activity manager to do this on our behalf
   1348             sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
   1349         }
   1350     }
   1351 
   1352     lStatus = NO_ERROR;
   1353 
   1354 Exit:
   1355     if (status) {
   1356         *status = lStatus;
   1357     }
   1358     return track;
   1359 }
   1360 
   1361 uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
   1362 {
   1363     return latency;
   1364 }
   1365 
   1366 uint32_t AudioFlinger::PlaybackThread::latency() const
   1367 {
   1368     Mutex::Autolock _l(mLock);
   1369     return latency_l();
   1370 }
   1371 uint32_t AudioFlinger::PlaybackThread::latency_l() const
   1372 {
   1373     if (initCheck() == NO_ERROR) {
   1374         return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
   1375     } else {
   1376         return 0;
   1377     }
   1378 }
   1379 
   1380 void AudioFlinger::PlaybackThread::setMasterVolume(float value)
   1381 {
   1382     Mutex::Autolock _l(mLock);
   1383     // Don't apply master volume in SW if our HAL can do it for us.
   1384     if (mOutput && mOutput->audioHwDev &&
   1385         mOutput->audioHwDev->canSetMasterVolume()) {
   1386         mMasterVolume = 1.0;
   1387     } else {
   1388         mMasterVolume = value;
   1389     }
   1390 }
   1391 
   1392 void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
   1393 {
   1394     Mutex::Autolock _l(mLock);
   1395     // Don't apply master mute in SW if our HAL can do it for us.
   1396     if (mOutput && mOutput->audioHwDev &&
   1397         mOutput->audioHwDev->canSetMasterMute()) {
   1398         mMasterMute = false;
   1399     } else {
   1400         mMasterMute = muted;
   1401     }
   1402 }
   1403 
   1404 void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
   1405 {
   1406     Mutex::Autolock _l(mLock);
   1407     mStreamTypes[stream].volume = value;
   1408     broadcast_l();
   1409 }
   1410 
   1411 void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
   1412 {
   1413     Mutex::Autolock _l(mLock);
   1414     mStreamTypes[stream].mute = muted;
   1415     broadcast_l();
   1416 }
   1417 
   1418 float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
   1419 {
   1420     Mutex::Autolock _l(mLock);
   1421     return mStreamTypes[stream].volume;
   1422 }
   1423 
   1424 // addTrack_l() must be called with ThreadBase::mLock held
   1425 status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
   1426 {
   1427     status_t status = ALREADY_EXISTS;
   1428 
   1429     // set retry count for buffer fill
   1430     track->mRetryCount = kMaxTrackStartupRetries;
   1431     if (mActiveTracks.indexOf(track) < 0) {
   1432         // the track is newly added, make sure it fills up all its
   1433         // buffers before playing. This is to ensure the client will
   1434         // effectively get the latency it requested.
   1435         if (!track->isOutputTrack()) {
   1436             TrackBase::track_state state = track->mState;
   1437             mLock.unlock();
   1438             status = AudioSystem::startOutput(mId, track->streamType(), track->sessionId());
   1439             mLock.lock();
   1440             // abort track was stopped/paused while we released the lock
   1441             if (state != track->mState) {
   1442                 if (status == NO_ERROR) {
   1443                     mLock.unlock();
   1444                     AudioSystem::stopOutput(mId, track->streamType(), track->sessionId());
   1445                     mLock.lock();
   1446                 }
   1447                 return INVALID_OPERATION;
   1448             }
   1449             // abort if start is rejected by audio policy manager
   1450             if (status != NO_ERROR) {
   1451                 return PERMISSION_DENIED;
   1452             }
   1453 #ifdef ADD_BATTERY_DATA
   1454             // to track the speaker usage
   1455             addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
   1456 #endif
   1457         }
   1458 
   1459         track->mFillingUpStatus = track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
   1460         track->mResetDone = false;
   1461         track->mPresentationCompleteFrames = 0;
   1462         mActiveTracks.add(track);
   1463         mWakeLockUids.add(track->uid());
   1464         mActiveTracksGeneration++;
   1465         mLatestActiveTrack = track;
   1466         sp<EffectChain> chain = getEffectChain_l(track->sessionId());
   1467         if (chain != 0) {
   1468             ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
   1469                     track->sessionId());
   1470             chain->incActiveTrackCnt();
   1471         }
   1472 
   1473         status = NO_ERROR;
   1474     }
   1475 
   1476     ALOGV("signal playback thread");
   1477     broadcast_l();
   1478 
   1479     return status;
   1480 }
   1481 
   1482 bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
   1483 {
   1484     track->terminate();
   1485     // active tracks are removed by threadLoop()
   1486     bool trackActive = (mActiveTracks.indexOf(track) >= 0);
   1487     track->mState = TrackBase::STOPPED;
   1488     if (!trackActive) {
   1489         removeTrack_l(track);
   1490     } else if (track->isFastTrack() || track->isOffloaded()) {
   1491         track->mState = TrackBase::STOPPING_1;
   1492     }
   1493 
   1494     return trackActive;
   1495 }
   1496 
   1497 void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
   1498 {
   1499     track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
   1500     mTracks.remove(track);
   1501     deleteTrackName_l(track->name());
   1502     // redundant as track is about to be destroyed, for dumpsys only
   1503     track->mName = -1;
   1504     if (track->isFastTrack()) {
   1505         int index = track->mFastIndex;
   1506         ALOG_ASSERT(0 < index && index < (int)FastMixerState::kMaxFastTracks);
   1507         ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
   1508         mFastTrackAvailMask |= 1 << index;
   1509         // redundant as track is about to be destroyed, for dumpsys only
   1510         track->mFastIndex = -1;
   1511     }
   1512     sp<EffectChain> chain = getEffectChain_l(track->sessionId());
   1513     if (chain != 0) {
   1514         chain->decTrackCnt();
   1515     }
   1516 }
   1517 
   1518 void AudioFlinger::PlaybackThread::broadcast_l()
   1519 {
   1520     // Thread could be blocked waiting for async
   1521     // so signal it to handle state changes immediately
   1522     // If threadLoop is currently unlocked a signal of mWaitWorkCV will
   1523     // be lost so we also flag to prevent it blocking on mWaitWorkCV
   1524     mSignalPending = true;
   1525     mWaitWorkCV.broadcast();
   1526 }
   1527 
   1528 String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
   1529 {
   1530     Mutex::Autolock _l(mLock);
   1531     if (initCheck() != NO_ERROR) {
   1532         return String8();
   1533     }
   1534 
   1535     char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
   1536     const String8 out_s8(s);
   1537     free(s);
   1538     return out_s8;
   1539 }
   1540 
   1541 // audioConfigChanged_l() must be called with AudioFlinger::mLock held
   1542 void AudioFlinger::PlaybackThread::audioConfigChanged_l(int event, int param) {
   1543     AudioSystem::OutputDescriptor desc;
   1544     void *param2 = NULL;
   1545 
   1546     ALOGV("PlaybackThread::audioConfigChanged_l, thread %p, event %d, param %d", this, event,
   1547             param);
   1548 
   1549     switch (event) {
   1550     case AudioSystem::OUTPUT_OPENED:
   1551     case AudioSystem::OUTPUT_CONFIG_CHANGED:
   1552         desc.channelMask = mChannelMask;
   1553         desc.samplingRate = mSampleRate;
   1554         desc.format = mFormat;
   1555         desc.frameCount = mNormalFrameCount; // FIXME see
   1556                                              // AudioFlinger::frameCount(audio_io_handle_t)
   1557         desc.latency = latency();
   1558         param2 = &desc;
   1559         break;
   1560 
   1561     case AudioSystem::STREAM_CONFIG_CHANGED:
   1562         param2 = &param;
   1563     case AudioSystem::OUTPUT_CLOSED:
   1564     default:
   1565         break;
   1566     }
   1567     mAudioFlinger->audioConfigChanged_l(event, mId, param2);
   1568 }
   1569 
   1570 void AudioFlinger::PlaybackThread::writeCallback()
   1571 {
   1572     ALOG_ASSERT(mCallbackThread != 0);
   1573     mCallbackThread->resetWriteBlocked();
   1574 }
   1575 
   1576 void AudioFlinger::PlaybackThread::drainCallback()
   1577 {
   1578     ALOG_ASSERT(mCallbackThread != 0);
   1579     mCallbackThread->resetDraining();
   1580 }
   1581 
   1582 void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
   1583 {
   1584     Mutex::Autolock _l(mLock);
   1585     // reject out of sequence requests
   1586     if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
   1587         mWriteAckSequence &= ~1;
   1588         mWaitWorkCV.signal();
   1589     }
   1590 }
   1591 
   1592 void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
   1593 {
   1594     Mutex::Autolock _l(mLock);
   1595     // reject out of sequence requests
   1596     if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
   1597         mDrainSequence &= ~1;
   1598         mWaitWorkCV.signal();
   1599     }
   1600 }
   1601 
   1602 // static
   1603 int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
   1604                                                 void *param,
   1605                                                 void *cookie)
   1606 {
   1607     AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
   1608     ALOGV("asyncCallback() event %d", event);
   1609     switch (event) {
   1610     case STREAM_CBK_EVENT_WRITE_READY:
   1611         me->writeCallback();
   1612         break;
   1613     case STREAM_CBK_EVENT_DRAIN_READY:
   1614         me->drainCallback();
   1615         break;
   1616     default:
   1617         ALOGW("asyncCallback() unknown event %d", event);
   1618         break;
   1619     }
   1620     return 0;
   1621 }
   1622 
   1623 void AudioFlinger::PlaybackThread::readOutputParameters()
   1624 {
   1625     // unfortunately we have no way of recovering from errors here, hence the LOG_FATAL
   1626     mSampleRate = mOutput->stream->common.get_sample_rate(&mOutput->stream->common);
   1627     mChannelMask = mOutput->stream->common.get_channels(&mOutput->stream->common);
   1628     if (!audio_is_output_channel(mChannelMask)) {
   1629         LOG_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
   1630     }
   1631     if ((mType == MIXER || mType == DUPLICATING) && mChannelMask != AUDIO_CHANNEL_OUT_STEREO) {
   1632         LOG_FATAL("HAL channel mask %#x not supported for mixed output; "
   1633                 "must be AUDIO_CHANNEL_OUT_STEREO", mChannelMask);
   1634     }
   1635     mChannelCount = popcount(mChannelMask);
   1636     mFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
   1637     if (!audio_is_valid_format(mFormat)) {
   1638         LOG_FATAL("HAL format %d not valid for output", mFormat);
   1639     }
   1640     if ((mType == MIXER || mType == DUPLICATING) && mFormat != AUDIO_FORMAT_PCM_16_BIT) {
   1641         LOG_FATAL("HAL format %d not supported for mixed output; must be AUDIO_FORMAT_PCM_16_BIT",
   1642                 mFormat);
   1643     }
   1644     mFrameSize = audio_stream_frame_size(&mOutput->stream->common);
   1645     mFrameCount = mOutput->stream->common.get_buffer_size(&mOutput->stream->common) / mFrameSize;
   1646     if (mFrameCount & 15) {
   1647         ALOGW("HAL output buffer size is %u frames but AudioMixer requires multiples of 16 frames",
   1648                 mFrameCount);
   1649     }
   1650 
   1651     if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
   1652             (mOutput->stream->set_callback != NULL)) {
   1653         if (mOutput->stream->set_callback(mOutput->stream,
   1654                                       AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
   1655             mUseAsyncWrite = true;
   1656             mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
   1657         }
   1658     }
   1659 
   1660     // Calculate size of normal mix buffer relative to the HAL output buffer size
   1661     double multiplier = 1.0;
   1662     if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
   1663             kUseFastMixer == FastMixer_Dynamic)) {
   1664         size_t minNormalFrameCount = (kMinNormalMixBufferSizeMs * mSampleRate) / 1000;
   1665         size_t maxNormalFrameCount = (kMaxNormalMixBufferSizeMs * mSampleRate) / 1000;
   1666         // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
   1667         minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
   1668         maxNormalFrameCount = maxNormalFrameCount & ~15;
   1669         if (maxNormalFrameCount < minNormalFrameCount) {
   1670             maxNormalFrameCount = minNormalFrameCount;
   1671         }
   1672         multiplier = (double) minNormalFrameCount / (double) mFrameCount;
   1673         if (multiplier <= 1.0) {
   1674             multiplier = 1.0;
   1675         } else if (multiplier <= 2.0) {
   1676             if (2 * mFrameCount <= maxNormalFrameCount) {
   1677                 multiplier = 2.0;
   1678             } else {
   1679                 multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
   1680             }
   1681         } else {
   1682             // prefer an even multiplier, for compatibility with doubling of fast tracks due to HAL
   1683             // SRC (it would be unusual for the normal mix buffer size to not be a multiple of fast
   1684             // track, but we sometimes have to do this to satisfy the maximum frame count
   1685             // constraint)
   1686             // FIXME this rounding up should not be done if no HAL SRC
   1687             uint32_t truncMult = (uint32_t) multiplier;
   1688             if ((truncMult & 1)) {
   1689                 if ((truncMult + 1) * mFrameCount <= maxNormalFrameCount) {
   1690                     ++truncMult;
   1691                 }
   1692             }
   1693             multiplier = (double) truncMult;
   1694         }
   1695     }
   1696     mNormalFrameCount = multiplier * mFrameCount;
   1697     // round up to nearest 16 frames to satisfy AudioMixer
   1698     mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
   1699     ALOGI("HAL output buffer size %u frames, normal mix buffer size %u frames", mFrameCount,
   1700             mNormalFrameCount);
   1701 
   1702     delete[] mAllocMixBuffer;
   1703     size_t align = (mFrameSize < sizeof(int16_t)) ? sizeof(int16_t) : mFrameSize;
   1704     mAllocMixBuffer = new int8_t[mNormalFrameCount * mFrameSize + align - 1];
   1705     mMixBuffer = (int16_t *) ((((size_t)mAllocMixBuffer + align - 1) / align) * align);
   1706     memset(mMixBuffer, 0, mNormalFrameCount * mFrameSize);
   1707 
   1708     // force reconfiguration of effect chains and engines to take new buffer size and audio
   1709     // parameters into account
   1710     // Note that mLock is not held when readOutputParameters() is called from the constructor
   1711     // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
   1712     // matter.
   1713     // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
   1714     Vector< sp<EffectChain> > effectChains = mEffectChains;
   1715     for (size_t i = 0; i < effectChains.size(); i ++) {
   1716         mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
   1717     }
   1718 }
   1719 
   1720 
   1721 status_t AudioFlinger::PlaybackThread::getRenderPosition(size_t *halFrames, size_t *dspFrames)
   1722 {
   1723     if (halFrames == NULL || dspFrames == NULL) {
   1724         return BAD_VALUE;
   1725     }
   1726     Mutex::Autolock _l(mLock);
   1727     if (initCheck() != NO_ERROR) {
   1728         return INVALID_OPERATION;
   1729     }
   1730     size_t framesWritten = mBytesWritten / mFrameSize;
   1731     *halFrames = framesWritten;
   1732 
   1733     if (isSuspended()) {
   1734         // return an estimation of rendered frames when the output is suspended
   1735         size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
   1736         *dspFrames = framesWritten >= latencyFrames ? framesWritten - latencyFrames : 0;
   1737         return NO_ERROR;
   1738     } else {
   1739         return mOutput->stream->get_render_position(mOutput->stream, dspFrames);
   1740     }
   1741 }
   1742 
   1743 uint32_t AudioFlinger::PlaybackThread::hasAudioSession(int sessionId) const
   1744 {
   1745     Mutex::Autolock _l(mLock);
   1746     uint32_t result = 0;
   1747     if (getEffectChain_l(sessionId) != 0) {
   1748         result = EFFECT_SESSION;
   1749     }
   1750 
   1751     for (size_t i = 0; i < mTracks.size(); ++i) {
   1752         sp<Track> track = mTracks[i];
   1753         if (sessionId == track->sessionId() && !track->isInvalid()) {
   1754             result |= TRACK_SESSION;
   1755             break;
   1756         }
   1757     }
   1758 
   1759     return result;
   1760 }
   1761 
   1762 uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(int sessionId)
   1763 {
   1764     // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
   1765     // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
   1766     if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
   1767         return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
   1768     }
   1769     for (size_t i = 0; i < mTracks.size(); i++) {
   1770         sp<Track> track = mTracks[i];
   1771         if (sessionId == track->sessionId() && !track->isInvalid()) {
   1772             return AudioSystem::getStrategyForStream(track->streamType());
   1773         }
   1774     }
   1775     return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
   1776 }
   1777 
   1778 
   1779 AudioFlinger::AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
   1780 {
   1781     Mutex::Autolock _l(mLock);
   1782     return mOutput;
   1783 }
   1784 
   1785 AudioFlinger::AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
   1786 {
   1787     Mutex::Autolock _l(mLock);
   1788     AudioStreamOut *output = mOutput;
   1789     mOutput = NULL;
   1790     // FIXME FastMixer might also have a raw ptr to mOutputSink;
   1791     //       must push a NULL and wait for ack
   1792     mOutputSink.clear();
   1793     mPipeSink.clear();
   1794     mNormalSink.clear();
   1795     return output;
   1796 }
   1797 
   1798 // this method must always be called either with ThreadBase mLock held or inside the thread loop
   1799 audio_stream_t* AudioFlinger::PlaybackThread::stream() const
   1800 {
   1801     if (mOutput == NULL) {
   1802         return NULL;
   1803     }
   1804     return &mOutput->stream->common;
   1805 }
   1806 
   1807 uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
   1808 {
   1809     return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
   1810 }
   1811 
   1812 status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
   1813 {
   1814     if (!isValidSyncEvent(event)) {
   1815         return BAD_VALUE;
   1816     }
   1817 
   1818     Mutex::Autolock _l(mLock);
   1819 
   1820     for (size_t i = 0; i < mTracks.size(); ++i) {
   1821         sp<Track> track = mTracks[i];
   1822         if (event->triggerSession() == track->sessionId()) {
   1823             (void) track->setSyncEvent(event);
   1824             return NO_ERROR;
   1825         }
   1826     }
   1827 
   1828     return NAME_NOT_FOUND;
   1829 }
   1830 
   1831 bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
   1832 {
   1833     return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
   1834 }
   1835 
   1836 void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
   1837         const Vector< sp<Track> >& tracksToRemove)
   1838 {
   1839     size_t count = tracksToRemove.size();
   1840     if (count) {
   1841         for (size_t i = 0 ; i < count ; i++) {
   1842             const sp<Track>& track = tracksToRemove.itemAt(i);
   1843             if (!track->isOutputTrack()) {
   1844                 AudioSystem::stopOutput(mId, track->streamType(), track->sessionId());
   1845 #ifdef ADD_BATTERY_DATA
   1846                 // to track the speaker usage
   1847                 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
   1848 #endif
   1849                 if (track->isTerminated()) {
   1850                     AudioSystem::releaseOutput(mId);
   1851                 }
   1852             }
   1853         }
   1854     }
   1855 }
   1856 
   1857 void AudioFlinger::PlaybackThread::checkSilentMode_l()
   1858 {
   1859     if (!mMasterMute) {
   1860         char value[PROPERTY_VALUE_MAX];
   1861         if (property_get("ro.audio.silent", value, "0") > 0) {
   1862             char *endptr;
   1863             unsigned long ul = strtoul(value, &endptr, 0);
   1864             if (*endptr == '\0' && ul != 0) {
   1865                 ALOGD("Silence is golden");
   1866                 // The setprop command will not allow a property to be changed after
   1867                 // the first time it is set, so we don't have to worry about un-muting.
   1868                 setMasterMute_l(true);
   1869             }
   1870         }
   1871     }
   1872 }
   1873 
   1874 // shared by MIXER and DIRECT, overridden by DUPLICATING
   1875 ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
   1876 {
   1877     // FIXME rewrite to reduce number of system calls
   1878     mLastWriteTime = systemTime();
   1879     mInWrite = true;
   1880     ssize_t bytesWritten;
   1881 
   1882     // If an NBAIO sink is present, use it to write the normal mixer's submix
   1883     if (mNormalSink != 0) {
   1884 #define mBitShift 2 // FIXME
   1885         size_t count = mBytesRemaining >> mBitShift;
   1886         size_t offset = (mCurrentWriteLength - mBytesRemaining) >> 1;
   1887         ATRACE_BEGIN("write");
   1888         // update the setpoint when AudioFlinger::mScreenState changes
   1889         uint32_t screenState = AudioFlinger::mScreenState;
   1890         if (screenState != mScreenState) {
   1891             mScreenState = screenState;
   1892             MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
   1893             if (pipe != NULL) {
   1894                 pipe->setAvgFrames((mScreenState & 1) ?
   1895                         (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
   1896             }
   1897         }
   1898         ssize_t framesWritten = mNormalSink->write(mMixBuffer + offset, count);
   1899         ATRACE_END();
   1900         if (framesWritten > 0) {
   1901             bytesWritten = framesWritten << mBitShift;
   1902         } else {
   1903             bytesWritten = framesWritten;
   1904         }
   1905         status_t status = mNormalSink->getTimestamp(mLatchD.mTimestamp);
   1906         if (status == NO_ERROR) {
   1907             size_t totalFramesWritten = mNormalSink->framesWritten();
   1908             if (totalFramesWritten >= mLatchD.mTimestamp.mPosition) {
   1909                 mLatchD.mUnpresentedFrames = totalFramesWritten - mLatchD.mTimestamp.mPosition;
   1910                 mLatchDValid = true;
   1911             }
   1912         }
   1913     // otherwise use the HAL / AudioStreamOut directly
   1914     } else {
   1915         // Direct output and offload threads
   1916         size_t offset = (mCurrentWriteLength - mBytesRemaining) / sizeof(int16_t);
   1917         if (mUseAsyncWrite) {
   1918             ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
   1919             mWriteAckSequence += 2;
   1920             mWriteAckSequence |= 1;
   1921             ALOG_ASSERT(mCallbackThread != 0);
   1922             mCallbackThread->setWriteBlocked(mWriteAckSequence);
   1923         }
   1924         // FIXME We should have an implementation of timestamps for direct output threads.
   1925         // They are used e.g for multichannel PCM playback over HDMI.
   1926         bytesWritten = mOutput->stream->write(mOutput->stream,
   1927                                                    mMixBuffer + offset, mBytesRemaining);
   1928         if (mUseAsyncWrite &&
   1929                 ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
   1930             // do not wait for async callback in case of error of full write
   1931             mWriteAckSequence &= ~1;
   1932             ALOG_ASSERT(mCallbackThread != 0);
   1933             mCallbackThread->setWriteBlocked(mWriteAckSequence);
   1934         }
   1935     }
   1936 
   1937     mNumWrites++;
   1938     mInWrite = false;
   1939     mStandby = false;
   1940     return bytesWritten;
   1941 }
   1942 
   1943 void AudioFlinger::PlaybackThread::threadLoop_drain()
   1944 {
   1945     if (mOutput->stream->drain) {
   1946         ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
   1947         if (mUseAsyncWrite) {
   1948             ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
   1949             mDrainSequence |= 1;
   1950             ALOG_ASSERT(mCallbackThread != 0);
   1951             mCallbackThread->setDraining(mDrainSequence);
   1952         }
   1953         mOutput->stream->drain(mOutput->stream,
   1954             (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
   1955                                                 : AUDIO_DRAIN_ALL);
   1956     }
   1957 }
   1958 
   1959 void AudioFlinger::PlaybackThread::threadLoop_exit()
   1960 {
   1961     // Default implementation has nothing to do
   1962 }
   1963 
   1964 /*
   1965 The derived values that are cached:
   1966  - mixBufferSize from frame count * frame size
   1967  - activeSleepTime from activeSleepTimeUs()
   1968  - idleSleepTime from idleSleepTimeUs()
   1969  - standbyDelay from mActiveSleepTimeUs (DIRECT only)
   1970  - maxPeriod from frame count and sample rate (MIXER only)
   1971 
   1972 The parameters that affect these derived values are:
   1973  - frame count
   1974  - frame size
   1975  - sample rate
   1976  - device type: A2DP or not
   1977  - device latency
   1978  - format: PCM or not
   1979  - active sleep time
   1980  - idle sleep time
   1981 */
   1982 
   1983 void AudioFlinger::PlaybackThread::cacheParameters_l()
   1984 {
   1985     mixBufferSize = mNormalFrameCount * mFrameSize;
   1986     activeSleepTime = activeSleepTimeUs();
   1987     idleSleepTime = idleSleepTimeUs();
   1988 }
   1989 
   1990 void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
   1991 {
   1992     ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %d",
   1993             this,  streamType, mTracks.size());
   1994     Mutex::Autolock _l(mLock);
   1995 
   1996     size_t size = mTracks.size();
   1997     for (size_t i = 0; i < size; i++) {
   1998         sp<Track> t = mTracks[i];
   1999         if (t->streamType() == streamType) {
   2000             t->invalidate();
   2001         }
   2002     }
   2003 }
   2004 
   2005 status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
   2006 {
   2007     int session = chain->sessionId();
   2008     int16_t *buffer = mMixBuffer;
   2009     bool ownsBuffer = false;
   2010 
   2011     ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
   2012     if (session > 0) {
   2013         // Only one effect chain can be present in direct output thread and it uses
   2014         // the mix buffer as input
   2015         if (mType != DIRECT) {
   2016             size_t numSamples = mNormalFrameCount * mChannelCount;
   2017             buffer = new int16_t[numSamples];
   2018             memset(buffer, 0, numSamples * sizeof(int16_t));
   2019             ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
   2020             ownsBuffer = true;
   2021         }
   2022 
   2023         // Attach all tracks with same session ID to this chain.
   2024         for (size_t i = 0; i < mTracks.size(); ++i) {
   2025             sp<Track> track = mTracks[i];
   2026             if (session == track->sessionId()) {
   2027                 ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
   2028                         buffer);
   2029                 track->setMainBuffer(buffer);
   2030                 chain->incTrackCnt();
   2031             }
   2032         }
   2033 
   2034         // indicate all active tracks in the chain
   2035         for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
   2036             sp<Track> track = mActiveTracks[i].promote();
   2037             if (track == 0) {
   2038                 continue;
   2039             }
   2040             if (session == track->sessionId()) {
   2041                 ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
   2042                 chain->incActiveTrackCnt();
   2043             }
   2044         }
   2045     }
   2046 
   2047     chain->setInBuffer(buffer, ownsBuffer);
   2048     chain->setOutBuffer(mMixBuffer);
   2049     // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
   2050     // chains list in order to be processed last as it contains output stage effects
   2051     // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
   2052     // session AUDIO_SESSION_OUTPUT_STAGE to be processed
   2053     // after track specific effects and before output stage
   2054     // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
   2055     // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX
   2056     // Effect chain for other sessions are inserted at beginning of effect
   2057     // chains list to be processed before output mix effects. Relative order between other
   2058     // sessions is not important
   2059     size_t size = mEffectChains.size();
   2060     size_t i = 0;
   2061     for (i = 0; i < size; i++) {
   2062         if (mEffectChains[i]->sessionId() < session) {
   2063             break;
   2064         }
   2065     }
   2066     mEffectChains.insertAt(chain, i);
   2067     checkSuspendOnAddEffectChain_l(chain);
   2068 
   2069     return NO_ERROR;
   2070 }
   2071 
   2072 size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
   2073 {
   2074     int session = chain->sessionId();
   2075 
   2076     ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
   2077 
   2078     for (size_t i = 0; i < mEffectChains.size(); i++) {
   2079         if (chain == mEffectChains[i]) {
   2080             mEffectChains.removeAt(i);
   2081             // detach all active tracks from the chain
   2082             for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
   2083                 sp<Track> track = mActiveTracks[i].promote();
   2084                 if (track == 0) {
   2085                     continue;
   2086                 }
   2087                 if (session == track->sessionId()) {
   2088                     ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
   2089                             chain.get(), session);
   2090                     chain->decActiveTrackCnt();
   2091                 }
   2092             }
   2093 
   2094             // detach all tracks with same session ID from this chain
   2095             for (size_t i = 0; i < mTracks.size(); ++i) {
   2096                 sp<Track> track = mTracks[i];
   2097                 if (session == track->sessionId()) {
   2098                     track->setMainBuffer(mMixBuffer);
   2099                     chain->decTrackCnt();
   2100                 }
   2101             }
   2102             break;
   2103         }
   2104     }
   2105     return mEffectChains.size();
   2106 }
   2107 
   2108 status_t AudioFlinger::PlaybackThread::attachAuxEffect(
   2109         const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
   2110 {
   2111     Mutex::Autolock _l(mLock);
   2112     return attachAuxEffect_l(track, EffectId);
   2113 }
   2114 
   2115 status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
   2116         const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
   2117 {
   2118     status_t status = NO_ERROR;
   2119 
   2120     if (EffectId == 0) {
   2121         track->setAuxBuffer(0, NULL);
   2122     } else {
   2123         // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
   2124         sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
   2125         if (effect != 0) {
   2126             if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
   2127                 track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
   2128             } else {
   2129                 status = INVALID_OPERATION;
   2130             }
   2131         } else {
   2132             status = BAD_VALUE;
   2133         }
   2134     }
   2135     return status;
   2136 }
   2137 
   2138 void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
   2139 {
   2140     for (size_t i = 0; i < mTracks.size(); ++i) {
   2141         sp<Track> track = mTracks[i];
   2142         if (track->auxEffectId() == effectId) {
   2143             attachAuxEffect_l(track, 0);
   2144         }
   2145     }
   2146 }
   2147 
   2148 bool AudioFlinger::PlaybackThread::threadLoop()
   2149 {
   2150     Vector< sp<Track> > tracksToRemove;
   2151 
   2152     standbyTime = systemTime();
   2153 
   2154     // MIXER
   2155     nsecs_t lastWarning = 0;
   2156 
   2157     // DUPLICATING
   2158     // FIXME could this be made local to while loop?
   2159     writeFrames = 0;
   2160 
   2161     int lastGeneration = 0;
   2162 
   2163     cacheParameters_l();
   2164     sleepTime = idleSleepTime;
   2165 
   2166     if (mType == MIXER) {
   2167         sleepTimeShift = 0;
   2168     }
   2169 
   2170     CpuStats cpuStats;
   2171     const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
   2172 
   2173     acquireWakeLock();
   2174 
   2175     // mNBLogWriter->log can only be called while thread mutex mLock is held.
   2176     // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
   2177     // and then that string will be logged at the next convenient opportunity.
   2178     const char *logString = NULL;
   2179 
   2180     checkSilentMode_l();
   2181 
   2182     while (!exitPending())
   2183     {
   2184         cpuStats.sample(myName);
   2185 
   2186         Vector< sp<EffectChain> > effectChains;
   2187 
   2188         processConfigEvents();
   2189 
   2190         { // scope for mLock
   2191 
   2192             Mutex::Autolock _l(mLock);
   2193 
   2194             if (logString != NULL) {
   2195                 mNBLogWriter->logTimestamp();
   2196                 mNBLogWriter->log(logString);
   2197                 logString = NULL;
   2198             }
   2199 
   2200             if (mLatchDValid) {
   2201                 mLatchQ = mLatchD;
   2202                 mLatchDValid = false;
   2203                 mLatchQValid = true;
   2204             }
   2205 
   2206             if (checkForNewParameters_l()) {
   2207                 cacheParameters_l();
   2208             }
   2209 
   2210             saveOutputTracks();
   2211             if (mSignalPending) {
   2212                 // A signal was raised while we were unlocked
   2213                 mSignalPending = false;
   2214             } else if (waitingAsyncCallback_l()) {
   2215                 if (exitPending()) {
   2216                     break;
   2217                 }
   2218                 releaseWakeLock_l();
   2219                 mWakeLockUids.clear();
   2220                 mActiveTracksGeneration++;
   2221                 ALOGV("wait async completion");
   2222                 mWaitWorkCV.wait(mLock);
   2223                 ALOGV("async completion/wake");
   2224                 acquireWakeLock_l();
   2225                 standbyTime = systemTime() + standbyDelay;
   2226                 sleepTime = 0;
   2227 
   2228                 continue;
   2229             }
   2230             if ((!mActiveTracks.size() && systemTime() > standbyTime) ||
   2231                                    isSuspended()) {
   2232                 // put audio hardware into standby after short delay
   2233                 if (shouldStandby_l()) {
   2234 
   2235                     threadLoop_standby();
   2236 
   2237                     mStandby = true;
   2238                 }
   2239 
   2240                 if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
   2241                     // we're about to wait, flush the binder command buffer
   2242                     IPCThreadState::self()->flushCommands();
   2243 
   2244                     clearOutputTracks();
   2245 
   2246                     if (exitPending()) {
   2247                         break;
   2248                     }
   2249 
   2250                     releaseWakeLock_l();
   2251                     mWakeLockUids.clear();
   2252                     mActiveTracksGeneration++;
   2253                     // wait until we have something to do...
   2254                     ALOGV("%s going to sleep", myName.string());
   2255                     mWaitWorkCV.wait(mLock);
   2256                     ALOGV("%s waking up", myName.string());
   2257                     acquireWakeLock_l();
   2258 
   2259                     mMixerStatus = MIXER_IDLE;
   2260                     mMixerStatusIgnoringFastTracks = MIXER_IDLE;
   2261                     mBytesWritten = 0;
   2262                     mBytesRemaining = 0;
   2263                     checkSilentMode_l();
   2264 
   2265                     standbyTime = systemTime() + standbyDelay;
   2266                     sleepTime = idleSleepTime;
   2267                     if (mType == MIXER) {
   2268                         sleepTimeShift = 0;
   2269                     }
   2270 
   2271                     continue;
   2272                 }
   2273             }
   2274             // mMixerStatusIgnoringFastTracks is also updated internally
   2275             mMixerStatus = prepareTracks_l(&tracksToRemove);
   2276 
   2277             // compare with previously applied list
   2278             if (lastGeneration != mActiveTracksGeneration) {
   2279                 // update wakelock
   2280                 updateWakeLockUids_l(mWakeLockUids);
   2281                 lastGeneration = mActiveTracksGeneration;
   2282             }
   2283 
   2284             // prevent any changes in effect chain list and in each effect chain
   2285             // during mixing and effect process as the audio buffers could be deleted
   2286             // or modified if an effect is created or deleted
   2287             lockEffectChains_l(effectChains);
   2288         } // mLock scope ends
   2289 
   2290         if (mBytesRemaining == 0) {
   2291             mCurrentWriteLength = 0;
   2292             if (mMixerStatus == MIXER_TRACKS_READY) {
   2293                 // threadLoop_mix() sets mCurrentWriteLength
   2294                 threadLoop_mix();
   2295             } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
   2296                         && (mMixerStatus != MIXER_DRAIN_ALL)) {
   2297                 // threadLoop_sleepTime sets sleepTime to 0 if data
   2298                 // must be written to HAL
   2299                 threadLoop_sleepTime();
   2300                 if (sleepTime == 0) {
   2301                     mCurrentWriteLength = mixBufferSize;
   2302                 }
   2303             }
   2304             mBytesRemaining = mCurrentWriteLength;
   2305             if (isSuspended()) {
   2306                 sleepTime = suspendSleepTimeUs();
   2307                 // simulate write to HAL when suspended
   2308                 mBytesWritten += mixBufferSize;
   2309                 mBytesRemaining = 0;
   2310             }
   2311 
   2312             // only process effects if we're going to write
   2313             if (sleepTime == 0 && mType != OFFLOAD) {
   2314                 for (size_t i = 0; i < effectChains.size(); i ++) {
   2315                     effectChains[i]->process_l();
   2316                 }
   2317             }
   2318         }
   2319         // Process effect chains for offloaded thread even if no audio
   2320         // was read from audio track: process only updates effect state
   2321         // and thus does have to be synchronized with audio writes but may have
   2322         // to be called while waiting for async write callback
   2323         if (mType == OFFLOAD) {
   2324             for (size_t i = 0; i < effectChains.size(); i ++) {
   2325                 effectChains[i]->process_l();
   2326             }
   2327         }
   2328 
   2329         // enable changes in effect chain
   2330         unlockEffectChains(effectChains);
   2331 
   2332         if (!waitingAsyncCallback()) {
   2333             // sleepTime == 0 means we must write to audio hardware
   2334             if (sleepTime == 0) {
   2335                 if (mBytesRemaining) {
   2336                     ssize_t ret = threadLoop_write();
   2337                     if (ret < 0) {
   2338                         mBytesRemaining = 0;
   2339                     } else {
   2340                         mBytesWritten += ret;
   2341                         mBytesRemaining -= ret;
   2342                     }
   2343                 } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
   2344                         (mMixerStatus == MIXER_DRAIN_ALL)) {
   2345                     threadLoop_drain();
   2346                 }
   2347 if (mType == MIXER) {
   2348                 // write blocked detection
   2349                 nsecs_t now = systemTime();
   2350                 nsecs_t delta = now - mLastWriteTime;
   2351                 if (!mStandby && delta > maxPeriod) {
   2352                     mNumDelayedWrites++;
   2353                     if ((now - lastWarning) > kWarningThrottleNs) {
   2354                         ATRACE_NAME("underrun");
   2355                         ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
   2356                                 ns2ms(delta), mNumDelayedWrites, this);
   2357                         lastWarning = now;
   2358                     }
   2359                 }
   2360 }
   2361 
   2362             } else {
   2363                 usleep(sleepTime);
   2364             }
   2365         }
   2366 
   2367         // Finally let go of removed track(s), without the lock held
   2368         // since we can't guarantee the destructors won't acquire that
   2369         // same lock.  This will also mutate and push a new fast mixer state.
   2370         threadLoop_removeTracks(tracksToRemove);
   2371         tracksToRemove.clear();
   2372 
   2373         // FIXME I don't understand the need for this here;
   2374         //       it was in the original code but maybe the
   2375         //       assignment in saveOutputTracks() makes this unnecessary?
   2376         clearOutputTracks();
   2377 
   2378         // Effect chains will be actually deleted here if they were removed from
   2379         // mEffectChains list during mixing or effects processing
   2380         effectChains.clear();
   2381 
   2382         // FIXME Note that the above .clear() is no longer necessary since effectChains
   2383         // is now local to this block, but will keep it for now (at least until merge done).
   2384     }
   2385 
   2386     threadLoop_exit();
   2387 
   2388     // for DuplicatingThread, standby mode is handled by the outputTracks, otherwise ...
   2389     if (mType == MIXER || mType == DIRECT || mType == OFFLOAD) {
   2390         // put output stream into standby mode
   2391         if (!mStandby) {
   2392             mOutput->stream->common.standby(&mOutput->stream->common);
   2393         }
   2394     }
   2395 
   2396     releaseWakeLock();
   2397     mWakeLockUids.clear();
   2398     mActiveTracksGeneration++;
   2399 
   2400     ALOGV("Thread %p type %d exiting", this, mType);
   2401     return false;
   2402 }
   2403 
   2404 // removeTracks_l() must be called with ThreadBase::mLock held
   2405 void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
   2406 {
   2407     size_t count = tracksToRemove.size();
   2408     if (count) {
   2409         for (size_t i=0 ; i<count ; i++) {
   2410             const sp<Track>& track = tracksToRemove.itemAt(i);
   2411             mActiveTracks.remove(track);
   2412             mWakeLockUids.remove(track->uid());
   2413             mActiveTracksGeneration++;
   2414             ALOGV("removeTracks_l removing track on session %d", track->sessionId());
   2415             sp<EffectChain> chain = getEffectChain_l(track->sessionId());
   2416             if (chain != 0) {
   2417                 ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
   2418                         track->sessionId());
   2419                 chain->decActiveTrackCnt();
   2420             }
   2421             if (track->isTerminated()) {
   2422                 removeTrack_l(track);
   2423             }
   2424         }
   2425     }
   2426 
   2427 }
   2428 
   2429 status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
   2430 {
   2431     if (mNormalSink != 0) {
   2432         return mNormalSink->getTimestamp(timestamp);
   2433     }
   2434     if (mType == OFFLOAD && mOutput->stream->get_presentation_position) {
   2435         uint64_t position64;
   2436         int ret = mOutput->stream->get_presentation_position(
   2437                                                 mOutput->stream, &position64, &timestamp.mTime);
   2438         if (ret == 0) {
   2439             timestamp.mPosition = (uint32_t)position64;
   2440             return NO_ERROR;
   2441         }
   2442     }
   2443     return INVALID_OPERATION;
   2444 }
   2445 // ----------------------------------------------------------------------------
   2446 
   2447 AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
   2448         audio_io_handle_t id, audio_devices_t device, type_t type)
   2449     :   PlaybackThread(audioFlinger, output, id, device, type),
   2450         // mAudioMixer below
   2451         // mFastMixer below
   2452         mFastMixerFutex(0)
   2453         // mOutputSink below
   2454         // mPipeSink below
   2455         // mNormalSink below
   2456 {
   2457     ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
   2458     ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%u, "
   2459             "mFrameCount=%d, mNormalFrameCount=%d",
   2460             mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
   2461             mNormalFrameCount);
   2462     mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
   2463 
   2464     // FIXME - Current mixer implementation only supports stereo output
   2465     if (mChannelCount != FCC_2) {
   2466         ALOGE("Invalid audio hardware channel count %d", mChannelCount);
   2467     }
   2468 
   2469     // create an NBAIO sink for the HAL output stream, and negotiate
   2470     mOutputSink = new AudioStreamOutSink(output->stream);
   2471     size_t numCounterOffers = 0;
   2472     const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount)};
   2473     ssize_t index = mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
   2474     ALOG_ASSERT(index == 0);
   2475 
   2476     // initialize fast mixer depending on configuration
   2477     bool initFastMixer;
   2478     switch (kUseFastMixer) {
   2479     case FastMixer_Never:
   2480         initFastMixer = false;
   2481         break;
   2482     case FastMixer_Always:
   2483         initFastMixer = true;
   2484         break;
   2485     case FastMixer_Static:
   2486     case FastMixer_Dynamic:
   2487         initFastMixer = mFrameCount < mNormalFrameCount;
   2488         break;
   2489     }
   2490     if (initFastMixer) {
   2491 
   2492         // create a MonoPipe to connect our submix to FastMixer
   2493         NBAIO_Format format = mOutputSink->format();
   2494         // This pipe depth compensates for scheduling latency of the normal mixer thread.
   2495         // When it wakes up after a maximum latency, it runs a few cycles quickly before
   2496         // finally blocking.  Note the pipe implementation rounds up the request to a power of 2.
   2497         MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
   2498         const NBAIO_Format offers[1] = {format};
   2499         size_t numCounterOffers = 0;
   2500         ssize_t index = monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
   2501         ALOG_ASSERT(index == 0);
   2502         monoPipe->setAvgFrames((mScreenState & 1) ?
   2503                 (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
   2504         mPipeSink = monoPipe;
   2505 
   2506 #ifdef TEE_SINK
   2507         if (mTeeSinkOutputEnabled) {
   2508             // create a Pipe to archive a copy of FastMixer's output for dumpsys
   2509             Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, format);
   2510             numCounterOffers = 0;
   2511             index = teeSink->negotiate(offers, 1, NULL, numCounterOffers);
   2512             ALOG_ASSERT(index == 0);
   2513             mTeeSink = teeSink;
   2514             PipeReader *teeSource = new PipeReader(*teeSink);
   2515             numCounterOffers = 0;
   2516             index = teeSource->negotiate(offers, 1, NULL, numCounterOffers);
   2517             ALOG_ASSERT(index == 0);
   2518             mTeeSource = teeSource;
   2519         }
   2520 #endif
   2521 
   2522         // create fast mixer and configure it initially with just one fast track for our submix
   2523         mFastMixer = new FastMixer();
   2524         FastMixerStateQueue *sq = mFastMixer->sq();
   2525 #ifdef STATE_QUEUE_DUMP
   2526         sq->setObserverDump(&mStateQueueObserverDump);
   2527         sq->setMutatorDump(&mStateQueueMutatorDump);
   2528 #endif
   2529         FastMixerState *state = sq->begin();
   2530         FastTrack *fastTrack = &state->mFastTracks[0];
   2531         // wrap the source side of the MonoPipe to make it an AudioBufferProvider
   2532         fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
   2533         fastTrack->mVolumeProvider = NULL;
   2534         fastTrack->mGeneration++;
   2535         state->mFastTracksGen++;
   2536         state->mTrackMask = 1;
   2537         // fast mixer will use the HAL output sink
   2538         state->mOutputSink = mOutputSink.get();
   2539         state->mOutputSinkGen++;
   2540         state->mFrameCount = mFrameCount;
   2541         state->mCommand = FastMixerState::COLD_IDLE;
   2542         // already done in constructor initialization list
   2543         //mFastMixerFutex = 0;
   2544         state->mColdFutexAddr = &mFastMixerFutex;
   2545         state->mColdGen++;
   2546         state->mDumpState = &mFastMixerDumpState;
   2547 #ifdef TEE_SINK
   2548         state->mTeeSink = mTeeSink.get();
   2549 #endif
   2550         mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
   2551         state->mNBLogWriter = mFastMixerNBLogWriter.get();
   2552         sq->end();
   2553         sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
   2554 
   2555         // start the fast mixer
   2556         mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
   2557         pid_t tid = mFastMixer->getTid();
   2558         int err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
   2559         if (err != 0) {
   2560             ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
   2561                     kPriorityFastMixer, getpid_cached, tid, err);
   2562         }
   2563 
   2564 #ifdef AUDIO_WATCHDOG
   2565         // create and start the watchdog
   2566         mAudioWatchdog = new AudioWatchdog();
   2567         mAudioWatchdog->setDump(&mAudioWatchdogDump);
   2568         mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
   2569         tid = mAudioWatchdog->getTid();
   2570         err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
   2571         if (err != 0) {
   2572             ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
   2573                     kPriorityFastMixer, getpid_cached, tid, err);
   2574         }
   2575 #endif
   2576 
   2577     } else {
   2578         mFastMixer = NULL;
   2579     }
   2580 
   2581     switch (kUseFastMixer) {
   2582     case FastMixer_Never:
   2583     case FastMixer_Dynamic:
   2584         mNormalSink = mOutputSink;
   2585         break;
   2586     case FastMixer_Always:
   2587         mNormalSink = mPipeSink;
   2588         break;
   2589     case FastMixer_Static:
   2590         mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
   2591         break;
   2592     }
   2593 }
   2594 
   2595 AudioFlinger::MixerThread::~MixerThread()
   2596 {
   2597     if (mFastMixer != NULL) {
   2598         FastMixerStateQueue *sq = mFastMixer->sq();
   2599         FastMixerState *state = sq->begin();
   2600         if (state->mCommand == FastMixerState::COLD_IDLE) {
   2601             int32_t old = android_atomic_inc(&mFastMixerFutex);
   2602             if (old == -1) {
   2603                 __futex_syscall3(&mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
   2604             }
   2605         }
   2606         state->mCommand = FastMixerState::EXIT;
   2607         sq->end();
   2608         sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
   2609         mFastMixer->join();
   2610         // Though the fast mixer thread has exited, it's state queue is still valid.
   2611         // We'll use that extract the final state which contains one remaining fast track
   2612         // corresponding to our sub-mix.
   2613         state = sq->begin();
   2614         ALOG_ASSERT(state->mTrackMask == 1);
   2615         FastTrack *fastTrack = &state->mFastTracks[0];
   2616         ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
   2617         delete fastTrack->mBufferProvider;
   2618         sq->end(false /*didModify*/);
   2619         delete mFastMixer;
   2620 #ifdef AUDIO_WATCHDOG
   2621         if (mAudioWatchdog != 0) {
   2622             mAudioWatchdog->requestExit();
   2623             mAudioWatchdog->requestExitAndWait();
   2624             mAudioWatchdog.clear();
   2625         }
   2626 #endif
   2627     }
   2628     mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
   2629     delete mAudioMixer;
   2630 }
   2631 
   2632 
   2633 uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
   2634 {
   2635     if (mFastMixer != NULL) {
   2636         MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
   2637         latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
   2638     }
   2639     return latency;
   2640 }
   2641 
   2642 
   2643 void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
   2644 {
   2645     PlaybackThread::threadLoop_removeTracks(tracksToRemove);
   2646 }
   2647 
   2648 ssize_t AudioFlinger::MixerThread::threadLoop_write()
   2649 {
   2650     // FIXME we should only do one push per cycle; confirm this is true
   2651     // Start the fast mixer if it's not already running
   2652     if (mFastMixer != NULL) {
   2653         FastMixerStateQueue *sq = mFastMixer->sq();
   2654         FastMixerState *state = sq->begin();
   2655         if (state->mCommand != FastMixerState::MIX_WRITE &&
   2656                 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
   2657             if (state->mCommand == FastMixerState::COLD_IDLE) {
   2658                 int32_t old = android_atomic_inc(&mFastMixerFutex);
   2659                 if (old == -1) {
   2660                     __futex_syscall3(&mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
   2661                 }
   2662 #ifdef AUDIO_WATCHDOG
   2663                 if (mAudioWatchdog != 0) {
   2664                     mAudioWatchdog->resume();
   2665                 }
   2666 #endif
   2667             }
   2668             state->mCommand = FastMixerState::MIX_WRITE;
   2669             mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
   2670                     FastMixerDumpState::kSamplingNforLowRamDevice : FastMixerDumpState::kSamplingN);
   2671             sq->end();
   2672             sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
   2673             if (kUseFastMixer == FastMixer_Dynamic) {
   2674                 mNormalSink = mPipeSink;
   2675             }
   2676         } else {
   2677             sq->end(false /*didModify*/);
   2678         }
   2679     }
   2680     return PlaybackThread::threadLoop_write();
   2681 }
   2682 
   2683 void AudioFlinger::MixerThread::threadLoop_standby()
   2684 {
   2685     // Idle the fast mixer if it's currently running
   2686     if (mFastMixer != NULL) {
   2687         FastMixerStateQueue *sq = mFastMixer->sq();
   2688         FastMixerState *state = sq->begin();
   2689         if (!(state->mCommand & FastMixerState::IDLE)) {
   2690             state->mCommand = FastMixerState::COLD_IDLE;
   2691             state->mColdFutexAddr = &mFastMixerFutex;
   2692             state->mColdGen++;
   2693             mFastMixerFutex = 0;
   2694             sq->end();
   2695             // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
   2696             sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
   2697             if (kUseFastMixer == FastMixer_Dynamic) {
   2698                 mNormalSink = mOutputSink;
   2699             }
   2700 #ifdef AUDIO_WATCHDOG
   2701             if (mAudioWatchdog != 0) {
   2702                 mAudioWatchdog->pause();
   2703             }
   2704 #endif
   2705         } else {
   2706             sq->end(false /*didModify*/);
   2707         }
   2708     }
   2709     PlaybackThread::threadLoop_standby();
   2710 }
   2711 
   2712 // Empty implementation for standard mixer
   2713 // Overridden for offloaded playback
   2714 void AudioFlinger::PlaybackThread::flushOutput_l()
   2715 {
   2716 }
   2717 
   2718 bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
   2719 {
   2720     return false;
   2721 }
   2722 
   2723 bool AudioFlinger::PlaybackThread::shouldStandby_l()
   2724 {
   2725     return !mStandby;
   2726 }
   2727 
   2728 bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
   2729 {
   2730     Mutex::Autolock _l(mLock);
   2731     return waitingAsyncCallback_l();
   2732 }
   2733 
   2734 // shared by MIXER and DIRECT, overridden by DUPLICATING
   2735 void AudioFlinger::PlaybackThread::threadLoop_standby()
   2736 {
   2737     ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
   2738     mOutput->stream->common.standby(&mOutput->stream->common);
   2739     if (mUseAsyncWrite != 0) {
   2740         // discard any pending drain or write ack by incrementing sequence
   2741         mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
   2742         mDrainSequence = (mDrainSequence + 2) & ~1;
   2743         ALOG_ASSERT(mCallbackThread != 0);
   2744         mCallbackThread->setWriteBlocked(mWriteAckSequence);
   2745         mCallbackThread->setDraining(mDrainSequence);
   2746     }
   2747 }
   2748 
   2749 void AudioFlinger::MixerThread::threadLoop_mix()
   2750 {
   2751     // obtain the presentation timestamp of the next output buffer
   2752     int64_t pts;
   2753     status_t status = INVALID_OPERATION;
   2754 
   2755     if (mNormalSink != 0) {
   2756         status = mNormalSink->getNextWriteTimestamp(&pts);
   2757     } else {
   2758         status = mOutputSink->getNextWriteTimestamp(&pts);
   2759     }
   2760 
   2761     if (status != NO_ERROR) {
   2762         pts = AudioBufferProvider::kInvalidPTS;
   2763     }
   2764 
   2765     // mix buffers...
   2766     mAudioMixer->process(pts);
   2767     mCurrentWriteLength = mixBufferSize;
   2768     // increase sleep time progressively when application underrun condition clears.
   2769     // Only increase sleep time if the mixer is ready for two consecutive times to avoid
   2770     // that a steady state of alternating ready/not ready conditions keeps the sleep time
   2771     // such that we would underrun the audio HAL.
   2772     if ((sleepTime == 0) && (sleepTimeShift > 0)) {
   2773         sleepTimeShift--;
   2774     }
   2775     sleepTime = 0;
   2776     standbyTime = systemTime() + standbyDelay;
   2777     //TODO: delay standby when effects have a tail
   2778 }
   2779 
   2780 void AudioFlinger::MixerThread::threadLoop_sleepTime()
   2781 {
   2782     // If no tracks are ready, sleep once for the duration of an output
   2783     // buffer size, then write 0s to the output
   2784     if (sleepTime == 0) {
   2785         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
   2786             sleepTime = activeSleepTime >> sleepTimeShift;
   2787             if (sleepTime < kMinThreadSleepTimeUs) {
   2788                 sleepTime = kMinThreadSleepTimeUs;
   2789             }
   2790             // reduce sleep time in case of consecutive application underruns to avoid
   2791             // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
   2792             // duration we would end up writing less data than needed by the audio HAL if
   2793             // the condition persists.
   2794             if (sleepTimeShift < kMaxThreadSleepTimeShift) {
   2795                 sleepTimeShift++;
   2796             }
   2797         } else {
   2798             sleepTime = idleSleepTime;
   2799         }
   2800     } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
   2801         memset (mMixBuffer, 0, mixBufferSize);
   2802         sleepTime = 0;
   2803         ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
   2804                 "anticipated start");
   2805     }
   2806     // TODO add standby time extension fct of effect tail
   2807 }
   2808 
   2809 // prepareTracks_l() must be called with ThreadBase::mLock held
   2810 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
   2811         Vector< sp<Track> > *tracksToRemove)
   2812 {
   2813 
   2814     mixer_state mixerStatus = MIXER_IDLE;
   2815     // find out which tracks need to be processed
   2816     size_t count = mActiveTracks.size();
   2817     size_t mixedTracks = 0;
   2818     size_t tracksWithEffect = 0;
   2819     // counts only _active_ fast tracks
   2820     size_t fastTracks = 0;
   2821     uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
   2822 
   2823     float masterVolume = mMasterVolume;
   2824     bool masterMute = mMasterMute;
   2825 
   2826     if (masterMute) {
   2827         masterVolume = 0;
   2828     }
   2829     // Delegate master volume control to effect in output mix effect chain if needed
   2830     sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
   2831     if (chain != 0) {
   2832         uint32_t v = (uint32_t)(masterVolume * (1 << 24));
   2833         chain->setVolume_l(&v, &v);
   2834         masterVolume = (float)((v + (1 << 23)) >> 24);
   2835         chain.clear();
   2836     }
   2837 
   2838     // prepare a new state to push
   2839     FastMixerStateQueue *sq = NULL;
   2840     FastMixerState *state = NULL;
   2841     bool didModify = false;
   2842     FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
   2843     if (mFastMixer != NULL) {
   2844         sq = mFastMixer->sq();
   2845         state = sq->begin();
   2846     }
   2847 
   2848     for (size_t i=0 ; i<count ; i++) {
   2849         const sp<Track> t = mActiveTracks[i].promote();
   2850         if (t == 0) {
   2851             continue;
   2852         }
   2853 
   2854         // this const just means the local variable doesn't change
   2855         Track* const track = t.get();
   2856 
   2857         // process fast tracks
   2858         if (track->isFastTrack()) {
   2859 
   2860             // It's theoretically possible (though unlikely) for a fast track to be created
   2861             // and then removed within the same normal mix cycle.  This is not a problem, as
   2862             // the track never becomes active so it's fast mixer slot is never touched.
   2863             // The converse, of removing an (active) track and then creating a new track
   2864             // at the identical fast mixer slot within the same normal mix cycle,
   2865             // is impossible because the slot isn't marked available until the end of each cycle.
   2866             int j = track->mFastIndex;
   2867             ALOG_ASSERT(0 < j && j < (int)FastMixerState::kMaxFastTracks);
   2868             ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
   2869             FastTrack *fastTrack = &state->mFastTracks[j];
   2870 
   2871             // Determine whether the track is currently in underrun condition,
   2872             // and whether it had a recent underrun.
   2873             FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
   2874             FastTrackUnderruns underruns = ftDump->mUnderruns;
   2875             uint32_t recentFull = (underruns.mBitFields.mFull -
   2876                     track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
   2877             uint32_t recentPartial = (underruns.mBitFields.mPartial -
   2878                     track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
   2879             uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
   2880                     track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
   2881             uint32_t recentUnderruns = recentPartial + recentEmpty;
   2882             track->mObservedUnderruns = underruns;
   2883             // don't count underruns that occur while stopping or pausing
   2884             // or stopped which can occur when flush() is called while active
   2885             if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
   2886                     recentUnderruns > 0) {
   2887                 // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
   2888                 track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
   2889             }
   2890 
   2891             // This is similar to the state machine for normal tracks,
   2892             // with a few modifications for fast tracks.
   2893             bool isActive = true;
   2894             switch (track->mState) {
   2895             case TrackBase::STOPPING_1:
   2896                 // track stays active in STOPPING_1 state until first underrun
   2897                 if (recentUnderruns > 0 || track->isTerminated()) {
   2898                     track->mState = TrackBase::STOPPING_2;
   2899                 }
   2900                 break;
   2901             case TrackBase::PAUSING:
   2902                 // ramp down is not yet implemented
   2903                 track->setPaused();
   2904                 break;
   2905             case TrackBase::RESUMING:
   2906                 // ramp up is not yet implemented
   2907                 track->mState = TrackBase::ACTIVE;
   2908                 break;
   2909             case TrackBase::ACTIVE:
   2910                 if (recentFull > 0 || recentPartial > 0) {
   2911                     // track has provided at least some frames recently: reset retry count
   2912                     track->mRetryCount = kMaxTrackRetries;
   2913                 }
   2914                 if (recentUnderruns == 0) {
   2915                     // no recent underruns: stay active
   2916                     break;
   2917                 }
   2918                 // there has recently been an underrun of some kind
   2919                 if (track->sharedBuffer() == 0) {
   2920                     // were any of the recent underruns "empty" (no frames available)?
   2921                     if (recentEmpty == 0) {
   2922                         // no, then ignore the partial underruns as they are allowed indefinitely
   2923                         break;
   2924                     }
   2925                     // there has recently been an "empty" underrun: decrement the retry counter
   2926                     if (--(track->mRetryCount) > 0) {
   2927                         break;
   2928                     }
   2929                     // indicate to client process that the track was disabled because of underrun;
   2930                     // it will then automatically call start() when data is available
   2931                     android_atomic_or(CBLK_DISABLED, &track->mCblk->mFlags);
   2932                     // remove from active list, but state remains ACTIVE [confusing but true]
   2933                     isActive = false;
   2934                     break;
   2935                 }
   2936                 // fall through
   2937             case TrackBase::STOPPING_2:
   2938             case TrackBase::PAUSED:
   2939             case TrackBase::STOPPED:
   2940             case TrackBase::FLUSHED:   // flush() while active
   2941                 // Check for presentation complete if track is inactive
   2942                 // We have consumed all the buffers of this track.
   2943                 // This would be incomplete if we auto-paused on underrun
   2944                 {
   2945                     size_t audioHALFrames =
   2946                             (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
   2947                     size_t framesWritten = mBytesWritten / mFrameSize;
   2948                     if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
   2949                         // track stays in active list until presentation is complete
   2950                         break;
   2951                     }
   2952                 }
   2953                 if (track->isStopping_2()) {
   2954                     track->mState = TrackBase::STOPPED;
   2955                 }
   2956                 if (track->isStopped()) {
   2957                     // Can't reset directly, as fast mixer is still polling this track
   2958                     //   track->reset();
   2959                     // So instead mark this track as needing to be reset after push with ack
   2960                     resetMask |= 1 << i;
   2961                 }
   2962                 isActive = false;
   2963                 break;
   2964             case TrackBase::IDLE:
   2965             default:
   2966                 LOG_FATAL("unexpected track state %d", track->mState);
   2967             }
   2968 
   2969             if (isActive) {
   2970                 // was it previously inactive?
   2971                 if (!(state->mTrackMask & (1 << j))) {
   2972                     ExtendedAudioBufferProvider *eabp = track;
   2973                     VolumeProvider *vp = track;
   2974                     fastTrack->mBufferProvider = eabp;
   2975                     fastTrack->mVolumeProvider = vp;
   2976                     fastTrack->mSampleRate = track->mSampleRate;
   2977                     fastTrack->mChannelMask = track->mChannelMask;
   2978                     fastTrack->mGeneration++;
   2979                     state->mTrackMask |= 1 << j;
   2980                     didModify = true;
   2981                     // no acknowledgement required for newly active tracks
   2982                 }
   2983                 // cache the combined master volume and stream type volume for fast mixer; this
   2984                 // lacks any synchronization or barrier so VolumeProvider may read a stale value
   2985                 track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
   2986                 ++fastTracks;
   2987             } else {
   2988                 // was it previously active?
   2989                 if (state->mTrackMask & (1 << j)) {
   2990                     fastTrack->mBufferProvider = NULL;
   2991                     fastTrack->mGeneration++;
   2992                     state->mTrackMask &= ~(1 << j);
   2993                     didModify = true;
   2994                     // If any fast tracks were removed, we must wait for acknowledgement
   2995                     // because we're about to decrement the last sp<> on those tracks.
   2996                     block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
   2997                 } else {
   2998                     LOG_FATAL("fast track %d should have been active", j);
   2999                 }
   3000                 tracksToRemove->add(track);
   3001                 // Avoids a misleading display in dumpsys
   3002                 track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
   3003             }
   3004             continue;
   3005         }
   3006 
   3007         {   // local variable scope to avoid goto warning
   3008 
   3009         audio_track_cblk_t* cblk = track->cblk();
   3010 
   3011         // The first time a track is added we wait
   3012         // for all its buffers to be filled before processing it
   3013         int name = track->name();
   3014         // make sure that we have enough frames to mix one full buffer.
   3015         // enforce this condition only once to enable draining the buffer in case the client
   3016         // app does not call stop() and relies on underrun to stop:
   3017         // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
   3018         // during last round
   3019         size_t desiredFrames;
   3020         uint32_t sr = track->sampleRate();
   3021         if (sr == mSampleRate) {
   3022             desiredFrames = mNormalFrameCount;
   3023         } else {
   3024             // +1 for rounding and +1 for additional sample needed for interpolation
   3025             desiredFrames = (mNormalFrameCount * sr) / mSampleRate + 1 + 1;
   3026             // add frames already consumed but not yet released by the resampler
   3027             // because cblk->framesReady() will include these frames
   3028             desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
   3029             // the minimum track buffer size is normally twice the number of frames necessary
   3030             // to fill one buffer and the resampler should not leave more than one buffer worth
   3031             // of unreleased frames after each pass, but just in case...
   3032             ALOG_ASSERT(desiredFrames <= cblk->frameCount_);
   3033         }
   3034         uint32_t minFrames = 1;
   3035         if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
   3036                 (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
   3037             minFrames = desiredFrames;
   3038         }
   3039         // It's not safe to call framesReady() for a static buffer track, so assume it's ready
   3040         size_t framesReady;
   3041         if (track->sharedBuffer() == 0) {
   3042             framesReady = track->framesReady();
   3043         } else if (track->isStopped()) {
   3044             framesReady = 0;
   3045         } else {
   3046             framesReady = 1;
   3047         }
   3048         if ((framesReady >= minFrames) && track->isReady() &&
   3049                 !track->isPaused() && !track->isTerminated())
   3050         {
   3051             ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
   3052 
   3053             mixedTracks++;
   3054 
   3055             // track->mainBuffer() != mMixBuffer means there is an effect chain
   3056             // connected to the track
   3057             chain.clear();
   3058             if (track->mainBuffer() != mMixBuffer) {
   3059                 chain = getEffectChain_l(track->sessionId());
   3060                 // Delegate volume control to effect in track effect chain if needed
   3061                 if (chain != 0) {
   3062                     tracksWithEffect++;
   3063                 } else {
   3064                     ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
   3065                             "session %d",
   3066                             name, track->sessionId());
   3067                 }
   3068             }
   3069 
   3070 
   3071             int param = AudioMixer::VOLUME;
   3072             if (track->mFillingUpStatus == Track::FS_FILLED) {
   3073                 // no ramp for the first volume setting
   3074                 track->mFillingUpStatus = Track::FS_ACTIVE;
   3075                 if (track->mState == TrackBase::RESUMING) {
   3076                     track->mState = TrackBase::ACTIVE;
   3077                     param = AudioMixer::RAMP_VOLUME;
   3078                 }
   3079                 mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
   3080             // FIXME should not make a decision based on mServer
   3081             } else if (cblk->mServer != 0) {
   3082                 // If the track is stopped before the first frame was mixed,
   3083                 // do not apply ramp
   3084                 param = AudioMixer::RAMP_VOLUME;
   3085             }
   3086 
   3087             // compute volume for this track
   3088             uint32_t vl, vr, va;
   3089             if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
   3090                 vl = vr = va = 0;
   3091                 if (track->isPausing()) {
   3092                     track->setPaused();
   3093                 }
   3094             } else {
   3095 
   3096                 // read original volumes with volume control
   3097                 float typeVolume = mStreamTypes[track->streamType()].volume;
   3098                 float v = masterVolume * typeVolume;
   3099                 AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
   3100                 uint32_t vlr = proxy->getVolumeLR();
   3101                 vl = vlr & 0xFFFF;
   3102                 vr = vlr >> 16;
   3103                 // track volumes come from shared memory, so can't be trusted and must be clamped
   3104                 if (vl > MAX_GAIN_INT) {
   3105                     ALOGV("Track left volume out of range: %04X", vl);
   3106                     vl = MAX_GAIN_INT;
   3107                 }
   3108                 if (vr > MAX_GAIN_INT) {
   3109                     ALOGV("Track right volume out of range: %04X", vr);
   3110                     vr = MAX_GAIN_INT;
   3111                 }
   3112                 // now apply the master volume and stream type volume
   3113                 vl = (uint32_t)(v * vl) << 12;
   3114                 vr = (uint32_t)(v * vr) << 12;
   3115                 // assuming master volume and stream type volume each go up to 1.0,
   3116                 // vl and vr are now in 8.24 format
   3117 
   3118                 uint16_t sendLevel = proxy->getSendLevel_U4_12();
   3119                 // send level comes from shared memory and so may be corrupt
   3120                 if (sendLevel > MAX_GAIN_INT) {
   3121                     ALOGV("Track send level out of range: %04X", sendLevel);
   3122                     sendLevel = MAX_GAIN_INT;
   3123                 }
   3124                 va = (uint32_t)(v * sendLevel);
   3125             }
   3126 
   3127             // Delegate volume control to effect in track effect chain if needed
   3128             if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
   3129                 // Do not ramp volume if volume is controlled by effect
   3130                 param = AudioMixer::VOLUME;
   3131                 track->mHasVolumeController = true;
   3132             } else {
   3133                 // force no volume ramp when volume controller was just disabled or removed
   3134                 // from effect chain to avoid volume spike
   3135                 if (track->mHasVolumeController) {
   3136                     param = AudioMixer::VOLUME;
   3137                 }
   3138                 track->mHasVolumeController = false;
   3139             }
   3140 
   3141             // Convert volumes from 8.24 to 4.12 format
   3142             // This additional clamping is needed in case chain->setVolume_l() overshot
   3143             vl = (vl + (1 << 11)) >> 12;
   3144             if (vl > MAX_GAIN_INT) {
   3145                 vl = MAX_GAIN_INT;
   3146             }
   3147             vr = (vr + (1 << 11)) >> 12;
   3148             if (vr > MAX_GAIN_INT) {
   3149                 vr = MAX_GAIN_INT;
   3150             }
   3151 
   3152             if (va > MAX_GAIN_INT) {
   3153                 va = MAX_GAIN_INT;   // va is uint32_t, so no need to check for -
   3154             }
   3155 
   3156             // XXX: these things DON'T need to be done each time
   3157             mAudioMixer->setBufferProvider(name, track);
   3158             mAudioMixer->enable(name);
   3159 
   3160             mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, (void *)vl);
   3161             mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, (void *)vr);
   3162             mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, (void *)va);
   3163             mAudioMixer->setParameter(
   3164                 name,
   3165                 AudioMixer::TRACK,
   3166                 AudioMixer::FORMAT, (void *)track->format());
   3167             mAudioMixer->setParameter(
   3168                 name,
   3169                 AudioMixer::TRACK,
   3170                 AudioMixer::CHANNEL_MASK, (void *)track->channelMask());
   3171             // limit track sample rate to 2 x output sample rate, which changes at re-configuration
   3172             uint32_t maxSampleRate = mSampleRate * 2;
   3173             uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
   3174             if (reqSampleRate == 0) {
   3175                 reqSampleRate = mSampleRate;
   3176             } else if (reqSampleRate > maxSampleRate) {
   3177                 reqSampleRate = maxSampleRate;
   3178             }
   3179             mAudioMixer->setParameter(
   3180                 name,
   3181                 AudioMixer::RESAMPLE,
   3182                 AudioMixer::SAMPLE_RATE,
   3183                 (void *)reqSampleRate);
   3184             mAudioMixer->setParameter(
   3185                 name,
   3186                 AudioMixer::TRACK,
   3187                 AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
   3188             mAudioMixer->setParameter(
   3189                 name,
   3190                 AudioMixer::TRACK,
   3191                 AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
   3192 
   3193             // reset retry count
   3194             track->mRetryCount = kMaxTrackRetries;
   3195 
   3196             // If one track is ready, set the mixer ready if:
   3197             //  - the mixer was not ready during previous round OR
   3198             //  - no other track is not ready
   3199             if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
   3200                     mixerStatus != MIXER_TRACKS_ENABLED) {
   3201                 mixerStatus = MIXER_TRACKS_READY;
   3202             }
   3203         } else {
   3204             if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
   3205                 track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
   3206             }
   3207             // clear effect chain input buffer if an active track underruns to avoid sending
   3208             // previous audio buffer again to effects
   3209             chain = getEffectChain_l(track->sessionId());
   3210             if (chain != 0) {
   3211                 chain->clearInputBuffer();
   3212             }
   3213 
   3214             ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
   3215             if ((track->sharedBuffer() != 0) || track->isTerminated() ||
   3216                     track->isStopped() || track->isPaused()) {
   3217                 // We have consumed all the buffers of this track.
   3218                 // Remove it from the list of active tracks.
   3219                 // TODO: use actual buffer filling status instead of latency when available from
   3220                 // audio HAL
   3221                 size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
   3222                 size_t framesWritten = mBytesWritten / mFrameSize;
   3223                 if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
   3224                     if (track->isStopped()) {
   3225                         track->reset();
   3226                     }
   3227                     tracksToRemove->add(track);
   3228                 }
   3229             } else {
   3230                 // No buffers for this track. Give it a few chances to
   3231                 // fill a buffer, then remove it from active list.
   3232                 if (--(track->mRetryCount) <= 0) {
   3233                     ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
   3234                     tracksToRemove->add(track);
   3235                     // indicate to client process that the track was disabled because of underrun;
   3236                     // it will then automatically call start() when data is available
   3237                     android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
   3238                 // If one track is not ready, mark the mixer also not ready if:
   3239                 //  - the mixer was ready during previous round OR
   3240                 //  - no other track is ready
   3241                 } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
   3242                                 mixerStatus != MIXER_TRACKS_READY) {
   3243                     mixerStatus = MIXER_TRACKS_ENABLED;
   3244                 }
   3245             }
   3246             mAudioMixer->disable(name);
   3247         }
   3248 
   3249         }   // local variable scope to avoid goto warning
   3250 track_is_ready: ;
   3251 
   3252     }
   3253 
   3254     // Push the new FastMixer state if necessary
   3255     bool pauseAudioWatchdog = false;
   3256     if (didModify) {
   3257         state->mFastTracksGen++;
   3258         // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
   3259         if (kUseFastMixer == FastMixer_Dynamic &&
   3260                 state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
   3261             state->mCommand = FastMixerState::COLD_IDLE;
   3262             state->mColdFutexAddr = &mFastMixerFutex;
   3263             state->mColdGen++;
   3264             mFastMixerFutex = 0;
   3265             if (kUseFastMixer == FastMixer_Dynamic) {
   3266                 mNormalSink = mOutputSink;
   3267             }
   3268             // If we go into cold idle, need to wait for acknowledgement
   3269             // so that fast mixer stops doing I/O.
   3270             block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
   3271             pauseAudioWatchdog = true;
   3272         }
   3273     }
   3274     if (sq != NULL) {
   3275         sq->end(didModify);
   3276         sq->push(block);
   3277     }
   3278 #ifdef AUDIO_WATCHDOG
   3279     if (pauseAudioWatchdog && mAudioWatchdog != 0) {
   3280         mAudioWatchdog->pause();
   3281     }
   3282 #endif
   3283 
   3284     // Now perform the deferred reset on fast tracks that have stopped
   3285     while (resetMask != 0) {
   3286         size_t i = __builtin_ctz(resetMask);
   3287         ALOG_ASSERT(i < count);
   3288         resetMask &= ~(1 << i);
   3289         sp<Track> t = mActiveTracks[i].promote();
   3290         if (t == 0) {
   3291             continue;
   3292         }
   3293         Track* track = t.get();
   3294         ALOG_ASSERT(track->isFastTrack() && track->isStopped());
   3295         track->reset();
   3296     }
   3297 
   3298     // remove all the tracks that need to be...
   3299     removeTracks_l(*tracksToRemove);
   3300 
   3301     // mix buffer must be cleared if all tracks are connected to an
   3302     // effect chain as in this case the mixer will not write to
   3303     // mix buffer and track effects will accumulate into it
   3304     if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
   3305             (mixedTracks == 0 && fastTracks > 0))) {
   3306         // FIXME as a performance optimization, should remember previous zero status
   3307         memset(mMixBuffer, 0, mNormalFrameCount * mChannelCount * sizeof(int16_t));
   3308     }
   3309 
   3310     // if any fast tracks, then status is ready
   3311     mMixerStatusIgnoringFastTracks = mixerStatus;
   3312     if (fastTracks > 0) {
   3313         mixerStatus = MIXER_TRACKS_READY;
   3314     }
   3315     return mixerStatus;
   3316 }
   3317 
   3318 // getTrackName_l() must be called with ThreadBase::mLock held
   3319 int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask, int sessionId)
   3320 {
   3321     return mAudioMixer->getTrackName(channelMask, sessionId);
   3322 }
   3323 
   3324 // deleteTrackName_l() must be called with ThreadBase::mLock held
   3325 void AudioFlinger::MixerThread::deleteTrackName_l(int name)
   3326 {
   3327     ALOGV("remove track (%d) and delete from mixer", name);
   3328     mAudioMixer->deleteTrackName(name);
   3329 }
   3330 
   3331 // checkForNewParameters_l() must be called with ThreadBase::mLock held
   3332 bool AudioFlinger::MixerThread::checkForNewParameters_l()
   3333 {
   3334     // if !&IDLE, holds the FastMixer state to restore after new parameters processed
   3335     FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
   3336     bool reconfig = false;
   3337 
   3338     while (!mNewParameters.isEmpty()) {
   3339 
   3340         if (mFastMixer != NULL) {
   3341             FastMixerStateQueue *sq = mFastMixer->sq();
   3342             FastMixerState *state = sq->begin();
   3343             if (!(state->mCommand & FastMixerState::IDLE)) {
   3344                 previousCommand = state->mCommand;
   3345                 state->mCommand = FastMixerState::HOT_IDLE;
   3346                 sq->end();
   3347                 sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
   3348             } else {
   3349                 sq->end(false /*didModify*/);
   3350             }
   3351         }
   3352 
   3353         status_t status = NO_ERROR;
   3354         String8 keyValuePair = mNewParameters[0];
   3355         AudioParameter param = AudioParameter(keyValuePair);
   3356         int value;
   3357 
   3358         if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
   3359             reconfig = true;
   3360         }
   3361         if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
   3362             if ((audio_format_t) value != AUDIO_FORMAT_PCM_16_BIT) {
   3363                 status = BAD_VALUE;
   3364             } else {
   3365                 reconfig = true;
   3366             }
   3367         }
   3368         if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
   3369             if ((audio_channel_mask_t) value != AUDIO_CHANNEL_OUT_STEREO) {
   3370                 status = BAD_VALUE;
   3371             } else {
   3372                 reconfig = true;
   3373             }
   3374         }
   3375         if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
   3376             // do not accept frame count changes if tracks are open as the track buffer
   3377             // size depends on frame count and correct behavior would not be guaranteed
   3378             // if frame count is changed after track creation
   3379             if (!mTracks.isEmpty()) {
   3380                 status = INVALID_OPERATION;
   3381             } else {
   3382                 reconfig = true;
   3383             }
   3384         }
   3385         if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
   3386 #ifdef ADD_BATTERY_DATA
   3387             // when changing the audio output device, call addBatteryData to notify
   3388             // the change
   3389             if (mOutDevice != value) {
   3390                 uint32_t params = 0;
   3391                 // check whether speaker is on
   3392                 if (value & AUDIO_DEVICE_OUT_SPEAKER) {
   3393                     params |= IMediaPlayerService::kBatteryDataSpeakerOn;
   3394                 }
   3395 
   3396                 audio_devices_t deviceWithoutSpeaker
   3397                     = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
   3398                 // check if any other device (except speaker) is on
   3399                 if (value & deviceWithoutSpeaker ) {
   3400                     params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
   3401                 }
   3402 
   3403                 if (params != 0) {
   3404                     addBatteryData(params);
   3405                 }
   3406             }
   3407 #endif
   3408 
   3409             // forward device change to effects that have requested to be
   3410             // aware of attached audio device.
   3411             if (value != AUDIO_DEVICE_NONE) {
   3412                 mOutDevice = value;
   3413                 for (size_t i = 0; i < mEffectChains.size(); i++) {
   3414                     mEffectChains[i]->setDevice_l(mOutDevice);
   3415                 }
   3416             }
   3417         }
   3418 
   3419         if (status == NO_ERROR) {
   3420             status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
   3421                                                     keyValuePair.string());
   3422             if (!mStandby && status == INVALID_OPERATION) {
   3423                 mOutput->stream->common.standby(&mOutput->stream->common);
   3424                 mStandby = true;
   3425                 mBytesWritten = 0;
   3426                 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
   3427                                                        keyValuePair.string());
   3428             }
   3429             if (status == NO_ERROR && reconfig) {
   3430                 readOutputParameters();
   3431                 delete mAudioMixer;
   3432                 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
   3433                 for (size_t i = 0; i < mTracks.size() ; i++) {
   3434                     int name = getTrackName_l(mTracks[i]->mChannelMask, mTracks[i]->mSessionId);
   3435                     if (name < 0) {
   3436                         break;
   3437                     }
   3438                     mTracks[i]->mName = name;
   3439                 }
   3440                 sendIoConfigEvent_l(AudioSystem::OUTPUT_CONFIG_CHANGED);
   3441             }
   3442         }
   3443 
   3444         mNewParameters.removeAt(0);
   3445 
   3446         mParamStatus = status;
   3447         mParamCond.signal();
   3448         // wait for condition with time out in case the thread calling ThreadBase::setParameters()
   3449         // already timed out waiting for the status and will never signal the condition.
   3450         mWaitWorkCV.waitRelative(mLock, kSetParametersTimeoutNs);
   3451     }
   3452 
   3453     if (!(previousCommand & FastMixerState::IDLE)) {
   3454         ALOG_ASSERT(mFastMixer != NULL);
   3455         FastMixerStateQueue *sq = mFastMixer->sq();
   3456         FastMixerState *state = sq->begin();
   3457         ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
   3458         state->mCommand = previousCommand;
   3459         sq->end();
   3460         sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
   3461     }
   3462 
   3463     return reconfig;
   3464 }
   3465 
   3466 
   3467 void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
   3468 {
   3469     const size_t SIZE = 256;
   3470     char buffer[SIZE];
   3471     String8 result;
   3472 
   3473     PlaybackThread::dumpInternals(fd, args);
   3474 
   3475     snprintf(buffer, SIZE, "AudioMixer tracks: %08x\n", mAudioMixer->trackNames());
   3476     result.append(buffer);
   3477     write(fd, result.string(), result.size());
   3478 
   3479     // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
   3480     const FastMixerDumpState copy(mFastMixerDumpState);
   3481     copy.dump(fd);
   3482 
   3483 #ifdef STATE_QUEUE_DUMP
   3484     // Similar for state queue
   3485     StateQueueObserverDump observerCopy = mStateQueueObserverDump;
   3486     observerCopy.dump(fd);
   3487     StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
   3488     mutatorCopy.dump(fd);
   3489 #endif
   3490 
   3491 #ifdef TEE_SINK
   3492     // Write the tee output to a .wav file
   3493     dumpTee(fd, mTeeSource, mId);
   3494 #endif
   3495 
   3496 #ifdef AUDIO_WATCHDOG
   3497     if (mAudioWatchdog != 0) {
   3498         // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
   3499         AudioWatchdogDump wdCopy = mAudioWatchdogDump;
   3500         wdCopy.dump(fd);
   3501     }
   3502 #endif
   3503 }
   3504 
   3505 uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
   3506 {
   3507     return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
   3508 }
   3509 
   3510 uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
   3511 {
   3512     return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
   3513 }
   3514 
   3515 void AudioFlinger::MixerThread::cacheParameters_l()
   3516 {
   3517     PlaybackThread::cacheParameters_l();
   3518 
   3519     // FIXME: Relaxed timing because of a certain device that can't meet latency
   3520     // Should be reduced to 2x after the vendor fixes the driver issue
   3521     // increase threshold again due to low power audio mode. The way this warning
   3522     // threshold is calculated and its usefulness should be reconsidered anyway.
   3523     maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
   3524 }
   3525 
   3526 // ----------------------------------------------------------------------------
   3527 
   3528 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
   3529         AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device)
   3530     :   PlaybackThread(audioFlinger, output, id, device, DIRECT)
   3531         // mLeftVolFloat, mRightVolFloat
   3532 {
   3533 }
   3534 
   3535 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
   3536         AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
   3537         ThreadBase::type_t type)
   3538     :   PlaybackThread(audioFlinger, output, id, device, type)
   3539         // mLeftVolFloat, mRightVolFloat
   3540 {
   3541 }
   3542 
   3543 AudioFlinger::DirectOutputThread::~DirectOutputThread()
   3544 {
   3545 }
   3546 
   3547 void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
   3548 {
   3549     audio_track_cblk_t* cblk = track->cblk();
   3550     float left, right;
   3551 
   3552     if (mMasterMute || mStreamTypes[track->streamType()].mute) {
   3553         left = right = 0;
   3554     } else {
   3555         float typeVolume = mStreamTypes[track->streamType()].volume;
   3556         float v = mMasterVolume * typeVolume;
   3557         AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
   3558         uint32_t vlr = proxy->getVolumeLR();
   3559         float v_clamped = v * (vlr & 0xFFFF);
   3560         if (v_clamped > MAX_GAIN) v_clamped = MAX_GAIN;
   3561         left = v_clamped/MAX_GAIN;
   3562         v_clamped = v * (vlr >> 16);
   3563         if (v_clamped > MAX_GAIN) v_clamped = MAX_GAIN;
   3564         right = v_clamped/MAX_GAIN;
   3565     }
   3566 
   3567     if (lastTrack) {
   3568         if (left != mLeftVolFloat || right != mRightVolFloat) {
   3569             mLeftVolFloat = left;
   3570             mRightVolFloat = right;
   3571 
   3572             // Convert volumes from float to 8.24
   3573             uint32_t vl = (uint32_t)(left * (1 << 24));
   3574             uint32_t vr = (uint32_t)(right * (1 << 24));
   3575 
   3576             // Delegate volume control to effect in track effect chain if needed
   3577             // only one effect chain can be present on DirectOutputThread, so if
   3578             // there is one, the track is connected to it
   3579             if (!mEffectChains.isEmpty()) {
   3580                 mEffectChains[0]->setVolume_l(&vl, &vr);
   3581                 left = (float)vl / (1 << 24);
   3582                 right = (float)vr / (1 << 24);
   3583             }
   3584             if (mOutput->stream->set_volume) {
   3585                 mOutput->stream->set_volume(mOutput->stream, left, right);
   3586             }
   3587         }
   3588     }
   3589 }
   3590 
   3591 
   3592 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
   3593     Vector< sp<Track> > *tracksToRemove
   3594 )
   3595 {
   3596     size_t count = mActiveTracks.size();
   3597     mixer_state mixerStatus = MIXER_IDLE;
   3598 
   3599     // find out which tracks need to be processed
   3600     for (size_t i = 0; i < count; i++) {
   3601         sp<Track> t = mActiveTracks[i].promote();
   3602         // The track died recently
   3603         if (t == 0) {
   3604             continue;
   3605         }
   3606 
   3607         Track* const track = t.get();
   3608         audio_track_cblk_t* cblk = track->cblk();
   3609         // Only consider last track started for volume and mixer state control.
   3610         // In theory an older track could underrun and restart after the new one starts
   3611         // but as we only care about the transition phase between two tracks on a
   3612         // direct output, it is not a problem to ignore the underrun case.
   3613         sp<Track> l = mLatestActiveTrack.promote();
   3614         bool last = l.get() == track;
   3615 
   3616         // The first time a track is added we wait
   3617         // for all its buffers to be filled before processing it
   3618         uint32_t minFrames;
   3619         if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing()) {
   3620             minFrames = mNormalFrameCount;
   3621         } else {
   3622             minFrames = 1;
   3623         }
   3624 
   3625         if ((track->framesReady() >= minFrames) && track->isReady() &&
   3626                 !track->isPaused() && !track->isTerminated())
   3627         {
   3628             ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
   3629 
   3630             if (track->mFillingUpStatus == Track::FS_FILLED) {
   3631                 track->mFillingUpStatus = Track::FS_ACTIVE;
   3632                 // make sure processVolume_l() will apply new volume even if 0
   3633                 mLeftVolFloat = mRightVolFloat = -1.0;
   3634                 if (track->mState == TrackBase::RESUMING) {
   3635                     track->mState = TrackBase::ACTIVE;
   3636                 }
   3637             }
   3638 
   3639             // compute volume for this track
   3640             processVolume_l(track, last);
   3641             if (last) {
   3642                 // reset retry count
   3643                 track->mRetryCount = kMaxTrackRetriesDirect;
   3644                 mActiveTrack = t;
   3645                 mixerStatus = MIXER_TRACKS_READY;
   3646             }
   3647         } else {
   3648             // clear effect chain input buffer if the last active track started underruns
   3649             // to avoid sending previous audio buffer again to effects
   3650             if (!mEffectChains.isEmpty() && last) {
   3651                 mEffectChains[0]->clearInputBuffer();
   3652             }
   3653 
   3654             ALOGVV("track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
   3655             if ((track->sharedBuffer() != 0) || track->isTerminated() ||
   3656                     track->isStopped() || track->isPaused()) {
   3657                 // We have consumed all the buffers of this track.
   3658                 // Remove it from the list of active tracks.
   3659                 // TODO: implement behavior for compressed audio
   3660                 size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
   3661                 size_t framesWritten = mBytesWritten / mFrameSize;
   3662                 if (mStandby || !last ||
   3663                         track->presentationComplete(framesWritten, audioHALFrames)) {
   3664                     if (track->isStopped()) {
   3665                         track->reset();
   3666                     }
   3667                     tracksToRemove->add(track);
   3668                 }
   3669             } else {
   3670                 // No buffers for this track. Give it a few chances to
   3671                 // fill a buffer, then remove it from active list.
   3672                 // Only consider last track started for mixer state control
   3673                 if (--(track->mRetryCount) <= 0) {
   3674                     ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
   3675                     tracksToRemove->add(track);
   3676                     // indicate to client process that the track was disabled because of underrun;
   3677                     // it will then automatically call start() when data is available
   3678                     android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
   3679                 } else if (last) {
   3680                     mixerStatus = MIXER_TRACKS_ENABLED;
   3681                 }
   3682             }
   3683         }
   3684     }
   3685 
   3686     // remove all the tracks that need to be...
   3687     removeTracks_l(*tracksToRemove);
   3688 
   3689     return mixerStatus;
   3690 }
   3691 
   3692 void AudioFlinger::DirectOutputThread::threadLoop_mix()
   3693 {
   3694     size_t frameCount = mFrameCount;
   3695     int8_t *curBuf = (int8_t *)mMixBuffer;
   3696     // output audio to hardware
   3697     while (frameCount) {
   3698         AudioBufferProvider::Buffer buffer;
   3699         buffer.frameCount = frameCount;
   3700         mActiveTrack->getNextBuffer(&buffer);
   3701         if (buffer.raw == NULL) {
   3702             memset(curBuf, 0, frameCount * mFrameSize);
   3703             break;
   3704         }
   3705         memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
   3706         frameCount -= buffer.frameCount;
   3707         curBuf += buffer.frameCount * mFrameSize;
   3708         mActiveTrack->releaseBuffer(&buffer);
   3709     }
   3710     mCurrentWriteLength = curBuf - (int8_t *)mMixBuffer;
   3711     sleepTime = 0;
   3712     standbyTime = systemTime() + standbyDelay;
   3713     mActiveTrack.clear();
   3714 }
   3715 
   3716 void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
   3717 {
   3718     if (sleepTime == 0) {
   3719         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
   3720             sleepTime = activeSleepTime;
   3721         } else {
   3722             sleepTime = idleSleepTime;
   3723         }
   3724     } else if (mBytesWritten != 0 && audio_is_linear_pcm(mFormat)) {
   3725         memset(mMixBuffer, 0, mFrameCount * mFrameSize);
   3726         sleepTime = 0;
   3727     }
   3728 }
   3729 
   3730 // getTrackName_l() must be called with ThreadBase::mLock held
   3731 int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask,
   3732         int sessionId)
   3733 {
   3734     return 0;
   3735 }
   3736 
   3737 // deleteTrackName_l() must be called with ThreadBase::mLock held
   3738 void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name)
   3739 {
   3740 }
   3741 
   3742 // checkForNewParameters_l() must be called with ThreadBase::mLock held
   3743 bool AudioFlinger::DirectOutputThread::checkForNewParameters_l()
   3744 {
   3745     bool reconfig = false;
   3746 
   3747     while (!mNewParameters.isEmpty()) {
   3748         status_t status = NO_ERROR;
   3749         String8 keyValuePair = mNewParameters[0];
   3750         AudioParameter param = AudioParameter(keyValuePair);
   3751         int value;
   3752 
   3753         if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
   3754             // do not accept frame count changes if tracks are open as the track buffer
   3755             // size depends on frame count and correct behavior would not be garantied
   3756             // if frame count is changed after track creation
   3757             if (!mTracks.isEmpty()) {
   3758                 status = INVALID_OPERATION;
   3759             } else {
   3760                 reconfig = true;
   3761             }
   3762         }
   3763         if (status == NO_ERROR) {
   3764             status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
   3765                                                     keyValuePair.string());
   3766             if (!mStandby && status == INVALID_OPERATION) {
   3767                 mOutput->stream->common.standby(&mOutput->stream->common);
   3768                 mStandby = true;
   3769                 mBytesWritten = 0;
   3770                 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
   3771                                                        keyValuePair.string());
   3772             }
   3773             if (status == NO_ERROR && reconfig) {
   3774                 readOutputParameters();
   3775                 sendIoConfigEvent_l(AudioSystem::OUTPUT_CONFIG_CHANGED);
   3776             }
   3777         }
   3778 
   3779         mNewParameters.removeAt(0);
   3780 
   3781         mParamStatus = status;
   3782         mParamCond.signal();
   3783         // wait for condition with time out in case the thread calling ThreadBase::setParameters()
   3784         // already timed out waiting for the status and will never signal the condition.
   3785         mWaitWorkCV.waitRelative(mLock, kSetParametersTimeoutNs);
   3786     }
   3787     return reconfig;
   3788 }
   3789 
   3790 uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
   3791 {
   3792     uint32_t time;
   3793     if (audio_is_linear_pcm(mFormat)) {
   3794         time = PlaybackThread::activeSleepTimeUs();
   3795     } else {
   3796         time = 10000;
   3797     }
   3798     return time;
   3799 }
   3800 
   3801 uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
   3802 {
   3803     uint32_t time;
   3804     if (audio_is_linear_pcm(mFormat)) {
   3805         time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
   3806     } else {
   3807         time = 10000;
   3808     }
   3809     return time;
   3810 }
   3811 
   3812 uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
   3813 {
   3814     uint32_t time;
   3815     if (audio_is_linear_pcm(mFormat)) {
   3816         time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
   3817     } else {
   3818         time = 10000;
   3819     }
   3820     return time;
   3821 }
   3822 
   3823 void AudioFlinger::DirectOutputThread::cacheParameters_l()
   3824 {
   3825     PlaybackThread::cacheParameters_l();
   3826 
   3827     // use shorter standby delay as on normal output to release
   3828     // hardware resources as soon as possible
   3829     if (audio_is_linear_pcm(mFormat)) {
   3830         standbyDelay = microseconds(activeSleepTime*2);
   3831     } else {
   3832         standbyDelay = kOffloadStandbyDelayNs;
   3833     }
   3834 }
   3835 
   3836 // ----------------------------------------------------------------------------
   3837 
   3838 AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
   3839         const wp<AudioFlinger::PlaybackThread>& playbackThread)
   3840     :   Thread(false /*canCallJava*/),
   3841         mPlaybackThread(playbackThread),
   3842         mWriteAckSequence(0),
   3843         mDrainSequence(0)
   3844 {
   3845 }
   3846 
   3847 AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
   3848 {
   3849 }
   3850 
   3851 void AudioFlinger::AsyncCallbackThread::onFirstRef()
   3852 {
   3853     run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
   3854 }
   3855 
   3856 bool AudioFlinger::AsyncCallbackThread::threadLoop()
   3857 {
   3858     while (!exitPending()) {
   3859         uint32_t writeAckSequence;
   3860         uint32_t drainSequence;
   3861 
   3862         {
   3863             Mutex::Autolock _l(mLock);
   3864             mWaitWorkCV.wait(mLock);
   3865             if (exitPending()) {
   3866                 break;
   3867             }
   3868             ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
   3869                   mWriteAckSequence, mDrainSequence);
   3870             writeAckSequence = mWriteAckSequence;
   3871             mWriteAckSequence &= ~1;
   3872             drainSequence = mDrainSequence;
   3873             mDrainSequence &= ~1;
   3874         }
   3875         {
   3876             sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
   3877             if (playbackThread != 0) {
   3878                 if (writeAckSequence & 1) {
   3879                     playbackThread->resetWriteBlocked(writeAckSequence >> 1);
   3880                 }
   3881                 if (drainSequence & 1) {
   3882                     playbackThread->resetDraining(drainSequence >> 1);
   3883                 }
   3884             }
   3885         }
   3886     }
   3887     return false;
   3888 }
   3889 
   3890 void AudioFlinger::AsyncCallbackThread::exit()
   3891 {
   3892     ALOGV("AsyncCallbackThread::exit");
   3893     Mutex::Autolock _l(mLock);
   3894     requestExit();
   3895     mWaitWorkCV.broadcast();
   3896 }
   3897 
   3898 void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
   3899 {
   3900     Mutex::Autolock _l(mLock);
   3901     // bit 0 is cleared
   3902     mWriteAckSequence = sequence << 1;
   3903 }
   3904 
   3905 void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
   3906 {
   3907     Mutex::Autolock _l(mLock);
   3908     // ignore unexpected callbacks
   3909     if (mWriteAckSequence & 2) {
   3910         mWriteAckSequence |= 1;
   3911         mWaitWorkCV.signal();
   3912     }
   3913 }
   3914 
   3915 void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
   3916 {
   3917     Mutex::Autolock _l(mLock);
   3918     // bit 0 is cleared
   3919     mDrainSequence = sequence << 1;
   3920 }
   3921 
   3922 void AudioFlinger::AsyncCallbackThread::resetDraining()
   3923 {
   3924     Mutex::Autolock _l(mLock);
   3925     // ignore unexpected callbacks
   3926     if (mDrainSequence & 2) {
   3927         mDrainSequence |= 1;
   3928         mWaitWorkCV.signal();
   3929     }
   3930 }
   3931 
   3932 
   3933 // ----------------------------------------------------------------------------
   3934 AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
   3935         AudioStreamOut* output, audio_io_handle_t id, uint32_t device)
   3936     :   DirectOutputThread(audioFlinger, output, id, device, OFFLOAD),
   3937         mHwPaused(false),
   3938         mFlushPending(false),
   3939         mPausedBytesRemaining(0)
   3940 {
   3941     //FIXME: mStandby should be set to true by ThreadBase constructor
   3942     mStandby = true;
   3943 }
   3944 
   3945 void AudioFlinger::OffloadThread::threadLoop_exit()
   3946 {
   3947     if (mFlushPending || mHwPaused) {
   3948         // If a flush is pending or track was paused, just discard buffered data
   3949         flushHw_l();
   3950     } else {
   3951         mMixerStatus = MIXER_DRAIN_ALL;
   3952         threadLoop_drain();
   3953     }
   3954     mCallbackThread->exit();
   3955     PlaybackThread::threadLoop_exit();
   3956 }
   3957 
   3958 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
   3959     Vector< sp<Track> > *tracksToRemove
   3960 )
   3961 {
   3962     size_t count = mActiveTracks.size();
   3963 
   3964     mixer_state mixerStatus = MIXER_IDLE;
   3965     bool doHwPause = false;
   3966     bool doHwResume = false;
   3967 
   3968     ALOGV("OffloadThread::prepareTracks_l active tracks %d", count);
   3969 
   3970     // find out which tracks need to be processed
   3971     for (size_t i = 0; i < count; i++) {
   3972         sp<Track> t = mActiveTracks[i].promote();
   3973         // The track died recently
   3974         if (t == 0) {
   3975             continue;
   3976         }
   3977         Track* const track = t.get();
   3978         audio_track_cblk_t* cblk = track->cblk();
   3979         // Only consider last track started for volume and mixer state control.
   3980         // In theory an older track could underrun and restart after the new one starts
   3981         // but as we only care about the transition phase between two tracks on a
   3982         // direct output, it is not a problem to ignore the underrun case.
   3983         sp<Track> l = mLatestActiveTrack.promote();
   3984         bool last = l.get() == track;
   3985 
   3986         if (track->isPausing()) {
   3987             track->setPaused();
   3988             if (last) {
   3989                 if (!mHwPaused) {
   3990                     doHwPause = true;
   3991                     mHwPaused = true;
   3992                 }
   3993                 // If we were part way through writing the mixbuffer to
   3994                 // the HAL we must save this until we resume
   3995                 // BUG - this will be wrong if a different track is made active,
   3996                 // in that case we want to discard the pending data in the
   3997                 // mixbuffer and tell the client to present it again when the
   3998                 // track is resumed
   3999                 mPausedWriteLength = mCurrentWriteLength;
   4000                 mPausedBytesRemaining = mBytesRemaining;
   4001                 mBytesRemaining = 0;    // stop writing
   4002             }
   4003             tracksToRemove->add(track);
   4004         } else if (track->framesReady() && track->isReady() &&
   4005                 !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
   4006             ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
   4007             if (track->mFillingUpStatus == Track::FS_FILLED) {
   4008                 track->mFillingUpStatus = Track::FS_ACTIVE;
   4009                 // make sure processVolume_l() will apply new volume even if 0
   4010                 mLeftVolFloat = mRightVolFloat = -1.0;
   4011                 if (track->mState == TrackBase::RESUMING) {
   4012                     track->mState = TrackBase::ACTIVE;
   4013                     if (last) {
   4014                         if (mPausedBytesRemaining) {
   4015                             // Need to continue write that was interrupted
   4016                             mCurrentWriteLength = mPausedWriteLength;
   4017                             mBytesRemaining = mPausedBytesRemaining;
   4018                             mPausedBytesRemaining = 0;
   4019                         }
   4020                         if (mHwPaused) {
   4021                             doHwResume = true;
   4022                             mHwPaused = false;
   4023                             // threadLoop_mix() will handle the case that we need to
   4024                             // resume an interrupted write
   4025                         }
   4026                         // enable write to audio HAL
   4027                         sleepTime = 0;
   4028                     }
   4029                 }
   4030             }
   4031 
   4032             if (last) {
   4033                 sp<Track> previousTrack = mPreviousTrack.promote();
   4034                 if (previousTrack != 0) {
   4035                     if (track != previousTrack.get()) {
   4036                         // Flush any data still being written from last track
   4037                         mBytesRemaining = 0;
   4038                         if (mPausedBytesRemaining) {
   4039                             // Last track was paused so we also need to flush saved
   4040                             // mixbuffer state and invalidate track so that it will
   4041                             // re-submit that unwritten data when it is next resumed
   4042                             mPausedBytesRemaining = 0;
   4043                             // Invalidate is a bit drastic - would be more efficient
   4044                             // to have a flag to tell client that some of the
   4045                             // previously written data was lost
   4046                             previousTrack->invalidate();
   4047                         }
   4048                         // flush data already sent to the DSP if changing audio session as audio
   4049                         // comes from a different source. Also invalidate previous track to force a
   4050                         // seek when resuming.
   4051                         if (previousTrack->sessionId() != track->sessionId()) {
   4052                             previousTrack->invalidate();
   4053                             mFlushPending = true;
   4054                         }
   4055                     }
   4056                 }
   4057                 mPreviousTrack = track;
   4058                 // reset retry count
   4059                 track->mRetryCount = kMaxTrackRetriesOffload;
   4060                 mActiveTrack = t;
   4061                 mixerStatus = MIXER_TRACKS_READY;
   4062             }
   4063         } else {
   4064             ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
   4065             if (track->isStopping_1()) {
   4066                 // Hardware buffer can hold a large amount of audio so we must
   4067                 // wait for all current track's data to drain before we say
   4068                 // that the track is stopped.
   4069                 if (mBytesRemaining == 0) {
   4070                     // Only start draining when all data in mixbuffer
   4071                     // has been written
   4072                     ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
   4073                     track->mState = TrackBase::STOPPING_2; // so presentation completes after drain
   4074                     // do not drain if no data was ever sent to HAL (mStandby == true)
   4075                     if (last && !mStandby) {
   4076                         // do not modify drain sequence if we are already draining. This happens
   4077                         // when resuming from pause after drain.
   4078                         if ((mDrainSequence & 1) == 0) {
   4079                             sleepTime = 0;
   4080                             standbyTime = systemTime() + standbyDelay;
   4081                             mixerStatus = MIXER_DRAIN_TRACK;
   4082                             mDrainSequence += 2;
   4083                         }
   4084                         if (mHwPaused) {
   4085                             // It is possible to move from PAUSED to STOPPING_1 without
   4086                             // a resume so we must ensure hardware is running
   4087                             doHwResume = true;
   4088                             mHwPaused = false;
   4089                         }
   4090                     }
   4091                 }
   4092             } else if (track->isStopping_2()) {
   4093                 // Drain has completed or we are in standby, signal presentation complete
   4094                 if (!(mDrainSequence & 1) || !last || mStandby) {
   4095                     track->mState = TrackBase::STOPPED;
   4096                     size_t audioHALFrames =
   4097                             (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
   4098                     size_t framesWritten =
   4099                             mBytesWritten / audio_stream_frame_size(&mOutput->stream->common);
   4100                     track->presentationComplete(framesWritten, audioHALFrames);
   4101                     track->reset();
   4102                     tracksToRemove->add(track);
   4103                 }
   4104             } else {
   4105                 // No buffers for this track. Give it a few chances to
   4106                 // fill a buffer, then remove it from active list.
   4107                 if (--(track->mRetryCount) <= 0) {
   4108                     ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
   4109                           track->name());
   4110                     tracksToRemove->add(track);
   4111                     // indicate to client process that the track was disabled because of underrun;
   4112                     // it will then automatically call start() when data is available
   4113                     android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
   4114                 } else if (last){
   4115                     mixerStatus = MIXER_TRACKS_ENABLED;
   4116                 }
   4117             }
   4118         }
   4119         // compute volume for this track
   4120         processVolume_l(track, last);
   4121     }
   4122 
   4123     // make sure the pause/flush/resume sequence is executed in the right order.
   4124     // If a flush is pending and a track is active but the HW is not paused, force a HW pause
   4125     // before flush and then resume HW. This can happen in case of pause/flush/resume
   4126     // if resume is received before pause is executed.
   4127     if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
   4128         mOutput->stream->pause(mOutput->stream);
   4129         if (!doHwPause) {
   4130             doHwResume = true;
   4131         }
   4132     }
   4133     if (mFlushPending) {
   4134         flushHw_l();
   4135         mFlushPending = false;
   4136     }
   4137     if (!mStandby && doHwResume) {
   4138         mOutput->stream->resume(mOutput->stream);
   4139     }
   4140 
   4141     // remove all the tracks that need to be...
   4142     removeTracks_l(*tracksToRemove);
   4143 
   4144     return mixerStatus;
   4145 }
   4146 
   4147 void AudioFlinger::OffloadThread::flushOutput_l()
   4148 {
   4149     mFlushPending = true;
   4150 }
   4151 
   4152 // must be called with thread mutex locked
   4153 bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
   4154 {
   4155     ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
   4156           mWriteAckSequence, mDrainSequence);
   4157     if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
   4158         return true;
   4159     }
   4160     return false;
   4161 }
   4162 
   4163 // must be called with thread mutex locked
   4164 bool AudioFlinger::OffloadThread::shouldStandby_l()
   4165 {
   4166     bool TrackPaused = false;
   4167 
   4168     // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
   4169     // after a timeout and we will enter standby then.
   4170     if (mTracks.size() > 0) {
   4171         TrackPaused = mTracks[mTracks.size() - 1]->isPaused();
   4172     }
   4173 
   4174     return !mStandby && !TrackPaused;
   4175 }
   4176 
   4177 
   4178 bool AudioFlinger::OffloadThread::waitingAsyncCallback()
   4179 {
   4180     Mutex::Autolock _l(mLock);
   4181     return waitingAsyncCallback_l();
   4182 }
   4183 
   4184 void AudioFlinger::OffloadThread::flushHw_l()
   4185 {
   4186     mOutput->stream->flush(mOutput->stream);
   4187     // Flush anything still waiting in the mixbuffer
   4188     mCurrentWriteLength = 0;
   4189     mBytesRemaining = 0;
   4190     mPausedWriteLength = 0;
   4191     mPausedBytesRemaining = 0;
   4192     if (mUseAsyncWrite) {
   4193         // discard any pending drain or write ack by incrementing sequence
   4194         mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
   4195         mDrainSequence = (mDrainSequence + 2) & ~1;
   4196         ALOG_ASSERT(mCallbackThread != 0);
   4197         mCallbackThread->setWriteBlocked(mWriteAckSequence);
   4198         mCallbackThread->setDraining(mDrainSequence);
   4199     }
   4200 }
   4201 
   4202 // ----------------------------------------------------------------------------
   4203 
   4204 AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
   4205         AudioFlinger::MixerThread* mainThread, audio_io_handle_t id)
   4206     :   MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
   4207                 DUPLICATING),
   4208         mWaitTimeMs(UINT_MAX)
   4209 {
   4210     addOutputTrack(mainThread);
   4211 }
   4212 
   4213 AudioFlinger::DuplicatingThread::~DuplicatingThread()
   4214 {
   4215     for (size_t i = 0; i < mOutputTracks.size(); i++) {
   4216         mOutputTracks[i]->destroy();
   4217     }
   4218 }
   4219 
   4220 void AudioFlinger::DuplicatingThread::threadLoop_mix()
   4221 {
   4222     // mix buffers...
   4223     if (outputsReady(outputTracks)) {
   4224         mAudioMixer->process(AudioBufferProvider::kInvalidPTS);
   4225     } else {
   4226         memset(mMixBuffer, 0, mixBufferSize);
   4227     }
   4228     sleepTime = 0;
   4229     writeFrames = mNormalFrameCount;
   4230     mCurrentWriteLength = mixBufferSize;
   4231     standbyTime = systemTime() + standbyDelay;
   4232 }
   4233 
   4234 void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
   4235 {
   4236     if (sleepTime == 0) {
   4237         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
   4238             sleepTime = activeSleepTime;
   4239         } else {
   4240             sleepTime = idleSleepTime;
   4241         }
   4242     } else if (mBytesWritten != 0) {
   4243         if (mMixerStatus == MIXER_TRACKS_ENABLED) {
   4244             writeFrames = mNormalFrameCount;
   4245             memset(mMixBuffer, 0, mixBufferSize);
   4246         } else {
   4247             // flush remaining overflow buffers in output tracks
   4248             writeFrames = 0;
   4249         }
   4250         sleepTime = 0;
   4251     }
   4252 }
   4253 
   4254 ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
   4255 {
   4256     for (size_t i = 0; i < outputTracks.size(); i++) {
   4257         outputTracks[i]->write(mMixBuffer, writeFrames);
   4258     }
   4259     mStandby = false;
   4260     return (ssize_t)mixBufferSize;
   4261 }
   4262 
   4263 void AudioFlinger::DuplicatingThread::threadLoop_standby()
   4264 {
   4265     // DuplicatingThread implements standby by stopping all tracks
   4266     for (size_t i = 0; i < outputTracks.size(); i++) {
   4267         outputTracks[i]->stop();
   4268     }
   4269 }
   4270 
   4271 void AudioFlinger::DuplicatingThread::saveOutputTracks()
   4272 {
   4273     outputTracks = mOutputTracks;
   4274 }
   4275 
   4276 void AudioFlinger::DuplicatingThread::clearOutputTracks()
   4277 {
   4278     outputTracks.clear();
   4279 }
   4280 
   4281 void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
   4282 {
   4283     Mutex::Autolock _l(mLock);
   4284     // FIXME explain this formula
   4285     size_t frameCount = (3 * mNormalFrameCount * mSampleRate) / thread->sampleRate();
   4286     OutputTrack *outputTrack = new OutputTrack(thread,
   4287                                             this,
   4288                                             mSampleRate,
   4289                                             mFormat,
   4290                                             mChannelMask,
   4291                                             frameCount,
   4292                                             IPCThreadState::self()->getCallingUid());
   4293     if (outputTrack->cblk() != NULL) {
   4294         thread->setStreamVolume(AUDIO_STREAM_CNT, 1.0f);
   4295         mOutputTracks.add(outputTrack);
   4296         ALOGV("addOutputTrack() track %p, on thread %p", outputTrack, thread);
   4297         updateWaitTime_l();
   4298     }
   4299 }
   4300 
   4301 void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
   4302 {
   4303     Mutex::Autolock _l(mLock);
   4304     for (size_t i = 0; i < mOutputTracks.size(); i++) {
   4305         if (mOutputTracks[i]->thread() == thread) {
   4306             mOutputTracks[i]->destroy();
   4307             mOutputTracks.removeAt(i);
   4308             updateWaitTime_l();
   4309             return;
   4310         }
   4311     }
   4312     ALOGV("removeOutputTrack(): unkonwn thread: %p", thread);
   4313 }
   4314 
   4315 // caller must hold mLock
   4316 void AudioFlinger::DuplicatingThread::updateWaitTime_l()
   4317 {
   4318     mWaitTimeMs = UINT_MAX;
   4319     for (size_t i = 0; i < mOutputTracks.size(); i++) {
   4320         sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
   4321         if (strong != 0) {
   4322             uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
   4323             if (waitTimeMs < mWaitTimeMs) {
   4324                 mWaitTimeMs = waitTimeMs;
   4325             }
   4326         }
   4327     }
   4328 }
   4329 
   4330 
   4331 bool AudioFlinger::DuplicatingThread::outputsReady(
   4332         const SortedVector< sp<OutputTrack> > &outputTracks)
   4333 {
   4334     for (size_t i = 0; i < outputTracks.size(); i++) {
   4335         sp<ThreadBase> thread = outputTracks[i]->thread().promote();
   4336         if (thread == 0) {
   4337             ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
   4338                     outputTracks[i].get());
   4339             return false;
   4340         }
   4341         PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
   4342         // see note at standby() declaration
   4343         if (playbackThread->standby() && !playbackThread->isSuspended()) {
   4344             ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
   4345                     thread.get());
   4346             return false;
   4347         }
   4348     }
   4349     return true;
   4350 }
   4351 
   4352 uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
   4353 {
   4354     return (mWaitTimeMs * 1000) / 2;
   4355 }
   4356 
   4357 void AudioFlinger::DuplicatingThread::cacheParameters_l()
   4358 {
   4359     // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
   4360     updateWaitTime_l();
   4361 
   4362     MixerThread::cacheParameters_l();
   4363 }
   4364 
   4365 // ----------------------------------------------------------------------------
   4366 //      Record
   4367 // ----------------------------------------------------------------------------
   4368 
   4369 AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
   4370                                          AudioStreamIn *input,
   4371                                          uint32_t sampleRate,
   4372                                          audio_channel_mask_t channelMask,
   4373                                          audio_io_handle_t id,
   4374                                          audio_devices_t outDevice,
   4375                                          audio_devices_t inDevice
   4376 #ifdef TEE_SINK
   4377                                          , const sp<NBAIO_Sink>& teeSink
   4378 #endif
   4379                                          ) :
   4380     ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD),
   4381     mInput(input), mResampler(NULL), mRsmpOutBuffer(NULL), mRsmpInBuffer(NULL),
   4382     // mRsmpInIndex and mBufferSize set by readInputParameters()
   4383     mReqChannelCount(popcount(channelMask)),
   4384     mReqSampleRate(sampleRate)
   4385     // mBytesRead is only meaningful while active, and so is cleared in start()
   4386     // (but might be better to also clear here for dump?)
   4387 #ifdef TEE_SINK
   4388     , mTeeSink(teeSink)
   4389 #endif
   4390 {
   4391     snprintf(mName, kNameLength, "AudioIn_%X", id);
   4392 
   4393     readInputParameters();
   4394 }
   4395 
   4396 
   4397 AudioFlinger::RecordThread::~RecordThread()
   4398 {
   4399     delete[] mRsmpInBuffer;
   4400     delete mResampler;
   4401     delete[] mRsmpOutBuffer;
   4402 }
   4403 
   4404 void AudioFlinger::RecordThread::onFirstRef()
   4405 {
   4406     run(mName, PRIORITY_URGENT_AUDIO);
   4407 }
   4408 
   4409 status_t AudioFlinger::RecordThread::readyToRun()
   4410 {
   4411     status_t status = initCheck();
   4412     ALOGW_IF(status != NO_ERROR,"RecordThread %p could not initialize", this);
   4413     return status;
   4414 }
   4415 
   4416 bool AudioFlinger::RecordThread::threadLoop()
   4417 {
   4418     AudioBufferProvider::Buffer buffer;
   4419     sp<RecordTrack> activeTrack;
   4420     Vector< sp<EffectChain> > effectChains;
   4421 
   4422     nsecs_t lastWarning = 0;
   4423 
   4424     inputStandBy();
   4425     {
   4426         Mutex::Autolock _l(mLock);
   4427         activeTrack = mActiveTrack;
   4428         acquireWakeLock_l(activeTrack != 0 ? activeTrack->uid() : -1);
   4429     }
   4430 
   4431     // used to verify we've read at least once before evaluating how many bytes were read
   4432     bool readOnce = false;
   4433 
   4434     // start recording
   4435     while (!exitPending()) {
   4436 
   4437         processConfigEvents();
   4438 
   4439         { // scope for mLock
   4440             Mutex::Autolock _l(mLock);
   4441             checkForNewParameters_l();
   4442             if (mActiveTrack != 0 && activeTrack != mActiveTrack) {
   4443                 SortedVector<int> tmp;
   4444                 tmp.add(mActiveTrack->uid());
   4445                 updateWakeLockUids_l(tmp);
   4446             }
   4447             activeTrack = mActiveTrack;
   4448             if (mActiveTrack == 0 && mConfigEvents.isEmpty()) {
   4449                 standby();
   4450 
   4451                 if (exitPending()) {
   4452                     break;
   4453                 }
   4454 
   4455                 releaseWakeLock_l();
   4456                 ALOGV("RecordThread: loop stopping");
   4457                 // go to sleep
   4458                 mWaitWorkCV.wait(mLock);
   4459                 ALOGV("RecordThread: loop starting");
   4460                 acquireWakeLock_l(mActiveTrack != 0 ? mActiveTrack->uid() : -1);
   4461                 continue;
   4462             }
   4463             if (mActiveTrack != 0) {
   4464                 if (mActiveTrack->isTerminated()) {
   4465                     removeTrack_l(mActiveTrack);
   4466                     mActiveTrack.clear();
   4467                 } else if (mActiveTrack->mState == TrackBase::PAUSING) {
   4468                     standby();
   4469                     mActiveTrack.clear();
   4470                     mStartStopCond.broadcast();
   4471                 } else if (mActiveTrack->mState == TrackBase::RESUMING) {
   4472                     if (mReqChannelCount != mActiveTrack->channelCount()) {
   4473                         mActiveTrack.clear();
   4474                         mStartStopCond.broadcast();
   4475                     } else if (readOnce) {
   4476                         // record start succeeds only if first read from audio input
   4477                         // succeeds
   4478                         if (mBytesRead >= 0) {
   4479                             mActiveTrack->mState = TrackBase::ACTIVE;
   4480                         } else {
   4481                             mActiveTrack.clear();
   4482                         }
   4483                         mStartStopCond.broadcast();
   4484                     }
   4485                     mStandby = false;
   4486                 }
   4487             }
   4488 
   4489             lockEffectChains_l(effectChains);
   4490         }
   4491 
   4492         if (mActiveTrack != 0) {
   4493             if (mActiveTrack->mState != TrackBase::ACTIVE &&
   4494                 mActiveTrack->mState != TrackBase::RESUMING) {
   4495                 unlockEffectChains(effectChains);
   4496                 usleep(kRecordThreadSleepUs);
   4497                 continue;
   4498             }
   4499             for (size_t i = 0; i < effectChains.size(); i ++) {
   4500                 effectChains[i]->process_l();
   4501             }
   4502 
   4503             buffer.frameCount = mFrameCount;
   4504             status_t status = mActiveTrack->getNextBuffer(&buffer);
   4505             if (status == NO_ERROR) {
   4506                 readOnce = true;
   4507                 size_t framesOut = buffer.frameCount;
   4508                 if (mResampler == NULL) {
   4509                     // no resampling
   4510                     while (framesOut) {
   4511                         size_t framesIn = mFrameCount - mRsmpInIndex;
   4512                         if (framesIn) {
   4513                             int8_t *src = (int8_t *)mRsmpInBuffer + mRsmpInIndex * mFrameSize;
   4514                             int8_t *dst = buffer.i8 + (buffer.frameCount - framesOut) *
   4515                                     mActiveTrack->mFrameSize;
   4516                             if (framesIn > framesOut)
   4517                                 framesIn = framesOut;
   4518                             mRsmpInIndex += framesIn;
   4519                             framesOut -= framesIn;
   4520                             if (mChannelCount == mReqChannelCount) {
   4521                                 memcpy(dst, src, framesIn * mFrameSize);
   4522                             } else {
   4523                                 if (mChannelCount == 1) {
   4524                                     upmix_to_stereo_i16_from_mono_i16((int16_t *)dst,
   4525                                             (int16_t *)src, framesIn);
   4526                                 } else {
   4527                                     downmix_to_mono_i16_from_stereo_i16((int16_t *)dst,
   4528                                             (int16_t *)src, framesIn);
   4529                                 }
   4530                             }
   4531                         }
   4532                         if (framesOut && mFrameCount == mRsmpInIndex) {
   4533                             void *readInto;
   4534                             if (framesOut == mFrameCount && mChannelCount == mReqChannelCount) {
   4535                                 readInto = buffer.raw;
   4536                                 framesOut = 0;
   4537                             } else {
   4538                                 readInto = mRsmpInBuffer;
   4539                                 mRsmpInIndex = 0;
   4540                             }
   4541                             mBytesRead = mInput->stream->read(mInput->stream, readInto,
   4542                                     mBufferSize);
   4543                             if (mBytesRead <= 0) {
   4544                                 if ((mBytesRead < 0) && (mActiveTrack->mState == TrackBase::ACTIVE))
   4545                                 {
   4546                                     ALOGE("Error reading audio input");
   4547                                     // Force input into standby so that it tries to
   4548                                     // recover at next read attempt
   4549                                     inputStandBy();
   4550                                     usleep(kRecordThreadSleepUs);
   4551                                 }
   4552                                 mRsmpInIndex = mFrameCount;
   4553                                 framesOut = 0;
   4554                                 buffer.frameCount = 0;
   4555                             }
   4556 #ifdef TEE_SINK
   4557                             else if (mTeeSink != 0) {
   4558                                 (void) mTeeSink->write(readInto,
   4559                                         mBytesRead >> Format_frameBitShift(mTeeSink->format()));
   4560                             }
   4561 #endif
   4562                         }
   4563                     }
   4564                 } else {
   4565                     // resampling
   4566 
   4567                     // resampler accumulates, but we only have one source track
   4568                     memset(mRsmpOutBuffer, 0, framesOut * FCC_2 * sizeof(int32_t));
   4569                     // alter output frame count as if we were expecting stereo samples
   4570                     if (mChannelCount == 1 && mReqChannelCount == 1) {
   4571                         framesOut >>= 1;
   4572                     }
   4573                     mResampler->resample(mRsmpOutBuffer, framesOut,
   4574                             this /* AudioBufferProvider* */);
   4575                     // ditherAndClamp() works as long as all buffers returned by
   4576                     // mActiveTrack->getNextBuffer() are 32 bit aligned which should be always true.
   4577                     if (mChannelCount == 2 && mReqChannelCount == 1) {
   4578                         // temporarily type pun mRsmpOutBuffer from Q19.12 to int16_t
   4579                         ditherAndClamp(mRsmpOutBuffer, mRsmpOutBuffer, framesOut);
   4580                         // the resampler always outputs stereo samples:
   4581                         // do post stereo to mono conversion
   4582                         downmix_to_mono_i16_from_stereo_i16(buffer.i16, (int16_t *)mRsmpOutBuffer,
   4583                                 framesOut);
   4584                     } else {
   4585                         ditherAndClamp((int32_t *)buffer.raw, mRsmpOutBuffer, framesOut);
   4586                     }
   4587                     // now done with mRsmpOutBuffer
   4588 
   4589                 }
   4590                 if (mFramestoDrop == 0) {
   4591                     mActiveTrack->releaseBuffer(&buffer);
   4592                 } else {
   4593                     if (mFramestoDrop > 0) {
   4594                         mFramestoDrop -= buffer.frameCount;
   4595                         if (mFramestoDrop <= 0) {
   4596                             clearSyncStartEvent();
   4597                         }
   4598                     } else {
   4599                         mFramestoDrop += buffer.frameCount;
   4600                         if (mFramestoDrop >= 0 || mSyncStartEvent == 0 ||
   4601                                 mSyncStartEvent->isCancelled()) {
   4602                             ALOGW("Synced record %s, session %d, trigger session %d",
   4603                                   (mFramestoDrop >= 0) ? "timed out" : "cancelled",
   4604                                   mActiveTrack->sessionId(),
   4605                                   (mSyncStartEvent != 0) ? mSyncStartEvent->triggerSession() : 0);
   4606                             clearSyncStartEvent();
   4607                         }
   4608                     }
   4609                 }
   4610                 mActiveTrack->clearOverflow();
   4611             }
   4612             // client isn't retrieving buffers fast enough
   4613             else {
   4614                 if (!mActiveTrack->setOverflow()) {
   4615                     nsecs_t now = systemTime();
   4616                     if ((now - lastWarning) > kWarningThrottleNs) {
   4617                         ALOGW("RecordThread: buffer overflow");
   4618                         lastWarning = now;
   4619                     }
   4620                 }
   4621                 // Release the processor for a while before asking for a new buffer.
   4622                 // This will give the application more chance to read from the buffer and
   4623                 // clear the overflow.
   4624                 usleep(kRecordThreadSleepUs);
   4625             }
   4626         }
   4627         // enable changes in effect chain
   4628         unlockEffectChains(effectChains);
   4629         effectChains.clear();
   4630     }
   4631 
   4632     standby();
   4633 
   4634     {
   4635         Mutex::Autolock _l(mLock);
   4636         for (size_t i = 0; i < mTracks.size(); i++) {
   4637             sp<RecordTrack> track = mTracks[i];
   4638             track->invalidate();
   4639         }
   4640         mActiveTrack.clear();
   4641         mStartStopCond.broadcast();
   4642     }
   4643 
   4644     releaseWakeLock();
   4645 
   4646     ALOGV("RecordThread %p exiting", this);
   4647     return false;
   4648 }
   4649 
   4650 void AudioFlinger::RecordThread::standby()
   4651 {
   4652     if (!mStandby) {
   4653         inputStandBy();
   4654         mStandby = true;
   4655     }
   4656 }
   4657 
   4658 void AudioFlinger::RecordThread::inputStandBy()
   4659 {
   4660     mInput->stream->common.standby(&mInput->stream->common);
   4661 }
   4662 
   4663 sp<AudioFlinger::RecordThread::RecordTrack>  AudioFlinger::RecordThread::createRecordTrack_l(
   4664         const sp<AudioFlinger::Client>& client,
   4665         uint32_t sampleRate,
   4666         audio_format_t format,
   4667         audio_channel_mask_t channelMask,
   4668         size_t frameCount,
   4669         int sessionId,
   4670         int uid,
   4671         IAudioFlinger::track_flags_t *flags,
   4672         pid_t tid,
   4673         status_t *status)
   4674 {
   4675     sp<RecordTrack> track;
   4676     status_t lStatus;
   4677 
   4678     lStatus = initCheck();
   4679     if (lStatus != NO_ERROR) {
   4680         ALOGE("createRecordTrack_l() audio driver not initialized");
   4681         goto Exit;
   4682     }
   4683     // client expresses a preference for FAST, but we get the final say
   4684     if (*flags & IAudioFlinger::TRACK_FAST) {
   4685       if (
   4686             // use case: callback handler and frame count is default or at least as large as HAL
   4687             (
   4688                 (tid != -1) &&
   4689                 ((frameCount == 0) ||
   4690                 (frameCount >= (mFrameCount * kFastTrackMultiplier)))
   4691             ) &&
   4692             // FIXME when record supports non-PCM data, also check for audio_is_linear_pcm(format)
   4693             // mono or stereo
   4694             ( (channelMask == AUDIO_CHANNEL_OUT_MONO) ||
   4695               (channelMask == AUDIO_CHANNEL_OUT_STEREO) ) &&
   4696             // hardware sample rate
   4697             (sampleRate == mSampleRate) &&
   4698             // record thread has an associated fast recorder
   4699             hasFastRecorder()
   4700             // FIXME test that RecordThread for this fast track has a capable output HAL
   4701             // FIXME add a permission test also?
   4702         ) {
   4703         // if frameCount not specified, then it defaults to fast recorder (HAL) frame count
   4704         if (frameCount == 0) {
   4705             frameCount = mFrameCount * kFastTrackMultiplier;
   4706         }
   4707         ALOGV("AUDIO_INPUT_FLAG_FAST accepted: frameCount=%d mFrameCount=%d",
   4708                 frameCount, mFrameCount);
   4709       } else {
   4710         ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%d "
   4711                 "mFrameCount=%d format=%d isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
   4712                 "hasFastRecorder=%d tid=%d",
   4713                 frameCount, mFrameCount, format,
   4714                 audio_is_linear_pcm(format),
   4715                 channelMask, sampleRate, mSampleRate, hasFastRecorder(), tid);
   4716         *flags &= ~IAudioFlinger::TRACK_FAST;
   4717         // For compatibility with AudioRecord calculation, buffer depth is forced
   4718         // to be at least 2 x the record thread frame count and cover audio hardware latency.
   4719         // This is probably too conservative, but legacy application code may depend on it.
   4720         // If you change this calculation, also review the start threshold which is related.
   4721         uint32_t latencyMs = 50; // FIXME mInput->stream->get_latency(mInput->stream);
   4722         size_t mNormalFrameCount = 2048; // FIXME
   4723         uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
   4724         if (minBufCount < 2) {
   4725             minBufCount = 2;
   4726         }
   4727         size_t minFrameCount = mNormalFrameCount * minBufCount;
   4728         if (frameCount < minFrameCount) {
   4729             frameCount = minFrameCount;
   4730         }
   4731       }
   4732     }
   4733 
   4734     // FIXME use flags and tid similar to createTrack_l()
   4735 
   4736     { // scope for mLock
   4737         Mutex::Autolock _l(mLock);
   4738 
   4739         track = new RecordTrack(this, client, sampleRate,
   4740                       format, channelMask, frameCount, sessionId, uid);
   4741 
   4742         if (track->getCblk() == 0) {
   4743             ALOGE("createRecordTrack_l() no control block");
   4744             lStatus = NO_MEMORY;
   4745             track.clear();
   4746             goto Exit;
   4747         }
   4748         mTracks.add(track);
   4749 
   4750         // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
   4751         bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
   4752                         mAudioFlinger->btNrecIsOff();
   4753         setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
   4754         setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
   4755 
   4756         if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
   4757             pid_t callingPid = IPCThreadState::self()->getCallingPid();
   4758             // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
   4759             // so ask activity manager to do this on our behalf
   4760             sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
   4761         }
   4762     }
   4763     lStatus = NO_ERROR;
   4764 
   4765 Exit:
   4766     if (status) {
   4767         *status = lStatus;
   4768     }
   4769     return track;
   4770 }
   4771 
   4772 status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
   4773                                            AudioSystem::sync_event_t event,
   4774                                            int triggerSession)
   4775 {
   4776     ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
   4777     sp<ThreadBase> strongMe = this;
   4778     status_t status = NO_ERROR;
   4779 
   4780     if (event == AudioSystem::SYNC_EVENT_NONE) {
   4781         clearSyncStartEvent();
   4782     } else if (event != AudioSystem::SYNC_EVENT_SAME) {
   4783         mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
   4784                                        triggerSession,
   4785                                        recordTrack->sessionId(),
   4786                                        syncStartEventCallback,
   4787                                        this);
   4788         // Sync event can be cancelled by the trigger session if the track is not in a
   4789         // compatible state in which case we start record immediately
   4790         if (mSyncStartEvent->isCancelled()) {
   4791             clearSyncStartEvent();
   4792         } else {
   4793             // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
   4794             mFramestoDrop = - ((AudioSystem::kSyncRecordStartTimeOutMs * mReqSampleRate) / 1000);
   4795         }
   4796     }
   4797 
   4798     {
   4799         AutoMutex lock(mLock);
   4800         if (mActiveTrack != 0) {
   4801             if (recordTrack != mActiveTrack.get()) {
   4802                 status = -EBUSY;
   4803             } else if (mActiveTrack->mState == TrackBase::PAUSING) {
   4804                 mActiveTrack->mState = TrackBase::ACTIVE;
   4805             }
   4806             return status;
   4807         }
   4808 
   4809         recordTrack->mState = TrackBase::IDLE;
   4810         mActiveTrack = recordTrack;
   4811         mLock.unlock();
   4812         status_t status = AudioSystem::startInput(mId);
   4813         mLock.lock();
   4814         if (status != NO_ERROR) {
   4815             mActiveTrack.clear();
   4816             clearSyncStartEvent();
   4817             return status;
   4818         }
   4819         mRsmpInIndex = mFrameCount;
   4820         mBytesRead = 0;
   4821         if (mResampler != NULL) {
   4822             mResampler->reset();
   4823         }
   4824         mActiveTrack->mState = TrackBase::RESUMING;
   4825         // signal thread to start
   4826         ALOGV("Signal record thread");
   4827         mWaitWorkCV.broadcast();
   4828         // do not wait for mStartStopCond if exiting
   4829         if (exitPending()) {
   4830             mActiveTrack.clear();
   4831             status = INVALID_OPERATION;
   4832             goto startError;
   4833         }
   4834         mStartStopCond.wait(mLock);
   4835         if (mActiveTrack == 0) {
   4836             ALOGV("Record failed to start");
   4837             status = BAD_VALUE;
   4838             goto startError;
   4839         }
   4840         ALOGV("Record started OK");
   4841         return status;
   4842     }
   4843 
   4844 startError:
   4845     AudioSystem::stopInput(mId);
   4846     clearSyncStartEvent();
   4847     return status;
   4848 }
   4849 
   4850 void AudioFlinger::RecordThread::clearSyncStartEvent()
   4851 {
   4852     if (mSyncStartEvent != 0) {
   4853         mSyncStartEvent->cancel();
   4854     }
   4855     mSyncStartEvent.clear();
   4856     mFramestoDrop = 0;
   4857 }
   4858 
   4859 void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
   4860 {
   4861     sp<SyncEvent> strongEvent = event.promote();
   4862 
   4863     if (strongEvent != 0) {
   4864         RecordThread *me = (RecordThread *)strongEvent->cookie();
   4865         me->handleSyncStartEvent(strongEvent);
   4866     }
   4867 }
   4868 
   4869 void AudioFlinger::RecordThread::handleSyncStartEvent(const sp<SyncEvent>& event)
   4870 {
   4871     if (event == mSyncStartEvent) {
   4872         // TODO: use actual buffer filling status instead of 2 buffers when info is available
   4873         // from audio HAL
   4874         mFramestoDrop = mFrameCount * 2;
   4875     }
   4876 }
   4877 
   4878 bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
   4879     ALOGV("RecordThread::stop");
   4880     AutoMutex _l(mLock);
   4881     if (recordTrack != mActiveTrack.get() || recordTrack->mState == TrackBase::PAUSING) {
   4882         return false;
   4883     }
   4884     recordTrack->mState = TrackBase::PAUSING;
   4885     // do not wait for mStartStopCond if exiting
   4886     if (exitPending()) {
   4887         return true;
   4888     }
   4889     mStartStopCond.wait(mLock);
   4890     // if we have been restarted, recordTrack == mActiveTrack.get() here
   4891     if (exitPending() || recordTrack != mActiveTrack.get()) {
   4892         ALOGV("Record stopped OK");
   4893         return true;
   4894     }
   4895     return false;
   4896 }
   4897 
   4898 bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event) const
   4899 {
   4900     return false;
   4901 }
   4902 
   4903 status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event)
   4904 {
   4905 #if 0   // This branch is currently dead code, but is preserved in case it will be needed in future
   4906     if (!isValidSyncEvent(event)) {
   4907         return BAD_VALUE;
   4908     }
   4909 
   4910     int eventSession = event->triggerSession();
   4911     status_t ret = NAME_NOT_FOUND;
   4912 
   4913     Mutex::Autolock _l(mLock);
   4914 
   4915     for (size_t i = 0; i < mTracks.size(); i++) {
   4916         sp<RecordTrack> track = mTracks[i];
   4917         if (eventSession == track->sessionId()) {
   4918             (void) track->setSyncEvent(event);
   4919             ret = NO_ERROR;
   4920         }
   4921     }
   4922     return ret;
   4923 #else
   4924     return BAD_VALUE;
   4925 #endif
   4926 }
   4927 
   4928 // destroyTrack_l() must be called with ThreadBase::mLock held
   4929 void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
   4930 {
   4931     track->terminate();
   4932     track->mState = TrackBase::STOPPED;
   4933     // active tracks are removed by threadLoop()
   4934     if (mActiveTrack != track) {
   4935         removeTrack_l(track);
   4936     }
   4937 }
   4938 
   4939 void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
   4940 {
   4941     mTracks.remove(track);
   4942     // need anything related to effects here?
   4943 }
   4944 
   4945 void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
   4946 {
   4947     dumpInternals(fd, args);
   4948     dumpTracks(fd, args);
   4949     dumpEffectChains(fd, args);
   4950 }
   4951 
   4952 void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
   4953 {
   4954     const size_t SIZE = 256;
   4955     char buffer[SIZE];
   4956     String8 result;
   4957 
   4958     snprintf(buffer, SIZE, "\nInput thread %p internals\n", this);
   4959     result.append(buffer);
   4960 
   4961     if (mActiveTrack != 0) {
   4962         snprintf(buffer, SIZE, "In index: %d\n", mRsmpInIndex);
   4963         result.append(buffer);
   4964         snprintf(buffer, SIZE, "Buffer size: %u bytes\n", mBufferSize);
   4965         result.append(buffer);
   4966         snprintf(buffer, SIZE, "Resampling: %d\n", (mResampler != NULL));
   4967         result.append(buffer);
   4968         snprintf(buffer, SIZE, "Out channel count: %u\n", mReqChannelCount);
   4969         result.append(buffer);
   4970         snprintf(buffer, SIZE, "Out sample rate: %u\n", mReqSampleRate);
   4971         result.append(buffer);
   4972     } else {
   4973         result.append("No active record client\n");
   4974     }
   4975 
   4976     write(fd, result.string(), result.size());
   4977 
   4978     dumpBase(fd, args);
   4979 }
   4980 
   4981 void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args)
   4982 {
   4983     const size_t SIZE = 256;
   4984     char buffer[SIZE];
   4985     String8 result;
   4986 
   4987     snprintf(buffer, SIZE, "Input thread %p tracks\n", this);
   4988     result.append(buffer);
   4989     RecordTrack::appendDumpHeader(result);
   4990     for (size_t i = 0; i < mTracks.size(); ++i) {
   4991         sp<RecordTrack> track = mTracks[i];
   4992         if (track != 0) {
   4993             track->dump(buffer, SIZE);
   4994             result.append(buffer);
   4995         }
   4996     }
   4997 
   4998     if (mActiveTrack != 0) {
   4999         snprintf(buffer, SIZE, "\nInput thread %p active tracks\n", this);
   5000         result.append(buffer);
   5001         RecordTrack::appendDumpHeader(result);
   5002         mActiveTrack->dump(buffer, SIZE);
   5003         result.append(buffer);
   5004 
   5005     }
   5006     write(fd, result.string(), result.size());
   5007 }
   5008 
   5009 // AudioBufferProvider interface
   5010 status_t AudioFlinger::RecordThread::getNextBuffer(AudioBufferProvider::Buffer* buffer, int64_t pts)
   5011 {
   5012     size_t framesReq = buffer->frameCount;
   5013     size_t framesReady = mFrameCount - mRsmpInIndex;
   5014     int channelCount;
   5015 
   5016     if (framesReady == 0) {
   5017         mBytesRead = mInput->stream->read(mInput->stream, mRsmpInBuffer, mBufferSize);
   5018         if (mBytesRead <= 0) {
   5019             if ((mBytesRead < 0) && (mActiveTrack->mState == TrackBase::ACTIVE)) {
   5020                 ALOGE("RecordThread::getNextBuffer() Error reading audio input");
   5021                 // Force input into standby so that it tries to
   5022                 // recover at next read attempt
   5023                 inputStandBy();
   5024                 usleep(kRecordThreadSleepUs);
   5025             }
   5026             buffer->raw = NULL;
   5027             buffer->frameCount = 0;
   5028             return NOT_ENOUGH_DATA;
   5029         }
   5030         mRsmpInIndex = 0;
   5031         framesReady = mFrameCount;
   5032     }
   5033 
   5034     if (framesReq > framesReady) {
   5035         framesReq = framesReady;
   5036     }
   5037 
   5038     if (mChannelCount == 1 && mReqChannelCount == 2) {
   5039         channelCount = 1;
   5040     } else {
   5041         channelCount = 2;
   5042     }
   5043     buffer->raw = mRsmpInBuffer + mRsmpInIndex * channelCount;
   5044     buffer->frameCount = framesReq;
   5045     return NO_ERROR;
   5046 }
   5047 
   5048 // AudioBufferProvider interface
   5049 void AudioFlinger::RecordThread::releaseBuffer(AudioBufferProvider::Buffer* buffer)
   5050 {
   5051     mRsmpInIndex += buffer->frameCount;
   5052     buffer->frameCount = 0;
   5053 }
   5054 
   5055 bool AudioFlinger::RecordThread::checkForNewParameters_l()
   5056 {
   5057     bool reconfig = false;
   5058 
   5059     while (!mNewParameters.isEmpty()) {
   5060         status_t status = NO_ERROR;
   5061         String8 keyValuePair = mNewParameters[0];
   5062         AudioParameter param = AudioParameter(keyValuePair);
   5063         int value;
   5064         audio_format_t reqFormat = mFormat;
   5065         uint32_t reqSamplingRate = mReqSampleRate;
   5066         uint32_t reqChannelCount = mReqChannelCount;
   5067 
   5068         if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
   5069             reqSamplingRate = value;
   5070             reconfig = true;
   5071         }
   5072         if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
   5073             if ((audio_format_t) value != AUDIO_FORMAT_PCM_16_BIT) {
   5074                 status = BAD_VALUE;
   5075             } else {
   5076                 reqFormat = (audio_format_t) value;
   5077                 reconfig = true;
   5078             }
   5079         }
   5080         if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
   5081             reqChannelCount = popcount(value);
   5082             reconfig = true;
   5083         }
   5084         if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
   5085             // do not accept frame count changes if tracks are open as the track buffer
   5086             // size depends on frame count and correct behavior would not be guaranteed
   5087             // if frame count is changed after track creation
   5088             if (mActiveTrack != 0) {
   5089                 status = INVALID_OPERATION;
   5090             } else {
   5091                 reconfig = true;
   5092             }
   5093         }
   5094         if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
   5095             // forward device change to effects that have requested to be
   5096             // aware of attached audio device.
   5097             for (size_t i = 0; i < mEffectChains.size(); i++) {
   5098                 mEffectChains[i]->setDevice_l(value);
   5099             }
   5100 
   5101             // store input device and output device but do not forward output device to audio HAL.
   5102             // Note that status is ignored by the caller for output device
   5103             // (see AudioFlinger::setParameters()
   5104             if (audio_is_output_devices(value)) {
   5105                 mOutDevice = value;
   5106                 status = BAD_VALUE;
   5107             } else {
   5108                 mInDevice = value;
   5109                 // disable AEC and NS if the device is a BT SCO headset supporting those
   5110                 // pre processings
   5111                 if (mTracks.size() > 0) {
   5112                     bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
   5113                                         mAudioFlinger->btNrecIsOff();
   5114                     for (size_t i = 0; i < mTracks.size(); i++) {
   5115                         sp<RecordTrack> track = mTracks[i];
   5116                         setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
   5117                         setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
   5118                     }
   5119                 }
   5120             }
   5121         }
   5122         if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
   5123                 mAudioSource != (audio_source_t)value) {
   5124             // forward device change to effects that have requested to be
   5125             // aware of attached audio device.
   5126             for (size_t i = 0; i < mEffectChains.size(); i++) {
   5127                 mEffectChains[i]->setAudioSource_l((audio_source_t)value);
   5128             }
   5129             mAudioSource = (audio_source_t)value;
   5130         }
   5131         if (status == NO_ERROR) {
   5132             status = mInput->stream->common.set_parameters(&mInput->stream->common,
   5133                     keyValuePair.string());
   5134             if (status == INVALID_OPERATION) {
   5135                 inputStandBy();
   5136                 status = mInput->stream->common.set_parameters(&mInput->stream->common,
   5137                         keyValuePair.string());
   5138             }
   5139             if (reconfig) {
   5140                 if (status == BAD_VALUE &&
   5141                     reqFormat == mInput->stream->common.get_format(&mInput->stream->common) &&
   5142                     reqFormat == AUDIO_FORMAT_PCM_16_BIT &&
   5143                     (mInput->stream->common.get_sample_rate(&mInput->stream->common)
   5144                             <= (2 * reqSamplingRate)) &&
   5145                     popcount(mInput->stream->common.get_channels(&mInput->stream->common))
   5146                             <= FCC_2 &&
   5147                     (reqChannelCount <= FCC_2)) {
   5148                     status = NO_ERROR;
   5149                 }
   5150                 if (status == NO_ERROR) {
   5151                     readInputParameters();
   5152                     sendIoConfigEvent_l(AudioSystem::INPUT_CONFIG_CHANGED);
   5153                 }
   5154             }
   5155         }
   5156 
   5157         mNewParameters.removeAt(0);
   5158 
   5159         mParamStatus = status;
   5160         mParamCond.signal();
   5161         // wait for condition with time out in case the thread calling ThreadBase::setParameters()
   5162         // already timed out waiting for the status and will never signal the condition.
   5163         mWaitWorkCV.waitRelative(mLock, kSetParametersTimeoutNs);
   5164     }
   5165     return reconfig;
   5166 }
   5167 
   5168 String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
   5169 {
   5170     Mutex::Autolock _l(mLock);
   5171     if (initCheck() != NO_ERROR) {
   5172         return String8();
   5173     }
   5174 
   5175     char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
   5176     const String8 out_s8(s);
   5177     free(s);
   5178     return out_s8;
   5179 }
   5180 
   5181 void AudioFlinger::RecordThread::audioConfigChanged_l(int event, int param) {
   5182     AudioSystem::OutputDescriptor desc;
   5183     void *param2 = NULL;
   5184 
   5185     switch (event) {
   5186     case AudioSystem::INPUT_OPENED:
   5187     case AudioSystem::INPUT_CONFIG_CHANGED:
   5188         desc.channelMask = mChannelMask;
   5189         desc.samplingRate = mSampleRate;
   5190         desc.format = mFormat;
   5191         desc.frameCount = mFrameCount;
   5192         desc.latency = 0;
   5193         param2 = &desc;
   5194         break;
   5195 
   5196     case AudioSystem::INPUT_CLOSED:
   5197     default:
   5198         break;
   5199     }
   5200     mAudioFlinger->audioConfigChanged_l(event, mId, param2);
   5201 }
   5202 
   5203 void AudioFlinger::RecordThread::readInputParameters()
   5204 {
   5205     delete[] mRsmpInBuffer;
   5206     // mRsmpInBuffer is always assigned a new[] below
   5207     delete[] mRsmpOutBuffer;
   5208     mRsmpOutBuffer = NULL;
   5209     delete mResampler;
   5210     mResampler = NULL;
   5211 
   5212     mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
   5213     mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
   5214     mChannelCount = popcount(mChannelMask);
   5215     mFormat = mInput->stream->common.get_format(&mInput->stream->common);
   5216     if (mFormat != AUDIO_FORMAT_PCM_16_BIT) {
   5217         ALOGE("HAL format %d not supported; must be AUDIO_FORMAT_PCM_16_BIT", mFormat);
   5218     }
   5219     mFrameSize = audio_stream_frame_size(&mInput->stream->common);
   5220     mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
   5221     mFrameCount = mBufferSize / mFrameSize;
   5222     mRsmpInBuffer = new int16_t[mFrameCount * mChannelCount];
   5223 
   5224     if (mSampleRate != mReqSampleRate && mChannelCount <= FCC_2 && mReqChannelCount <= FCC_2)
   5225     {
   5226         int channelCount;
   5227         // optimization: if mono to mono, use the resampler in stereo to stereo mode to avoid
   5228         // stereo to mono post process as the resampler always outputs stereo.
   5229         if (mChannelCount == 1 && mReqChannelCount == 2) {
   5230             channelCount = 1;
   5231         } else {
   5232             channelCount = 2;
   5233         }
   5234         mResampler = AudioResampler::create(16, channelCount, mReqSampleRate);
   5235         mResampler->setSampleRate(mSampleRate);
   5236         mResampler->setVolume(AudioMixer::UNITY_GAIN, AudioMixer::UNITY_GAIN);
   5237         mRsmpOutBuffer = new int32_t[mFrameCount * FCC_2];
   5238 
   5239         // optmization: if mono to mono, alter input frame count as if we were inputing
   5240         // stereo samples
   5241         if (mChannelCount == 1 && mReqChannelCount == 1) {
   5242             mFrameCount >>= 1;
   5243         }
   5244 
   5245     }
   5246     mRsmpInIndex = mFrameCount;
   5247 }
   5248 
   5249 unsigned int AudioFlinger::RecordThread::getInputFramesLost()
   5250 {
   5251     Mutex::Autolock _l(mLock);
   5252     if (initCheck() != NO_ERROR) {
   5253         return 0;
   5254     }
   5255 
   5256     return mInput->stream->get_input_frames_lost(mInput->stream);
   5257 }
   5258 
   5259 uint32_t AudioFlinger::RecordThread::hasAudioSession(int sessionId) const
   5260 {
   5261     Mutex::Autolock _l(mLock);
   5262     uint32_t result = 0;
   5263     if (getEffectChain_l(sessionId) != 0) {
   5264         result = EFFECT_SESSION;
   5265     }
   5266 
   5267     for (size_t i = 0; i < mTracks.size(); ++i) {
   5268         if (sessionId == mTracks[i]->sessionId()) {
   5269             result |= TRACK_SESSION;
   5270             break;
   5271         }
   5272     }
   5273 
   5274     return result;
   5275 }
   5276 
   5277 KeyedVector<int, bool> AudioFlinger::RecordThread::sessionIds() const
   5278 {
   5279     KeyedVector<int, bool> ids;
   5280     Mutex::Autolock _l(mLock);
   5281     for (size_t j = 0; j < mTracks.size(); ++j) {
   5282         sp<RecordThread::RecordTrack> track = mTracks[j];
   5283         int sessionId = track->sessionId();
   5284         if (ids.indexOfKey(sessionId) < 0) {
   5285             ids.add(sessionId, true);
   5286         }
   5287     }
   5288     return ids;
   5289 }
   5290 
   5291 AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
   5292 {
   5293     Mutex::Autolock _l(mLock);
   5294     AudioStreamIn *input = mInput;
   5295     mInput = NULL;
   5296     return input;
   5297 }
   5298 
   5299 // this method must always be called either with ThreadBase mLock held or inside the thread loop
   5300 audio_stream_t* AudioFlinger::RecordThread::stream() const
   5301 {
   5302     if (mInput == NULL) {
   5303         return NULL;
   5304     }
   5305     return &mInput->stream->common;
   5306 }
   5307 
   5308 status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
   5309 {
   5310     // only one chain per input thread
   5311     if (mEffectChains.size() != 0) {
   5312         return INVALID_OPERATION;
   5313     }
   5314     ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
   5315 
   5316     chain->setInBuffer(NULL);
   5317     chain->setOutBuffer(NULL);
   5318 
   5319     checkSuspendOnAddEffectChain_l(chain);
   5320 
   5321     mEffectChains.add(chain);
   5322 
   5323     return NO_ERROR;
   5324 }
   5325 
   5326 size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
   5327 {
   5328     ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
   5329     ALOGW_IF(mEffectChains.size() != 1,
   5330             "removeEffectChain_l() %p invalid chain size %d on thread %p",
   5331             chain.get(), mEffectChains.size(), this);
   5332     if (mEffectChains.size() == 1) {
   5333         mEffectChains.removeAt(0);
   5334     }
   5335     return 0;
   5336 }
   5337 
   5338 }; // namespace android
   5339