1 //===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file is a part of AddressSanitizer, an address sanity checker. 11 // Details of the algorithm: 12 // http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm 13 // 14 //===----------------------------------------------------------------------===// 15 16 #define DEBUG_TYPE "asan" 17 18 #include "llvm/Transforms/Instrumentation.h" 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/DepthFirstIterator.h" 22 #include "llvm/ADT/OwningPtr.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/DIBuilder.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/IR/Type.h" 37 #include "llvm/InstVisitor.h" 38 #include "llvm/Support/CallSite.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/DataTypes.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/Endian.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Support/system_error.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/Cloning.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Utils/ModuleUtils.h" 49 #include "llvm/Transforms/Utils/SpecialCaseList.h" 50 #include <algorithm> 51 #include <string> 52 53 using namespace llvm; 54 55 static const uint64_t kDefaultShadowScale = 3; 56 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; 57 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; 58 static const uint64_t kDefaultShort64bitShadowOffset = 0x7FFF8000; // < 2G. 59 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41; 60 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa8000; 61 62 static const size_t kMaxStackMallocSize = 1 << 16; // 64K 63 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; 64 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; 65 66 static const char *const kAsanModuleCtorName = "asan.module_ctor"; 67 static const char *const kAsanModuleDtorName = "asan.module_dtor"; 68 static const int kAsanCtorAndCtorPriority = 1; 69 static const char *const kAsanReportErrorTemplate = "__asan_report_"; 70 static const char *const kAsanReportLoadN = "__asan_report_load_n"; 71 static const char *const kAsanReportStoreN = "__asan_report_store_n"; 72 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals"; 73 static const char *const kAsanUnregisterGlobalsName = 74 "__asan_unregister_globals"; 75 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; 76 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; 77 static const char *const kAsanInitName = "__asan_init_v3"; 78 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return"; 79 static const char *const kAsanMappingOffsetName = "__asan_mapping_offset"; 80 static const char *const kAsanMappingScaleName = "__asan_mapping_scale"; 81 static const char *const kAsanStackMallocName = "__asan_stack_malloc"; 82 static const char *const kAsanStackFreeName = "__asan_stack_free"; 83 static const char *const kAsanGenPrefix = "__asan_gen_"; 84 static const char *const kAsanPoisonStackMemoryName = 85 "__asan_poison_stack_memory"; 86 static const char *const kAsanUnpoisonStackMemoryName = 87 "__asan_unpoison_stack_memory"; 88 89 static const int kAsanStackLeftRedzoneMagic = 0xf1; 90 static const int kAsanStackMidRedzoneMagic = 0xf2; 91 static const int kAsanStackRightRedzoneMagic = 0xf3; 92 static const int kAsanStackPartialRedzoneMagic = 0xf4; 93 94 // Accesses sizes are powers of two: 1, 2, 4, 8, 16. 95 static const size_t kNumberOfAccessSizes = 5; 96 97 // Command-line flags. 98 99 // This flag may need to be replaced with -f[no-]asan-reads. 100 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", 101 cl::desc("instrument read instructions"), cl::Hidden, cl::init(true)); 102 static cl::opt<bool> ClInstrumentWrites("asan-instrument-writes", 103 cl::desc("instrument write instructions"), cl::Hidden, cl::init(true)); 104 static cl::opt<bool> ClInstrumentAtomics("asan-instrument-atomics", 105 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), 106 cl::Hidden, cl::init(true)); 107 static cl::opt<bool> ClAlwaysSlowPath("asan-always-slow-path", 108 cl::desc("use instrumentation with slow path for all accesses"), 109 cl::Hidden, cl::init(false)); 110 // This flag limits the number of instructions to be instrumented 111 // in any given BB. Normally, this should be set to unlimited (INT_MAX), 112 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary 113 // set it to 10000. 114 static cl::opt<int> ClMaxInsnsToInstrumentPerBB("asan-max-ins-per-bb", 115 cl::init(10000), 116 cl::desc("maximal number of instructions to instrument in any given BB"), 117 cl::Hidden); 118 // This flag may need to be replaced with -f[no]asan-stack. 119 static cl::opt<bool> ClStack("asan-stack", 120 cl::desc("Handle stack memory"), cl::Hidden, cl::init(true)); 121 // This flag may need to be replaced with -f[no]asan-use-after-return. 122 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", 123 cl::desc("Check return-after-free"), cl::Hidden, cl::init(false)); 124 // This flag may need to be replaced with -f[no]asan-globals. 125 static cl::opt<bool> ClGlobals("asan-globals", 126 cl::desc("Handle global objects"), cl::Hidden, cl::init(true)); 127 static cl::opt<bool> ClInitializers("asan-initialization-order", 128 cl::desc("Handle C++ initializer order"), cl::Hidden, cl::init(false)); 129 static cl::opt<bool> ClMemIntrin("asan-memintrin", 130 cl::desc("Handle memset/memcpy/memmove"), cl::Hidden, cl::init(true)); 131 static cl::opt<bool> ClRealignStack("asan-realign-stack", 132 cl::desc("Realign stack to 32"), cl::Hidden, cl::init(true)); 133 static cl::opt<std::string> ClBlacklistFile("asan-blacklist", 134 cl::desc("File containing the list of objects to ignore " 135 "during instrumentation"), cl::Hidden); 136 137 // This is an experimental feature that will allow to choose between 138 // instrumented and non-instrumented code at link-time. 139 // If this option is on, just before instrumenting a function we create its 140 // clone; if the function is not changed by asan the clone is deleted. 141 // If we end up with a clone, we put the instrumented function into a section 142 // called "ASAN" and the uninstrumented function into a section called "NOASAN". 143 // 144 // This is still a prototype, we need to figure out a way to keep two copies of 145 // a function so that the linker can easily choose one of them. 146 static cl::opt<bool> ClKeepUninstrumented("asan-keep-uninstrumented-functions", 147 cl::desc("Keep uninstrumented copies of functions"), 148 cl::Hidden, cl::init(false)); 149 150 // These flags allow to change the shadow mapping. 151 // The shadow mapping looks like 152 // Shadow = (Mem >> scale) + (1 << offset_log) 153 static cl::opt<int> ClMappingScale("asan-mapping-scale", 154 cl::desc("scale of asan shadow mapping"), cl::Hidden, cl::init(0)); 155 static cl::opt<int> ClMappingOffsetLog("asan-mapping-offset-log", 156 cl::desc("offset of asan shadow mapping"), cl::Hidden, cl::init(-1)); 157 static cl::opt<bool> ClShort64BitOffset("asan-short-64bit-mapping-offset", 158 cl::desc("Use short immediate constant as the mapping offset for 64bit"), 159 cl::Hidden, cl::init(true)); 160 161 // Optimization flags. Not user visible, used mostly for testing 162 // and benchmarking the tool. 163 static cl::opt<bool> ClOpt("asan-opt", 164 cl::desc("Optimize instrumentation"), cl::Hidden, cl::init(true)); 165 static cl::opt<bool> ClOptSameTemp("asan-opt-same-temp", 166 cl::desc("Instrument the same temp just once"), cl::Hidden, 167 cl::init(true)); 168 static cl::opt<bool> ClOptGlobals("asan-opt-globals", 169 cl::desc("Don't instrument scalar globals"), cl::Hidden, cl::init(true)); 170 171 static cl::opt<bool> ClCheckLifetime("asan-check-lifetime", 172 cl::desc("Use llvm.lifetime intrinsics to insert extra checks"), 173 cl::Hidden, cl::init(false)); 174 175 // Debug flags. 176 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, 177 cl::init(0)); 178 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), 179 cl::Hidden, cl::init(0)); 180 static cl::opt<std::string> ClDebugFunc("asan-debug-func", 181 cl::Hidden, cl::desc("Debug func")); 182 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), 183 cl::Hidden, cl::init(-1)); 184 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"), 185 cl::Hidden, cl::init(-1)); 186 187 namespace { 188 /// A set of dynamically initialized globals extracted from metadata. 189 class SetOfDynamicallyInitializedGlobals { 190 public: 191 void Init(Module& M) { 192 // Clang generates metadata identifying all dynamically initialized globals. 193 NamedMDNode *DynamicGlobals = 194 M.getNamedMetadata("llvm.asan.dynamically_initialized_globals"); 195 if (!DynamicGlobals) 196 return; 197 for (int i = 0, n = DynamicGlobals->getNumOperands(); i < n; ++i) { 198 MDNode *MDN = DynamicGlobals->getOperand(i); 199 assert(MDN->getNumOperands() == 1); 200 Value *VG = MDN->getOperand(0); 201 // The optimizer may optimize away a global entirely, in which case we 202 // cannot instrument access to it. 203 if (!VG) 204 continue; 205 DynInitGlobals.insert(cast<GlobalVariable>(VG)); 206 } 207 } 208 bool Contains(GlobalVariable *G) { return DynInitGlobals.count(G) != 0; } 209 private: 210 SmallSet<GlobalValue*, 32> DynInitGlobals; 211 }; 212 213 /// This struct defines the shadow mapping using the rule: 214 /// shadow = (mem >> Scale) ADD-or-OR Offset. 215 struct ShadowMapping { 216 int Scale; 217 uint64_t Offset; 218 bool OrShadowOffset; 219 }; 220 221 static ShadowMapping getShadowMapping(const Module &M, int LongSize, 222 bool ZeroBaseShadow) { 223 llvm::Triple TargetTriple(M.getTargetTriple()); 224 bool IsAndroid = TargetTriple.getEnvironment() == llvm::Triple::Android; 225 bool IsMacOSX = TargetTriple.getOS() == llvm::Triple::MacOSX; 226 bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 || 227 TargetTriple.getArch() == llvm::Triple::ppc64le; 228 bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64; 229 bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips || 230 TargetTriple.getArch() == llvm::Triple::mipsel; 231 232 ShadowMapping Mapping; 233 234 // OR-ing shadow offset if more efficient (at least on x86), 235 // but on ppc64 we have to use add since the shadow offset is not neccesary 236 // 1/8-th of the address space. 237 Mapping.OrShadowOffset = !IsPPC64 && !ClShort64BitOffset; 238 239 Mapping.Offset = (IsAndroid || ZeroBaseShadow) ? 0 : 240 (LongSize == 32 ? 241 (IsMIPS32 ? kMIPS32_ShadowOffset32 : kDefaultShadowOffset32) : 242 IsPPC64 ? kPPC64_ShadowOffset64 : kDefaultShadowOffset64); 243 if (!ZeroBaseShadow && ClShort64BitOffset && IsX86_64 && !IsMacOSX) { 244 assert(LongSize == 64); 245 Mapping.Offset = kDefaultShort64bitShadowOffset; 246 } 247 if (!ZeroBaseShadow && ClMappingOffsetLog >= 0) { 248 // Zero offset log is the special case. 249 Mapping.Offset = (ClMappingOffsetLog == 0) ? 0 : 1ULL << ClMappingOffsetLog; 250 } 251 252 Mapping.Scale = kDefaultShadowScale; 253 if (ClMappingScale) { 254 Mapping.Scale = ClMappingScale; 255 } 256 257 return Mapping; 258 } 259 260 static size_t RedzoneSizeForScale(int MappingScale) { 261 // Redzone used for stack and globals is at least 32 bytes. 262 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. 263 return std::max(32U, 1U << MappingScale); 264 } 265 266 /// AddressSanitizer: instrument the code in module to find memory bugs. 267 struct AddressSanitizer : public FunctionPass { 268 AddressSanitizer(bool CheckInitOrder = true, 269 bool CheckUseAfterReturn = false, 270 bool CheckLifetime = false, 271 StringRef BlacklistFile = StringRef(), 272 bool ZeroBaseShadow = false) 273 : FunctionPass(ID), 274 CheckInitOrder(CheckInitOrder || ClInitializers), 275 CheckUseAfterReturn(CheckUseAfterReturn || ClUseAfterReturn), 276 CheckLifetime(CheckLifetime || ClCheckLifetime), 277 BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile 278 : BlacklistFile), 279 ZeroBaseShadow(ZeroBaseShadow) {} 280 virtual const char *getPassName() const { 281 return "AddressSanitizerFunctionPass"; 282 } 283 void instrumentMop(Instruction *I); 284 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, 285 Value *Addr, uint32_t TypeSize, bool IsWrite, 286 Value *SizeArgument); 287 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 288 Value *ShadowValue, uint32_t TypeSize); 289 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, 290 bool IsWrite, size_t AccessSizeIndex, 291 Value *SizeArgument); 292 bool instrumentMemIntrinsic(MemIntrinsic *MI); 293 void instrumentMemIntrinsicParam(Instruction *OrigIns, Value *Addr, 294 Value *Size, 295 Instruction *InsertBefore, bool IsWrite); 296 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); 297 bool runOnFunction(Function &F); 298 bool maybeInsertAsanInitAtFunctionEntry(Function &F); 299 void emitShadowMapping(Module &M, IRBuilder<> &IRB) const; 300 virtual bool doInitialization(Module &M); 301 static char ID; // Pass identification, replacement for typeid 302 303 private: 304 void initializeCallbacks(Module &M); 305 306 bool ShouldInstrumentGlobal(GlobalVariable *G); 307 bool LooksLikeCodeInBug11395(Instruction *I); 308 void FindDynamicInitializers(Module &M); 309 310 bool CheckInitOrder; 311 bool CheckUseAfterReturn; 312 bool CheckLifetime; 313 SmallString<64> BlacklistFile; 314 bool ZeroBaseShadow; 315 316 LLVMContext *C; 317 DataLayout *TD; 318 int LongSize; 319 Type *IntptrTy; 320 ShadowMapping Mapping; 321 Function *AsanCtorFunction; 322 Function *AsanInitFunction; 323 Function *AsanHandleNoReturnFunc; 324 OwningPtr<SpecialCaseList> BL; 325 // This array is indexed by AccessIsWrite and log2(AccessSize). 326 Function *AsanErrorCallback[2][kNumberOfAccessSizes]; 327 // This array is indexed by AccessIsWrite. 328 Function *AsanErrorCallbackSized[2]; 329 InlineAsm *EmptyAsm; 330 SetOfDynamicallyInitializedGlobals DynamicallyInitializedGlobals; 331 332 friend struct FunctionStackPoisoner; 333 }; 334 335 class AddressSanitizerModule : public ModulePass { 336 public: 337 AddressSanitizerModule(bool CheckInitOrder = true, 338 StringRef BlacklistFile = StringRef(), 339 bool ZeroBaseShadow = false) 340 : ModulePass(ID), 341 CheckInitOrder(CheckInitOrder || ClInitializers), 342 BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile 343 : BlacklistFile), 344 ZeroBaseShadow(ZeroBaseShadow) {} 345 bool runOnModule(Module &M); 346 static char ID; // Pass identification, replacement for typeid 347 virtual const char *getPassName() const { 348 return "AddressSanitizerModule"; 349 } 350 351 private: 352 void initializeCallbacks(Module &M); 353 354 bool ShouldInstrumentGlobal(GlobalVariable *G); 355 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); 356 size_t RedzoneSize() const { 357 return RedzoneSizeForScale(Mapping.Scale); 358 } 359 360 bool CheckInitOrder; 361 SmallString<64> BlacklistFile; 362 bool ZeroBaseShadow; 363 364 OwningPtr<SpecialCaseList> BL; 365 SetOfDynamicallyInitializedGlobals DynamicallyInitializedGlobals; 366 Type *IntptrTy; 367 LLVMContext *C; 368 DataLayout *TD; 369 ShadowMapping Mapping; 370 Function *AsanPoisonGlobals; 371 Function *AsanUnpoisonGlobals; 372 Function *AsanRegisterGlobals; 373 Function *AsanUnregisterGlobals; 374 }; 375 376 // Stack poisoning does not play well with exception handling. 377 // When an exception is thrown, we essentially bypass the code 378 // that unpoisones the stack. This is why the run-time library has 379 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire 380 // stack in the interceptor. This however does not work inside the 381 // actual function which catches the exception. Most likely because the 382 // compiler hoists the load of the shadow value somewhere too high. 383 // This causes asan to report a non-existing bug on 453.povray. 384 // It sounds like an LLVM bug. 385 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { 386 Function &F; 387 AddressSanitizer &ASan; 388 DIBuilder DIB; 389 LLVMContext *C; 390 Type *IntptrTy; 391 Type *IntptrPtrTy; 392 ShadowMapping Mapping; 393 394 SmallVector<AllocaInst*, 16> AllocaVec; 395 SmallVector<Instruction*, 8> RetVec; 396 uint64_t TotalStackSize; 397 unsigned StackAlignment; 398 399 Function *AsanStackMallocFunc, *AsanStackFreeFunc; 400 Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc; 401 402 // Stores a place and arguments of poisoning/unpoisoning call for alloca. 403 struct AllocaPoisonCall { 404 IntrinsicInst *InsBefore; 405 uint64_t Size; 406 bool DoPoison; 407 }; 408 SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec; 409 410 // Maps Value to an AllocaInst from which the Value is originated. 411 typedef DenseMap<Value*, AllocaInst*> AllocaForValueMapTy; 412 AllocaForValueMapTy AllocaForValue; 413 414 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) 415 : F(F), ASan(ASan), DIB(*F.getParent()), C(ASan.C), 416 IntptrTy(ASan.IntptrTy), IntptrPtrTy(PointerType::get(IntptrTy, 0)), 417 Mapping(ASan.Mapping), 418 TotalStackSize(0), StackAlignment(1 << Mapping.Scale) {} 419 420 bool runOnFunction() { 421 if (!ClStack) return false; 422 // Collect alloca, ret, lifetime instructions etc. 423 for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()), 424 DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) { 425 BasicBlock *BB = *DI; 426 visit(*BB); 427 } 428 if (AllocaVec.empty()) return false; 429 430 initializeCallbacks(*F.getParent()); 431 432 poisonStack(); 433 434 if (ClDebugStack) { 435 DEBUG(dbgs() << F); 436 } 437 return true; 438 } 439 440 // Finds all static Alloca instructions and puts 441 // poisoned red zones around all of them. 442 // Then unpoison everything back before the function returns. 443 void poisonStack(); 444 445 // ----------------------- Visitors. 446 /// \brief Collect all Ret instructions. 447 void visitReturnInst(ReturnInst &RI) { 448 RetVec.push_back(&RI); 449 } 450 451 /// \brief Collect Alloca instructions we want (and can) handle. 452 void visitAllocaInst(AllocaInst &AI) { 453 if (!isInterestingAlloca(AI)) return; 454 455 StackAlignment = std::max(StackAlignment, AI.getAlignment()); 456 AllocaVec.push_back(&AI); 457 uint64_t AlignedSize = getAlignedAllocaSize(&AI); 458 TotalStackSize += AlignedSize; 459 } 460 461 /// \brief Collect lifetime intrinsic calls to check for use-after-scope 462 /// errors. 463 void visitIntrinsicInst(IntrinsicInst &II) { 464 if (!ASan.CheckLifetime) return; 465 Intrinsic::ID ID = II.getIntrinsicID(); 466 if (ID != Intrinsic::lifetime_start && 467 ID != Intrinsic::lifetime_end) 468 return; 469 // Found lifetime intrinsic, add ASan instrumentation if necessary. 470 ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0)); 471 // If size argument is undefined, don't do anything. 472 if (Size->isMinusOne()) return; 473 // Check that size doesn't saturate uint64_t and can 474 // be stored in IntptrTy. 475 const uint64_t SizeValue = Size->getValue().getLimitedValue(); 476 if (SizeValue == ~0ULL || 477 !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) 478 return; 479 // Find alloca instruction that corresponds to llvm.lifetime argument. 480 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1)); 481 if (!AI) return; 482 bool DoPoison = (ID == Intrinsic::lifetime_end); 483 AllocaPoisonCall APC = {&II, SizeValue, DoPoison}; 484 AllocaPoisonCallVec.push_back(APC); 485 } 486 487 // ---------------------- Helpers. 488 void initializeCallbacks(Module &M); 489 490 // Check if we want (and can) handle this alloca. 491 bool isInterestingAlloca(AllocaInst &AI) { 492 return (!AI.isArrayAllocation() && 493 AI.isStaticAlloca() && 494 AI.getAlignment() <= RedzoneSize() && 495 AI.getAllocatedType()->isSized()); 496 } 497 498 size_t RedzoneSize() const { 499 return RedzoneSizeForScale(Mapping.Scale); 500 } 501 uint64_t getAllocaSizeInBytes(AllocaInst *AI) { 502 Type *Ty = AI->getAllocatedType(); 503 uint64_t SizeInBytes = ASan.TD->getTypeAllocSize(Ty); 504 return SizeInBytes; 505 } 506 uint64_t getAlignedSize(uint64_t SizeInBytes) { 507 size_t RZ = RedzoneSize(); 508 return ((SizeInBytes + RZ - 1) / RZ) * RZ; 509 } 510 uint64_t getAlignedAllocaSize(AllocaInst *AI) { 511 uint64_t SizeInBytes = getAllocaSizeInBytes(AI); 512 return getAlignedSize(SizeInBytes); 513 } 514 /// Finds alloca where the value comes from. 515 AllocaInst *findAllocaForValue(Value *V); 516 void poisonRedZones(const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> IRB, 517 Value *ShadowBase, bool DoPoison); 518 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> IRB, bool DoPoison); 519 }; 520 521 } // namespace 522 523 char AddressSanitizer::ID = 0; 524 INITIALIZE_PASS(AddressSanitizer, "asan", 525 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", 526 false, false) 527 FunctionPass *llvm::createAddressSanitizerFunctionPass( 528 bool CheckInitOrder, bool CheckUseAfterReturn, bool CheckLifetime, 529 StringRef BlacklistFile, bool ZeroBaseShadow) { 530 return new AddressSanitizer(CheckInitOrder, CheckUseAfterReturn, 531 CheckLifetime, BlacklistFile, ZeroBaseShadow); 532 } 533 534 char AddressSanitizerModule::ID = 0; 535 INITIALIZE_PASS(AddressSanitizerModule, "asan-module", 536 "AddressSanitizer: detects use-after-free and out-of-bounds bugs." 537 "ModulePass", false, false) 538 ModulePass *llvm::createAddressSanitizerModulePass( 539 bool CheckInitOrder, StringRef BlacklistFile, bool ZeroBaseShadow) { 540 return new AddressSanitizerModule(CheckInitOrder, BlacklistFile, 541 ZeroBaseShadow); 542 } 543 544 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { 545 size_t Res = countTrailingZeros(TypeSize / 8); 546 assert(Res < kNumberOfAccessSizes); 547 return Res; 548 } 549 550 // \brief Create a constant for Str so that we can pass it to the run-time lib. 551 static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str) { 552 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); 553 GlobalVariable *GV = new GlobalVariable(M, StrConst->getType(), true, 554 GlobalValue::InternalLinkage, StrConst, 555 kAsanGenPrefix); 556 GV->setUnnamedAddr(true); // Ok to merge these. 557 GV->setAlignment(1); // Strings may not be merged w/o setting align 1. 558 return GV; 559 } 560 561 static bool GlobalWasGeneratedByAsan(GlobalVariable *G) { 562 return G->getName().find(kAsanGenPrefix) == 0; 563 } 564 565 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { 566 // Shadow >> scale 567 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); 568 if (Mapping.Offset == 0) 569 return Shadow; 570 // (Shadow >> scale) | offset 571 if (Mapping.OrShadowOffset) 572 return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset)); 573 else 574 return IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset)); 575 } 576 577 void AddressSanitizer::instrumentMemIntrinsicParam( 578 Instruction *OrigIns, 579 Value *Addr, Value *Size, Instruction *InsertBefore, bool IsWrite) { 580 IRBuilder<> IRB(InsertBefore); 581 if (Size->getType() != IntptrTy) 582 Size = IRB.CreateIntCast(Size, IntptrTy, false); 583 // Check the first byte. 584 instrumentAddress(OrigIns, InsertBefore, Addr, 8, IsWrite, Size); 585 // Check the last byte. 586 IRB.SetInsertPoint(InsertBefore); 587 Value *SizeMinusOne = IRB.CreateSub(Size, ConstantInt::get(IntptrTy, 1)); 588 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 589 Value *AddrLast = IRB.CreateAdd(AddrLong, SizeMinusOne); 590 instrumentAddress(OrigIns, InsertBefore, AddrLast, 8, IsWrite, Size); 591 } 592 593 // Instrument memset/memmove/memcpy 594 bool AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { 595 Value *Dst = MI->getDest(); 596 MemTransferInst *MemTran = dyn_cast<MemTransferInst>(MI); 597 Value *Src = MemTran ? MemTran->getSource() : 0; 598 Value *Length = MI->getLength(); 599 600 Constant *ConstLength = dyn_cast<Constant>(Length); 601 Instruction *InsertBefore = MI; 602 if (ConstLength) { 603 if (ConstLength->isNullValue()) return false; 604 } else { 605 // The size is not a constant so it could be zero -- check at run-time. 606 IRBuilder<> IRB(InsertBefore); 607 608 Value *Cmp = IRB.CreateICmpNE(Length, 609 Constant::getNullValue(Length->getType())); 610 InsertBefore = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false); 611 } 612 613 instrumentMemIntrinsicParam(MI, Dst, Length, InsertBefore, true); 614 if (Src) 615 instrumentMemIntrinsicParam(MI, Src, Length, InsertBefore, false); 616 return true; 617 } 618 619 // If I is an interesting memory access, return the PointerOperand 620 // and set IsWrite. Otherwise return NULL. 621 static Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite) { 622 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 623 if (!ClInstrumentReads) return NULL; 624 *IsWrite = false; 625 return LI->getPointerOperand(); 626 } 627 if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 628 if (!ClInstrumentWrites) return NULL; 629 *IsWrite = true; 630 return SI->getPointerOperand(); 631 } 632 if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { 633 if (!ClInstrumentAtomics) return NULL; 634 *IsWrite = true; 635 return RMW->getPointerOperand(); 636 } 637 if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { 638 if (!ClInstrumentAtomics) return NULL; 639 *IsWrite = true; 640 return XCHG->getPointerOperand(); 641 } 642 return NULL; 643 } 644 645 void AddressSanitizer::instrumentMop(Instruction *I) { 646 bool IsWrite = false; 647 Value *Addr = isInterestingMemoryAccess(I, &IsWrite); 648 assert(Addr); 649 if (ClOpt && ClOptGlobals) { 650 if (GlobalVariable *G = dyn_cast<GlobalVariable>(Addr)) { 651 // If initialization order checking is disabled, a simple access to a 652 // dynamically initialized global is always valid. 653 if (!CheckInitOrder) 654 return; 655 // If a global variable does not have dynamic initialization we don't 656 // have to instrument it. However, if a global does not have initailizer 657 // at all, we assume it has dynamic initializer (in other TU). 658 if (G->hasInitializer() && !DynamicallyInitializedGlobals.Contains(G)) 659 return; 660 } 661 } 662 663 Type *OrigPtrTy = Addr->getType(); 664 Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType(); 665 666 assert(OrigTy->isSized()); 667 uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy); 668 669 assert((TypeSize % 8) == 0); 670 671 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check. 672 if (TypeSize == 8 || TypeSize == 16 || 673 TypeSize == 32 || TypeSize == 64 || TypeSize == 128) 674 return instrumentAddress(I, I, Addr, TypeSize, IsWrite, 0); 675 // Instrument unusual size (but still multiple of 8). 676 // We can not do it with a single check, so we do 1-byte check for the first 677 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able 678 // to report the actual access size. 679 IRBuilder<> IRB(I); 680 Value *LastByte = IRB.CreateIntToPtr( 681 IRB.CreateAdd(IRB.CreatePointerCast(Addr, IntptrTy), 682 ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), 683 OrigPtrTy); 684 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); 685 instrumentAddress(I, I, Addr, 8, IsWrite, Size); 686 instrumentAddress(I, I, LastByte, 8, IsWrite, Size); 687 } 688 689 // Validate the result of Module::getOrInsertFunction called for an interface 690 // function of AddressSanitizer. If the instrumented module defines a function 691 // with the same name, their prototypes must match, otherwise 692 // getOrInsertFunction returns a bitcast. 693 static Function *checkInterfaceFunction(Constant *FuncOrBitcast) { 694 if (isa<Function>(FuncOrBitcast)) return cast<Function>(FuncOrBitcast); 695 FuncOrBitcast->dump(); 696 report_fatal_error("trying to redefine an AddressSanitizer " 697 "interface function"); 698 } 699 700 Instruction *AddressSanitizer::generateCrashCode( 701 Instruction *InsertBefore, Value *Addr, 702 bool IsWrite, size_t AccessSizeIndex, Value *SizeArgument) { 703 IRBuilder<> IRB(InsertBefore); 704 CallInst *Call = SizeArgument 705 ? IRB.CreateCall2(AsanErrorCallbackSized[IsWrite], Addr, SizeArgument) 706 : IRB.CreateCall(AsanErrorCallback[IsWrite][AccessSizeIndex], Addr); 707 708 // We don't do Call->setDoesNotReturn() because the BB already has 709 // UnreachableInst at the end. 710 // This EmptyAsm is required to avoid callback merge. 711 IRB.CreateCall(EmptyAsm); 712 return Call; 713 } 714 715 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, 716 Value *ShadowValue, 717 uint32_t TypeSize) { 718 size_t Granularity = 1 << Mapping.Scale; 719 // Addr & (Granularity - 1) 720 Value *LastAccessedByte = IRB.CreateAnd( 721 AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); 722 // (Addr & (Granularity - 1)) + size - 1 723 if (TypeSize / 8 > 1) 724 LastAccessedByte = IRB.CreateAdd( 725 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); 726 // (uint8_t) ((Addr & (Granularity-1)) + size - 1) 727 LastAccessedByte = IRB.CreateIntCast( 728 LastAccessedByte, ShadowValue->getType(), false); 729 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue 730 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); 731 } 732 733 void AddressSanitizer::instrumentAddress(Instruction *OrigIns, 734 Instruction *InsertBefore, 735 Value *Addr, uint32_t TypeSize, 736 bool IsWrite, Value *SizeArgument) { 737 IRBuilder<> IRB(InsertBefore); 738 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); 739 740 Type *ShadowTy = IntegerType::get( 741 *C, std::max(8U, TypeSize >> Mapping.Scale)); 742 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); 743 Value *ShadowPtr = memToShadow(AddrLong, IRB); 744 Value *CmpVal = Constant::getNullValue(ShadowTy); 745 Value *ShadowValue = IRB.CreateLoad( 746 IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); 747 748 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); 749 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); 750 size_t Granularity = 1 << Mapping.Scale; 751 TerminatorInst *CrashTerm = 0; 752 753 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { 754 TerminatorInst *CheckTerm = 755 SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false); 756 assert(dyn_cast<BranchInst>(CheckTerm)->isUnconditional()); 757 BasicBlock *NextBB = CheckTerm->getSuccessor(0); 758 IRB.SetInsertPoint(CheckTerm); 759 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); 760 BasicBlock *CrashBlock = 761 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); 762 CrashTerm = new UnreachableInst(*C, CrashBlock); 763 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); 764 ReplaceInstWithInst(CheckTerm, NewTerm); 765 } else { 766 CrashTerm = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), true); 767 } 768 769 Instruction *Crash = generateCrashCode( 770 CrashTerm, AddrLong, IsWrite, AccessSizeIndex, SizeArgument); 771 Crash->setDebugLoc(OrigIns->getDebugLoc()); 772 } 773 774 void AddressSanitizerModule::createInitializerPoisonCalls( 775 Module &M, GlobalValue *ModuleName) { 776 // We do all of our poisoning and unpoisoning within _GLOBAL__I_a. 777 Function *GlobalInit = M.getFunction("_GLOBAL__I_a"); 778 // If that function is not present, this TU contains no globals, or they have 779 // all been optimized away 780 if (!GlobalInit) 781 return; 782 783 // Set up the arguments to our poison/unpoison functions. 784 IRBuilder<> IRB(GlobalInit->begin()->getFirstInsertionPt()); 785 786 // Add a call to poison all external globals before the given function starts. 787 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); 788 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); 789 790 // Add calls to unpoison all globals before each return instruction. 791 for (Function::iterator I = GlobalInit->begin(), E = GlobalInit->end(); 792 I != E; ++I) { 793 if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) { 794 CallInst::Create(AsanUnpoisonGlobals, "", RI); 795 } 796 } 797 } 798 799 bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) { 800 Type *Ty = cast<PointerType>(G->getType())->getElementType(); 801 DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); 802 803 if (BL->isIn(*G)) return false; 804 if (!Ty->isSized()) return false; 805 if (!G->hasInitializer()) return false; 806 if (GlobalWasGeneratedByAsan(G)) return false; // Our own global. 807 // Touch only those globals that will not be defined in other modules. 808 // Don't handle ODR type linkages since other modules may be built w/o asan. 809 if (G->getLinkage() != GlobalVariable::ExternalLinkage && 810 G->getLinkage() != GlobalVariable::PrivateLinkage && 811 G->getLinkage() != GlobalVariable::InternalLinkage) 812 return false; 813 // Two problems with thread-locals: 814 // - The address of the main thread's copy can't be computed at link-time. 815 // - Need to poison all copies, not just the main thread's one. 816 if (G->isThreadLocal()) 817 return false; 818 // For now, just ignore this Alloca if the alignment is large. 819 if (G->getAlignment() > RedzoneSize()) return false; 820 821 // Ignore all the globals with the names starting with "\01L_OBJC_". 822 // Many of those are put into the .cstring section. The linker compresses 823 // that section by removing the spare \0s after the string terminator, so 824 // our redzones get broken. 825 if ((G->getName().find("\01L_OBJC_") == 0) || 826 (G->getName().find("\01l_OBJC_") == 0)) { 827 DEBUG(dbgs() << "Ignoring \\01L_OBJC_* global: " << *G); 828 return false; 829 } 830 831 if (G->hasSection()) { 832 StringRef Section(G->getSection()); 833 // Ignore the globals from the __OBJC section. The ObjC runtime assumes 834 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to 835 // them. 836 if ((Section.find("__OBJC,") == 0) || 837 (Section.find("__DATA, __objc_") == 0)) { 838 DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G); 839 return false; 840 } 841 // See http://code.google.com/p/address-sanitizer/issues/detail?id=32 842 // Constant CFString instances are compiled in the following way: 843 // -- the string buffer is emitted into 844 // __TEXT,__cstring,cstring_literals 845 // -- the constant NSConstantString structure referencing that buffer 846 // is placed into __DATA,__cfstring 847 // Therefore there's no point in placing redzones into __DATA,__cfstring. 848 // Moreover, it causes the linker to crash on OS X 10.7 849 if (Section.find("__DATA,__cfstring") == 0) { 850 DEBUG(dbgs() << "Ignoring CFString: " << *G); 851 return false; 852 } 853 } 854 855 return true; 856 } 857 858 void AddressSanitizerModule::initializeCallbacks(Module &M) { 859 IRBuilder<> IRB(*C); 860 // Declare our poisoning and unpoisoning functions. 861 AsanPoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction( 862 kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, NULL)); 863 AsanPoisonGlobals->setLinkage(Function::ExternalLinkage); 864 AsanUnpoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction( 865 kAsanUnpoisonGlobalsName, IRB.getVoidTy(), NULL)); 866 AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage); 867 // Declare functions that register/unregister globals. 868 AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction( 869 kAsanRegisterGlobalsName, IRB.getVoidTy(), 870 IntptrTy, IntptrTy, NULL)); 871 AsanRegisterGlobals->setLinkage(Function::ExternalLinkage); 872 AsanUnregisterGlobals = checkInterfaceFunction(M.getOrInsertFunction( 873 kAsanUnregisterGlobalsName, 874 IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); 875 AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage); 876 } 877 878 // This function replaces all global variables with new variables that have 879 // trailing redzones. It also creates a function that poisons 880 // redzones and inserts this function into llvm.global_ctors. 881 bool AddressSanitizerModule::runOnModule(Module &M) { 882 if (!ClGlobals) return false; 883 TD = getAnalysisIfAvailable<DataLayout>(); 884 if (!TD) 885 return false; 886 BL.reset(new SpecialCaseList(BlacklistFile)); 887 if (BL->isIn(M)) return false; 888 C = &(M.getContext()); 889 int LongSize = TD->getPointerSizeInBits(); 890 IntptrTy = Type::getIntNTy(*C, LongSize); 891 Mapping = getShadowMapping(M, LongSize, ZeroBaseShadow); 892 initializeCallbacks(M); 893 DynamicallyInitializedGlobals.Init(M); 894 895 SmallVector<GlobalVariable *, 16> GlobalsToChange; 896 897 for (Module::GlobalListType::iterator G = M.global_begin(), 898 E = M.global_end(); G != E; ++G) { 899 if (ShouldInstrumentGlobal(G)) 900 GlobalsToChange.push_back(G); 901 } 902 903 size_t n = GlobalsToChange.size(); 904 if (n == 0) return false; 905 906 // A global is described by a structure 907 // size_t beg; 908 // size_t size; 909 // size_t size_with_redzone; 910 // const char *name; 911 // const char *module_name; 912 // size_t has_dynamic_init; 913 // We initialize an array of such structures and pass it to a run-time call. 914 StructType *GlobalStructTy = StructType::get(IntptrTy, IntptrTy, 915 IntptrTy, IntptrTy, 916 IntptrTy, IntptrTy, NULL); 917 SmallVector<Constant *, 16> Initializers(n), DynamicInit; 918 919 920 Function *CtorFunc = M.getFunction(kAsanModuleCtorName); 921 assert(CtorFunc); 922 IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator()); 923 924 bool HasDynamicallyInitializedGlobals = false; 925 926 GlobalVariable *ModuleName = createPrivateGlobalForString( 927 M, M.getModuleIdentifier()); 928 // We shouldn't merge same module names, as this string serves as unique 929 // module ID in runtime. 930 ModuleName->setUnnamedAddr(false); 931 932 for (size_t i = 0; i < n; i++) { 933 static const uint64_t kMaxGlobalRedzone = 1 << 18; 934 GlobalVariable *G = GlobalsToChange[i]; 935 PointerType *PtrTy = cast<PointerType>(G->getType()); 936 Type *Ty = PtrTy->getElementType(); 937 uint64_t SizeInBytes = TD->getTypeAllocSize(Ty); 938 uint64_t MinRZ = RedzoneSize(); 939 // MinRZ <= RZ <= kMaxGlobalRedzone 940 // and trying to make RZ to be ~ 1/4 of SizeInBytes. 941 uint64_t RZ = std::max(MinRZ, 942 std::min(kMaxGlobalRedzone, 943 (SizeInBytes / MinRZ / 4) * MinRZ)); 944 uint64_t RightRedzoneSize = RZ; 945 // Round up to MinRZ 946 if (SizeInBytes % MinRZ) 947 RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ); 948 assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0); 949 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); 950 // Determine whether this global should be poisoned in initialization. 951 bool GlobalHasDynamicInitializer = 952 DynamicallyInitializedGlobals.Contains(G); 953 // Don't check initialization order if this global is blacklisted. 954 GlobalHasDynamicInitializer &= !BL->isIn(*G, "init"); 955 956 StructType *NewTy = StructType::get(Ty, RightRedZoneTy, NULL); 957 Constant *NewInitializer = ConstantStruct::get( 958 NewTy, G->getInitializer(), 959 Constant::getNullValue(RightRedZoneTy), NULL); 960 961 GlobalVariable *Name = createPrivateGlobalForString(M, G->getName()); 962 963 // Create a new global variable with enough space for a redzone. 964 GlobalValue::LinkageTypes Linkage = G->getLinkage(); 965 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) 966 Linkage = GlobalValue::InternalLinkage; 967 GlobalVariable *NewGlobal = new GlobalVariable( 968 M, NewTy, G->isConstant(), Linkage, 969 NewInitializer, "", G, G->getThreadLocalMode()); 970 NewGlobal->copyAttributesFrom(G); 971 NewGlobal->setAlignment(MinRZ); 972 973 Value *Indices2[2]; 974 Indices2[0] = IRB.getInt32(0); 975 Indices2[1] = IRB.getInt32(0); 976 977 G->replaceAllUsesWith( 978 ConstantExpr::getGetElementPtr(NewGlobal, Indices2, true)); 979 NewGlobal->takeName(G); 980 G->eraseFromParent(); 981 982 Initializers[i] = ConstantStruct::get( 983 GlobalStructTy, 984 ConstantExpr::getPointerCast(NewGlobal, IntptrTy), 985 ConstantInt::get(IntptrTy, SizeInBytes), 986 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), 987 ConstantExpr::getPointerCast(Name, IntptrTy), 988 ConstantExpr::getPointerCast(ModuleName, IntptrTy), 989 ConstantInt::get(IntptrTy, GlobalHasDynamicInitializer), 990 NULL); 991 992 // Populate the first and last globals declared in this TU. 993 if (CheckInitOrder && GlobalHasDynamicInitializer) 994 HasDynamicallyInitializedGlobals = true; 995 996 DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); 997 } 998 999 ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n); 1000 GlobalVariable *AllGlobals = new GlobalVariable( 1001 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, 1002 ConstantArray::get(ArrayOfGlobalStructTy, Initializers), ""); 1003 1004 // Create calls for poisoning before initializers run and unpoisoning after. 1005 if (CheckInitOrder && HasDynamicallyInitializedGlobals) 1006 createInitializerPoisonCalls(M, ModuleName); 1007 IRB.CreateCall2(AsanRegisterGlobals, 1008 IRB.CreatePointerCast(AllGlobals, IntptrTy), 1009 ConstantInt::get(IntptrTy, n)); 1010 1011 // We also need to unregister globals at the end, e.g. when a shared library 1012 // gets closed. 1013 Function *AsanDtorFunction = Function::Create( 1014 FunctionType::get(Type::getVoidTy(*C), false), 1015 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); 1016 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); 1017 IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB)); 1018 IRB_Dtor.CreateCall2(AsanUnregisterGlobals, 1019 IRB.CreatePointerCast(AllGlobals, IntptrTy), 1020 ConstantInt::get(IntptrTy, n)); 1021 appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndCtorPriority); 1022 1023 DEBUG(dbgs() << M); 1024 return true; 1025 } 1026 1027 void AddressSanitizer::initializeCallbacks(Module &M) { 1028 IRBuilder<> IRB(*C); 1029 // Create __asan_report* callbacks. 1030 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { 1031 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; 1032 AccessSizeIndex++) { 1033 // IsWrite and TypeSize are encoded in the function name. 1034 std::string FunctionName = std::string(kAsanReportErrorTemplate) + 1035 (AccessIsWrite ? "store" : "load") + itostr(1 << AccessSizeIndex); 1036 // If we are merging crash callbacks, they have two parameters. 1037 AsanErrorCallback[AccessIsWrite][AccessSizeIndex] = 1038 checkInterfaceFunction(M.getOrInsertFunction( 1039 FunctionName, IRB.getVoidTy(), IntptrTy, NULL)); 1040 } 1041 } 1042 AsanErrorCallbackSized[0] = checkInterfaceFunction(M.getOrInsertFunction( 1043 kAsanReportLoadN, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); 1044 AsanErrorCallbackSized[1] = checkInterfaceFunction(M.getOrInsertFunction( 1045 kAsanReportStoreN, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); 1046 1047 AsanHandleNoReturnFunc = checkInterfaceFunction(M.getOrInsertFunction( 1048 kAsanHandleNoReturnName, IRB.getVoidTy(), NULL)); 1049 // We insert an empty inline asm after __asan_report* to avoid callback merge. 1050 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), 1051 StringRef(""), StringRef(""), 1052 /*hasSideEffects=*/true); 1053 } 1054 1055 void AddressSanitizer::emitShadowMapping(Module &M, IRBuilder<> &IRB) const { 1056 // Tell the values of mapping offset and scale to the run-time. 1057 GlobalValue *asan_mapping_offset = 1058 new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage, 1059 ConstantInt::get(IntptrTy, Mapping.Offset), 1060 kAsanMappingOffsetName); 1061 // Read the global, otherwise it may be optimized away. 1062 IRB.CreateLoad(asan_mapping_offset, true); 1063 1064 GlobalValue *asan_mapping_scale = 1065 new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage, 1066 ConstantInt::get(IntptrTy, Mapping.Scale), 1067 kAsanMappingScaleName); 1068 // Read the global, otherwise it may be optimized away. 1069 IRB.CreateLoad(asan_mapping_scale, true); 1070 } 1071 1072 // virtual 1073 bool AddressSanitizer::doInitialization(Module &M) { 1074 // Initialize the private fields. No one has accessed them before. 1075 TD = getAnalysisIfAvailable<DataLayout>(); 1076 1077 if (!TD) 1078 return false; 1079 BL.reset(new SpecialCaseList(BlacklistFile)); 1080 DynamicallyInitializedGlobals.Init(M); 1081 1082 C = &(M.getContext()); 1083 LongSize = TD->getPointerSizeInBits(); 1084 IntptrTy = Type::getIntNTy(*C, LongSize); 1085 1086 AsanCtorFunction = Function::Create( 1087 FunctionType::get(Type::getVoidTy(*C), false), 1088 GlobalValue::InternalLinkage, kAsanModuleCtorName, &M); 1089 BasicBlock *AsanCtorBB = BasicBlock::Create(*C, "", AsanCtorFunction); 1090 // call __asan_init in the module ctor. 1091 IRBuilder<> IRB(ReturnInst::Create(*C, AsanCtorBB)); 1092 AsanInitFunction = checkInterfaceFunction( 1093 M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), NULL)); 1094 AsanInitFunction->setLinkage(Function::ExternalLinkage); 1095 IRB.CreateCall(AsanInitFunction); 1096 1097 Mapping = getShadowMapping(M, LongSize, ZeroBaseShadow); 1098 emitShadowMapping(M, IRB); 1099 1100 appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndCtorPriority); 1101 return true; 1102 } 1103 1104 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { 1105 // For each NSObject descendant having a +load method, this method is invoked 1106 // by the ObjC runtime before any of the static constructors is called. 1107 // Therefore we need to instrument such methods with a call to __asan_init 1108 // at the beginning in order to initialize our runtime before any access to 1109 // the shadow memory. 1110 // We cannot just ignore these methods, because they may call other 1111 // instrumented functions. 1112 if (F.getName().find(" load]") != std::string::npos) { 1113 IRBuilder<> IRB(F.begin()->begin()); 1114 IRB.CreateCall(AsanInitFunction); 1115 return true; 1116 } 1117 return false; 1118 } 1119 1120 bool AddressSanitizer::runOnFunction(Function &F) { 1121 if (BL->isIn(F)) return false; 1122 if (&F == AsanCtorFunction) return false; 1123 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; 1124 DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); 1125 initializeCallbacks(*F.getParent()); 1126 1127 // If needed, insert __asan_init before checking for SanitizeAddress attr. 1128 maybeInsertAsanInitAtFunctionEntry(F); 1129 1130 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) 1131 return false; 1132 1133 if (!ClDebugFunc.empty() && ClDebugFunc != F.getName()) 1134 return false; 1135 1136 // We want to instrument every address only once per basic block (unless there 1137 // are calls between uses). 1138 SmallSet<Value*, 16> TempsToInstrument; 1139 SmallVector<Instruction*, 16> ToInstrument; 1140 SmallVector<Instruction*, 8> NoReturnCalls; 1141 int NumAllocas = 0; 1142 bool IsWrite; 1143 1144 // Fill the set of memory operations to instrument. 1145 for (Function::iterator FI = F.begin(), FE = F.end(); 1146 FI != FE; ++FI) { 1147 TempsToInstrument.clear(); 1148 int NumInsnsPerBB = 0; 1149 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 1150 BI != BE; ++BI) { 1151 if (LooksLikeCodeInBug11395(BI)) return false; 1152 if (Value *Addr = isInterestingMemoryAccess(BI, &IsWrite)) { 1153 if (ClOpt && ClOptSameTemp) { 1154 if (!TempsToInstrument.insert(Addr)) 1155 continue; // We've seen this temp in the current BB. 1156 } 1157 } else if (isa<MemIntrinsic>(BI) && ClMemIntrin) { 1158 // ok, take it. 1159 } else { 1160 if (isa<AllocaInst>(BI)) 1161 NumAllocas++; 1162 CallSite CS(BI); 1163 if (CS) { 1164 // A call inside BB. 1165 TempsToInstrument.clear(); 1166 if (CS.doesNotReturn()) 1167 NoReturnCalls.push_back(CS.getInstruction()); 1168 } 1169 continue; 1170 } 1171 ToInstrument.push_back(BI); 1172 NumInsnsPerBB++; 1173 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) 1174 break; 1175 } 1176 } 1177 1178 Function *UninstrumentedDuplicate = 0; 1179 bool LikelyToInstrument = 1180 !NoReturnCalls.empty() || !ToInstrument.empty() || (NumAllocas > 0); 1181 if (ClKeepUninstrumented && LikelyToInstrument) { 1182 ValueToValueMapTy VMap; 1183 UninstrumentedDuplicate = CloneFunction(&F, VMap, false); 1184 UninstrumentedDuplicate->removeFnAttr(Attribute::SanitizeAddress); 1185 UninstrumentedDuplicate->setName("NOASAN_" + F.getName()); 1186 F.getParent()->getFunctionList().push_back(UninstrumentedDuplicate); 1187 } 1188 1189 // Instrument. 1190 int NumInstrumented = 0; 1191 for (size_t i = 0, n = ToInstrument.size(); i != n; i++) { 1192 Instruction *Inst = ToInstrument[i]; 1193 if (ClDebugMin < 0 || ClDebugMax < 0 || 1194 (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { 1195 if (isInterestingMemoryAccess(Inst, &IsWrite)) 1196 instrumentMop(Inst); 1197 else 1198 instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); 1199 } 1200 NumInstrumented++; 1201 } 1202 1203 FunctionStackPoisoner FSP(F, *this); 1204 bool ChangedStack = FSP.runOnFunction(); 1205 1206 // We must unpoison the stack before every NoReturn call (throw, _exit, etc). 1207 // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37 1208 for (size_t i = 0, n = NoReturnCalls.size(); i != n; i++) { 1209 Instruction *CI = NoReturnCalls[i]; 1210 IRBuilder<> IRB(CI); 1211 IRB.CreateCall(AsanHandleNoReturnFunc); 1212 } 1213 1214 bool res = NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty(); 1215 DEBUG(dbgs() << "ASAN done instrumenting: " << res << " " << F << "\n"); 1216 1217 if (ClKeepUninstrumented) { 1218 if (!res) { 1219 // No instrumentation is done, no need for the duplicate. 1220 if (UninstrumentedDuplicate) 1221 UninstrumentedDuplicate->eraseFromParent(); 1222 } else { 1223 // The function was instrumented. We must have the duplicate. 1224 assert(UninstrumentedDuplicate); 1225 UninstrumentedDuplicate->setSection("NOASAN"); 1226 assert(!F.hasSection()); 1227 F.setSection("ASAN"); 1228 } 1229 } 1230 1231 return res; 1232 } 1233 1234 static uint64_t ValueForPoison(uint64_t PoisonByte, size_t ShadowRedzoneSize) { 1235 if (ShadowRedzoneSize == 1) return PoisonByte; 1236 if (ShadowRedzoneSize == 2) return (PoisonByte << 8) + PoisonByte; 1237 if (ShadowRedzoneSize == 4) 1238 return (PoisonByte << 24) + (PoisonByte << 16) + 1239 (PoisonByte << 8) + (PoisonByte); 1240 llvm_unreachable("ShadowRedzoneSize is either 1, 2 or 4"); 1241 } 1242 1243 static void PoisonShadowPartialRightRedzone(uint8_t *Shadow, 1244 size_t Size, 1245 size_t RZSize, 1246 size_t ShadowGranularity, 1247 uint8_t Magic) { 1248 for (size_t i = 0; i < RZSize; 1249 i+= ShadowGranularity, Shadow++) { 1250 if (i + ShadowGranularity <= Size) { 1251 *Shadow = 0; // fully addressable 1252 } else if (i >= Size) { 1253 *Shadow = Magic; // unaddressable 1254 } else { 1255 *Shadow = Size - i; // first Size-i bytes are addressable 1256 } 1257 } 1258 } 1259 1260 // Workaround for bug 11395: we don't want to instrument stack in functions 1261 // with large assembly blobs (32-bit only), otherwise reg alloc may crash. 1262 // FIXME: remove once the bug 11395 is fixed. 1263 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { 1264 if (LongSize != 32) return false; 1265 CallInst *CI = dyn_cast<CallInst>(I); 1266 if (!CI || !CI->isInlineAsm()) return false; 1267 if (CI->getNumArgOperands() <= 5) return false; 1268 // We have inline assembly with quite a few arguments. 1269 return true; 1270 } 1271 1272 void FunctionStackPoisoner::initializeCallbacks(Module &M) { 1273 IRBuilder<> IRB(*C); 1274 AsanStackMallocFunc = checkInterfaceFunction(M.getOrInsertFunction( 1275 kAsanStackMallocName, IntptrTy, IntptrTy, IntptrTy, NULL)); 1276 AsanStackFreeFunc = checkInterfaceFunction(M.getOrInsertFunction( 1277 kAsanStackFreeName, IRB.getVoidTy(), 1278 IntptrTy, IntptrTy, IntptrTy, NULL)); 1279 AsanPoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction( 1280 kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); 1281 AsanUnpoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction( 1282 kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); 1283 } 1284 1285 void FunctionStackPoisoner::poisonRedZones( 1286 const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> IRB, Value *ShadowBase, 1287 bool DoPoison) { 1288 size_t ShadowRZSize = RedzoneSize() >> Mapping.Scale; 1289 assert(ShadowRZSize >= 1 && ShadowRZSize <= 4); 1290 Type *RZTy = Type::getIntNTy(*C, ShadowRZSize * 8); 1291 Type *RZPtrTy = PointerType::get(RZTy, 0); 1292 1293 Value *PoisonLeft = ConstantInt::get(RZTy, 1294 ValueForPoison(DoPoison ? kAsanStackLeftRedzoneMagic : 0LL, ShadowRZSize)); 1295 Value *PoisonMid = ConstantInt::get(RZTy, 1296 ValueForPoison(DoPoison ? kAsanStackMidRedzoneMagic : 0LL, ShadowRZSize)); 1297 Value *PoisonRight = ConstantInt::get(RZTy, 1298 ValueForPoison(DoPoison ? kAsanStackRightRedzoneMagic : 0LL, ShadowRZSize)); 1299 1300 // poison the first red zone. 1301 IRB.CreateStore(PoisonLeft, IRB.CreateIntToPtr(ShadowBase, RZPtrTy)); 1302 1303 // poison all other red zones. 1304 uint64_t Pos = RedzoneSize(); 1305 for (size_t i = 0, n = AllocaVec.size(); i < n; i++) { 1306 AllocaInst *AI = AllocaVec[i]; 1307 uint64_t SizeInBytes = getAllocaSizeInBytes(AI); 1308 uint64_t AlignedSize = getAlignedAllocaSize(AI); 1309 assert(AlignedSize - SizeInBytes < RedzoneSize()); 1310 Value *Ptr = NULL; 1311 1312 Pos += AlignedSize; 1313 1314 assert(ShadowBase->getType() == IntptrTy); 1315 if (SizeInBytes < AlignedSize) { 1316 // Poison the partial redzone at right 1317 Ptr = IRB.CreateAdd( 1318 ShadowBase, ConstantInt::get(IntptrTy, 1319 (Pos >> Mapping.Scale) - ShadowRZSize)); 1320 size_t AddressableBytes = RedzoneSize() - (AlignedSize - SizeInBytes); 1321 uint32_t Poison = 0; 1322 if (DoPoison) { 1323 PoisonShadowPartialRightRedzone((uint8_t*)&Poison, AddressableBytes, 1324 RedzoneSize(), 1325 1ULL << Mapping.Scale, 1326 kAsanStackPartialRedzoneMagic); 1327 Poison = 1328 ASan.TD->isLittleEndian() 1329 ? support::endian::byte_swap<uint32_t, support::little>(Poison) 1330 : support::endian::byte_swap<uint32_t, support::big>(Poison); 1331 } 1332 Value *PartialPoison = ConstantInt::get(RZTy, Poison); 1333 IRB.CreateStore(PartialPoison, IRB.CreateIntToPtr(Ptr, RZPtrTy)); 1334 } 1335 1336 // Poison the full redzone at right. 1337 Ptr = IRB.CreateAdd(ShadowBase, 1338 ConstantInt::get(IntptrTy, Pos >> Mapping.Scale)); 1339 bool LastAlloca = (i == AllocaVec.size() - 1); 1340 Value *Poison = LastAlloca ? PoisonRight : PoisonMid; 1341 IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, RZPtrTy)); 1342 1343 Pos += RedzoneSize(); 1344 } 1345 } 1346 1347 void FunctionStackPoisoner::poisonStack() { 1348 uint64_t LocalStackSize = TotalStackSize + 1349 (AllocaVec.size() + 1) * RedzoneSize(); 1350 1351 bool DoStackMalloc = ASan.CheckUseAfterReturn 1352 && LocalStackSize <= kMaxStackMallocSize; 1353 1354 assert(AllocaVec.size() > 0); 1355 Instruction *InsBefore = AllocaVec[0]; 1356 IRBuilder<> IRB(InsBefore); 1357 1358 1359 Type *ByteArrayTy = ArrayType::get(IRB.getInt8Ty(), LocalStackSize); 1360 AllocaInst *MyAlloca = 1361 new AllocaInst(ByteArrayTy, "MyAlloca", InsBefore); 1362 if (ClRealignStack && StackAlignment < RedzoneSize()) 1363 StackAlignment = RedzoneSize(); 1364 MyAlloca->setAlignment(StackAlignment); 1365 assert(MyAlloca->isStaticAlloca()); 1366 Value *OrigStackBase = IRB.CreatePointerCast(MyAlloca, IntptrTy); 1367 Value *LocalStackBase = OrigStackBase; 1368 1369 if (DoStackMalloc) { 1370 LocalStackBase = IRB.CreateCall2(AsanStackMallocFunc, 1371 ConstantInt::get(IntptrTy, LocalStackSize), OrigStackBase); 1372 } 1373 1374 // This string will be parsed by the run-time (DescribeAddressIfStack). 1375 SmallString<2048> StackDescriptionStorage; 1376 raw_svector_ostream StackDescription(StackDescriptionStorage); 1377 StackDescription << AllocaVec.size() << " "; 1378 1379 // Insert poison calls for lifetime intrinsics for alloca. 1380 bool HavePoisonedAllocas = false; 1381 for (size_t i = 0, n = AllocaPoisonCallVec.size(); i < n; i++) { 1382 const AllocaPoisonCall &APC = AllocaPoisonCallVec[i]; 1383 IntrinsicInst *II = APC.InsBefore; 1384 AllocaInst *AI = findAllocaForValue(II->getArgOperand(1)); 1385 assert(AI); 1386 IRBuilder<> IRB(II); 1387 poisonAlloca(AI, APC.Size, IRB, APC.DoPoison); 1388 HavePoisonedAllocas |= APC.DoPoison; 1389 } 1390 1391 uint64_t Pos = RedzoneSize(); 1392 // Replace Alloca instructions with base+offset. 1393 for (size_t i = 0, n = AllocaVec.size(); i < n; i++) { 1394 AllocaInst *AI = AllocaVec[i]; 1395 uint64_t SizeInBytes = getAllocaSizeInBytes(AI); 1396 StringRef Name = AI->getName(); 1397 StackDescription << Pos << " " << SizeInBytes << " " 1398 << Name.size() << " " << Name << " "; 1399 uint64_t AlignedSize = getAlignedAllocaSize(AI); 1400 assert((AlignedSize % RedzoneSize()) == 0); 1401 Value *NewAllocaPtr = IRB.CreateIntToPtr( 1402 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Pos)), 1403 AI->getType()); 1404 replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB); 1405 AI->replaceAllUsesWith(NewAllocaPtr); 1406 Pos += AlignedSize + RedzoneSize(); 1407 } 1408 assert(Pos == LocalStackSize); 1409 1410 // The left-most redzone has enough space for at least 4 pointers. 1411 // Write the Magic value to redzone[0]. 1412 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); 1413 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), 1414 BasePlus0); 1415 // Write the frame description constant to redzone[1]. 1416 Value *BasePlus1 = IRB.CreateIntToPtr( 1417 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, ASan.LongSize/8)), 1418 IntptrPtrTy); 1419 GlobalVariable *StackDescriptionGlobal = 1420 createPrivateGlobalForString(*F.getParent(), StackDescription.str()); 1421 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, 1422 IntptrTy); 1423 IRB.CreateStore(Description, BasePlus1); 1424 // Write the PC to redzone[2]. 1425 Value *BasePlus2 = IRB.CreateIntToPtr( 1426 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, 1427 2 * ASan.LongSize/8)), 1428 IntptrPtrTy); 1429 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); 1430 1431 // Poison the stack redzones at the entry. 1432 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); 1433 poisonRedZones(AllocaVec, IRB, ShadowBase, true); 1434 1435 // Unpoison the stack before all ret instructions. 1436 for (size_t i = 0, n = RetVec.size(); i < n; i++) { 1437 Instruction *Ret = RetVec[i]; 1438 IRBuilder<> IRBRet(Ret); 1439 // Mark the current frame as retired. 1440 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), 1441 BasePlus0); 1442 // Unpoison the stack. 1443 poisonRedZones(AllocaVec, IRBRet, ShadowBase, false); 1444 if (DoStackMalloc) { 1445 // In use-after-return mode, mark the whole stack frame unaddressable. 1446 IRBRet.CreateCall3(AsanStackFreeFunc, LocalStackBase, 1447 ConstantInt::get(IntptrTy, LocalStackSize), 1448 OrigStackBase); 1449 } else if (HavePoisonedAllocas) { 1450 // If we poisoned some allocas in llvm.lifetime analysis, 1451 // unpoison whole stack frame now. 1452 assert(LocalStackBase == OrigStackBase); 1453 poisonAlloca(LocalStackBase, LocalStackSize, IRBRet, false); 1454 } 1455 } 1456 1457 // We are done. Remove the old unused alloca instructions. 1458 for (size_t i = 0, n = AllocaVec.size(); i < n; i++) 1459 AllocaVec[i]->eraseFromParent(); 1460 } 1461 1462 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, 1463 IRBuilder<> IRB, bool DoPoison) { 1464 // For now just insert the call to ASan runtime. 1465 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); 1466 Value *SizeArg = ConstantInt::get(IntptrTy, Size); 1467 IRB.CreateCall2(DoPoison ? AsanPoisonStackMemoryFunc 1468 : AsanUnpoisonStackMemoryFunc, 1469 AddrArg, SizeArg); 1470 } 1471 1472 // Handling llvm.lifetime intrinsics for a given %alloca: 1473 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. 1474 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect 1475 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory 1476 // could be poisoned by previous llvm.lifetime.end instruction, as the 1477 // variable may go in and out of scope several times, e.g. in loops). 1478 // (3) if we poisoned at least one %alloca in a function, 1479 // unpoison the whole stack frame at function exit. 1480 1481 AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) { 1482 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) 1483 // We're intested only in allocas we can handle. 1484 return isInterestingAlloca(*AI) ? AI : 0; 1485 // See if we've already calculated (or started to calculate) alloca for a 1486 // given value. 1487 AllocaForValueMapTy::iterator I = AllocaForValue.find(V); 1488 if (I != AllocaForValue.end()) 1489 return I->second; 1490 // Store 0 while we're calculating alloca for value V to avoid 1491 // infinite recursion if the value references itself. 1492 AllocaForValue[V] = 0; 1493 AllocaInst *Res = 0; 1494 if (CastInst *CI = dyn_cast<CastInst>(V)) 1495 Res = findAllocaForValue(CI->getOperand(0)); 1496 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 1497 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1498 Value *IncValue = PN->getIncomingValue(i); 1499 // Allow self-referencing phi-nodes. 1500 if (IncValue == PN) continue; 1501 AllocaInst *IncValueAI = findAllocaForValue(IncValue); 1502 // AI for incoming values should exist and should all be equal. 1503 if (IncValueAI == 0 || (Res != 0 && IncValueAI != Res)) 1504 return 0; 1505 Res = IncValueAI; 1506 } 1507 } 1508 if (Res != 0) 1509 AllocaForValue[V] = Res; 1510 return Res; 1511 } 1512