Home | History | Annotate | Download | only in Instrumentation
      1 //===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file is a part of AddressSanitizer, an address sanity checker.
     11 // Details of the algorithm:
     12 //  http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #define DEBUG_TYPE "asan"
     17 
     18 #include "llvm/Transforms/Instrumentation.h"
     19 #include "llvm/ADT/ArrayRef.h"
     20 #include "llvm/ADT/DenseMap.h"
     21 #include "llvm/ADT/DepthFirstIterator.h"
     22 #include "llvm/ADT/OwningPtr.h"
     23 #include "llvm/ADT/SmallSet.h"
     24 #include "llvm/ADT/SmallString.h"
     25 #include "llvm/ADT/SmallVector.h"
     26 #include "llvm/ADT/StringExtras.h"
     27 #include "llvm/ADT/Triple.h"
     28 #include "llvm/DIBuilder.h"
     29 #include "llvm/IR/DataLayout.h"
     30 #include "llvm/IR/Function.h"
     31 #include "llvm/IR/IRBuilder.h"
     32 #include "llvm/IR/InlineAsm.h"
     33 #include "llvm/IR/IntrinsicInst.h"
     34 #include "llvm/IR/LLVMContext.h"
     35 #include "llvm/IR/Module.h"
     36 #include "llvm/IR/Type.h"
     37 #include "llvm/InstVisitor.h"
     38 #include "llvm/Support/CallSite.h"
     39 #include "llvm/Support/CommandLine.h"
     40 #include "llvm/Support/DataTypes.h"
     41 #include "llvm/Support/Debug.h"
     42 #include "llvm/Support/Endian.h"
     43 #include "llvm/Support/raw_ostream.h"
     44 #include "llvm/Support/system_error.h"
     45 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     46 #include "llvm/Transforms/Utils/Cloning.h"
     47 #include "llvm/Transforms/Utils/Local.h"
     48 #include "llvm/Transforms/Utils/ModuleUtils.h"
     49 #include "llvm/Transforms/Utils/SpecialCaseList.h"
     50 #include <algorithm>
     51 #include <string>
     52 
     53 using namespace llvm;
     54 
     55 static const uint64_t kDefaultShadowScale = 3;
     56 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
     57 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
     58 static const uint64_t kDefaultShort64bitShadowOffset = 0x7FFF8000;  // < 2G.
     59 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41;
     60 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa8000;
     61 
     62 static const size_t kMaxStackMallocSize = 1 << 16;  // 64K
     63 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
     64 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
     65 
     66 static const char *const kAsanModuleCtorName = "asan.module_ctor";
     67 static const char *const kAsanModuleDtorName = "asan.module_dtor";
     68 static const int         kAsanCtorAndCtorPriority = 1;
     69 static const char *const kAsanReportErrorTemplate = "__asan_report_";
     70 static const char *const kAsanReportLoadN = "__asan_report_load_n";
     71 static const char *const kAsanReportStoreN = "__asan_report_store_n";
     72 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
     73 static const char *const kAsanUnregisterGlobalsName =
     74     "__asan_unregister_globals";
     75 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
     76 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
     77 static const char *const kAsanInitName = "__asan_init_v3";
     78 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
     79 static const char *const kAsanMappingOffsetName = "__asan_mapping_offset";
     80 static const char *const kAsanMappingScaleName = "__asan_mapping_scale";
     81 static const char *const kAsanStackMallocName = "__asan_stack_malloc";
     82 static const char *const kAsanStackFreeName = "__asan_stack_free";
     83 static const char *const kAsanGenPrefix = "__asan_gen_";
     84 static const char *const kAsanPoisonStackMemoryName =
     85     "__asan_poison_stack_memory";
     86 static const char *const kAsanUnpoisonStackMemoryName =
     87     "__asan_unpoison_stack_memory";
     88 
     89 static const int kAsanStackLeftRedzoneMagic = 0xf1;
     90 static const int kAsanStackMidRedzoneMagic = 0xf2;
     91 static const int kAsanStackRightRedzoneMagic = 0xf3;
     92 static const int kAsanStackPartialRedzoneMagic = 0xf4;
     93 
     94 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
     95 static const size_t kNumberOfAccessSizes = 5;
     96 
     97 // Command-line flags.
     98 
     99 // This flag may need to be replaced with -f[no-]asan-reads.
    100 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
    101        cl::desc("instrument read instructions"), cl::Hidden, cl::init(true));
    102 static cl::opt<bool> ClInstrumentWrites("asan-instrument-writes",
    103        cl::desc("instrument write instructions"), cl::Hidden, cl::init(true));
    104 static cl::opt<bool> ClInstrumentAtomics("asan-instrument-atomics",
    105        cl::desc("instrument atomic instructions (rmw, cmpxchg)"),
    106        cl::Hidden, cl::init(true));
    107 static cl::opt<bool> ClAlwaysSlowPath("asan-always-slow-path",
    108        cl::desc("use instrumentation with slow path for all accesses"),
    109        cl::Hidden, cl::init(false));
    110 // This flag limits the number of instructions to be instrumented
    111 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
    112 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
    113 // set it to 10000.
    114 static cl::opt<int> ClMaxInsnsToInstrumentPerBB("asan-max-ins-per-bb",
    115        cl::init(10000),
    116        cl::desc("maximal number of instructions to instrument in any given BB"),
    117        cl::Hidden);
    118 // This flag may need to be replaced with -f[no]asan-stack.
    119 static cl::opt<bool> ClStack("asan-stack",
    120        cl::desc("Handle stack memory"), cl::Hidden, cl::init(true));
    121 // This flag may need to be replaced with -f[no]asan-use-after-return.
    122 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
    123        cl::desc("Check return-after-free"), cl::Hidden, cl::init(false));
    124 // This flag may need to be replaced with -f[no]asan-globals.
    125 static cl::opt<bool> ClGlobals("asan-globals",
    126        cl::desc("Handle global objects"), cl::Hidden, cl::init(true));
    127 static cl::opt<bool> ClInitializers("asan-initialization-order",
    128        cl::desc("Handle C++ initializer order"), cl::Hidden, cl::init(false));
    129 static cl::opt<bool> ClMemIntrin("asan-memintrin",
    130        cl::desc("Handle memset/memcpy/memmove"), cl::Hidden, cl::init(true));
    131 static cl::opt<bool> ClRealignStack("asan-realign-stack",
    132        cl::desc("Realign stack to 32"), cl::Hidden, cl::init(true));
    133 static cl::opt<std::string> ClBlacklistFile("asan-blacklist",
    134        cl::desc("File containing the list of objects to ignore "
    135                 "during instrumentation"), cl::Hidden);
    136 
    137 // This is an experimental feature that will allow to choose between
    138 // instrumented and non-instrumented code at link-time.
    139 // If this option is on, just before instrumenting a function we create its
    140 // clone; if the function is not changed by asan the clone is deleted.
    141 // If we end up with a clone, we put the instrumented function into a section
    142 // called "ASAN" and the uninstrumented function into a section called "NOASAN".
    143 //
    144 // This is still a prototype, we need to figure out a way to keep two copies of
    145 // a function so that the linker can easily choose one of them.
    146 static cl::opt<bool> ClKeepUninstrumented("asan-keep-uninstrumented-functions",
    147        cl::desc("Keep uninstrumented copies of functions"),
    148        cl::Hidden, cl::init(false));
    149 
    150 // These flags allow to change the shadow mapping.
    151 // The shadow mapping looks like
    152 //    Shadow = (Mem >> scale) + (1 << offset_log)
    153 static cl::opt<int> ClMappingScale("asan-mapping-scale",
    154        cl::desc("scale of asan shadow mapping"), cl::Hidden, cl::init(0));
    155 static cl::opt<int> ClMappingOffsetLog("asan-mapping-offset-log",
    156        cl::desc("offset of asan shadow mapping"), cl::Hidden, cl::init(-1));
    157 static cl::opt<bool> ClShort64BitOffset("asan-short-64bit-mapping-offset",
    158        cl::desc("Use short immediate constant as the mapping offset for 64bit"),
    159        cl::Hidden, cl::init(true));
    160 
    161 // Optimization flags. Not user visible, used mostly for testing
    162 // and benchmarking the tool.
    163 static cl::opt<bool> ClOpt("asan-opt",
    164        cl::desc("Optimize instrumentation"), cl::Hidden, cl::init(true));
    165 static cl::opt<bool> ClOptSameTemp("asan-opt-same-temp",
    166        cl::desc("Instrument the same temp just once"), cl::Hidden,
    167        cl::init(true));
    168 static cl::opt<bool> ClOptGlobals("asan-opt-globals",
    169        cl::desc("Don't instrument scalar globals"), cl::Hidden, cl::init(true));
    170 
    171 static cl::opt<bool> ClCheckLifetime("asan-check-lifetime",
    172        cl::desc("Use llvm.lifetime intrinsics to insert extra checks"),
    173        cl::Hidden, cl::init(false));
    174 
    175 // Debug flags.
    176 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
    177                             cl::init(0));
    178 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
    179                                  cl::Hidden, cl::init(0));
    180 static cl::opt<std::string> ClDebugFunc("asan-debug-func",
    181                                         cl::Hidden, cl::desc("Debug func"));
    182 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
    183                                cl::Hidden, cl::init(-1));
    184 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"),
    185                                cl::Hidden, cl::init(-1));
    186 
    187 namespace {
    188 /// A set of dynamically initialized globals extracted from metadata.
    189 class SetOfDynamicallyInitializedGlobals {
    190  public:
    191   void Init(Module& M) {
    192     // Clang generates metadata identifying all dynamically initialized globals.
    193     NamedMDNode *DynamicGlobals =
    194         M.getNamedMetadata("llvm.asan.dynamically_initialized_globals");
    195     if (!DynamicGlobals)
    196       return;
    197     for (int i = 0, n = DynamicGlobals->getNumOperands(); i < n; ++i) {
    198       MDNode *MDN = DynamicGlobals->getOperand(i);
    199       assert(MDN->getNumOperands() == 1);
    200       Value *VG = MDN->getOperand(0);
    201       // The optimizer may optimize away a global entirely, in which case we
    202       // cannot instrument access to it.
    203       if (!VG)
    204         continue;
    205       DynInitGlobals.insert(cast<GlobalVariable>(VG));
    206     }
    207   }
    208   bool Contains(GlobalVariable *G) { return DynInitGlobals.count(G) != 0; }
    209  private:
    210   SmallSet<GlobalValue*, 32> DynInitGlobals;
    211 };
    212 
    213 /// This struct defines the shadow mapping using the rule:
    214 ///   shadow = (mem >> Scale) ADD-or-OR Offset.
    215 struct ShadowMapping {
    216   int Scale;
    217   uint64_t Offset;
    218   bool OrShadowOffset;
    219 };
    220 
    221 static ShadowMapping getShadowMapping(const Module &M, int LongSize,
    222                                       bool ZeroBaseShadow) {
    223   llvm::Triple TargetTriple(M.getTargetTriple());
    224   bool IsAndroid = TargetTriple.getEnvironment() == llvm::Triple::Android;
    225   bool IsMacOSX = TargetTriple.getOS() == llvm::Triple::MacOSX;
    226   bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 ||
    227                  TargetTriple.getArch() == llvm::Triple::ppc64le;
    228   bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
    229   bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips ||
    230                   TargetTriple.getArch() == llvm::Triple::mipsel;
    231 
    232   ShadowMapping Mapping;
    233 
    234   // OR-ing shadow offset if more efficient (at least on x86),
    235   // but on ppc64 we have to use add since the shadow offset is not neccesary
    236   // 1/8-th of the address space.
    237   Mapping.OrShadowOffset = !IsPPC64 && !ClShort64BitOffset;
    238 
    239   Mapping.Offset = (IsAndroid || ZeroBaseShadow) ? 0 :
    240       (LongSize == 32 ?
    241        (IsMIPS32 ? kMIPS32_ShadowOffset32 : kDefaultShadowOffset32) :
    242        IsPPC64 ? kPPC64_ShadowOffset64 : kDefaultShadowOffset64);
    243   if (!ZeroBaseShadow && ClShort64BitOffset && IsX86_64 && !IsMacOSX) {
    244     assert(LongSize == 64);
    245     Mapping.Offset = kDefaultShort64bitShadowOffset;
    246   }
    247   if (!ZeroBaseShadow && ClMappingOffsetLog >= 0) {
    248     // Zero offset log is the special case.
    249     Mapping.Offset = (ClMappingOffsetLog == 0) ? 0 : 1ULL << ClMappingOffsetLog;
    250   }
    251 
    252   Mapping.Scale = kDefaultShadowScale;
    253   if (ClMappingScale) {
    254     Mapping.Scale = ClMappingScale;
    255   }
    256 
    257   return Mapping;
    258 }
    259 
    260 static size_t RedzoneSizeForScale(int MappingScale) {
    261   // Redzone used for stack and globals is at least 32 bytes.
    262   // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
    263   return std::max(32U, 1U << MappingScale);
    264 }
    265 
    266 /// AddressSanitizer: instrument the code in module to find memory bugs.
    267 struct AddressSanitizer : public FunctionPass {
    268   AddressSanitizer(bool CheckInitOrder = true,
    269                    bool CheckUseAfterReturn = false,
    270                    bool CheckLifetime = false,
    271                    StringRef BlacklistFile = StringRef(),
    272                    bool ZeroBaseShadow = false)
    273       : FunctionPass(ID),
    274         CheckInitOrder(CheckInitOrder || ClInitializers),
    275         CheckUseAfterReturn(CheckUseAfterReturn || ClUseAfterReturn),
    276         CheckLifetime(CheckLifetime || ClCheckLifetime),
    277         BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
    278                                             : BlacklistFile),
    279         ZeroBaseShadow(ZeroBaseShadow) {}
    280   virtual const char *getPassName() const {
    281     return "AddressSanitizerFunctionPass";
    282   }
    283   void instrumentMop(Instruction *I);
    284   void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
    285                          Value *Addr, uint32_t TypeSize, bool IsWrite,
    286                          Value *SizeArgument);
    287   Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
    288                            Value *ShadowValue, uint32_t TypeSize);
    289   Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
    290                                  bool IsWrite, size_t AccessSizeIndex,
    291                                  Value *SizeArgument);
    292   bool instrumentMemIntrinsic(MemIntrinsic *MI);
    293   void instrumentMemIntrinsicParam(Instruction *OrigIns, Value *Addr,
    294                                    Value *Size,
    295                                    Instruction *InsertBefore, bool IsWrite);
    296   Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
    297   bool runOnFunction(Function &F);
    298   bool maybeInsertAsanInitAtFunctionEntry(Function &F);
    299   void emitShadowMapping(Module &M, IRBuilder<> &IRB) const;
    300   virtual bool doInitialization(Module &M);
    301   static char ID;  // Pass identification, replacement for typeid
    302 
    303  private:
    304   void initializeCallbacks(Module &M);
    305 
    306   bool ShouldInstrumentGlobal(GlobalVariable *G);
    307   bool LooksLikeCodeInBug11395(Instruction *I);
    308   void FindDynamicInitializers(Module &M);
    309 
    310   bool CheckInitOrder;
    311   bool CheckUseAfterReturn;
    312   bool CheckLifetime;
    313   SmallString<64> BlacklistFile;
    314   bool ZeroBaseShadow;
    315 
    316   LLVMContext *C;
    317   DataLayout *TD;
    318   int LongSize;
    319   Type *IntptrTy;
    320   ShadowMapping Mapping;
    321   Function *AsanCtorFunction;
    322   Function *AsanInitFunction;
    323   Function *AsanHandleNoReturnFunc;
    324   OwningPtr<SpecialCaseList> BL;
    325   // This array is indexed by AccessIsWrite and log2(AccessSize).
    326   Function *AsanErrorCallback[2][kNumberOfAccessSizes];
    327   // This array is indexed by AccessIsWrite.
    328   Function *AsanErrorCallbackSized[2];
    329   InlineAsm *EmptyAsm;
    330   SetOfDynamicallyInitializedGlobals DynamicallyInitializedGlobals;
    331 
    332   friend struct FunctionStackPoisoner;
    333 };
    334 
    335 class AddressSanitizerModule : public ModulePass {
    336  public:
    337   AddressSanitizerModule(bool CheckInitOrder = true,
    338                          StringRef BlacklistFile = StringRef(),
    339                          bool ZeroBaseShadow = false)
    340       : ModulePass(ID),
    341         CheckInitOrder(CheckInitOrder || ClInitializers),
    342         BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile
    343                                             : BlacklistFile),
    344         ZeroBaseShadow(ZeroBaseShadow) {}
    345   bool runOnModule(Module &M);
    346   static char ID;  // Pass identification, replacement for typeid
    347   virtual const char *getPassName() const {
    348     return "AddressSanitizerModule";
    349   }
    350 
    351  private:
    352   void initializeCallbacks(Module &M);
    353 
    354   bool ShouldInstrumentGlobal(GlobalVariable *G);
    355   void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
    356   size_t RedzoneSize() const {
    357     return RedzoneSizeForScale(Mapping.Scale);
    358   }
    359 
    360   bool CheckInitOrder;
    361   SmallString<64> BlacklistFile;
    362   bool ZeroBaseShadow;
    363 
    364   OwningPtr<SpecialCaseList> BL;
    365   SetOfDynamicallyInitializedGlobals DynamicallyInitializedGlobals;
    366   Type *IntptrTy;
    367   LLVMContext *C;
    368   DataLayout *TD;
    369   ShadowMapping Mapping;
    370   Function *AsanPoisonGlobals;
    371   Function *AsanUnpoisonGlobals;
    372   Function *AsanRegisterGlobals;
    373   Function *AsanUnregisterGlobals;
    374 };
    375 
    376 // Stack poisoning does not play well with exception handling.
    377 // When an exception is thrown, we essentially bypass the code
    378 // that unpoisones the stack. This is why the run-time library has
    379 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
    380 // stack in the interceptor. This however does not work inside the
    381 // actual function which catches the exception. Most likely because the
    382 // compiler hoists the load of the shadow value somewhere too high.
    383 // This causes asan to report a non-existing bug on 453.povray.
    384 // It sounds like an LLVM bug.
    385 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
    386   Function &F;
    387   AddressSanitizer &ASan;
    388   DIBuilder DIB;
    389   LLVMContext *C;
    390   Type *IntptrTy;
    391   Type *IntptrPtrTy;
    392   ShadowMapping Mapping;
    393 
    394   SmallVector<AllocaInst*, 16> AllocaVec;
    395   SmallVector<Instruction*, 8> RetVec;
    396   uint64_t TotalStackSize;
    397   unsigned StackAlignment;
    398 
    399   Function *AsanStackMallocFunc, *AsanStackFreeFunc;
    400   Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc;
    401 
    402   // Stores a place and arguments of poisoning/unpoisoning call for alloca.
    403   struct AllocaPoisonCall {
    404     IntrinsicInst *InsBefore;
    405     uint64_t Size;
    406     bool DoPoison;
    407   };
    408   SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec;
    409 
    410   // Maps Value to an AllocaInst from which the Value is originated.
    411   typedef DenseMap<Value*, AllocaInst*> AllocaForValueMapTy;
    412   AllocaForValueMapTy AllocaForValue;
    413 
    414   FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
    415       : F(F), ASan(ASan), DIB(*F.getParent()), C(ASan.C),
    416         IntptrTy(ASan.IntptrTy), IntptrPtrTy(PointerType::get(IntptrTy, 0)),
    417         Mapping(ASan.Mapping),
    418         TotalStackSize(0), StackAlignment(1 << Mapping.Scale) {}
    419 
    420   bool runOnFunction() {
    421     if (!ClStack) return false;
    422     // Collect alloca, ret, lifetime instructions etc.
    423     for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()),
    424          DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) {
    425       BasicBlock *BB = *DI;
    426       visit(*BB);
    427     }
    428     if (AllocaVec.empty()) return false;
    429 
    430     initializeCallbacks(*F.getParent());
    431 
    432     poisonStack();
    433 
    434     if (ClDebugStack) {
    435       DEBUG(dbgs() << F);
    436     }
    437     return true;
    438   }
    439 
    440   // Finds all static Alloca instructions and puts
    441   // poisoned red zones around all of them.
    442   // Then unpoison everything back before the function returns.
    443   void poisonStack();
    444 
    445   // ----------------------- Visitors.
    446   /// \brief Collect all Ret instructions.
    447   void visitReturnInst(ReturnInst &RI) {
    448     RetVec.push_back(&RI);
    449   }
    450 
    451   /// \brief Collect Alloca instructions we want (and can) handle.
    452   void visitAllocaInst(AllocaInst &AI) {
    453     if (!isInterestingAlloca(AI)) return;
    454 
    455     StackAlignment = std::max(StackAlignment, AI.getAlignment());
    456     AllocaVec.push_back(&AI);
    457     uint64_t AlignedSize = getAlignedAllocaSize(&AI);
    458     TotalStackSize += AlignedSize;
    459   }
    460 
    461   /// \brief Collect lifetime intrinsic calls to check for use-after-scope
    462   /// errors.
    463   void visitIntrinsicInst(IntrinsicInst &II) {
    464     if (!ASan.CheckLifetime) return;
    465     Intrinsic::ID ID = II.getIntrinsicID();
    466     if (ID != Intrinsic::lifetime_start &&
    467         ID != Intrinsic::lifetime_end)
    468       return;
    469     // Found lifetime intrinsic, add ASan instrumentation if necessary.
    470     ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
    471     // If size argument is undefined, don't do anything.
    472     if (Size->isMinusOne()) return;
    473     // Check that size doesn't saturate uint64_t and can
    474     // be stored in IntptrTy.
    475     const uint64_t SizeValue = Size->getValue().getLimitedValue();
    476     if (SizeValue == ~0ULL ||
    477         !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
    478       return;
    479     // Find alloca instruction that corresponds to llvm.lifetime argument.
    480     AllocaInst *AI = findAllocaForValue(II.getArgOperand(1));
    481     if (!AI) return;
    482     bool DoPoison = (ID == Intrinsic::lifetime_end);
    483     AllocaPoisonCall APC = {&II, SizeValue, DoPoison};
    484     AllocaPoisonCallVec.push_back(APC);
    485   }
    486 
    487   // ---------------------- Helpers.
    488   void initializeCallbacks(Module &M);
    489 
    490   // Check if we want (and can) handle this alloca.
    491   bool isInterestingAlloca(AllocaInst &AI) {
    492     return (!AI.isArrayAllocation() &&
    493             AI.isStaticAlloca() &&
    494             AI.getAlignment() <= RedzoneSize() &&
    495             AI.getAllocatedType()->isSized());
    496   }
    497 
    498   size_t RedzoneSize() const {
    499     return RedzoneSizeForScale(Mapping.Scale);
    500   }
    501   uint64_t getAllocaSizeInBytes(AllocaInst *AI) {
    502     Type *Ty = AI->getAllocatedType();
    503     uint64_t SizeInBytes = ASan.TD->getTypeAllocSize(Ty);
    504     return SizeInBytes;
    505   }
    506   uint64_t getAlignedSize(uint64_t SizeInBytes) {
    507     size_t RZ = RedzoneSize();
    508     return ((SizeInBytes + RZ - 1) / RZ) * RZ;
    509   }
    510   uint64_t getAlignedAllocaSize(AllocaInst *AI) {
    511     uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
    512     return getAlignedSize(SizeInBytes);
    513   }
    514   /// Finds alloca where the value comes from.
    515   AllocaInst *findAllocaForValue(Value *V);
    516   void poisonRedZones(const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> IRB,
    517                       Value *ShadowBase, bool DoPoison);
    518   void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> IRB, bool DoPoison);
    519 };
    520 
    521 }  // namespace
    522 
    523 char AddressSanitizer::ID = 0;
    524 INITIALIZE_PASS(AddressSanitizer, "asan",
    525     "AddressSanitizer: detects use-after-free and out-of-bounds bugs.",
    526     false, false)
    527 FunctionPass *llvm::createAddressSanitizerFunctionPass(
    528     bool CheckInitOrder, bool CheckUseAfterReturn, bool CheckLifetime,
    529     StringRef BlacklistFile, bool ZeroBaseShadow) {
    530   return new AddressSanitizer(CheckInitOrder, CheckUseAfterReturn,
    531                               CheckLifetime, BlacklistFile, ZeroBaseShadow);
    532 }
    533 
    534 char AddressSanitizerModule::ID = 0;
    535 INITIALIZE_PASS(AddressSanitizerModule, "asan-module",
    536     "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
    537     "ModulePass", false, false)
    538 ModulePass *llvm::createAddressSanitizerModulePass(
    539     bool CheckInitOrder, StringRef BlacklistFile, bool ZeroBaseShadow) {
    540   return new AddressSanitizerModule(CheckInitOrder, BlacklistFile,
    541                                     ZeroBaseShadow);
    542 }
    543 
    544 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
    545   size_t Res = countTrailingZeros(TypeSize / 8);
    546   assert(Res < kNumberOfAccessSizes);
    547   return Res;
    548 }
    549 
    550 // \brief Create a constant for Str so that we can pass it to the run-time lib.
    551 static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str) {
    552   Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
    553   GlobalVariable *GV = new GlobalVariable(M, StrConst->getType(), true,
    554                             GlobalValue::InternalLinkage, StrConst,
    555                             kAsanGenPrefix);
    556   GV->setUnnamedAddr(true);  // Ok to merge these.
    557   GV->setAlignment(1);  // Strings may not be merged w/o setting align 1.
    558   return GV;
    559 }
    560 
    561 static bool GlobalWasGeneratedByAsan(GlobalVariable *G) {
    562   return G->getName().find(kAsanGenPrefix) == 0;
    563 }
    564 
    565 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
    566   // Shadow >> scale
    567   Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
    568   if (Mapping.Offset == 0)
    569     return Shadow;
    570   // (Shadow >> scale) | offset
    571   if (Mapping.OrShadowOffset)
    572     return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
    573   else
    574     return IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
    575 }
    576 
    577 void AddressSanitizer::instrumentMemIntrinsicParam(
    578     Instruction *OrigIns,
    579     Value *Addr, Value *Size, Instruction *InsertBefore, bool IsWrite) {
    580   IRBuilder<> IRB(InsertBefore);
    581   if (Size->getType() != IntptrTy)
    582     Size = IRB.CreateIntCast(Size, IntptrTy, false);
    583   // Check the first byte.
    584   instrumentAddress(OrigIns, InsertBefore, Addr, 8, IsWrite, Size);
    585   // Check the last byte.
    586   IRB.SetInsertPoint(InsertBefore);
    587   Value *SizeMinusOne = IRB.CreateSub(Size, ConstantInt::get(IntptrTy, 1));
    588   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
    589   Value *AddrLast = IRB.CreateAdd(AddrLong, SizeMinusOne);
    590   instrumentAddress(OrigIns, InsertBefore, AddrLast, 8, IsWrite, Size);
    591 }
    592 
    593 // Instrument memset/memmove/memcpy
    594 bool AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
    595   Value *Dst = MI->getDest();
    596   MemTransferInst *MemTran = dyn_cast<MemTransferInst>(MI);
    597   Value *Src = MemTran ? MemTran->getSource() : 0;
    598   Value *Length = MI->getLength();
    599 
    600   Constant *ConstLength = dyn_cast<Constant>(Length);
    601   Instruction *InsertBefore = MI;
    602   if (ConstLength) {
    603     if (ConstLength->isNullValue()) return false;
    604   } else {
    605     // The size is not a constant so it could be zero -- check at run-time.
    606     IRBuilder<> IRB(InsertBefore);
    607 
    608     Value *Cmp = IRB.CreateICmpNE(Length,
    609                                   Constant::getNullValue(Length->getType()));
    610     InsertBefore = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false);
    611   }
    612 
    613   instrumentMemIntrinsicParam(MI, Dst, Length, InsertBefore, true);
    614   if (Src)
    615     instrumentMemIntrinsicParam(MI, Src, Length, InsertBefore, false);
    616   return true;
    617 }
    618 
    619 // If I is an interesting memory access, return the PointerOperand
    620 // and set IsWrite. Otherwise return NULL.
    621 static Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite) {
    622   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    623     if (!ClInstrumentReads) return NULL;
    624     *IsWrite = false;
    625     return LI->getPointerOperand();
    626   }
    627   if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    628     if (!ClInstrumentWrites) return NULL;
    629     *IsWrite = true;
    630     return SI->getPointerOperand();
    631   }
    632   if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
    633     if (!ClInstrumentAtomics) return NULL;
    634     *IsWrite = true;
    635     return RMW->getPointerOperand();
    636   }
    637   if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
    638     if (!ClInstrumentAtomics) return NULL;
    639     *IsWrite = true;
    640     return XCHG->getPointerOperand();
    641   }
    642   return NULL;
    643 }
    644 
    645 void AddressSanitizer::instrumentMop(Instruction *I) {
    646   bool IsWrite = false;
    647   Value *Addr = isInterestingMemoryAccess(I, &IsWrite);
    648   assert(Addr);
    649   if (ClOpt && ClOptGlobals) {
    650     if (GlobalVariable *G = dyn_cast<GlobalVariable>(Addr)) {
    651       // If initialization order checking is disabled, a simple access to a
    652       // dynamically initialized global is always valid.
    653       if (!CheckInitOrder)
    654         return;
    655       // If a global variable does not have dynamic initialization we don't
    656       // have to instrument it.  However, if a global does not have initailizer
    657       // at all, we assume it has dynamic initializer (in other TU).
    658       if (G->hasInitializer() && !DynamicallyInitializedGlobals.Contains(G))
    659         return;
    660     }
    661   }
    662 
    663   Type *OrigPtrTy = Addr->getType();
    664   Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
    665 
    666   assert(OrigTy->isSized());
    667   uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy);
    668 
    669   assert((TypeSize % 8) == 0);
    670 
    671   // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check.
    672   if (TypeSize == 8  || TypeSize == 16 ||
    673       TypeSize == 32 || TypeSize == 64 || TypeSize == 128)
    674     return instrumentAddress(I, I, Addr, TypeSize, IsWrite, 0);
    675   // Instrument unusual size (but still multiple of 8).
    676   // We can not do it with a single check, so we do 1-byte check for the first
    677   // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
    678   // to report the actual access size.
    679   IRBuilder<> IRB(I);
    680   Value *LastByte =  IRB.CreateIntToPtr(
    681       IRB.CreateAdd(IRB.CreatePointerCast(Addr, IntptrTy),
    682                     ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
    683       OrigPtrTy);
    684   Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
    685   instrumentAddress(I, I, Addr, 8, IsWrite, Size);
    686   instrumentAddress(I, I, LastByte, 8, IsWrite, Size);
    687 }
    688 
    689 // Validate the result of Module::getOrInsertFunction called for an interface
    690 // function of AddressSanitizer. If the instrumented module defines a function
    691 // with the same name, their prototypes must match, otherwise
    692 // getOrInsertFunction returns a bitcast.
    693 static Function *checkInterfaceFunction(Constant *FuncOrBitcast) {
    694   if (isa<Function>(FuncOrBitcast)) return cast<Function>(FuncOrBitcast);
    695   FuncOrBitcast->dump();
    696   report_fatal_error("trying to redefine an AddressSanitizer "
    697                      "interface function");
    698 }
    699 
    700 Instruction *AddressSanitizer::generateCrashCode(
    701     Instruction *InsertBefore, Value *Addr,
    702     bool IsWrite, size_t AccessSizeIndex, Value *SizeArgument) {
    703   IRBuilder<> IRB(InsertBefore);
    704   CallInst *Call = SizeArgument
    705     ? IRB.CreateCall2(AsanErrorCallbackSized[IsWrite], Addr, SizeArgument)
    706     : IRB.CreateCall(AsanErrorCallback[IsWrite][AccessSizeIndex], Addr);
    707 
    708   // We don't do Call->setDoesNotReturn() because the BB already has
    709   // UnreachableInst at the end.
    710   // This EmptyAsm is required to avoid callback merge.
    711   IRB.CreateCall(EmptyAsm);
    712   return Call;
    713 }
    714 
    715 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
    716                                             Value *ShadowValue,
    717                                             uint32_t TypeSize) {
    718   size_t Granularity = 1 << Mapping.Scale;
    719   // Addr & (Granularity - 1)
    720   Value *LastAccessedByte = IRB.CreateAnd(
    721       AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
    722   // (Addr & (Granularity - 1)) + size - 1
    723   if (TypeSize / 8 > 1)
    724     LastAccessedByte = IRB.CreateAdd(
    725         LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
    726   // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
    727   LastAccessedByte = IRB.CreateIntCast(
    728       LastAccessedByte, ShadowValue->getType(), false);
    729   // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
    730   return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
    731 }
    732 
    733 void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
    734                                          Instruction *InsertBefore,
    735                                          Value *Addr, uint32_t TypeSize,
    736                                          bool IsWrite, Value *SizeArgument) {
    737   IRBuilder<> IRB(InsertBefore);
    738   Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
    739 
    740   Type *ShadowTy  = IntegerType::get(
    741       *C, std::max(8U, TypeSize >> Mapping.Scale));
    742   Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
    743   Value *ShadowPtr = memToShadow(AddrLong, IRB);
    744   Value *CmpVal = Constant::getNullValue(ShadowTy);
    745   Value *ShadowValue = IRB.CreateLoad(
    746       IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
    747 
    748   Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
    749   size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
    750   size_t Granularity = 1 << Mapping.Scale;
    751   TerminatorInst *CrashTerm = 0;
    752 
    753   if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
    754     TerminatorInst *CheckTerm =
    755         SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false);
    756     assert(dyn_cast<BranchInst>(CheckTerm)->isUnconditional());
    757     BasicBlock *NextBB = CheckTerm->getSuccessor(0);
    758     IRB.SetInsertPoint(CheckTerm);
    759     Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
    760     BasicBlock *CrashBlock =
    761         BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
    762     CrashTerm = new UnreachableInst(*C, CrashBlock);
    763     BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
    764     ReplaceInstWithInst(CheckTerm, NewTerm);
    765   } else {
    766     CrashTerm = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), true);
    767   }
    768 
    769   Instruction *Crash = generateCrashCode(
    770       CrashTerm, AddrLong, IsWrite, AccessSizeIndex, SizeArgument);
    771   Crash->setDebugLoc(OrigIns->getDebugLoc());
    772 }
    773 
    774 void AddressSanitizerModule::createInitializerPoisonCalls(
    775     Module &M, GlobalValue *ModuleName) {
    776   // We do all of our poisoning and unpoisoning within _GLOBAL__I_a.
    777   Function *GlobalInit = M.getFunction("_GLOBAL__I_a");
    778   // If that function is not present, this TU contains no globals, or they have
    779   // all been optimized away
    780   if (!GlobalInit)
    781     return;
    782 
    783   // Set up the arguments to our poison/unpoison functions.
    784   IRBuilder<> IRB(GlobalInit->begin()->getFirstInsertionPt());
    785 
    786   // Add a call to poison all external globals before the given function starts.
    787   Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
    788   IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
    789 
    790   // Add calls to unpoison all globals before each return instruction.
    791   for (Function::iterator I = GlobalInit->begin(), E = GlobalInit->end();
    792       I != E; ++I) {
    793     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) {
    794       CallInst::Create(AsanUnpoisonGlobals, "", RI);
    795     }
    796   }
    797 }
    798 
    799 bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) {
    800   Type *Ty = cast<PointerType>(G->getType())->getElementType();
    801   DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
    802 
    803   if (BL->isIn(*G)) return false;
    804   if (!Ty->isSized()) return false;
    805   if (!G->hasInitializer()) return false;
    806   if (GlobalWasGeneratedByAsan(G)) return false;  // Our own global.
    807   // Touch only those globals that will not be defined in other modules.
    808   // Don't handle ODR type linkages since other modules may be built w/o asan.
    809   if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
    810       G->getLinkage() != GlobalVariable::PrivateLinkage &&
    811       G->getLinkage() != GlobalVariable::InternalLinkage)
    812     return false;
    813   // Two problems with thread-locals:
    814   //   - The address of the main thread's copy can't be computed at link-time.
    815   //   - Need to poison all copies, not just the main thread's one.
    816   if (G->isThreadLocal())
    817     return false;
    818   // For now, just ignore this Alloca if the alignment is large.
    819   if (G->getAlignment() > RedzoneSize()) return false;
    820 
    821   // Ignore all the globals with the names starting with "\01L_OBJC_".
    822   // Many of those are put into the .cstring section. The linker compresses
    823   // that section by removing the spare \0s after the string terminator, so
    824   // our redzones get broken.
    825   if ((G->getName().find("\01L_OBJC_") == 0) ||
    826       (G->getName().find("\01l_OBJC_") == 0)) {
    827     DEBUG(dbgs() << "Ignoring \\01L_OBJC_* global: " << *G);
    828     return false;
    829   }
    830 
    831   if (G->hasSection()) {
    832     StringRef Section(G->getSection());
    833     // Ignore the globals from the __OBJC section. The ObjC runtime assumes
    834     // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
    835     // them.
    836     if ((Section.find("__OBJC,") == 0) ||
    837         (Section.find("__DATA, __objc_") == 0)) {
    838       DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G);
    839       return false;
    840     }
    841     // See http://code.google.com/p/address-sanitizer/issues/detail?id=32
    842     // Constant CFString instances are compiled in the following way:
    843     //  -- the string buffer is emitted into
    844     //     __TEXT,__cstring,cstring_literals
    845     //  -- the constant NSConstantString structure referencing that buffer
    846     //     is placed into __DATA,__cfstring
    847     // Therefore there's no point in placing redzones into __DATA,__cfstring.
    848     // Moreover, it causes the linker to crash on OS X 10.7
    849     if (Section.find("__DATA,__cfstring") == 0) {
    850       DEBUG(dbgs() << "Ignoring CFString: " << *G);
    851       return false;
    852     }
    853   }
    854 
    855   return true;
    856 }
    857 
    858 void AddressSanitizerModule::initializeCallbacks(Module &M) {
    859   IRBuilder<> IRB(*C);
    860   // Declare our poisoning and unpoisoning functions.
    861   AsanPoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
    862       kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, NULL));
    863   AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
    864   AsanUnpoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction(
    865       kAsanUnpoisonGlobalsName, IRB.getVoidTy(), NULL));
    866   AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
    867   // Declare functions that register/unregister globals.
    868   AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
    869       kAsanRegisterGlobalsName, IRB.getVoidTy(),
    870       IntptrTy, IntptrTy, NULL));
    871   AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
    872   AsanUnregisterGlobals = checkInterfaceFunction(M.getOrInsertFunction(
    873       kAsanUnregisterGlobalsName,
    874       IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
    875   AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
    876 }
    877 
    878 // This function replaces all global variables with new variables that have
    879 // trailing redzones. It also creates a function that poisons
    880 // redzones and inserts this function into llvm.global_ctors.
    881 bool AddressSanitizerModule::runOnModule(Module &M) {
    882   if (!ClGlobals) return false;
    883   TD = getAnalysisIfAvailable<DataLayout>();
    884   if (!TD)
    885     return false;
    886   BL.reset(new SpecialCaseList(BlacklistFile));
    887   if (BL->isIn(M)) return false;
    888   C = &(M.getContext());
    889   int LongSize = TD->getPointerSizeInBits();
    890   IntptrTy = Type::getIntNTy(*C, LongSize);
    891   Mapping = getShadowMapping(M, LongSize, ZeroBaseShadow);
    892   initializeCallbacks(M);
    893   DynamicallyInitializedGlobals.Init(M);
    894 
    895   SmallVector<GlobalVariable *, 16> GlobalsToChange;
    896 
    897   for (Module::GlobalListType::iterator G = M.global_begin(),
    898        E = M.global_end(); G != E; ++G) {
    899     if (ShouldInstrumentGlobal(G))
    900       GlobalsToChange.push_back(G);
    901   }
    902 
    903   size_t n = GlobalsToChange.size();
    904   if (n == 0) return false;
    905 
    906   // A global is described by a structure
    907   //   size_t beg;
    908   //   size_t size;
    909   //   size_t size_with_redzone;
    910   //   const char *name;
    911   //   const char *module_name;
    912   //   size_t has_dynamic_init;
    913   // We initialize an array of such structures and pass it to a run-time call.
    914   StructType *GlobalStructTy = StructType::get(IntptrTy, IntptrTy,
    915                                                IntptrTy, IntptrTy,
    916                                                IntptrTy, IntptrTy, NULL);
    917   SmallVector<Constant *, 16> Initializers(n), DynamicInit;
    918 
    919 
    920   Function *CtorFunc = M.getFunction(kAsanModuleCtorName);
    921   assert(CtorFunc);
    922   IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator());
    923 
    924   bool HasDynamicallyInitializedGlobals = false;
    925 
    926   GlobalVariable *ModuleName = createPrivateGlobalForString(
    927       M, M.getModuleIdentifier());
    928   // We shouldn't merge same module names, as this string serves as unique
    929   // module ID in runtime.
    930   ModuleName->setUnnamedAddr(false);
    931 
    932   for (size_t i = 0; i < n; i++) {
    933     static const uint64_t kMaxGlobalRedzone = 1 << 18;
    934     GlobalVariable *G = GlobalsToChange[i];
    935     PointerType *PtrTy = cast<PointerType>(G->getType());
    936     Type *Ty = PtrTy->getElementType();
    937     uint64_t SizeInBytes = TD->getTypeAllocSize(Ty);
    938     uint64_t MinRZ = RedzoneSize();
    939     // MinRZ <= RZ <= kMaxGlobalRedzone
    940     // and trying to make RZ to be ~ 1/4 of SizeInBytes.
    941     uint64_t RZ = std::max(MinRZ,
    942                          std::min(kMaxGlobalRedzone,
    943                                   (SizeInBytes / MinRZ / 4) * MinRZ));
    944     uint64_t RightRedzoneSize = RZ;
    945     // Round up to MinRZ
    946     if (SizeInBytes % MinRZ)
    947       RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
    948     assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
    949     Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
    950     // Determine whether this global should be poisoned in initialization.
    951     bool GlobalHasDynamicInitializer =
    952         DynamicallyInitializedGlobals.Contains(G);
    953     // Don't check initialization order if this global is blacklisted.
    954     GlobalHasDynamicInitializer &= !BL->isIn(*G, "init");
    955 
    956     StructType *NewTy = StructType::get(Ty, RightRedZoneTy, NULL);
    957     Constant *NewInitializer = ConstantStruct::get(
    958         NewTy, G->getInitializer(),
    959         Constant::getNullValue(RightRedZoneTy), NULL);
    960 
    961     GlobalVariable *Name = createPrivateGlobalForString(M, G->getName());
    962 
    963     // Create a new global variable with enough space for a redzone.
    964     GlobalValue::LinkageTypes Linkage = G->getLinkage();
    965     if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
    966       Linkage = GlobalValue::InternalLinkage;
    967     GlobalVariable *NewGlobal = new GlobalVariable(
    968         M, NewTy, G->isConstant(), Linkage,
    969         NewInitializer, "", G, G->getThreadLocalMode());
    970     NewGlobal->copyAttributesFrom(G);
    971     NewGlobal->setAlignment(MinRZ);
    972 
    973     Value *Indices2[2];
    974     Indices2[0] = IRB.getInt32(0);
    975     Indices2[1] = IRB.getInt32(0);
    976 
    977     G->replaceAllUsesWith(
    978         ConstantExpr::getGetElementPtr(NewGlobal, Indices2, true));
    979     NewGlobal->takeName(G);
    980     G->eraseFromParent();
    981 
    982     Initializers[i] = ConstantStruct::get(
    983         GlobalStructTy,
    984         ConstantExpr::getPointerCast(NewGlobal, IntptrTy),
    985         ConstantInt::get(IntptrTy, SizeInBytes),
    986         ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
    987         ConstantExpr::getPointerCast(Name, IntptrTy),
    988         ConstantExpr::getPointerCast(ModuleName, IntptrTy),
    989         ConstantInt::get(IntptrTy, GlobalHasDynamicInitializer),
    990         NULL);
    991 
    992     // Populate the first and last globals declared in this TU.
    993     if (CheckInitOrder && GlobalHasDynamicInitializer)
    994       HasDynamicallyInitializedGlobals = true;
    995 
    996     DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
    997   }
    998 
    999   ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n);
   1000   GlobalVariable *AllGlobals = new GlobalVariable(
   1001       M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
   1002       ConstantArray::get(ArrayOfGlobalStructTy, Initializers), "");
   1003 
   1004   // Create calls for poisoning before initializers run and unpoisoning after.
   1005   if (CheckInitOrder && HasDynamicallyInitializedGlobals)
   1006     createInitializerPoisonCalls(M, ModuleName);
   1007   IRB.CreateCall2(AsanRegisterGlobals,
   1008                   IRB.CreatePointerCast(AllGlobals, IntptrTy),
   1009                   ConstantInt::get(IntptrTy, n));
   1010 
   1011   // We also need to unregister globals at the end, e.g. when a shared library
   1012   // gets closed.
   1013   Function *AsanDtorFunction = Function::Create(
   1014       FunctionType::get(Type::getVoidTy(*C), false),
   1015       GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
   1016   BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
   1017   IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB));
   1018   IRB_Dtor.CreateCall2(AsanUnregisterGlobals,
   1019                        IRB.CreatePointerCast(AllGlobals, IntptrTy),
   1020                        ConstantInt::get(IntptrTy, n));
   1021   appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndCtorPriority);
   1022 
   1023   DEBUG(dbgs() << M);
   1024   return true;
   1025 }
   1026 
   1027 void AddressSanitizer::initializeCallbacks(Module &M) {
   1028   IRBuilder<> IRB(*C);
   1029   // Create __asan_report* callbacks.
   1030   for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
   1031     for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
   1032          AccessSizeIndex++) {
   1033       // IsWrite and TypeSize are encoded in the function name.
   1034       std::string FunctionName = std::string(kAsanReportErrorTemplate) +
   1035           (AccessIsWrite ? "store" : "load") + itostr(1 << AccessSizeIndex);
   1036       // If we are merging crash callbacks, they have two parameters.
   1037       AsanErrorCallback[AccessIsWrite][AccessSizeIndex] =
   1038           checkInterfaceFunction(M.getOrInsertFunction(
   1039               FunctionName, IRB.getVoidTy(), IntptrTy, NULL));
   1040     }
   1041   }
   1042   AsanErrorCallbackSized[0] = checkInterfaceFunction(M.getOrInsertFunction(
   1043               kAsanReportLoadN, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
   1044   AsanErrorCallbackSized[1] = checkInterfaceFunction(M.getOrInsertFunction(
   1045               kAsanReportStoreN, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
   1046 
   1047   AsanHandleNoReturnFunc = checkInterfaceFunction(M.getOrInsertFunction(
   1048       kAsanHandleNoReturnName, IRB.getVoidTy(), NULL));
   1049   // We insert an empty inline asm after __asan_report* to avoid callback merge.
   1050   EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
   1051                             StringRef(""), StringRef(""),
   1052                             /*hasSideEffects=*/true);
   1053 }
   1054 
   1055 void AddressSanitizer::emitShadowMapping(Module &M, IRBuilder<> &IRB) const {
   1056   // Tell the values of mapping offset and scale to the run-time.
   1057   GlobalValue *asan_mapping_offset =
   1058       new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage,
   1059                      ConstantInt::get(IntptrTy, Mapping.Offset),
   1060                      kAsanMappingOffsetName);
   1061   // Read the global, otherwise it may be optimized away.
   1062   IRB.CreateLoad(asan_mapping_offset, true);
   1063 
   1064   GlobalValue *asan_mapping_scale =
   1065       new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage,
   1066                          ConstantInt::get(IntptrTy, Mapping.Scale),
   1067                          kAsanMappingScaleName);
   1068   // Read the global, otherwise it may be optimized away.
   1069   IRB.CreateLoad(asan_mapping_scale, true);
   1070 }
   1071 
   1072 // virtual
   1073 bool AddressSanitizer::doInitialization(Module &M) {
   1074   // Initialize the private fields. No one has accessed them before.
   1075   TD = getAnalysisIfAvailable<DataLayout>();
   1076 
   1077   if (!TD)
   1078     return false;
   1079   BL.reset(new SpecialCaseList(BlacklistFile));
   1080   DynamicallyInitializedGlobals.Init(M);
   1081 
   1082   C = &(M.getContext());
   1083   LongSize = TD->getPointerSizeInBits();
   1084   IntptrTy = Type::getIntNTy(*C, LongSize);
   1085 
   1086   AsanCtorFunction = Function::Create(
   1087       FunctionType::get(Type::getVoidTy(*C), false),
   1088       GlobalValue::InternalLinkage, kAsanModuleCtorName, &M);
   1089   BasicBlock *AsanCtorBB = BasicBlock::Create(*C, "", AsanCtorFunction);
   1090   // call __asan_init in the module ctor.
   1091   IRBuilder<> IRB(ReturnInst::Create(*C, AsanCtorBB));
   1092   AsanInitFunction = checkInterfaceFunction(
   1093       M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), NULL));
   1094   AsanInitFunction->setLinkage(Function::ExternalLinkage);
   1095   IRB.CreateCall(AsanInitFunction);
   1096 
   1097   Mapping = getShadowMapping(M, LongSize, ZeroBaseShadow);
   1098   emitShadowMapping(M, IRB);
   1099 
   1100   appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndCtorPriority);
   1101   return true;
   1102 }
   1103 
   1104 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
   1105   // For each NSObject descendant having a +load method, this method is invoked
   1106   // by the ObjC runtime before any of the static constructors is called.
   1107   // Therefore we need to instrument such methods with a call to __asan_init
   1108   // at the beginning in order to initialize our runtime before any access to
   1109   // the shadow memory.
   1110   // We cannot just ignore these methods, because they may call other
   1111   // instrumented functions.
   1112   if (F.getName().find(" load]") != std::string::npos) {
   1113     IRBuilder<> IRB(F.begin()->begin());
   1114     IRB.CreateCall(AsanInitFunction);
   1115     return true;
   1116   }
   1117   return false;
   1118 }
   1119 
   1120 bool AddressSanitizer::runOnFunction(Function &F) {
   1121   if (BL->isIn(F)) return false;
   1122   if (&F == AsanCtorFunction) return false;
   1123   if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
   1124   DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
   1125   initializeCallbacks(*F.getParent());
   1126 
   1127   // If needed, insert __asan_init before checking for SanitizeAddress attr.
   1128   maybeInsertAsanInitAtFunctionEntry(F);
   1129 
   1130   if (!F.hasFnAttribute(Attribute::SanitizeAddress))
   1131     return false;
   1132 
   1133   if (!ClDebugFunc.empty() && ClDebugFunc != F.getName())
   1134     return false;
   1135 
   1136   // We want to instrument every address only once per basic block (unless there
   1137   // are calls between uses).
   1138   SmallSet<Value*, 16> TempsToInstrument;
   1139   SmallVector<Instruction*, 16> ToInstrument;
   1140   SmallVector<Instruction*, 8> NoReturnCalls;
   1141   int NumAllocas = 0;
   1142   bool IsWrite;
   1143 
   1144   // Fill the set of memory operations to instrument.
   1145   for (Function::iterator FI = F.begin(), FE = F.end();
   1146        FI != FE; ++FI) {
   1147     TempsToInstrument.clear();
   1148     int NumInsnsPerBB = 0;
   1149     for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
   1150          BI != BE; ++BI) {
   1151       if (LooksLikeCodeInBug11395(BI)) return false;
   1152       if (Value *Addr = isInterestingMemoryAccess(BI, &IsWrite)) {
   1153         if (ClOpt && ClOptSameTemp) {
   1154           if (!TempsToInstrument.insert(Addr))
   1155             continue;  // We've seen this temp in the current BB.
   1156         }
   1157       } else if (isa<MemIntrinsic>(BI) && ClMemIntrin) {
   1158         // ok, take it.
   1159       } else {
   1160         if (isa<AllocaInst>(BI))
   1161           NumAllocas++;
   1162         CallSite CS(BI);
   1163         if (CS) {
   1164           // A call inside BB.
   1165           TempsToInstrument.clear();
   1166           if (CS.doesNotReturn())
   1167             NoReturnCalls.push_back(CS.getInstruction());
   1168         }
   1169         continue;
   1170       }
   1171       ToInstrument.push_back(BI);
   1172       NumInsnsPerBB++;
   1173       if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB)
   1174         break;
   1175     }
   1176   }
   1177 
   1178   Function *UninstrumentedDuplicate = 0;
   1179   bool LikelyToInstrument =
   1180       !NoReturnCalls.empty() || !ToInstrument.empty() || (NumAllocas > 0);
   1181   if (ClKeepUninstrumented && LikelyToInstrument) {
   1182     ValueToValueMapTy VMap;
   1183     UninstrumentedDuplicate = CloneFunction(&F, VMap, false);
   1184     UninstrumentedDuplicate->removeFnAttr(Attribute::SanitizeAddress);
   1185     UninstrumentedDuplicate->setName("NOASAN_" + F.getName());
   1186     F.getParent()->getFunctionList().push_back(UninstrumentedDuplicate);
   1187   }
   1188 
   1189   // Instrument.
   1190   int NumInstrumented = 0;
   1191   for (size_t i = 0, n = ToInstrument.size(); i != n; i++) {
   1192     Instruction *Inst = ToInstrument[i];
   1193     if (ClDebugMin < 0 || ClDebugMax < 0 ||
   1194         (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
   1195       if (isInterestingMemoryAccess(Inst, &IsWrite))
   1196         instrumentMop(Inst);
   1197       else
   1198         instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
   1199     }
   1200     NumInstrumented++;
   1201   }
   1202 
   1203   FunctionStackPoisoner FSP(F, *this);
   1204   bool ChangedStack = FSP.runOnFunction();
   1205 
   1206   // We must unpoison the stack before every NoReturn call (throw, _exit, etc).
   1207   // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37
   1208   for (size_t i = 0, n = NoReturnCalls.size(); i != n; i++) {
   1209     Instruction *CI = NoReturnCalls[i];
   1210     IRBuilder<> IRB(CI);
   1211     IRB.CreateCall(AsanHandleNoReturnFunc);
   1212   }
   1213 
   1214   bool res = NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty();
   1215   DEBUG(dbgs() << "ASAN done instrumenting: " << res << " " << F << "\n");
   1216 
   1217   if (ClKeepUninstrumented) {
   1218     if (!res) {
   1219       // No instrumentation is done, no need for the duplicate.
   1220       if (UninstrumentedDuplicate)
   1221         UninstrumentedDuplicate->eraseFromParent();
   1222     } else {
   1223       // The function was instrumented. We must have the duplicate.
   1224       assert(UninstrumentedDuplicate);
   1225       UninstrumentedDuplicate->setSection("NOASAN");
   1226       assert(!F.hasSection());
   1227       F.setSection("ASAN");
   1228     }
   1229   }
   1230 
   1231   return res;
   1232 }
   1233 
   1234 static uint64_t ValueForPoison(uint64_t PoisonByte, size_t ShadowRedzoneSize) {
   1235   if (ShadowRedzoneSize == 1) return PoisonByte;
   1236   if (ShadowRedzoneSize == 2) return (PoisonByte << 8) + PoisonByte;
   1237   if (ShadowRedzoneSize == 4)
   1238     return (PoisonByte << 24) + (PoisonByte << 16) +
   1239         (PoisonByte << 8) + (PoisonByte);
   1240   llvm_unreachable("ShadowRedzoneSize is either 1, 2 or 4");
   1241 }
   1242 
   1243 static void PoisonShadowPartialRightRedzone(uint8_t *Shadow,
   1244                                             size_t Size,
   1245                                             size_t RZSize,
   1246                                             size_t ShadowGranularity,
   1247                                             uint8_t Magic) {
   1248   for (size_t i = 0; i < RZSize;
   1249        i+= ShadowGranularity, Shadow++) {
   1250     if (i + ShadowGranularity <= Size) {
   1251       *Shadow = 0;  // fully addressable
   1252     } else if (i >= Size) {
   1253       *Shadow = Magic;  // unaddressable
   1254     } else {
   1255       *Shadow = Size - i;  // first Size-i bytes are addressable
   1256     }
   1257   }
   1258 }
   1259 
   1260 // Workaround for bug 11395: we don't want to instrument stack in functions
   1261 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
   1262 // FIXME: remove once the bug 11395 is fixed.
   1263 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
   1264   if (LongSize != 32) return false;
   1265   CallInst *CI = dyn_cast<CallInst>(I);
   1266   if (!CI || !CI->isInlineAsm()) return false;
   1267   if (CI->getNumArgOperands() <= 5) return false;
   1268   // We have inline assembly with quite a few arguments.
   1269   return true;
   1270 }
   1271 
   1272 void FunctionStackPoisoner::initializeCallbacks(Module &M) {
   1273   IRBuilder<> IRB(*C);
   1274   AsanStackMallocFunc = checkInterfaceFunction(M.getOrInsertFunction(
   1275       kAsanStackMallocName, IntptrTy, IntptrTy, IntptrTy, NULL));
   1276   AsanStackFreeFunc = checkInterfaceFunction(M.getOrInsertFunction(
   1277       kAsanStackFreeName, IRB.getVoidTy(),
   1278       IntptrTy, IntptrTy, IntptrTy, NULL));
   1279   AsanPoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction(
   1280       kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
   1281   AsanUnpoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction(
   1282       kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL));
   1283 }
   1284 
   1285 void FunctionStackPoisoner::poisonRedZones(
   1286   const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> IRB, Value *ShadowBase,
   1287   bool DoPoison) {
   1288   size_t ShadowRZSize = RedzoneSize() >> Mapping.Scale;
   1289   assert(ShadowRZSize >= 1 && ShadowRZSize <= 4);
   1290   Type *RZTy = Type::getIntNTy(*C, ShadowRZSize * 8);
   1291   Type *RZPtrTy = PointerType::get(RZTy, 0);
   1292 
   1293   Value *PoisonLeft  = ConstantInt::get(RZTy,
   1294     ValueForPoison(DoPoison ? kAsanStackLeftRedzoneMagic : 0LL, ShadowRZSize));
   1295   Value *PoisonMid   = ConstantInt::get(RZTy,
   1296     ValueForPoison(DoPoison ? kAsanStackMidRedzoneMagic : 0LL, ShadowRZSize));
   1297   Value *PoisonRight = ConstantInt::get(RZTy,
   1298     ValueForPoison(DoPoison ? kAsanStackRightRedzoneMagic : 0LL, ShadowRZSize));
   1299 
   1300   // poison the first red zone.
   1301   IRB.CreateStore(PoisonLeft, IRB.CreateIntToPtr(ShadowBase, RZPtrTy));
   1302 
   1303   // poison all other red zones.
   1304   uint64_t Pos = RedzoneSize();
   1305   for (size_t i = 0, n = AllocaVec.size(); i < n; i++) {
   1306     AllocaInst *AI = AllocaVec[i];
   1307     uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
   1308     uint64_t AlignedSize = getAlignedAllocaSize(AI);
   1309     assert(AlignedSize - SizeInBytes < RedzoneSize());
   1310     Value *Ptr = NULL;
   1311 
   1312     Pos += AlignedSize;
   1313 
   1314     assert(ShadowBase->getType() == IntptrTy);
   1315     if (SizeInBytes < AlignedSize) {
   1316       // Poison the partial redzone at right
   1317       Ptr = IRB.CreateAdd(
   1318           ShadowBase, ConstantInt::get(IntptrTy,
   1319                                        (Pos >> Mapping.Scale) - ShadowRZSize));
   1320       size_t AddressableBytes = RedzoneSize() - (AlignedSize - SizeInBytes);
   1321       uint32_t Poison = 0;
   1322       if (DoPoison) {
   1323         PoisonShadowPartialRightRedzone((uint8_t*)&Poison, AddressableBytes,
   1324                                         RedzoneSize(),
   1325                                         1ULL << Mapping.Scale,
   1326                                         kAsanStackPartialRedzoneMagic);
   1327         Poison =
   1328             ASan.TD->isLittleEndian()
   1329                 ? support::endian::byte_swap<uint32_t, support::little>(Poison)
   1330                 : support::endian::byte_swap<uint32_t, support::big>(Poison);
   1331       }
   1332       Value *PartialPoison = ConstantInt::get(RZTy, Poison);
   1333       IRB.CreateStore(PartialPoison, IRB.CreateIntToPtr(Ptr, RZPtrTy));
   1334     }
   1335 
   1336     // Poison the full redzone at right.
   1337     Ptr = IRB.CreateAdd(ShadowBase,
   1338                         ConstantInt::get(IntptrTy, Pos >> Mapping.Scale));
   1339     bool LastAlloca = (i == AllocaVec.size() - 1);
   1340     Value *Poison = LastAlloca ? PoisonRight : PoisonMid;
   1341     IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, RZPtrTy));
   1342 
   1343     Pos += RedzoneSize();
   1344   }
   1345 }
   1346 
   1347 void FunctionStackPoisoner::poisonStack() {
   1348   uint64_t LocalStackSize = TotalStackSize +
   1349                             (AllocaVec.size() + 1) * RedzoneSize();
   1350 
   1351   bool DoStackMalloc = ASan.CheckUseAfterReturn
   1352       && LocalStackSize <= kMaxStackMallocSize;
   1353 
   1354   assert(AllocaVec.size() > 0);
   1355   Instruction *InsBefore = AllocaVec[0];
   1356   IRBuilder<> IRB(InsBefore);
   1357 
   1358 
   1359   Type *ByteArrayTy = ArrayType::get(IRB.getInt8Ty(), LocalStackSize);
   1360   AllocaInst *MyAlloca =
   1361       new AllocaInst(ByteArrayTy, "MyAlloca", InsBefore);
   1362   if (ClRealignStack && StackAlignment < RedzoneSize())
   1363     StackAlignment = RedzoneSize();
   1364   MyAlloca->setAlignment(StackAlignment);
   1365   assert(MyAlloca->isStaticAlloca());
   1366   Value *OrigStackBase = IRB.CreatePointerCast(MyAlloca, IntptrTy);
   1367   Value *LocalStackBase = OrigStackBase;
   1368 
   1369   if (DoStackMalloc) {
   1370     LocalStackBase = IRB.CreateCall2(AsanStackMallocFunc,
   1371         ConstantInt::get(IntptrTy, LocalStackSize), OrigStackBase);
   1372   }
   1373 
   1374   // This string will be parsed by the run-time (DescribeAddressIfStack).
   1375   SmallString<2048> StackDescriptionStorage;
   1376   raw_svector_ostream StackDescription(StackDescriptionStorage);
   1377   StackDescription << AllocaVec.size() << " ";
   1378 
   1379   // Insert poison calls for lifetime intrinsics for alloca.
   1380   bool HavePoisonedAllocas = false;
   1381   for (size_t i = 0, n = AllocaPoisonCallVec.size(); i < n; i++) {
   1382     const AllocaPoisonCall &APC = AllocaPoisonCallVec[i];
   1383     IntrinsicInst *II = APC.InsBefore;
   1384     AllocaInst *AI = findAllocaForValue(II->getArgOperand(1));
   1385     assert(AI);
   1386     IRBuilder<> IRB(II);
   1387     poisonAlloca(AI, APC.Size, IRB, APC.DoPoison);
   1388     HavePoisonedAllocas |= APC.DoPoison;
   1389   }
   1390 
   1391   uint64_t Pos = RedzoneSize();
   1392   // Replace Alloca instructions with base+offset.
   1393   for (size_t i = 0, n = AllocaVec.size(); i < n; i++) {
   1394     AllocaInst *AI = AllocaVec[i];
   1395     uint64_t SizeInBytes = getAllocaSizeInBytes(AI);
   1396     StringRef Name = AI->getName();
   1397     StackDescription << Pos << " " << SizeInBytes << " "
   1398                      << Name.size() << " " << Name << " ";
   1399     uint64_t AlignedSize = getAlignedAllocaSize(AI);
   1400     assert((AlignedSize % RedzoneSize()) == 0);
   1401     Value *NewAllocaPtr = IRB.CreateIntToPtr(
   1402             IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Pos)),
   1403             AI->getType());
   1404     replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB);
   1405     AI->replaceAllUsesWith(NewAllocaPtr);
   1406     Pos += AlignedSize + RedzoneSize();
   1407   }
   1408   assert(Pos == LocalStackSize);
   1409 
   1410   // The left-most redzone has enough space for at least 4 pointers.
   1411   // Write the Magic value to redzone[0].
   1412   Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
   1413   IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
   1414                   BasePlus0);
   1415   // Write the frame description constant to redzone[1].
   1416   Value *BasePlus1 = IRB.CreateIntToPtr(
   1417     IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, ASan.LongSize/8)),
   1418     IntptrPtrTy);
   1419   GlobalVariable *StackDescriptionGlobal =
   1420       createPrivateGlobalForString(*F.getParent(), StackDescription.str());
   1421   Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal,
   1422                                              IntptrTy);
   1423   IRB.CreateStore(Description, BasePlus1);
   1424   // Write the PC to redzone[2].
   1425   Value *BasePlus2 = IRB.CreateIntToPtr(
   1426     IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy,
   1427                                                    2 * ASan.LongSize/8)),
   1428     IntptrPtrTy);
   1429   IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
   1430 
   1431   // Poison the stack redzones at the entry.
   1432   Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
   1433   poisonRedZones(AllocaVec, IRB, ShadowBase, true);
   1434 
   1435   // Unpoison the stack before all ret instructions.
   1436   for (size_t i = 0, n = RetVec.size(); i < n; i++) {
   1437     Instruction *Ret = RetVec[i];
   1438     IRBuilder<> IRBRet(Ret);
   1439     // Mark the current frame as retired.
   1440     IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
   1441                        BasePlus0);
   1442     // Unpoison the stack.
   1443     poisonRedZones(AllocaVec, IRBRet, ShadowBase, false);
   1444     if (DoStackMalloc) {
   1445       // In use-after-return mode, mark the whole stack frame unaddressable.
   1446       IRBRet.CreateCall3(AsanStackFreeFunc, LocalStackBase,
   1447                          ConstantInt::get(IntptrTy, LocalStackSize),
   1448                          OrigStackBase);
   1449     } else if (HavePoisonedAllocas) {
   1450       // If we poisoned some allocas in llvm.lifetime analysis,
   1451       // unpoison whole stack frame now.
   1452       assert(LocalStackBase == OrigStackBase);
   1453       poisonAlloca(LocalStackBase, LocalStackSize, IRBRet, false);
   1454     }
   1455   }
   1456 
   1457   // We are done. Remove the old unused alloca instructions.
   1458   for (size_t i = 0, n = AllocaVec.size(); i < n; i++)
   1459     AllocaVec[i]->eraseFromParent();
   1460 }
   1461 
   1462 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
   1463                                          IRBuilder<> IRB, bool DoPoison) {
   1464   // For now just insert the call to ASan runtime.
   1465   Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
   1466   Value *SizeArg = ConstantInt::get(IntptrTy, Size);
   1467   IRB.CreateCall2(DoPoison ? AsanPoisonStackMemoryFunc
   1468                            : AsanUnpoisonStackMemoryFunc,
   1469                   AddrArg, SizeArg);
   1470 }
   1471 
   1472 // Handling llvm.lifetime intrinsics for a given %alloca:
   1473 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
   1474 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
   1475 //     invalid accesses) and unpoison it for llvm.lifetime.start (the memory
   1476 //     could be poisoned by previous llvm.lifetime.end instruction, as the
   1477 //     variable may go in and out of scope several times, e.g. in loops).
   1478 // (3) if we poisoned at least one %alloca in a function,
   1479 //     unpoison the whole stack frame at function exit.
   1480 
   1481 AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) {
   1482   if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
   1483     // We're intested only in allocas we can handle.
   1484     return isInterestingAlloca(*AI) ? AI : 0;
   1485   // See if we've already calculated (or started to calculate) alloca for a
   1486   // given value.
   1487   AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
   1488   if (I != AllocaForValue.end())
   1489     return I->second;
   1490   // Store 0 while we're calculating alloca for value V to avoid
   1491   // infinite recursion if the value references itself.
   1492   AllocaForValue[V] = 0;
   1493   AllocaInst *Res = 0;
   1494   if (CastInst *CI = dyn_cast<CastInst>(V))
   1495     Res = findAllocaForValue(CI->getOperand(0));
   1496   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
   1497     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1498       Value *IncValue = PN->getIncomingValue(i);
   1499       // Allow self-referencing phi-nodes.
   1500       if (IncValue == PN) continue;
   1501       AllocaInst *IncValueAI = findAllocaForValue(IncValue);
   1502       // AI for incoming values should exist and should all be equal.
   1503       if (IncValueAI == 0 || (Res != 0 && IncValueAI != Res))
   1504         return 0;
   1505       Res = IncValueAI;
   1506     }
   1507   }
   1508   if (Res != 0)
   1509     AllocaForValue[V] = Res;
   1510   return Res;
   1511 }
   1512